\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"3637",leadTitle:null,fullTitle:"Cutting Edge Robotics 2010",title:"Cutting Edge Robotics 2010",subtitle:null,reviewType:"peer-reviewed",abstract:"Robotics research, especially mobile robotics is a young field. Its roots include many engineering and scientific disciplines from mechanical, electrical and electronics engineering to computer, cognitive and social sciences. Each of this parent fields is exciting in its own way and has its share in different books. This book is a result of inspirations and contributions from many researchers worldwide. It presents a collection of a wide range of research results in robotics scientific community. We hope you will enjoy reading the book as much as we have enjoyed bringing it together for you.",isbn:null,printIsbn:"978-953-307-062-9",pdfIsbn:"978-953-51-5962-9",doi:"10.5772/288",price:139,priceEur:155,priceUsd:179,slug:"cutting-edge-robotics-2010",numberOfPages:452,isOpenForSubmission:!1,isInWos:1,hash:null,bookSignature:"Vedran Kordic",publishedDate:"October 1st 2010",coverURL:"https://cdn.intechopen.com/books/images_new/3637.jpg",numberOfDownloads:64715,numberOfWosCitations:50,numberOfCrossrefCitations:45,numberOfDimensionsCitations:85,hasAltmetrics:0,numberOfTotalCitations:180,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:null,dateEndSecondStepPublish:null,dateEndThirdStepPublish:null,dateEndFourthStepPublish:null,dateEndFifthStepPublish:null,currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"TU Wien",institutionURL:null,country:{name:"Austria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1288",title:"Mobile Robot",slug:"kinematics-mobile-robot"}],chapters:[{id:"12194",title:"Motion Control of Robots Based on Sensings of Human Forces and Movements",doi:"10.5772/10306",slug:"motion-control-of-robots-based-on-sensings-of-human-forces-and-movements",totalDownloads:2446,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Tao Liu, Chunguang Li, Kyoko Shibata and Yoshio Inoue",downloadPdfUrl:"/chapter/pdf-download/12194",previewPdfUrl:"/chapter/pdf-preview/12194",authors:[null],corrections:null},{id:"12209",title:"Reactive Robot Control with Hybrid Operational Techniques in a Seaport Container Terminal Considering the Reliability",doi:"10.5772/10321",slug:"reactive-robot-control-with-hybrid-operational-techniques-in-a-seaport-container-terminal-considerin",totalDownloads:2560,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Satoshi Hoshino and Jun Ota",downloadPdfUrl:"/chapter/pdf-download/12209",previewPdfUrl:"/chapter/pdf-preview/12209",authors:[null],corrections:null},{id:"12195",title:"Robust Nonlinear Control of a 7 DOF Model-Scale Helicopter Under Wind Gusts Using Disturbance Observers",doi:"10.5772/10307",slug:"robust-nonlinear-control-of-a-7-dof-model-scale-helicopter-under-wind-gusts-using-disturbance-observ",totalDownloads:2334,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Adnan Martini, Frangois Leonard and Gabriel Abba",downloadPdfUrl:"/chapter/pdf-download/12195",previewPdfUrl:"/chapter/pdf-preview/12195",authors:[null],corrections:null},{id:"12205",title:"Pursiut-Evasion Games in Presence of Obstacles in Unknown Environments: towards an Optimal Pursuit Strategy",doi:"10.5772/10317",slug:"pursiut-evasion-games-in-presence-of-obstacles-in-unknown-environments-towards-an-optimal-pursuit-st",totalDownloads:1886,totalCrossrefCites:3,totalDimensionsCites:4,signatures:"C. Giovannangeli, M. Heymann and E. Rivlin",downloadPdfUrl:"/chapter/pdf-download/12205",previewPdfUrl:"/chapter/pdf-preview/12205",authors:[null],corrections:null},{id:"12210",title:"Motion Planning by Integration of Multiple Policies for Complex Assembly Tasks",doi:"10.5772/10322",slug:"motion-planning-by-integration-of-multiple-policies-for-complex-assembly-tasks",totalDownloads:1606,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"Natsuki Yamanobe, Hiromitsu Fujii, Tamio Arai and Ryuichi Ueda",downloadPdfUrl:"/chapter/pdf-download/12210",previewPdfUrl:"/chapter/pdf-preview/12210",authors:[null],corrections:null},{id:"12196",title:"Robotic Strategies to Assist Pilots in Landing and Takeoff of Helicopters on Ships and Offshore",doi:"10.5772/10308",slug:"robotic-strategies-to-assist-pilots-in-landing-and-takeoff-of-helicopters-on-ships-and-offshore",totalDownloads:2984,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alexandre Campos, Jacqueline Quintero, Roque Saltaren, Manuel Ferre and Rafael Aracil",downloadPdfUrl:"/chapter/pdf-download/12196",previewPdfUrl:"/chapter/pdf-preview/12196",authors:[null],corrections:null},{id:"12203",title:"Optimality Principles and Motion Planning of Human-Like Reaching Movements",doi:"10.5772/10315",slug:"optimality-principles-and-motion-planning-of-human-like-reaching-movements",totalDownloads:1901,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mikhail M. Svinin, Igor A. Goncharenko, Shigeyuki Hosoe and Yoshihito Osada",downloadPdfUrl:"/chapter/pdf-download/12203",previewPdfUrl:"/chapter/pdf-preview/12203",authors:[null],corrections:null},{id:"12215",title:"An Experimental Study of Three-Dimensional Passive Dynamic Walking with Flat Feet and Ankle Springs",doi:"10.5772/10327",slug:"an-experimental-study-of-three-dimensional-passive-dynamic-walking-with-flat-feet-and-ankle-springs",totalDownloads:2710,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Terumasa Narukawa, Kazuto Yokoyama, Masaki Takahashi and Kazuo Yoshida",downloadPdfUrl:"/chapter/pdf-download/12215",previewPdfUrl:"/chapter/pdf-preview/12215",authors:[null],corrections:null},{id:"12190",title:"Active Knee-Release Mechanism for Passive-Dynamic Walking Machines",doi:"10.5772/10302",slug:"active-knee-release-mechanism-for-passive-dynamic-walking-machines",totalDownloads:2979,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Kalin Trifonov and Shuji Hashimoto",downloadPdfUrl:"/chapter/pdf-download/12190",previewPdfUrl:"/chapter/pdf-preview/12190",authors:[null],corrections:null},{id:"12214",title:"Simplified Human Hand Models for Manipulation Tasks",doi:"10.5772/10326",slug:"simplified-human-hand-models-for-manipulation-tasks",totalDownloads:3147,totalCrossrefCites:1,totalDimensionsCites:5,signatures:"Salvador Cobos, Manuel Ferre, Rafael Aracil, Javier Ortego and M. Angel Sanchez-Uran",downloadPdfUrl:"/chapter/pdf-download/12214",previewPdfUrl:"/chapter/pdf-preview/12214",authors:[null],corrections:null},{id:"12204",title:"An Impact Motion Generation Support Software",doi:"10.5772/10316",slug:"an-impact-motion-generation-support-software",totalDownloads:2102,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Teppei Tsujita, Atsushi Konno, Yuki Nomura, Shunsuke Komizunai, Yasar Ayaz and Masaru Uchiyama",downloadPdfUrl:"/chapter/pdf-download/12204",previewPdfUrl:"/chapter/pdf-preview/12204",authors:[null],corrections:null},{id:"12201",title:"Peltier-Based Freeze-Thaw Connector for Waterborne Self-Assembly Systems",doi:"10.5772/10313",slug:"peltier-based-freeze-thaw-connector-for-waterborne-self-assembly-systems",totalDownloads:2080,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Shuhei Miyashita, Flurin Casanova, Max Lungarella and Rolf Pfeifer",downloadPdfUrl:"/chapter/pdf-download/12201",previewPdfUrl:"/chapter/pdf-preview/12201",authors:[null],corrections:null},{id:"12192",title:"Adhesion Forces Reduction by Oscillation and Its Application to Micro Manipulation",doi:"10.5772/10304",slug:"adhesion-forces-reduction-by-oscillation-and-its-application-to-micro-manipulation",totalDownloads:1757,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Tetsoyu Watanabe and ZhongWei Jiang",downloadPdfUrl:"/chapter/pdf-download/12192",previewPdfUrl:"/chapter/pdf-preview/12192",authors:[null],corrections:null},{id:"12202",title:"Passivity Based Control of Hydraulic Linear Arms Using Natural Casimir Functions",doi:"10.5772/10314",slug:"passivity-based-control-of-hydraulic-linear-arms-using-natural-casimir-functions",totalDownloads:2512,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Satoru Sakai",downloadPdfUrl:"/chapter/pdf-download/12202",previewPdfUrl:"/chapter/pdf-preview/12202",authors:[null],corrections:null},{id:"12198",title:"The Formation Stability of a Multi-Robotic Formation Control System",doi:"10.5772/10310",slug:"the-formation-stability-of-a-multi-robotic-formation-control-system",totalDownloads:1535,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Chih-Fu Chang and Li-Chen Fu",downloadPdfUrl:"/chapter/pdf-download/12198",previewPdfUrl:"/chapter/pdf-preview/12198",authors:[null],corrections:null},{id:"12207",title:"Estimation of Users Request for Attentive Deskwork Support System",doi:"10.5772/10319",slug:"estimation-of-users-request-for-attentive-deskwork-support-system",totalDownloads:1647,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Yusuke Tamura, Masao Sugi, Tamio Arai and Jun Ota",downloadPdfUrl:"/chapter/pdf-download/12207",previewPdfUrl:"/chapter/pdf-preview/12207",authors:[null],corrections:null},{id:"12208",title:"Adaptive Swarm Formation Control for Hybrid Ground and Aerial Assets",doi:"10.5772/10320",slug:"adaptive-swarm-formation-control-for-hybrid-ground-and-aerial-assets",totalDownloads:2359,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Laura Barnes, Richard Garcia, Mary Anne Fields and Kimon Valavanis",downloadPdfUrl:"/chapter/pdf-download/12208",previewPdfUrl:"/chapter/pdf-preview/12208",authors:[null],corrections:null},{id:"12191",title:"Intelligent Robot Systems Based on PDA for Home Automation Systems in Ubiquitous",doi:"10.5772/10303",slug:"intelligent-robot-systems-based-on-pda-for-home-automation-systems-in-ubiquitous",totalDownloads:4790,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"In-Kyu Sa, Ho Seok Ahn, Yun Seok Ahn, Seon-Kyu Sa and Jin Young Choi",downloadPdfUrl:"/chapter/pdf-download/12191",previewPdfUrl:"/chapter/pdf-preview/12191",authors:[null],corrections:null},{id:"12211",title:"Onboard Mission Management for a VTOL UAV Using Sequence and Supervisory Control",doi:"10.5772/10323",slug:"onboard-mission-management-for-a-vtol-uav-using-sequence-and-supervisory-control",totalDownloads:2828,totalCrossrefCites:5,totalDimensionsCites:7,signatures:"Florian Adolf and Franz Andert",downloadPdfUrl:"/chapter/pdf-download/12211",previewPdfUrl:"/chapter/pdf-preview/12211",authors:[null],corrections:null},{id:"12200",title:"Emotion Recognition through Physiological Signals for Human-Machine Communication",doi:"10.5772/10312",slug:"emotion-recognition-through-physiological-signals-for-human-machine-communication",totalDownloads:4695,totalCrossrefCites:25,totalDimensionsCites:53,signatures:"Choubeila Maaoui and Alain Pruski",downloadPdfUrl:"/chapter/pdf-download/12200",previewPdfUrl:"/chapter/pdf-preview/12200",authors:[null],corrections:null},{id:"12216",title:"Robot Assisted Smile Recovery",doi:"10.5772/10328",slug:"robot-assisted-smile-recovery",totalDownloads:2138,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Dushyantha Jayatilake, Anna Gruebler and Kenji Suzuki",downloadPdfUrl:"/chapter/pdf-download/12216",previewPdfUrl:"/chapter/pdf-preview/12216",authors:[null],corrections:null},{id:"12197",title:"Augmenting Sparse Laser Scans with Virtual Scans to Improve the Performance of Alignment Algorithms",doi:"10.5772/10309",slug:"augmenting-sparse-laser-scans-with-virtual-scans-to-improve-the-performance-of-alignment-algorithms",totalDownloads:1403,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rolf Lakaemper",downloadPdfUrl:"/chapter/pdf-download/12197",previewPdfUrl:"/chapter/pdf-preview/12197",authors:[null],corrections:null},{id:"12212",title:"Sensor Network for Structuring People and Environmental Information",doi:"10.5772/10324",slug:"sensor-network-for-structuring-people-and-environmental-information",totalDownloads:2076,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"S. Nishio, N. Hagita, T. Miyashita, T. Kanda, N. Mitsunaga, M. Shiomi and T. Yamazaki",downloadPdfUrl:"/chapter/pdf-download/12212",previewPdfUrl:"/chapter/pdf-preview/12212",authors:[null],corrections:null},{id:"12199",title:"Minimally Invasive Force Sensing for Tendon-driven Robots",doi:"10.5772/10311",slug:"minimally-invasive-force-sensing-for-tendon-driven-robots",totalDownloads:2015,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alberto Cavallo, Guiseppe De Maria, Ciro Natale and Salvatore Pirozzi",downloadPdfUrl:"/chapter/pdf-download/12199",previewPdfUrl:"/chapter/pdf-preview/12199",authors:[null],corrections:null},{id:"12213",title:"Tweezers Type Tool Manipulation by a Multifinger Hand Using a High-Speed Visual Servoing",doi:"10.5772/10325",slug:"tweezers-type-tool-manipulation-by-a-multifinger-hand-using-a-high-speed-visual-servoing",totalDownloads:2071,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Satoru Mizusawa, Akio Namiki, Taku Senoo and Masatoshi Ishikawa",downloadPdfUrl:"/chapter/pdf-download/12213",previewPdfUrl:"/chapter/pdf-preview/12213",authors:[null],corrections:null},{id:"12206",title:"Vision-Based Haptic Feedback with Physically-Based Model for Telemanipulation",doi:"10.5772/10318",slug:"vision-based-haptic-feedback-with-physically-based-model-for-telemanipulation",totalDownloads:2071,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Jungsik Kim and Jung Kim",downloadPdfUrl:"/chapter/pdf-download/12206",previewPdfUrl:"/chapter/pdf-preview/12206",authors:[null],corrections:null},{id:"12193",title:"Image Sabilization for In Vivo Microscopic Imaging",doi:"10.5772/10305",slug:"image-sabilization-for-in-vivo-microscopic-imaging",totalDownloads:2113,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Sungon Lee",downloadPdfUrl:"/chapter/pdf-download/12193",previewPdfUrl:"/chapter/pdf-preview/12193",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5787",title:"Cutting Edge Robotics",subtitle:null,isOpenForSubmission:!1,hash:"f5caeb19605b2ebe7260f03131c26a24",slug:"cutting_edge_robotics",bookSignature:"Vedran Kordic, Aleksandar Lazinica and Munir Merdan",coverURL:"https://cdn.intechopen.com/books/images_new/5787.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5330",title:"Petri Net",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"4ebb7d10fa68cbcab11de39a524f2581",slug:"petri_net_theory_and_applications",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/5330.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6108",title:"Manufacturing the Future",subtitle:null,isOpenForSubmission:!1,hash:"351a0a62f2d8f64cbdf5124441a1a926",slug:"manufacturing_the_future",bookSignature:"V. Kordic, A. Lazinica and M. Merdan",coverURL:"https://cdn.intechopen.com/books/images_new/6108.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4459",title:"Kalman Filter",subtitle:null,isOpenForSubmission:!1,hash:"979e6a0dfff2bfee783d07a92c0ed8b1",slug:"kalman-filter",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/4459.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3603",title:"Supply Chain",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"supply_chain",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/3603.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3779",title:"Autonomous Agents",subtitle:null,isOpenForSubmission:!1,hash:"2de8f35c0784b403c61442c900cf2e93",slug:"autonomous-agents",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/3779.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1880",title:"Mobile Robots",subtitle:"Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training",isOpenForSubmission:!1,hash:"5c978b99bcfc519f4f27256ae5b2e212",slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",bookSignature:"Janusz Będkowski",coverURL:"https://cdn.intechopen.com/books/images_new/1880.jpg",editedByType:"Edited by",editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"71364",slug:"erratum-the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",title:"Erratum - The Mechanism of Misalignment of Saw Cutting Crack of Concrete Pavement",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71364.pdf",downloadPdfUrl:"/chapter/pdf-download/71364",previewPdfUrl:"/chapter/pdf-preview/71364",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71364",risUrl:"/chapter/ris/71364",chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]}},chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]},book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8774",leadTitle:null,title:"Programmed Cell Death",subtitle:null,reviewType:"peer-reviewed",abstract:"This book incorporates developments in our understanding of cell death mechanisms and highlights recent advances in programmed cell death regulation processes. It provides the reader with the network of pathways targeted by herbal anticancer drugs and discusses the role of endoplasmic reticulum stress in cell death mechanisms in addition to highlighting the mechanisms of autophagy and its role in diseases. This book provides valuable material for researchers and for teaching postgraduate students. Emphasis on recent advances and their clinical applications offers insights to researchers that will likely lead to the development of novel therapeutic approaches.",isbn:"978-1-78984-749-9",printIsbn:"978-1-78984-748-2",pdfIsbn:"978-1-83968-470-8",doi:"10.5772/intechopen.80192",price:119,priceEur:129,priceUsd:155,slug:"programmed-cell-death",numberOfPages:152,isOpenForSubmission:!1,hash:"0459d0c7a518f61817a48fd4709c35bd",bookSignature:"Hala Gali-Muhtasib and Omar Nasser Rahal",publishedDate:"January 15th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8774.jpg",keywords:null,numberOfDownloads:2872,numberOfWosCitations:5,numberOfCrossrefCitations:1,numberOfDimensionsCitations:8,numberOfTotalCitations:14,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 13th 2018",dateEndSecondStepPublish:"January 29th 2019",dateEndThirdStepPublish:"March 30th 2019",dateEndFourthStepPublish:"June 18th 2019",dateEndFifthStepPublish:"August 17th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"57145",title:"Prof.",name:"Hala",middleName:null,surname:"Gali-Muhtasib",slug:"hala-gali-muhtasib",fullName:"Hala Gali-Muhtasib",profilePictureURL:"https://mts.intechopen.com/storage/users/57145/images/system/57145.jpg",biography:"Hala Gali-Muhtasib is a tenured Professor of Cell and Cancer Biology at the American University of Beirut (AUB), Lebanon. She received her PhD from Kansas State University, Manhattan, USA and joined AUB in 1994. She assumed many administrative positions at AUB including Interim Associate Provost, Chair of Enrollment Management, Chair of Biology Department and Director of Center for Drug Discovery. She is a prominent scholar with outstanding scientific contributions to the study of the role of natural products in cancer therapy and identifying their cellular and molecular mechanisms of action. She has published 95 peer reviewed articles, more than 10 book chapters and has edited a few books. Gali-Muhtasib has received many research achievement awards for her contributions to advance the field of natural product drug discovery and drug delivery.",institutionString:"American University of Beirut",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University of Beirut",institutionURL:null,country:{name:"Lebanon"}}}],coeditorOne:{id:"282536",title:"Dr.",name:"Omar Nasser",middleName:null,surname:"Rahal",slug:"omar-nasser-rahal",fullName:"Omar Nasser Rahal",profilePictureURL:"https://mts.intechopen.com/storage/users/282536/images/system/282536.JPG",biography:"Best described as a physician scientist, Omar Nasser Rahal earned his MD degree with outstanding performance from SABA University School of Medicine in the Caribbean, Netherlands. As an undergraduate, he earned his Bachelor of Science degree in Biology from the American University of Beirut, Lebanon and was further appointed as a translational cancer researcher in the field of Molecular Biology and Anticancer Drug Discovery. His research interests are in the field of Oncology with a focus on translational research, systematic and comparative reviews, case studies, and clinical trials. Omar co-authored 6 peer review articles and 1 book chapter. His research contributions during his clinical career have played a role in the improvement of the quality of the health care system in the United States.",institutionString:"SABA University School of Medicine",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"47",title:"Cell Biology",slug:"biochemistry-genetics-and-molecular-biology-cell-biology"}],chapters:[{id:"67900",title:"The Underlying Mechanisms of Chinese Herbal Medicine-Induced Apoptotic Cell Death in Human Cancer",slug:"the-underlying-mechanisms-of-chinese-herbal-medicine-induced-apoptotic-cell-death-in-human-cancer",totalDownloads:463,totalCrossrefCites:0,authors:[null]},{id:"66895",title:"Programmed Cell Death Deregulation in BCR-ABL1-Negative Myeloproliferative Neoplasms",slug:"programmed-cell-death-deregulation-in-bcr-abl1-negative-myeloproliferative-neoplasms",totalDownloads:345,totalCrossrefCites:0,authors:[null]},{id:"66585",title:"Endoplasmic Reticulum Stress-Mediated Cell Death",slug:"endoplasmic-reticulum-stress-mediated-cell-death",totalDownloads:802,totalCrossrefCites:1,authors:[null]},{id:"70279",title:"Cell Death Mechanisms of the Promising Anticancer Compound Gallotannin",slug:"cell-death-mechanisms-of-the-promising-anticancer-compound-gallotannin",totalDownloads:222,totalCrossrefCites:0,authors:[{id:"57145",title:"Prof.",name:"Hala",surname:"Gali-Muhtasib",slug:"hala-gali-muhtasib",fullName:"Hala Gali-Muhtasib"}]},{id:"68414",title:"Autophagy and Cell Death: Antitumor Drugs Targeting Autophagy",slug:"autophagy-and-cell-death-antitumor-drugs-targeting-autophagy",totalDownloads:570,totalCrossrefCites:0,authors:[null]},{id:"67450",title:"Autophagy and Cell Death in Alzheimer’s, Parkinson’s and Prion Diseases",slug:"autophagy-and-cell-death-in-alzheimer-s-parkinson-s-and-prion-diseases",totalDownloads:479,totalCrossrefCites:0,authors:[{id:"30734",title:"Prof.",name:"Samo",surname:"Ribaric",slug:"samo-ribaric",fullName:"Samo Ribaric"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1311",title:"Advances in Cancer Therapy",subtitle:null,isOpenForSubmission:!1,hash:"24db071212f134f4a7dc3dc0cc786fec",slug:"advances-in-cancer-therapy",bookSignature:"Hala Gali-Muhtasib",coverURL:"https://cdn.intechopen.com/books/images_new/1311.jpg",editedByType:"Edited by",editors:[{id:"57145",title:"Prof.",name:"Hala",surname:"Gali-Muhtasib",slug:"hala-gali-muhtasib",fullName:"Hala Gali-Muhtasib"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6964",title:"Cell Culture",subtitle:null,isOpenForSubmission:!1,hash:"045f3a964a9628162956abc06ef5777d",slug:"cell-culture",bookSignature:"Radwa Ali Mehanna",coverURL:"https://cdn.intechopen.com/books/images_new/6964.jpg",editedByType:"Edited by",editors:[{id:"182118",title:"Dr.",name:"Radwa Ali",surname:"Mehanna",slug:"radwa-ali-mehanna",fullName:"Radwa Ali Mehanna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6683",title:"Ion Channels in Health and Sickness",subtitle:null,isOpenForSubmission:!1,hash:"8b02f45497488912833ba5b8e7cdaae8",slug:"ion-channels-in-health-and-sickness",bookSignature:"Kaneez Fatima Shad",coverURL:"https://cdn.intechopen.com/books/images_new/6683.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!1,hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",slug:"endoplasmic-reticulum",bookSignature:"Angel Català",coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6820",title:"Keratin",subtitle:null,isOpenForSubmission:!1,hash:"6def75cd4b6b5324a02b6dc0359896d0",slug:"keratin",bookSignature:"Miroslav Blumenberg",coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,isOpenForSubmission:!1,hash:"e373a3d1123dbd45fddf75d90e3e7c38",slug:"calcium-and-signal-transduction",bookSignature:"John N. Buchholz and Erik J. Behringer",coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",editedByType:"Edited by",editors:[{id:"89438",title:"Dr.",name:"John N.",surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5907",title:"Stem Cells in Clinical Practice and Tissue Engineering",subtitle:null,isOpenForSubmission:!1,hash:"968012935832c68c09da71ccb81ca420",slug:"stem-cells-in-clinical-practice-and-tissue-engineering",bookSignature:"Rakesh Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/5907.jpg",editedByType:"Edited by",editors:[{id:"98263",title:"Prof.",name:"Rakesh",surname:"Sharma",slug:"rakesh-sharma",fullName:"Rakesh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,isOpenForSubmission:!1,hash:"083e5d427097d368a3f8a02bd6c76bf8",slug:"free-radical-medicine-and-biology",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6986",title:"Telomerase and non-Telomerase Mechanisms of Telomere Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"79b7d4e97e1e0722f4ce1309a2088be3",slug:"telomerase-and-non-telomerase-mechanisms-of-telomere-maintenance",bookSignature:"Tammy A. Morrish",coverURL:"https://cdn.intechopen.com/books/images_new/6986.jpg",editedByType:"Edited by",editors:[{id:"275021",title:"Dr.",name:"Tammy A.",surname:"Morrish",slug:"tammy-a.-morrish",fullName:"Tammy A. Morrish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7121",title:"Cell Growth",subtitle:null,isOpenForSubmission:!1,hash:"9845b4d66ecca197908bcbfe4fd89321",slug:"cell-growth",bookSignature:"Biba Vikas and Michael Fasullo",coverURL:"https://cdn.intechopen.com/books/images_new/7121.jpg",editedByType:"Edited by",editors:[{id:"241658",title:"Dr.",name:"Biba",surname:"Vikas",slug:"biba-vikas",fullName:"Biba Vikas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60614",title:"Etiology of Secondary Caries in Prosthodontic Treatments",doi:"10.5772/intechopen.76097",slug:"etiology-of-secondary-caries-in-prosthodontic-treatments",body:'Throughout the history of dentistry, dental clinicians, prosthodontists, and manufacturers have strived to create dental restorations that are both esthetically pleasing and function perfectly. Multiple factors determine how therapeutic the restorations are and how long they last. Just how successful a dental restoration depends on three principal factors: how esthetically pleasing it is, how resistant it is to fracturing, and marginal adaptation, meaning how well they fit [1, 2]. More recently developed materials have a high esthetic value and are mechanically very resilient. The factors that affect marginal adaption include how well the restoration bonds to the prepared surface, how effective the seal is, and the characteristics of the adhesive used to bond the restoration to the tooth. When a prosthetic restoration does not fit properly, this can cause plaque accumulation [2, 3]. This in turn can lead to microleakage and endodontic inflammation [4], and it increases the probability of carious lesions [5, 6]. The periodontal and endodontic lesions that form as a result may require the prosthetic restoration to be replaced or necessitate endodontic treatment, or even tooth extraction.
“Dental caries is determined by the dynamic balance between the pathological factors that lead to demineralization and the protective factors that lead to remineralization.” [7] Caries is a tissue consisting of densely packed crystallites formed in a single axis having both inter- and intra-prismatic micropores measuring between 1 and 30 nm in width. Caries appears in the enamel first and this is accompanied by hypermineralization of the dentine below the cavity [8]. One common characteristic of this is sclerotic dentinal tubules [9]. The dentine starts to demineralize at the outer edge of the lesion matching the outer edge of the enamel lesion [10]. Dentinal caries develops and spreads quickly from the dentine-enamel border moving under the enamel, and this results in caries [8].
Secondary caries develops at the site where the tooth and the prosthetic restoration interface. They are considered the main reason why prosthetics fail no matter what restorative material is used [11, 12].
If the conditions around the seal become acidic, the site will start to demineralize in a manner similar to primary caries because of the process of demineralization and remineralization [11]. All the factors that accelerate the accumulation of biofilm mass or impede its removal can be regarded as potential causes of secondary caries, and this is likely why secondary caries mainly occur on the adjacent surfaces [13] (Figure 1).
Image of a crown.
Secondary caries has to be caught early on in order to increase the treatment’s chances of success and to stop the hard tissue from being destructed [14, 15, 16]. To diagnose secondary caries adjacent to restorations, several different radiographic techniques can be used and these include periapical, bitewing, occlusal, and panoramic imaging (Figure 2). In order to prevent wrong diagnoses, radiographic examination must be made together with a clinical examination [17]. It is hard to diagnose secondary carries at the buccal or lingual area on the tooth because these methods only give 2D images. There is a 3D imagine method used by clinicians to assess the area being examined without the need to place other objects in the axial, coronal, or sagittal planes. This method is called Cone Beam Computed Tomography (CBCT). It is better than a medical CT because it gives 3D tomographic images while subjecting the patient to less radiation. While it is useful in cases where 2D imaging techniques are inadequate, it nevertheless uses more radiation than 2D radiographic imaging techniques, so the technician has to exercise care when using this method [18].
Radiographic image of secondary caries around a prosthetic restoration.
The condition can only be diagnosed as secondary caries if the mineralized tissues around the strain have become soft or if cavitation occurs at the edge of the restoration. The gap will probably contain bacteria, but that does not always mean that secondary caries is going to occur. It is useful to remember that many types of bacteria exist in the mouth and that only some of them can produce caries and only then under certain conditions. In fact, there is no documented proof of any relationship between the onset of secondary caries lesions and gaps where the prosthetic restoration joins the tooth, other than when the gaps are large, for example, 250 [19] or 400 μm [20].
The classic definition of microleakage is the movement of matter, such as bacteria, oral fluids, even ions, into a fluid-filled gap or a naturally occurring structural defect, or between restorations and the tooth [21]. Microleakage is regarded as one of the principal causes of failure in crowns, so it is one of the main factors that determine the clinical lifespan of dental restorations [22]. Not only does microleakage adversely affect a restoration’s clinical use, it can also lead to hypersensitivity, discoloration along the margin [23] (Figure 3), secondary caries, inflammation, or necrosis of the vital pulp and often requires endodontic treatment [24, 25].
Discoloration along the edge of an endocrown restoration.
The degree of microleakage depends on several factors including the tooth’s own structure, the luting or bonding agents used to cement the restoration, and the interaction of other factors involved with dental restoration [26].
One of the main factors affecting the longevity of dental restoration is marginal adaptation or how well it fits the tooth [27]. Any gap in the seal exposes the cement to the oral environment. With large gaps, the luting agent is more exposed to oral fluids, and this accelerates both the breakdown of the cement and microleakage [28]. These imperfections along the edge make it easier for oral bacteria to stick and for food and other refuse to build up ultimately leading to plaque retention. This alters the way the subgingival flora is distributed, which in turn leads to the onset of periodontal disease [29] and secondary caries [30].
Fit is determined by many factors such as fabrication [31], the type of CAM system used [32, 33], the number of units in the substructure [34], the tooth’s location and preparation [35], the rigidity of the material [36], the type and thickness of the luting agent [37], and the presence of a luting agent [38]. Both the size of the gap at the edge and the amount of resin used have to be kept to a minimum in order to provide a better fit and to increase the cement’s longevity [39].
Maintaining the gap along the edge as small as possible is very important because the potential for microleakage increases as the size of the gap increases [40]. No matter what type of cement is used, gaps between 100 and 120 μm are considered clinically acceptable [41] in terms of minimizing the problems that might result in cement loss [42]; 90 μm or less is the acceptable size for gaps in computer-aided design/computer-aided manufacturing (CAD/CAM)-generated restorations [27, 43, 44, 45]. Variations in the internal fit can cause fatigue, possibly weakening the restoration. The thickness of the layer of dental cement along the axial walls of the preparation affects how well the restoration sits in place. Among the factors that influence film thickness are preparation, how the margin is designed and configured, how rough the surface is, how much pressure is applied during cementation and for how long, the cement’s powder/liquid ratio, the type of cement, the spacers used, and the method used for cementation [46].
The fitting of the restoration and proximal surfaces may be checked before cementation to prevent any overhangs that can cause plaque accumulation and secondary caries. Even tiny overhangs, which are often hard to detect clinically, can lead to plaque accumulation, periodontal disease, and the onset of secondary caries. The edges of crown’s margins are susceptible to microleakage, and clinical tests have shown that large gaps can result in secondary caries [47, 48]. Caries is the second most common biological complaint in crowned teeth next to the loss of pulp vitality [49].
Laser videography [50], profile projection [51], micro-CT, and CAD/CAM scans [52] are some of the ways in which the adaptation of prosthetic restorations can be assessed. One commonly used technique is the cement analog or Replica Technique (RT). This method allows the dimensions of the internal and marginal gaps in prosthetic restorations to be estimated with a fair degree of accuracy [53]. This nondestructive technique involves sitting the restoration on top of a prepared die using an impression material instead of cement. Once set, the impression material and the restoration are carefully removed from the die and the thickness of the cement analog layer is measured [54, 55, 56, 57, 58]. Another nondestructive method that can be used to check the size and shape of gaps in prosthetic restorations is the “Weight Technique” (WT). It costs less than RT and is easier to do. In WT, the material used to simulate the cement layer is weighed at certain points rather than having its thickness measured like in RT. The weight corresponds to the thickness of the gap between the restoration and the die [59].
The gap between the tooth and the edge of the restoration, known as the marginal gap, is measured to determine how well the restoration fits the tooth and is called absolute margin discrepancy [60, 61]. Marginal gap has been given several definitions: vertical marginal discrepancy, horizontal marginal discrepancy, over-extended margin, under-extended margin, seating discrepancy, and absolute marginal discrepancy. Of them all, absolute marginal discrepancy is regarded as the best method for measuring the marginal gap because it yields the largest error [62]. Currently, there is no standard method for measuring how well the margin fits but the most popular method is to use a microscope to measure the distance once the embedded specimens have been sectioned. This method cannot be used “in vivo” [63].
The gap between the inside surface of the crown and the outside surface of the tooth can be checked using a silicone paste in order to evaluate discrepancies. This technique is not without its faults, and readings can be adversely affected by defects in the silicone material in the area being measured and by inaccuracies when reading the measurement of the thickness of the paste under a microscope [64].
Different materials such as metal or ceramic are used to make the framework for the prosthetic restorations. The “gold-standard” metal-supported restorations have superior mechanical properties and proven longevity in clinical trials and are the restoration of choice today [65]. While metal-ceramic hybrid crowns are very strong, the increase in the popularity of esthetically attractive restorations in recent years has promoted the development of crowns that are entirely ceramic [37]. Zirconia has started to become popular as a framework material in all ceramic restorations because of such characteristics as high biocompatibility, superior mechanical properties, corrosion resistance, low affinity for plaque accumulation, no allergic reaction to metal in the gingiva, as well as its poor ability to conduct heat and electricity [66]. Zirconia also has some downsides such as phase transformation in reaction to surface treatments, being opaque, and degrading at low temperatures [67]. The most common complication observed in zirconia substructure restorations is reportedly the superstructure ceramic layer coming away from the substructure in layers or by fracturing [68, 69].
All ceramic crowns are esthetically very pleasing and work just as well with anterior teeth as with posterior ones. They interact well with the gingival tissues and offer a great biocompatibility [70]. On the downside, however, they can be brittle (particularly those made from glass or feldspathic ceramics). They fracture easily and can cause excessive wear on the opposite teeth. They also necessitate a greater tooth reduction and tend to favor certain techniques over others [71].
Contrary to direct composite restorations, CEREC composite blocks are produced under the best conditions possible, thus improving the degree of monomer polymerization and preventing voids from being formed, thereby giving them optimal mechanical properties [72].
Semi-sintered zirconia requires shorter milling times and produces less wear on the cutting burs. However, this technique requires a final sintering stage after milling [73]. This sintering procedure entails a certain amount of shrinkage. This technique does have its downsides such as uncertainty with respect to the correct enlarging factor and a marginal fit that does not meet the most exacting demands. On the contrary, milled, fully sintered zirconia is subjected to hot isostatic pressing and offers a much better marginal fit [63].
The strength and fit of the final restoration are affected by such factors as the different materials and techniques used when manufacturing it [74]. Clinicians are advised to adhere closely to the technical guidelines in order to overcome the problems inherent with marginal gaps. It is recommended that they use only the highest-quality materials when constructing prostheses so as to achieve the best marginal compatibility [75, 76].
Prosthetic restorations can be made in a number of ways depending on the material used for their cores [77].
Metal-ceramic crowns are still the most common way to make full coverage crowns and fixed partial dentures [78]. Many studies have been done into the fit and distortion of metal-ceramic crowns, including how the manufacturing process affects fit. Since the ceramic veneer and the alloy coping expand at different rates under heat, firing the ceramic might affect how the crown fits. The casting process is a complex one. This plus the different rates at which the various materials expand and contract make it very difficult indeed to ensure that a casted coping will fit.
The classic method for making the metal core is the “lost-wax technique.” However, this technique has several disadvantages such as possible distortion of the wax patterns, imperfections in the cast metal, complicated procedures, and it takes up much time. These disadvantages have been countered now by CAD/CAM and processes such as milling and Direct Metal Laser Sintering (DMLS), which are used now in fabricating the metal frameworks for metal-ceramic crowns. In the CAD/CAM milling system, CAD is used to design a pre-production digital frame, which is then manufactured (CAM) using this CAD data [79, 80]. A solid Co-Cr blank is milled into shape using the digitally created frame as a template. DMLS is a fabrication technology that uses metal powder as an additive. By means of a high-temperature laser beam, metal powder is smelted and forged into the shape of the digital CAD template to make the framework. A thin layer of the beamed area becomes fused, and the metal framework is manufactured by building up layer upon layer of metal in order to achieve the final shape [81]. CAD/CAM and DMLS make laboratory procedures easier and save time [82].
In contrast to metal-ceramic crowns, a high-strength ceramic framework is used that is resistant to loads when constructing ceramic crowns. In addition to being fracture resistant, ceramic crowns owe their success and quality to their esthetic value and near perfect marginal and internal fit [83, 84]. The use of the ceramic systems has increased as new technologies are developed [77].
Various different high-strength materials and manufacturing methods are used in making the framework for ceramic crowns [85, 86, 87, 88]. Techniques such as slip casting [89], heat pressing [90], copy milling [85], CAM [86], and CAD-CAM [87, 88, 91] are widely used in the production of copings.
The use of full-ceramic materials in dentistry has developed in parallel with the introduction and use of CAD/CAM systems. Crowns, inlays, onlays, laminate veneers, and abutment are among the many dental restorative methods that make use of CAD/CAM systems [92, 93]. Resin composites or porcelain shaped using CAD/CAM technology give patients esthetically pleasing restorations that are of similar appearance to teeth and that can be cemented into the patient’s mouth during the same appointment. This decreases the treatment time and makes interim prostheses unnecessary (Figures 4 and 5). With the CAD/CAM milling of porcelain blocks and optimum manufacturing conditions, the restorations that have a higher intrinsic strength in the laboratory can be fabricated [94, 95].
CAD imaging.
All-ceramic restoration.
In CAD/CAM systems, extra space for the cement can be programmed, potentially making for a better fit both marginally and internally [63]. When casting a prosthetic restoration die, spacers have to be added to form the space for the cement but this space can be created and minutely adjusted digitally using CAD/CAM. The accuracy of fit was found to depend much on the spacing of dies [96].
There are some factors that can influence the marginal fit when using CAD/CAM system such as the scanning, the design software, sintering, and milling processes themselves, any and all of which can lead to errors when manufacturing the ceramic framework. One reason for the difference in marginal gaps seen between copings made using CAD/CAM technology and those made using only CAM technology might be the long fabrication chain involved in the CAM process, which is as follows: (1) preparing the master cast and spacers, (2) adding the wax, and then (3) removing the wax pattern from the master cast. Manually adding the wax can result in nonuniform layers, and this in turn can create a distorted product during the sintering process. Taking the cast off can also adversely affect accuracy. Furthermore, it is harder for a scanner to scan the concave inner surface of the wax pattern than the convex master cast [63].
There have been many studies evaluating marginal and internal fitting of fixed prosthetic restorations prepared with different production techniques from different materials [82, 97, 98]. No significant difference between the various manufacturing techniques was reported. While the thickness of occlusal cement was highest with the laser-sintering method, used for making the metal framework, this thickness is approved as acceptable values [82].
Even with all the advances in manufacturing technology, it is still a major challenge to create a long-lasting and well-sealed marginal fit where the tooth meets the crown [99]. As a result, CAD/CAM systems may be more advantageous because ceramic materials with a high mechanical resistance can produce more esthetic restorations in a shorter time.
Marginal gaps that are an important component in fixed prosthetic restorations need to be sealed effectively with luting cements, and cements preserve the tooth from microbial invasion [100]. Microleakage and marginal openings are important causes of fixed restoration failures. The increase of the marginal gap in the fixed restorations results in greater microleakage and cement disintegration with cement exposed to oral fluids [37]. Because of the cement decomposition or dissolution in oral fluids, shrinkage on setting, the cement losses the bonding effect between the cement and the dentine or cement and restoration [101]. When the cement does not seal the gap properly, this can lead to inflammation in the pulp and subsequent pulpal necrosis, which in turn adversely affects longevity of the restorations [100, 102]. Other factors contributing to microleakage include the mechanical properties of the cement and the degree to which the cement adheres to the tooth. One final factor contributing to the severity of microleakage is the adhesive having weak-bonding properties [103].
Another cause of failure of nonmetallic esthetic restorations is clinical fractures [104]. It has been shown that resin-luting agents have the strength necessary for all-ceramic esthetic restorations when used together with established bonding procedures, resulting in a very strong luting unit with good retention properties and that is almost insoluble. Generally, resin cements are capable of dual polymerization and are known for being mechanically strong and having excellent esthetic properties [105, 106].
The past 20 years have seen ceramics and composites being used more and more in posterior teeth as well, thanks to the important improvements made in their mechanical properties in addition to advances in cements and their properties [21]. With the development of dentine-bonding agents and the improvements seen in the properties of resin composites for direct filling, resin-based cements have become popular with clinicians working with all-ceramic restorations [37, 106, 107]. The mechanical- and/or chemical-bonding properties of resin-luting agents between the tooth and the restoration are what contribute to the success of indirect, fixed restorations with resin bonding [108]. Resin-based cements possess many ideal properties such as insolubility, very good strength, better adhesion, and the ability to form a solid bond with the tooth [109].
Other factors affect how effectively the adhesive bonds are related to the actual material and they include filler content, monomer composition, and curing mode. The nature of the substrate surface, for example, enamel, alloys, ceramics, dentin, or composites, can also affect the strength of the bond [110]. Significant differences have been noted between adhesive-luting agents in studies investigating at their ability to prevent leakage between the surfaces in cemented restorations [21, 111, 112].
Typically, there are three steps in the process of adhesive cementation: etching, priming, and applying the cement. Every step of this process is technique-sensitive and requires attention to detail [100, 113, 114]. The latest generation of proprietary self-adhesive resin cements is self-etching and bonds to dentine without the need for additional primers or etching agents. Resin cements are self-adhesive and dual-polymerizing. By design, they are easy to use and have good mechanical properties, high esthetic values, and adhere well to both the restoration and the tooth [115]. Even so, the durability of the bond, the resin cement to the tooth and the resin cement to the ceramic surface, is still a crucial point [116, 117, 118].
Crowns that are cemented using self-etching resin cements demonstrated much lower average microleakage scores than using self-adhesive resin cement. This might be due to differences in the different cements’ adhesion mechanisms. Self-etching resin cement comes with an etch-prime agent with a 2.4 pH and monomers possessing low-molecular weight. They diffuse selectively into the dentine [119] and create a hybrid complex [120, 121]. As a result, these monomers create a small amount of dentine demineralization that allows the cement and the dentine to bond. However, this is not the case with self-adhesive resin cements. They contain multifunctional phosphonic acid methacrylates, and these react with hydroxylapatite [122]. One recent study showed that self-adhesive resin cement presented no evidence of decalcification/infiltration into dentine even though the initial pH value was acidic [123].
Resin-based materials have a tendency to accumulate more plaque, and this plaque is more cariogenic than that found on enamel and other materials used for restoration. Even so, one study has shown that cariogenic bacteria on enamel, glass ionomers, and resin-based materials are the same [124].
Glass-ionomer cement has properties that make it ideal for cementation such as a reduced film thickness and a very low coefficient of thermal expansion coupled to its strong physicochemical bond to both dentin and enamel, as well as its hydrophilic qualities and low solubility. Moreover, glass-ionomer cements leach calcium fluoride giving it the advantage of inhibiting caries [125]. The molecular interactions, ionic and polar, between the cement and the tooth affect the adhesive quality of glass-ionomer cement. These mechanisms are only effective if a close intermolecular contact is achieved between the cement and the tooth. One reason why glass-ionomer cements fail may be the porosities that can appear when the cement is mixing, and these porosities reduce the intermolecular contact between the tooth and the cement [74].
Rosentritt et al. [126] concluded that the resin cements and self-adhesive materials demonstrate good marginal integrity with minimal microleakage. They noted that the easily applied self-adhesive resin cements have the potential to be an alternative to resin cements.
Traditionally, water-based cements have been used to fill the space between the tooth and the restoration. However, the water-based cements are highly soluble in oral fluids, so their ability to seal depends largely on how well the restoration fits [75].
Different cements have different degrees of microleakage [104]. A study of the microleakage results obtained using resin, zinc phosphate, and glass-ionomer cements showed that zinc-phosphate cement is not as successful as glass-ionomer and resin cements in reducing microleakage. One reason for this may be the high solubility of zinc-phosphate cement when compared to glass-ionomer and resin cements in addition to the properties of its bond with dentine, which is entirely mechanical. Clinical studies have shown that despite these negative characteristics, restorations fixed with zinc-phosphate cement are stable for long periods of time. Resin and glass-ionomer cements are less soluble than zinc-phosphate cement and their chemical composition allows them to bond strongly both chemically and mechanically with dentine. In experimental conditions, resin and glass-ionomer cements performed better in terms of microleakage when compared to zinc-phosphate cement. However, only though long-term clinical trials will the advantages and disadvantages of the various cements in terms of durability become clear [127, 128].
Furthermore, maintaining microleakage to a minimum requires the use of cements with good sealing properties. Of all the different types of cements that are used in dentistry, resin-based and glass-ionomer cements have shown the best results due to their leaching of fluoride ions, creating an additional mechanical bond with the tooth [75, 76].
Nowadays, with the developing technology, there are many restorative materials and different fabrication methods for prosthetic restorations. Marginal adaptation is the most important factor for clinical use and success of the restorations. Failure to provide marginal adaptation increases microleakage and causes microorganisms to colonize between tooth and restoration, thus causing secondary caries. In fixed prosthetic restorations, CAD/CAM technologies can be used to prepare infrastructures to have optimal marginal and internal fitting, mechanically resistant, biocompatible, and low cement spacing. More bonding efficiency and less water solubility of the adhesive resin cements result in less microleakage than other cements; for this reason, adhesive resin cements can be preferred for a suitable option. In glass-ionomer cement, secondary caries risk is decreased because of the presence of fluoride. Before the planning of prosthetic restorations, abutment teeth, periodontal tissues, prosthetic material, cement, and fabrication method must be chosen carefully.
Throughout the history of dentistry, dental clinicians, prosthodontists, and manufacturers have strived to create dental restorations that are both esthetically pleasing and function perfectly. Multiple factors determine how therapeutic the restorations are and how long they last. Just how successful a dental restoration depends on three principal factors: how esthetically pleasing it is, how resistant it is to fracturing, and marginal adaptation, meaning how well they fit [1, 2]. More recently developed materials have a high esthetic value and are mechanically very resilient. The factors that affect marginal adaption include how well the restoration bonds to the prepared surface, how effective the seal is, and the characteristics of the adhesive used to bond the restoration to the tooth. When a prosthetic restoration does not fit properly, this can cause plaque accumulation [2, 3]. This in turn can lead to microleakage and endodontic inflammation [4], and it increases the probability of carious lesions [5, 6]. The periodontal and endodontic lesions that form as a result may require the prosthetic restoration to be replaced or necessitate endodontic treatment, or even tooth extraction.
“Dental caries is determined by the dynamic balance between the pathological factors that lead to demineralization and the protective factors that lead to remineralization.” [7] Caries is a tissue consisting of densely packed crystallites formed in a single axis having both inter- and intra-prismatic micropores measuring between 1 and 30 nm in width. Caries appears in the enamel first and this is accompanied by hypermineralization of the dentine below the cavity [8]. One common characteristic of this is sclerotic dentinal tubules [9]. The dentine starts to demineralize at the outer edge of the lesion matching the outer edge of the enamel lesion [10]. Dentinal caries develops and spreads quickly from the dentine-enamel border moving under the enamel, and this results in caries [8].
Secondary caries develops at the site where the tooth and the prosthetic restoration interface. They are considered the main reason why prosthetics fail no matter what restorative material is used [11, 12].
If the conditions around the seal become acidic, the site will start to demineralize in a manner similar to primary caries because of the process of demineralization and remineralization [11]. All the factors that accelerate the accumulation of biofilm mass or impede its removal can be regarded as potential causes of secondary caries, and this is likely why secondary caries mainly occur on the adjacent surfaces [13] (Figure 1).
Image of a crown.
Secondary caries has to be caught early on in order to increase the treatment’s chances of success and to stop the hard tissue from being destructed [14, 15, 16]. To diagnose secondary caries adjacent to restorations, several different radiographic techniques can be used and these include periapical, bitewing, occlusal, and panoramic imaging (Figure 2). In order to prevent wrong diagnoses, radiographic examination must be made together with a clinical examination [17]. It is hard to diagnose secondary carries at the buccal or lingual area on the tooth because these methods only give 2D images. There is a 3D imagine method used by clinicians to assess the area being examined without the need to place other objects in the axial, coronal, or sagittal planes. This method is called Cone Beam Computed Tomography (CBCT). It is better than a medical CT because it gives 3D tomographic images while subjecting the patient to less radiation. While it is useful in cases where 2D imaging techniques are inadequate, it nevertheless uses more radiation than 2D radiographic imaging techniques, so the technician has to exercise care when using this method [18].
Radiographic image of secondary caries around a prosthetic restoration.
The condition can only be diagnosed as secondary caries if the mineralized tissues around the strain have become soft or if cavitation occurs at the edge of the restoration. The gap will probably contain bacteria, but that does not always mean that secondary caries is going to occur. It is useful to remember that many types of bacteria exist in the mouth and that only some of them can produce caries and only then under certain conditions. In fact, there is no documented proof of any relationship between the onset of secondary caries lesions and gaps where the prosthetic restoration joins the tooth, other than when the gaps are large, for example, 250 [19] or 400 μm [20].
The classic definition of microleakage is the movement of matter, such as bacteria, oral fluids, even ions, into a fluid-filled gap or a naturally occurring structural defect, or between restorations and the tooth [21]. Microleakage is regarded as one of the principal causes of failure in crowns, so it is one of the main factors that determine the clinical lifespan of dental restorations [22]. Not only does microleakage adversely affect a restoration’s clinical use, it can also lead to hypersensitivity, discoloration along the margin [23] (Figure 3), secondary caries, inflammation, or necrosis of the vital pulp and often requires endodontic treatment [24, 25].
Discoloration along the edge of an endocrown restoration.
The degree of microleakage depends on several factors including the tooth’s own structure, the luting or bonding agents used to cement the restoration, and the interaction of other factors involved with dental restoration [26].
One of the main factors affecting the longevity of dental restoration is marginal adaptation or how well it fits the tooth [27]. Any gap in the seal exposes the cement to the oral environment. With large gaps, the luting agent is more exposed to oral fluids, and this accelerates both the breakdown of the cement and microleakage [28]. These imperfections along the edge make it easier for oral bacteria to stick and for food and other refuse to build up ultimately leading to plaque retention. This alters the way the subgingival flora is distributed, which in turn leads to the onset of periodontal disease [29] and secondary caries [30].
Fit is determined by many factors such as fabrication [31], the type of CAM system used [32, 33], the number of units in the substructure [34], the tooth’s location and preparation [35], the rigidity of the material [36], the type and thickness of the luting agent [37], and the presence of a luting agent [38]. Both the size of the gap at the edge and the amount of resin used have to be kept to a minimum in order to provide a better fit and to increase the cement’s longevity [39].
Maintaining the gap along the edge as small as possible is very important because the potential for microleakage increases as the size of the gap increases [40]. No matter what type of cement is used, gaps between 100 and 120 μm are considered clinically acceptable [41] in terms of minimizing the problems that might result in cement loss [42]; 90 μm or less is the acceptable size for gaps in computer-aided design/computer-aided manufacturing (CAD/CAM)-generated restorations [27, 43, 44, 45]. Variations in the internal fit can cause fatigue, possibly weakening the restoration. The thickness of the layer of dental cement along the axial walls of the preparation affects how well the restoration sits in place. Among the factors that influence film thickness are preparation, how the margin is designed and configured, how rough the surface is, how much pressure is applied during cementation and for how long, the cement’s powder/liquid ratio, the type of cement, the spacers used, and the method used for cementation [46].
The fitting of the restoration and proximal surfaces may be checked before cementation to prevent any overhangs that can cause plaque accumulation and secondary caries. Even tiny overhangs, which are often hard to detect clinically, can lead to plaque accumulation, periodontal disease, and the onset of secondary caries. The edges of crown’s margins are susceptible to microleakage, and clinical tests have shown that large gaps can result in secondary caries [47, 48]. Caries is the second most common biological complaint in crowned teeth next to the loss of pulp vitality [49].
Laser videography [50], profile projection [51], micro-CT, and CAD/CAM scans [52] are some of the ways in which the adaptation of prosthetic restorations can be assessed. One commonly used technique is the cement analog or Replica Technique (RT). This method allows the dimensions of the internal and marginal gaps in prosthetic restorations to be estimated with a fair degree of accuracy [53]. This nondestructive technique involves sitting the restoration on top of a prepared die using an impression material instead of cement. Once set, the impression material and the restoration are carefully removed from the die and the thickness of the cement analog layer is measured [54, 55, 56, 57, 58]. Another nondestructive method that can be used to check the size and shape of gaps in prosthetic restorations is the “Weight Technique” (WT). It costs less than RT and is easier to do. In WT, the material used to simulate the cement layer is weighed at certain points rather than having its thickness measured like in RT. The weight corresponds to the thickness of the gap between the restoration and the die [59].
The gap between the tooth and the edge of the restoration, known as the marginal gap, is measured to determine how well the restoration fits the tooth and is called absolute margin discrepancy [60, 61]. Marginal gap has been given several definitions: vertical marginal discrepancy, horizontal marginal discrepancy, over-extended margin, under-extended margin, seating discrepancy, and absolute marginal discrepancy. Of them all, absolute marginal discrepancy is regarded as the best method for measuring the marginal gap because it yields the largest error [62]. Currently, there is no standard method for measuring how well the margin fits but the most popular method is to use a microscope to measure the distance once the embedded specimens have been sectioned. This method cannot be used “in vivo” [63].
The gap between the inside surface of the crown and the outside surface of the tooth can be checked using a silicone paste in order to evaluate discrepancies. This technique is not without its faults, and readings can be adversely affected by defects in the silicone material in the area being measured and by inaccuracies when reading the measurement of the thickness of the paste under a microscope [64].
Different materials such as metal or ceramic are used to make the framework for the prosthetic restorations. The “gold-standard” metal-supported restorations have superior mechanical properties and proven longevity in clinical trials and are the restoration of choice today [65]. While metal-ceramic hybrid crowns are very strong, the increase in the popularity of esthetically attractive restorations in recent years has promoted the development of crowns that are entirely ceramic [37]. Zirconia has started to become popular as a framework material in all ceramic restorations because of such characteristics as high biocompatibility, superior mechanical properties, corrosion resistance, low affinity for plaque accumulation, no allergic reaction to metal in the gingiva, as well as its poor ability to conduct heat and electricity [66]. Zirconia also has some downsides such as phase transformation in reaction to surface treatments, being opaque, and degrading at low temperatures [67]. The most common complication observed in zirconia substructure restorations is reportedly the superstructure ceramic layer coming away from the substructure in layers or by fracturing [68, 69].
All ceramic crowns are esthetically very pleasing and work just as well with anterior teeth as with posterior ones. They interact well with the gingival tissues and offer a great biocompatibility [70]. On the downside, however, they can be brittle (particularly those made from glass or feldspathic ceramics). They fracture easily and can cause excessive wear on the opposite teeth. They also necessitate a greater tooth reduction and tend to favor certain techniques over others [71].
Contrary to direct composite restorations, CEREC composite blocks are produced under the best conditions possible, thus improving the degree of monomer polymerization and preventing voids from being formed, thereby giving them optimal mechanical properties [72].
Semi-sintered zirconia requires shorter milling times and produces less wear on the cutting burs. However, this technique requires a final sintering stage after milling [73]. This sintering procedure entails a certain amount of shrinkage. This technique does have its downsides such as uncertainty with respect to the correct enlarging factor and a marginal fit that does not meet the most exacting demands. On the contrary, milled, fully sintered zirconia is subjected to hot isostatic pressing and offers a much better marginal fit [63].
The strength and fit of the final restoration are affected by such factors as the different materials and techniques used when manufacturing it [74]. Clinicians are advised to adhere closely to the technical guidelines in order to overcome the problems inherent with marginal gaps. It is recommended that they use only the highest-quality materials when constructing prostheses so as to achieve the best marginal compatibility [75, 76].
Prosthetic restorations can be made in a number of ways depending on the material used for their cores [77].
Metal-ceramic crowns are still the most common way to make full coverage crowns and fixed partial dentures [78]. Many studies have been done into the fit and distortion of metal-ceramic crowns, including how the manufacturing process affects fit. Since the ceramic veneer and the alloy coping expand at different rates under heat, firing the ceramic might affect how the crown fits. The casting process is a complex one. This plus the different rates at which the various materials expand and contract make it very difficult indeed to ensure that a casted coping will fit.
The classic method for making the metal core is the “lost-wax technique.” However, this technique has several disadvantages such as possible distortion of the wax patterns, imperfections in the cast metal, complicated procedures, and it takes up much time. These disadvantages have been countered now by CAD/CAM and processes such as milling and Direct Metal Laser Sintering (DMLS), which are used now in fabricating the metal frameworks for metal-ceramic crowns. In the CAD/CAM milling system, CAD is used to design a pre-production digital frame, which is then manufactured (CAM) using this CAD data [79, 80]. A solid Co-Cr blank is milled into shape using the digitally created frame as a template. DMLS is a fabrication technology that uses metal powder as an additive. By means of a high-temperature laser beam, metal powder is smelted and forged into the shape of the digital CAD template to make the framework. A thin layer of the beamed area becomes fused, and the metal framework is manufactured by building up layer upon layer of metal in order to achieve the final shape [81]. CAD/CAM and DMLS make laboratory procedures easier and save time [82].
In contrast to metal-ceramic crowns, a high-strength ceramic framework is used that is resistant to loads when constructing ceramic crowns. In addition to being fracture resistant, ceramic crowns owe their success and quality to their esthetic value and near perfect marginal and internal fit [83, 84]. The use of the ceramic systems has increased as new technologies are developed [77].
Various different high-strength materials and manufacturing methods are used in making the framework for ceramic crowns [85, 86, 87, 88]. Techniques such as slip casting [89], heat pressing [90], copy milling [85], CAM [86], and CAD-CAM [87, 88, 91] are widely used in the production of copings.
The use of full-ceramic materials in dentistry has developed in parallel with the introduction and use of CAD/CAM systems. Crowns, inlays, onlays, laminate veneers, and abutment are among the many dental restorative methods that make use of CAD/CAM systems [92, 93]. Resin composites or porcelain shaped using CAD/CAM technology give patients esthetically pleasing restorations that are of similar appearance to teeth and that can be cemented into the patient’s mouth during the same appointment. This decreases the treatment time and makes interim prostheses unnecessary (Figures 4 and 5). With the CAD/CAM milling of porcelain blocks and optimum manufacturing conditions, the restorations that have a higher intrinsic strength in the laboratory can be fabricated [94, 95].
CAD imaging.
All-ceramic restoration.
In CAD/CAM systems, extra space for the cement can be programmed, potentially making for a better fit both marginally and internally [63]. When casting a prosthetic restoration die, spacers have to be added to form the space for the cement but this space can be created and minutely adjusted digitally using CAD/CAM. The accuracy of fit was found to depend much on the spacing of dies [96].
There are some factors that can influence the marginal fit when using CAD/CAM system such as the scanning, the design software, sintering, and milling processes themselves, any and all of which can lead to errors when manufacturing the ceramic framework. One reason for the difference in marginal gaps seen between copings made using CAD/CAM technology and those made using only CAM technology might be the long fabrication chain involved in the CAM process, which is as follows: (1) preparing the master cast and spacers, (2) adding the wax, and then (3) removing the wax pattern from the master cast. Manually adding the wax can result in nonuniform layers, and this in turn can create a distorted product during the sintering process. Taking the cast off can also adversely affect accuracy. Furthermore, it is harder for a scanner to scan the concave inner surface of the wax pattern than the convex master cast [63].
There have been many studies evaluating marginal and internal fitting of fixed prosthetic restorations prepared with different production techniques from different materials [82, 97, 98]. No significant difference between the various manufacturing techniques was reported. While the thickness of occlusal cement was highest with the laser-sintering method, used for making the metal framework, this thickness is approved as acceptable values [82].
Even with all the advances in manufacturing technology, it is still a major challenge to create a long-lasting and well-sealed marginal fit where the tooth meets the crown [99]. As a result, CAD/CAM systems may be more advantageous because ceramic materials with a high mechanical resistance can produce more esthetic restorations in a shorter time.
Marginal gaps that are an important component in fixed prosthetic restorations need to be sealed effectively with luting cements, and cements preserve the tooth from microbial invasion [100]. Microleakage and marginal openings are important causes of fixed restoration failures. The increase of the marginal gap in the fixed restorations results in greater microleakage and cement disintegration with cement exposed to oral fluids [37]. Because of the cement decomposition or dissolution in oral fluids, shrinkage on setting, the cement losses the bonding effect between the cement and the dentine or cement and restoration [101]. When the cement does not seal the gap properly, this can lead to inflammation in the pulp and subsequent pulpal necrosis, which in turn adversely affects longevity of the restorations [100, 102]. Other factors contributing to microleakage include the mechanical properties of the cement and the degree to which the cement adheres to the tooth. One final factor contributing to the severity of microleakage is the adhesive having weak-bonding properties [103].
Another cause of failure of nonmetallic esthetic restorations is clinical fractures [104]. It has been shown that resin-luting agents have the strength necessary for all-ceramic esthetic restorations when used together with established bonding procedures, resulting in a very strong luting unit with good retention properties and that is almost insoluble. Generally, resin cements are capable of dual polymerization and are known for being mechanically strong and having excellent esthetic properties [105, 106].
The past 20 years have seen ceramics and composites being used more and more in posterior teeth as well, thanks to the important improvements made in their mechanical properties in addition to advances in cements and their properties [21]. With the development of dentine-bonding agents and the improvements seen in the properties of resin composites for direct filling, resin-based cements have become popular with clinicians working with all-ceramic restorations [37, 106, 107]. The mechanical- and/or chemical-bonding properties of resin-luting agents between the tooth and the restoration are what contribute to the success of indirect, fixed restorations with resin bonding [108]. Resin-based cements possess many ideal properties such as insolubility, very good strength, better adhesion, and the ability to form a solid bond with the tooth [109].
Other factors affect how effectively the adhesive bonds are related to the actual material and they include filler content, monomer composition, and curing mode. The nature of the substrate surface, for example, enamel, alloys, ceramics, dentin, or composites, can also affect the strength of the bond [110]. Significant differences have been noted between adhesive-luting agents in studies investigating at their ability to prevent leakage between the surfaces in cemented restorations [21, 111, 112].
Typically, there are three steps in the process of adhesive cementation: etching, priming, and applying the cement. Every step of this process is technique-sensitive and requires attention to detail [100, 113, 114]. The latest generation of proprietary self-adhesive resin cements is self-etching and bonds to dentine without the need for additional primers or etching agents. Resin cements are self-adhesive and dual-polymerizing. By design, they are easy to use and have good mechanical properties, high esthetic values, and adhere well to both the restoration and the tooth [115]. Even so, the durability of the bond, the resin cement to the tooth and the resin cement to the ceramic surface, is still a crucial point [116, 117, 118].
Crowns that are cemented using self-etching resin cements demonstrated much lower average microleakage scores than using self-adhesive resin cement. This might be due to differences in the different cements’ adhesion mechanisms. Self-etching resin cement comes with an etch-prime agent with a 2.4 pH and monomers possessing low-molecular weight. They diffuse selectively into the dentine [119] and create a hybrid complex [120, 121]. As a result, these monomers create a small amount of dentine demineralization that allows the cement and the dentine to bond. However, this is not the case with self-adhesive resin cements. They contain multifunctional phosphonic acid methacrylates, and these react with hydroxylapatite [122]. One recent study showed that self-adhesive resin cement presented no evidence of decalcification/infiltration into dentine even though the initial pH value was acidic [123].
Resin-based materials have a tendency to accumulate more plaque, and this plaque is more cariogenic than that found on enamel and other materials used for restoration. Even so, one study has shown that cariogenic bacteria on enamel, glass ionomers, and resin-based materials are the same [124].
Glass-ionomer cement has properties that make it ideal for cementation such as a reduced film thickness and a very low coefficient of thermal expansion coupled to its strong physicochemical bond to both dentin and enamel, as well as its hydrophilic qualities and low solubility. Moreover, glass-ionomer cements leach calcium fluoride giving it the advantage of inhibiting caries [125]. The molecular interactions, ionic and polar, between the cement and the tooth affect the adhesive quality of glass-ionomer cement. These mechanisms are only effective if a close intermolecular contact is achieved between the cement and the tooth. One reason why glass-ionomer cements fail may be the porosities that can appear when the cement is mixing, and these porosities reduce the intermolecular contact between the tooth and the cement [74].
Rosentritt et al. [126] concluded that the resin cements and self-adhesive materials demonstrate good marginal integrity with minimal microleakage. They noted that the easily applied self-adhesive resin cements have the potential to be an alternative to resin cements.
Traditionally, water-based cements have been used to fill the space between the tooth and the restoration. However, the water-based cements are highly soluble in oral fluids, so their ability to seal depends largely on how well the restoration fits [75].
Different cements have different degrees of microleakage [104]. A study of the microleakage results obtained using resin, zinc phosphate, and glass-ionomer cements showed that zinc-phosphate cement is not as successful as glass-ionomer and resin cements in reducing microleakage. One reason for this may be the high solubility of zinc-phosphate cement when compared to glass-ionomer and resin cements in addition to the properties of its bond with dentine, which is entirely mechanical. Clinical studies have shown that despite these negative characteristics, restorations fixed with zinc-phosphate cement are stable for long periods of time. Resin and glass-ionomer cements are less soluble than zinc-phosphate cement and their chemical composition allows them to bond strongly both chemically and mechanically with dentine. In experimental conditions, resin and glass-ionomer cements performed better in terms of microleakage when compared to zinc-phosphate cement. However, only though long-term clinical trials will the advantages and disadvantages of the various cements in terms of durability become clear [127, 128].
Furthermore, maintaining microleakage to a minimum requires the use of cements with good sealing properties. Of all the different types of cements that are used in dentistry, resin-based and glass-ionomer cements have shown the best results due to their leaching of fluoride ions, creating an additional mechanical bond with the tooth [75, 76].
Nowadays, with the developing technology, there are many restorative materials and different fabrication methods for prosthetic restorations. Marginal adaptation is the most important factor for clinical use and success of the restorations. Failure to provide marginal adaptation increases microleakage and causes microorganisms to colonize between tooth and restoration, thus causing secondary caries. In fixed prosthetic restorations, CAD/CAM technologies can be used to prepare infrastructures to have optimal marginal and internal fitting, mechanically resistant, biocompatible, and low cement spacing. More bonding efficiency and less water solubility of the adhesive resin cements result in less microleakage than other cements; for this reason, adhesive resin cements can be preferred for a suitable option. In glass-ionomer cement, secondary caries risk is decreased because of the presence of fluoride. Before the planning of prosthetic restorations, abutment teeth, periodontal tissues, prosthetic material, cement, and fabrication method must be chosen carefully.
We pride ourselves on our belief that scientific progress is generated by collaboration, that the playing field for scientific research should be leveled globally, and that research conducted in a democratic environment, with the use of innovative technologies, should be made available to anyone.
\n\nWe look forward to hearing from individuals and organizations who are interested in new discoveries and sharing their research.
",metaTitle:"Contact us",metaDescription:null,metaKeywords:null,canonicalURL:"/page/contact-us",contentRaw:'[{"type":"htmlEditorComponent","content":"Headquarters
\\n\\n\\n\\n
London
\\n\\nIntechOpen Limited
\\n\\n5 Princes Gate Court,
\\n\\nLondon, SW7 2QJ, UK
\\n\\nPhone: +44 20 8089 5702
\\n\\n\\n\\n
Rijeka
\\n\\nIN TECH d.o.o.
\\n\\nJaneza Trdine 9
\\n\\n51000 Rijeka - Croatia
\\n\\nPhone: +385 (0) 51 686 165
\\n"},{"imagePath":"/media/thumbnail/780x430/3","type":"mediaComponent","mediaType":"image","mimeType":"image/jpeg","caption":"","originalUrl":"/media/thumbnail/600x600/3","alignment":"center"},{"type":"htmlEditorComponent","content":"General Inquires: info@intechopen.com
\\n\\nFunders: funders@intechopen.com
\\n\\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 5 Princes Gate Court, London, SW7 2QJ, UK
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Headquarters
\n\n\n\n
London
\n\nIntechOpen Limited
\n\n5 Princes Gate Court,
\n\nLondon, SW7 2QJ, UK
\n\nPhone: +44 20 8089 5702
\n\n\n\n
Rijeka
\n\nIN TECH d.o.o.
\n\nJaneza Trdine 9
\n\n51000 Rijeka - Croatia
\n\nPhone: +385 (0) 51 686 165
\n"},{imagePath:"/media/thumbnail/780x430/3",type:"mediaComponent",mediaType:"image",mimeType:"image/jpeg",caption:"",originalUrl:"/media/thumbnail/600x600/3",alignment:"center"},{type:"htmlEditorComponent",content:'General Inquires: info@intechopen.com
\n\nFunders: funders@intechopen.com
\n\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 5 Princes Gate Court, London, SW7 2QJ, UK
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:187},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"750",title:"Microwave Engineering",slug:"microwave-engineering",parent:{title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:7,numberOfAuthorsAndEditors:97,numberOfWosCitations:196,numberOfCrossrefCitations:106,numberOfDimensionsCitations:202,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"microwave-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6318",title:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing",subtitle:null,isOpenForSubmission:!1,hash:"67de575df6dcd16554dd8f575e8c8368",slug:"emerging-microwave-technologies-in-industrial-agricultural-medical-and-food-processing",bookSignature:"Kok Yeow You",coverURL:"https://cdn.intechopen.com/books/images_new/6318.jpg",editedByType:"Edited by",editors:[{id:"188673",title:"Dr.",name:"Kok Yeow",middleName:null,surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5436",title:"Microwave Systems and Applications",subtitle:null,isOpenForSubmission:!1,hash:"cdb6126a0b68bc14bc51600c8dc7ccfc",slug:"microwave-systems-and-applications",bookSignature:"Sotirios K. Goudos",coverURL:"https://cdn.intechopen.com/books/images_new/5436.jpg",editedByType:"Edited by",editors:[{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4617",title:"Advanced Electromagnetic Waves",subtitle:null,isOpenForSubmission:!1,hash:"dffb45dc681f2d74f30ad9ab9c2c527f",slug:"advanced-electromagnetic-waves",bookSignature:"Saad Osman Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/4617.jpg",editedByType:"Edited by",editors:[{id:"100186",title:"Prof.",name:"Saad",middleName:"Osman",surname:"Bashir",slug:"saad-bashir",fullName:"Saad Bashir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1565",title:"Bolometers",subtitle:null,isOpenForSubmission:!1,hash:"c193ef12df5ac7a70b88a3b56c786e45",slug:"bolometers",bookSignature:"A. G. Unil Perera",coverURL:"https://cdn.intechopen.com/books/images_new/1565.jpg",editedByType:"Edited by",editors:[{id:"92217",title:"Prof.",name:"Unil",middleName:null,surname:"Perera",slug:"unil-perera",fullName:"Unil Perera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3708",title:"Microwave and Millimeter Wave Technologies",subtitle:"Modern UWB antennas and equipment",isOpenForSubmission:!1,hash:null,slug:"microwave-and-millimeter-wave-technologies-modern-uwb-antennas-and-equipment",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/3708.jpg",editedByType:"Edited by",editors:[{id:"123258",title:"Dr.",name:"Igor",middleName:null,surname:"Minin",slug:"igor-minin",fullName:"Igor Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3623",title:"Advanced Microwave and Millimeter Wave Technologies",subtitle:"Semiconductor Devices Circuits and Systems",isOpenForSubmission:!1,hash:null,slug:"advanced-microwave-and-millimeter-wave-technologies-semiconductor-devices-circuits-and-systems",bookSignature:"Moumita Mukherjee",coverURL:"https://cdn.intechopen.com/books/images_new/3623.jpg",editedByType:"Edited by",editors:[{id:"24251",title:"Dr.",name:"Moumita",middleName:null,surname:"Mukherjee",slug:"moumita-mukherjee",fullName:"Moumita Mukherjee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3707",title:"Microwave and Millimeter Wave Technologies",subtitle:"from Photonic Bandgap Devices to Antenna and Applications",isOpenForSubmission:!1,hash:null,slug:"microwave-and-millimeter-wave-technologies-from-photonic-bandgap-devices-to-antenna-and-applications",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/3707.jpg",editedByType:"Edited by",editors:[{id:"123258",title:"Dr.",name:"Igor",middleName:null,surname:"Minin",slug:"igor-minin",fullName:"Igor Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"9964",doi:"10.5772/8747",title:"Physics of Charging in Dielectrics and Reliability of Capacitive RF-MEMS Switches",slug:"physics-of-charging-in-dielectrics-and-reliability-of-capacitive-rf-mems-switches",totalDownloads:4768,totalCrossrefCites:7,totalDimensionsCites:13,book:{slug:"advanced-microwave-and-millimeter-wave-technologies-semiconductor-devices-circuits-and-systems",title:"Advanced Microwave and Millimeter Wave Technologies",fullTitle:"Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems"},signatures:"George Papaioannou and Robert Plana",authors:null},{id:"53096",doi:"10.5772/66361",title:"Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor",slug:"multiple-person-localization-based-on-their-vital-sign-detection-using-uwb-sensor",totalDownloads:1412,totalCrossrefCites:3,totalDimensionsCites:12,book:{slug:"microwave-systems-and-applications",title:"Microwave Systems and Applications",fullTitle:"Microwave Systems and Applications"},signatures:"Daniel Novák, Mária Švecová and Dusan Kocur",authors:[{id:"83173",title:"Dr.",name:"Dusan",middleName:null,surname:"Kocur",slug:"dusan-kocur",fullName:"Dusan Kocur"},{id:"189768",title:"MSc.",name:"Daniel",middleName:null,surname:"Novák",slug:"daniel-novak",fullName:"Daniel Novák"},{id:"189769",title:"Dr.",name:"Mária",middleName:null,surname:"Švecová",slug:"maria-svecova",fullName:"Mária Švecová"}]},{id:"53062",doi:"10.5772/66230",title:"Materials Characterization Using Microwave Waveguide System",slug:"materials-characterization-using-microwave-waveguide-system",totalDownloads:2299,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"microwave-systems-and-applications",title:"Microwave Systems and Applications",fullTitle:"Microwave Systems and Applications"},signatures:"Kok Yeow You",authors:[{id:"188673",title:"Dr.",name:"Kok Yeow",middleName:null,surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You"}]}],mostDownloadedChaptersLast30Days:[{id:"52194",title:"Microwave Antennas for Energy Harvesting Applications",slug:"microwave-antennas-for-energy-harvesting-applications",totalDownloads:3077,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"microwave-systems-and-applications",title:"Microwave Systems and Applications",fullTitle:"Microwave Systems and Applications"},signatures:"Dalia Elsheakh",authors:[{id:"111813",title:"Dr.",name:"Dalia",middleName:null,surname:"Elsheakh",slug:"dalia-elsheakh",fullName:"Dalia Elsheakh"}]},{id:"52946",title:"Innovative Techniques for 60-GHz On-Chip Antennas on CMOS Substrate",slug:"innovative-techniques-for-60-ghz-on-chip-antennas-on-cmos-substrate",totalDownloads:1209,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"microwave-systems-and-applications",title:"Microwave Systems and Applications",fullTitle:"Microwave Systems and Applications"},signatures:"Adel Barakat, Ramesh Pokharel and Hala Elsadek",authors:[{id:"3859",title:"Dr.",name:"Ramesh",middleName:null,surname:"Pokharel",slug:"ramesh-pokharel",fullName:"Ramesh Pokharel"},{id:"188438",title:"Prof.",name:"Hala",middleName:null,surname:"Elsadek",slug:"hala-elsadek",fullName:"Hala Elsadek"},{id:"194383",title:"Dr.",name:"Adel",middleName:null,surname:"Barakat",slug:"adel-barakat",fullName:"Adel Barakat"}]},{id:"52960",title:"On-Wafer Microwave De-Embedding Techniques",slug:"on-wafer-microwave-de-embedding-techniques",totalDownloads:2774,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"microwave-systems-and-applications",title:"Microwave Systems and Applications",fullTitle:"Microwave Systems and Applications"},signatures:"Xi Sung Loo, Kiat Seng Yeo and Kok Wai, Johnny Chew",authors:[{id:"189098",title:"Dr.",name:"Xi Sung",middleName:null,surname:"Loo",slug:"xi-sung-loo",fullName:"Xi Sung Loo"},{id:"189214",title:"Prof.",name:"Kiat Seng",middleName:null,surname:"Yeo",slug:"kiat-seng-yeo",fullName:"Kiat Seng Yeo"},{id:"189215",title:"Dr.",name:"Kok Wai, Johnny",middleName:null,surname:"Chew",slug:"kok-wai-johnny-chew",fullName:"Kok Wai, Johnny Chew"}]},{id:"53062",title:"Materials Characterization Using Microwave Waveguide System",slug:"materials-characterization-using-microwave-waveguide-system",totalDownloads:2292,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"microwave-systems-and-applications",title:"Microwave Systems and Applications",fullTitle:"Microwave Systems and Applications"},signatures:"Kok Yeow You",authors:[{id:"188673",title:"Dr.",name:"Kok Yeow",middleName:null,surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You"}]},{id:"59937",title:"From Field to Shelf: How Microwave-Assisted Extraction Techniques Foster an Integrated Green Approach",slug:"from-field-to-shelf-how-microwave-assisted-extraction-techniques-foster-an-integrated-green-approach",totalDownloads:862,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"emerging-microwave-technologies-in-industrial-agricultural-medical-and-food-processing",title:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing",fullTitle:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing"},signatures:"Roberto Rosa, Erika Ferrari and Paolo Veronesi",authors:[{id:"213620",title:"Dr.",name:"Erika",middleName:null,surname:"Ferrari",slug:"erika-ferrari",fullName:"Erika Ferrari"},{id:"213625",title:"Prof.",name:"Paolo",middleName:null,surname:"Veronesi",slug:"paolo-veronesi",fullName:"Paolo Veronesi"},{id:"213627",title:"Dr.",name:"Roberto",middleName:null,surname:"Rosa",slug:"roberto-rosa",fullName:"Roberto Rosa"}]},{id:"49217",title:"The Electromagnetic Force between Two Parallel Current Conductors Explained Using Coulomb’s Law",slug:"the-electromagnetic-force-between-two-parallel-current-conductors-explained-using-coulomb-s-law",totalDownloads:1273,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advanced-electromagnetic-waves",title:"Advanced Electromagnetic Waves",fullTitle:"Advanced Electromagnetic Waves"},signatures:"Jan Olof Jonson",authors:[{id:"174589",title:"Dr.",name:"Jan Olof",middleName:null,surname:"Jonson",slug:"jan-olof-jonson",fullName:"Jan Olof Jonson"}]},{id:"58958",title:"Introductory Chapter: RF/Microwave Applications",slug:"introductory-chapter-rf-microwave-applications",totalDownloads:644,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"emerging-microwave-technologies-in-industrial-agricultural-medical-and-food-processing",title:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing",fullTitle:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing"},signatures:"Kok Yeow You",authors:[{id:"188673",title:"Dr.",name:"Kok Yeow",middleName:null,surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You"}]},{id:"49197",title:"Electromagnetic Waves Excitation by Thin Impedance Vibrators and Narrow Slots in Electrodynamic Volumes",slug:"electromagnetic-waves-excitation-by-thin-impedance-vibrators-and-narrow-slots-in-electrodynamic-volu",totalDownloads:934,totalCrossrefCites:3,totalDimensionsCites:2,book:{slug:"advanced-electromagnetic-waves",title:"Advanced Electromagnetic Waves",fullTitle:"Advanced Electromagnetic Waves"},signatures:"Mikhail V. Nesterenko, Sergey L. Berdnik, Victor A. Katrich and Yuriy\nM. Penkin",authors:[{id:"24666",title:"Dr.",name:"Mikhail",middleName:null,surname:"Nesterenko",slug:"mikhail-nesterenko",fullName:"Mikhail Nesterenko"}]},{id:"53362",title:"Modeling and Simulation Techniques for Microwave Components",slug:"modeling-and-simulation-techniques-for-microwave-components",totalDownloads:1414,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"microwave-systems-and-applications",title:"Microwave Systems and Applications",fullTitle:"Microwave Systems and Applications"},signatures:"Farnaz Mohammadi and Alireza Sadrossadat",authors:[{id:"188540",title:"Prof.",name:"Alireza",middleName:null,surname:"Sadrossadat",slug:"alireza-sadrossadat",fullName:"Alireza Sadrossadat"},{id:"194736",title:"BSc.",name:"Farnaz",middleName:null,surname:"Mohammadi",slug:"farnaz-mohammadi",fullName:"Farnaz Mohammadi"}]},{id:"59538",title:"Additive Manufacturing of 3D Printed Microwave Passive Components",slug:"additive-manufacturing-of-3d-printed-microwave-passive-components",totalDownloads:744,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"emerging-microwave-technologies-in-industrial-agricultural-medical-and-food-processing",title:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing",fullTitle:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing"},signatures:"Irene O. Saracho-Pantoja, José R. Montejo-Garai, Jorge A. Ruiz-Cruz\nand Jesús M. Rebollar",authors:[{id:"4535",title:"Dr.",name:"Jorge A.",middleName:null,surname:"Ruiz-Cruz",slug:"jorge-a.-ruiz-cruz",fullName:"Jorge A. Ruiz-Cruz"},{id:"124755",title:"Prof.",name:"José",middleName:"R.",surname:"Montejo-Garai",slug:"jose-montejo-garai",fullName:"José Montejo-Garai"},{id:"124756",title:"Prof.",name:"Jesus",middleName:null,surname:"Rebollar",slug:"jesus-rebollar",fullName:"Jesus Rebollar"},{id:"227557",title:"B.Sc.",name:"Irene",middleName:null,surname:"Saracho-Pantoja",slug:"irene-saracho-pantoja",fullName:"Irene Saracho-Pantoja"}]}],onlineFirstChaptersFilter:{topicSlug:"microwave-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/cutting-edge-robotics-2010",hash:"",query:{},params:{book:"cutting-edge-robotics-2010"},fullPath:"/books/cutting-edge-robotics-2010",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()