\r\n\tThe present book intends to provide to the reader a comprehensive overview of the state of art in empathy studies, embracing the different theoretical points of view and illustrating the advanced research such as the application of new technologies to promote perspective-taking. The critical aspects and the future directions of the study on empathy will also be presented.
",isbn:"978-1-80356-612-2",printIsbn:"978-1-80356-611-5",pdfIsbn:"978-1-80356-613-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"4c1042dfe15aa9cea6019524c4cbff38",bookSignature:"Ph.D. Sara Ventura",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",keywords:"Theoretical Model, Skill, Perspective Taking, Training Programs, Practical Implications, Advanced Research, Future Directions, Virtual Reality, Augmented Reality, New Trends, Assistive Technology",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 1st 2022",dateEndSecondStepPublish:"June 8th 2022",dateEndThirdStepPublish:"August 7th 2022",dateEndFourthStepPublish:"October 26th 2022",dateEndFifthStepPublish:"December 25th 2022",remainingDaysToSecondStep:"19 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Passionate researcher in the application of new technologies to psychological treatments, neuro-rehabilitation, human behavior, and the evolution of the human-computer interaction. In 2017 Dr. Ventura won a competitive grant (Santiago Grisolia) at the University of Valencia at LABPSITEC group, where she was awarded her Ph.D. degree, supervised by Prof. Rosa Baños at the University of Valencia, and co-directed by Prof. Giuseppe Riva of the Catholic University of Milan.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",middleName:null,surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura",profilePictureURL:"https://mts.intechopen.com/storage/users/227763/images/system/227763.jpg",biography:"Sara Ventura gained a B.Sc in Psychology at the University of Padua (Italy) in 2013 and an M.Sc. in Ergonomic Psychology at the Catholic University of Milan (Italy) in 2015. In 2016, she carried out a postgraduate training at Universidad Nacional Autónoma de Mexico (Mexico) at the Ciberpsychology lab, working on a rehabilitation protocol for people with acquired brain injury through Virtual Reality. In 2020, Sara gained the Ph.D. in Clinical Psychology at University of Valencia (Spain) working with the LabPsitec group and focusing her research on the study of embodiment and empathy with the support of Virtual Reality. Actually, she is working both with Alma Mater Studiorum – University of Bologna (Italy), and the University of Valencia (Spain) on the fields of embodiment, stroke rehabilitation, empathy and patient care. Her research interests mainly focus on the adoption of new technologies, particularly Virtual/Augmented Reality and Artificial Intelligence for the psycho-social wellbeing with clinical and non-clinical populations, the study of human-computer interaction, and the user experience. She is the author of several scientific papers and various presentations at national and international conferences.",institutionString:"University of Valencia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Valencia",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"455410",firstName:"Dajana",lastName:"Jusic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/455410/images/20500_n.jpeg",email:"dajana.j@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40137",title:"Marine Electrolysis for Building Materials and Environmental Restoration",doi:"10.5772/48783",slug:"marine-electrolysis-for-building-materials-and-environmental-restoration",body:'
1. Introduction
Within weeks after Alessandro Volta developed the battery in 1800, William Nicholson and Anthony Carlisle applied it to the electrolysis of water, producing hydrogen at the cathode and oxygen at the anode, and thereby showing that water was not an irreducible element, as had been thought, but a chemical compound made up of two elements with very different properties. It was quickly found that adding salts to the water greatly accelerated reaction rates. We now know this is caused by increased electrical conductivity and reduced resistivity, thereby increasing the electrical current flowing for a given applied battery voltage according to Ohms’s Law. Humphrey Davy soon applied electrolysis to the practical problem of oxidative corrosion of copper plates used to sheath ships and protect the wood from boring organisms, founding the field of galvanic protection of metals from corrosion, now widely used to protect steel ships, oil rigs, bridges, and subsea pipes from failure.
Seawater electrolysis for galvanic protection can use sacrificial anodes, driven by the voltage potential difference between different metals, or actively impressed currents driven by a battery or a direct current power supply. In the first case the voltage differences are small, usually only tenths of a volt, according to the difference in electromotive potentials of the various metals or alloys used. The metal acting as the cathode is completely protected from rusting and corrosion as long as the electrical current flows. The metal acting as the anode usually dissolves away as the reaction proceeds, and needs to be periodically replaced in order to continue to prevent corrosion of the cathode. Increased currents accelerate reaction rates, which can cause mineral growth or scale, something most uses of cathodic protection wish to avoid. For example, if a boiler is being cathodically protected from rusting, one does not want to precipitate a mineral scale layer on it, because that is less thermally conductive than the metal, and reduces heat transfer and boiler efficiency. Therefore most uses of cathode corrosion protection use the lowest possible voltages and currents needed to prevent rusting, in order to avoid growth of scale.
There is a “natural” analog of cathode protection that is crucial for marine archaeology. A shipwreck invariably contains objects of several different metals, such as various steel alloys, copper, brass, bronze, aluminum, and others. The metal that acts as the strongest anode, according to its electromotive potential, proceeds to dissolve, releasing electrons that flow to the cathode metals, protecting them from oxidation. When the anode has completely dissolved, the next metal in the electromotive series then plays that role until there are no more anodic metals left, and at that point corrosion can take place on the last cathode metal. The process causes growth of limestone scale on the cathode, which protects and conceals it. Metal artifacts preserved in marine shipwrecks have been protected because they acted as cathodes. Despite the popular image of treasure hunters finding shiny golden coins, in fact the treasure is completely encrusted in limestone, appearing as irregular white crystalline lumps with the metal surface completely concealed. The first thing marine archaeologists do with these lumps is to throw them into an acid bath to dissolve away the limestone, in some cases speeding the process up by wiring them up as an anode of a battery, although that risks destroying the artifact if it proceeds too far. Only once the limestone has dissolved can the archaeologist see the metal artifact.
Later applications of aquatic electrolysis included making chlorine and bleach (sodium hypochlorite) from seawater and chloride brines, and purification of metals, but largely under highly controlled conditions in limited volumes, often from fused salts or acid solutions rather than from seawater. Following the First World War, the Nobel Prize winning German Jewish chemist, Fritz Haber, whose work on industrial nitrogen fixation via the Haber-Bosch process is the basis for almost all fertilizer nitrogen production, and hence for our global food supplies, sought to use electrolysis of sea water to extract traces of gold from the ocean to pay back war reparations imposed by the victors. He found that concentrations were too low to be economic, and was then hounded to death by the Nazis.
2. Physical properties of mineral production from sea water
Michael Faraday was the first to precipitate solid minerals by electrolysis of seawater. It was not until 1976 that Wolf Hilbertz recognized that these minerals, under the right conditions, could be a resource rather than a problem to be avoided. Hilbertz, an innovative architect working on self-growing construction materials, experimented with electrolysis of sea water and discovered that by varying the voltage and current applied he could grow different minerals on the cathode, ranging from soft to hard (Hilbertz, 1979). His inspiration was biological: if marine organisms could grow shells and skeletons of precisely controlled architecture from minerals dissolved in seawater, we should be able to figure out how to do so as well. Limestone does not precipitate naturally from seawater, so marine organisms must use their metabolic energy resources in order to create special internal chemical conditions that cause shell growth.
Hilbertz found that under low electrical current conditions he could grow extremely hard calcium carbonate limestone deposits, made up of crystals of the mineral aragonite, the same compound that makes up coral skeletons and the bulk of tropical white sand beaches. Higher currents caused the growth of the mineral brucite, or magnesium hydroxide, which is soft and tends to easily break off. Through experimentation it proved possible to grow rock-hard limestone coatings of any desired thickness on steel frames of any desired shape or size, at up to 1-2 cm per year, with compressive (load-bearing) strength up to 80 Newtons per square millimeter (MegaPascals), or about three times the strength of concrete made from ordinary Portland Cement.
This material, which Hilbertz first called “Seacrete” or “Seament”, is now called “Biorock®” in order to emphasize that this is the only GROWING marine construction material that gets larger and stronger with age, and is self-repairing, like biological materials, but unlike any other marine construction material. This unique property causes any damaged or broken portion to grow back preferentiallyover growth of undamaged sections.
Figure 1.
Biorock materials grown at Ihuru, North Male Atoll, Maldives, around a 6mm diameter steel bar in approximately one year. The darker surface color is a thin film of dried algae that migrates on the surface as it grows outward, leaving the interior bright white. The piece was hacksawed out of a growing structure. There is no corrosion at all on the steel. Photograph by Wolf H. HIlbertz.
Figure 2.
Biorock materials from various locations. The piece at mid left is the one shown in the previous photo. The one at top left, completely overgrown with oysters, is from Louisiana, and all the rest were grown in a two and a half year period at Ihuru Island, North Male Atoll, Maldives. Samples tested from that set of samples in the Materials Testing Laboratory of the University of Graz, Austria, had compressive strength of 60-80 Mega Pascals, around three times the load bearing strength of ordinary Portland Cement concrete. Photograph Wolf W. Hilbertz.
Figure 3.
This piece was cut near where two steel bars crossed. We had wedged a coral between the bars after a few months of growth. The coral skeleton is the slightly darker vertically oriented area in the center. After 2.5 years it was completely overgrown and encased by electrochemically produced minerals. Photograph Wolf H. Hilbertz.
Figure 4.
Self repair of Biorock damaged by big boat impact. Time series photographs by Rani Morrow-Wuigk. This structure was installed in June 2000. Note there is no rust on the steel after nearly 11 years in seawater.
The remarkable property of self-healing structures results from the distribution of the electrical field. Initially the electrical gradient between the anode and the cathode results in growth of mineral layers all over the cathode, starting at the closest points, or at sharp extremities that focus electrical field gradients, or at sites where water currents preferentially transport electrons.
Unlike the steel, the minerals are poor electrical conductors, and act as partial insulators. Nevertheless, electrons continue to flow because of the imposed electrical gradient. Although the electrolytic reactions generate hydroxyl ions and alkalinity in the water that are neutralized by mineral deposition taking place at the surface of the metal (see next section), production of hydrogen gas at the cathode surface causes creation of tiny pores and channels from the metal surface to the seawater, out of which hydrogen bubbles emerge (such bubbling provides visible proof that the reaction is working properly). Even Biorock material with three times the load-bearing strength of ordinary concrete has around 20% porosity. While it might be thought that minerals might insulate the cathode and prevent further growth, the imposed electrical gradient ensures that growth continues, in part because electrons flow through the hydrogen escape pores. We observe no long term decrease in the rate of bubbling or the growth of minerals, even in cases where more than 30 cm of hard minerals have grown over the cathode.
When the mineral growth is broken off, whether by severe storm wave damage, boat impacts, or deliberately by pliers, hammers, or hacksaws, and the bare metal is exposed, there is greatly increased growth at that point, until the newly deposited minerals are as thick as adjacent unbroken material. The metal is all at the same voltage potential, but reduced or absent mineral coatings cause the increased electrical current and mass transfer to flow through the water at that point. When the newly grown material is as resistive as the old coating the increased growth rate is self-limiting. In some cases new material is more porous due intense hydrogen bubbling, and the repaired area may grow thicker than adjacent harder and less porous material. We first recognized this focusing of current to freshly exposed surfaces in an experiment using multiple lengths of rebar as cathodes. We would periodically remove one rebar in order to measure the thickness of the material growth, replacing it with a fresh rebar, in an attempt to measure long-term growth rates and changes in chemical composition. The bare steel surface focused the current on the new rebar, which grew at the expense of all the others, stopping their growth. While the experiment did not work as intended, it provided valuable insight into the process.
3. Chemical mechanisms of mineral deposition
A minimum voltage of 1.23 Volts (at standard conditions, plus junction potentials) is needed to initiate electrolysis of water. Water is broken down at the anode to make oxygen gas and hydrogen ion, making the local environment both oxidizing and acidic:
1) 2H2O = O2 + 4H+ + 4e-
Water is broken down at the cathode to make hydrogen gas and hydroxyl ion,making the local environment both alkaline and reducing:
2) 4H2O + 4e-= 2H2 + 4OH-
The net reaction satisfying charge and pH balance is:
3) 6H2O = 2H2 + O2 + 4H+ + 4OH-
Above the threshold voltage (the sum of the half cell reactions and the junction potentials), the rate of reaction is proportional to the impressed electrical current, but the voltage determines which reactions can take place.
The hydrogen gas produced at the cathode bubbles out of the water, and could be trapped and used as a valuable side product. This is easy in an enclosed system, but practically impossible in the ocean due to currents and wave surge. The oxygen gas produced at the anode, being more soluble in water than hydrogen, tends to dissolve in the water rather than bubble out (under low to moderate current, bubbling will be greater at high current). Oxygen produced at the anode provides organisms in surrounding areas with this essential element and acts to reduce anoxia and dead zones in the ocean.
Hydrogen ions produced at the anode dissolve in the water until they react with limestone sediments in surrounding areas and are neutralized:
4) H+ + CaCO3 = Ca++ + HCO3-
On the other hand the hydroxyl ions produced at the cathode are rapidly consumed by precipitation of limestone directly on the cathode surface:
5) Ca++ + HCO3-+ OH- = CaCO3 + H2O
The net reaction is neutral with regard to pH and alkalinity and hence to ocean CO2 content and acidification (Hilbertz, 1992). Note however that the net effect causes limestone to be deposited in a specific and controlled location on the cathode at the expense of dissolution of limestone in sedimentsurrounding the anode, so this amounts to moving limestone around to a more useful location and with a controlled shape determined by the size and shape of the cathode.
Limestone deposition does not happen naturally in seawater even though the surface ocean is several times supersaturated with regard to the mineral calcite. Calcite precipitation should take place on thermodynamic grounds, but kinetic factors prevent its nucleation and growth in seawater. This occurs because magnesium ions cover the surface of calcite crystal nuclei, changing the surface free energy to make the seed crystals more soluble and preventing crystal growth (Berner, 1971; Berner et al. 1979). Seawater must be supersaturated several times over to precipitate limestone, and what precipitates is not calcite but the metastable mineral aragonite, whose chemical composition is the same but whose cell lattice is denser, and is more stable at high pressure conditions deep inside the earth than at the surface. Aragonite crystal nuclei do not adsorb a surface layer of soluble magnesium ions and hence can grow in seawater. In fresh water with low magnesium concentrations, calcite will precipitate even though it will not grow in seawater, which has 5 atoms of dissolved magnesium ions for each calcium ion. Organisms that make limestone shells and skeletons, like snails, clams, and corals, must use up metabolic energy to create internal chemical conditions that overcome these nucleation barriers, and also control the form of calcium carbonate produced.
The cathode can be made of any kind of electrically conductive metal or material, which will be completely protected against corrosion by the electrical current, with the sole exception of Aluminum. Aluminum is an amphoteric oxide and is the only common metal that readily dissolves under both alkaline and acidic conditions, so it can’t be used as either an anode or a cathode. The anode, being acidic and oxidizing, creates highly corrosive conditions, so most anode metals will dissolve, usually releasing biologically toxic ions into the environment. Either the anode must be replaced as needed, or a special non-corrodible and non-toxic material must be used.
4. Effects of competing electrolytic side reactions
Overcharging the cathode with higher electrical current densities greatly increases hydroxyl ionconcentrations, which causes precipitation of the mineral brucite, Mg(OH)2 instead of aragonite. Brucite requires very high pH to precipitate, appears to have little or no kinetic barrier to precipitation, and should grow at a rate proportional to the square of the microsite pH next to the cathode. Brucite, a white mineral similar in appearance to limestone, is structurally weak and flakes off. In seawater of normal pH brucite dissolves, the hydroxyl ions raise the pH, and convert bicarbonate ion to carbonate ion, which reacts with calcium ions. Consequently as the material grows and brucite ages it is replaced by aragonite. To optimize strength the Biorock minerals are grown at a low charging rate to produce hard limestone rather than soft brucite. We find experimentally that a growth rate of not more than 1-2 cm/per year provides maximum growth and structural strength, and above that brucite dominates.
Figure 5.
Brucite crystals grown on Biorock. Scanning electron micrograph by Noreen Buster, US Geological Survey.
Figure 6.
Mixture of Brucite crystals (rosettes) and Aragonite crystals (elongated needles). Scanning electron micrograph by Noreen Buster, US Geological Survey.
These results are strongly affected by temperature, because brucite is a normal mineral whose solubility increases with temperature, while calcium carbonate minerals are extremely unusual in having retrograde solubility, being more soluble in cold water than hot water. As a result materials grow faster and harder in warm tropical waters than in cold boreal waters. In addition the electrical conductivity is directly proportional to the salinity, so growth rates are highest in very salty waters and brines, lower in brackish waters, and very small in pure fresh water. The aragonite chemical composition, as measured by X-ray fluorescence, is indistinguishable from that of coral skeletons, being essentially pure calcium carbonate with about one percent strontium substitution in the aragonite lattice and only trace amounts of magnesium and other metals. However growth of minerals can trap sediment material suspended in the water that lands on the limestone as it grows, affecting the color of the Biorock minerals. They are pure white on remote limestone islands, but grey where there are a lot of clay minerals in the water, and can even be red where there are lots of iron oxide minerals in suspended sediments.
Because at high current densities direct brucite precipitation removes hydroxyl ion without converting bicarbonate to carbonate ion, it also reduces the amount of CO2 produced by limestone deposition:
6) Ca++ + 2HCO3- = CaCO3 + H2O + CO2
This is an interesting point because limestone deposition is, along with volcanic outgassing, the major source of atmospheric CO2 on a geological time scale, while dissolution of limestone, along with weathering of aluminosilicate minerals, is the major sink. This is widely misunderstood by those not knowledgeable about the chemistry of the carbon cycle. Almost everyone seems to think that limestone deposition, which is a sink of oceanic bicarbonate, must also be a sink of atmospheric CO2, when in fact it is a source! This common error is due to the fact that bicarbonate is the major form of inorganic carbon in the ocean, and because the ocean is a pH-buffered chemical system. In effect for each molecule of bicarbonate precipitated as limestone one molecule is released as CO2 in order to maintain charge and pH balance. Therefore brucite formation at the expense of aragonite has a net effect of reducing the effects of ocean acidification caused by increased CO2 in the atmosphere.
However, to put this into perspective, about half of all the net limestone burial in the ocean used to take place in coral reefs (Milliman, 1993), at least back when coral reefs were healthy and growing, before global warming, new diseases, and pollution killed most of them. About an order of magnitude more limestone was formed by planktonic organisms, but almost all of that dissolves when their microscopic skeletons fall into deep water, where they dissolve because of the lower temperature, higher pressure, and the higher acidity of deep waters caused by decomposition of organic matter that is formed at the ocean surface by photosynthesis and falls to the deep sea where it is oxidized by decomposing organisms and bacteria. However, the rate at which we are now adding CO2 to the atmosphere from fossil fuel combustion is about 100 times greater than the natural sources from global limestone burial (Ware et al., 1991), indicating how greatly human pollution has overwhelmed natural sources. Consequently global ocean acidification caused by fossil fuel-caused CO2 buildup cannot be effectively countered by manipulating limestone deposition, unless fossil fuel CO2 sources are greatly reduced and a mechanism is developed to directly remove CO2 from the atmosphere. If allowed to build up in the atmosphere, fossil fuel CO2 will only be very slowly neutralized over hundreds of millennia to millions of years by dissolution of terrestrial limestone rocks on land and marine limestone sediments.
Above 1.36 volts chloride, the most abundant anion in sea water, is converted to chlorine gas at the anode:
7) 2Cl- = Cl2 + 2e-
If the voltage could be maintained between 1.23 and 1.36 volts (ignoring junction potentials) then chlorine production can be avoided entirely, but this requires very precise regulation and is made more complicated by junction potentials. In practice, sufficient overvoltage to overcome junction potentials makes some chlorine production unavoidable, but the lower the voltage the less is produced.
Oxygen production is strongly favored over chlorine production because the ocean has far higher concentrations of water molecules than chloride ions (96.66% versus 1.94% by weight under standard ocean salinity of 35 parts per thousand). The ratio between oxygen production and chlorine production can be calculated from the water and chloride concentrations and the voltages applied using the Nernst Equation, but there will always be far more oxygen production than chlorine. However chlorine, as a highly reactive oxidizing agent, can build up in closed systems like aquaria or tanks, and pose problems, for example for fishes in tanks whose gills are highly sensitive to chlorine, or marine mammals whose eyes are affected. In the ocean chlorine is rapidly neutralized by reaction with dissolved organic matter and reduced compounds and elements. We have repeatedly observed that it poses no problem at all for life in the ocean, with fish and corals growing well no farther than a millimeter or two from the anode. Fish swim near the anode, and dissolution of limestone usually takes place only a very short distance away from the anode, removing the acidity produced. But in aquaria with no limestone sediments, the acidity can remain in the water.
The chlorine production side reaction competing with water at the anode also provides another side benefit in that hydrogen ion is not produced by the electron flow, so this acts to make the net reaction at both electrodes one that makes the water more alkaline, and therefore acts to locally reverse ocean acidification from increased atmospheric CO2. However, as noted before, the effects are small on a global scale, so large-scale electrolysis in the ocean, while LOCALLY reversing ocean acidification, has only a small impact on the ocean’s BULK acidity, and only abatement of fossil fuel sources and direct removal of excess atmospheric CO2 can reverse global ocean acidification.
An interesting variant of this process has been proposed as way to mitigate ocean acidification caused by atmospheric CO2 buildup by House et al, 2007 and by Rau and Carroll, 2011. They suggest packing the area around the anode with basic minerals, like limestone or igneous rocks high in calcium and magnesium. The acidity at the anode would then increase the dissolution and weathering of these minerals, which serves as a CO2 sink. They suggest that the water would then turn alkaline, which would promote the dissolution of CO2 from the atmosphere. However as noted above, the alkalinity generated at the cathode is immediately neutralized by mineral deposition and so would not build up in the water and absorb CO2 from the air. Furthermore there would be enormous costs for transporting bulky rocks from land to the site of electrolysis, and it is likely that the benefits for reversing ocean acidification or CO2 buildup would be small.
5. Efficiency and cost of mineral production
The fact that limestone minerals, harder than ordinary concrete, can be grown in the sea in any size and shape, naturally raises the question whether doing so is cost-effective. Hilbertz and Goreau did an experiment in the 1980s at the Discovery Bay Marine Laboratory in Jamaica in which a new battery of known voltage and amp hours was completely discharged through electrodes and the amount of minerals grown on the anode was weighed. The yield was 1.07 Kilograms/Kilowatt hour, very close to the theoretically expected value. A field experiment done in the sea at the Marina Hemingway, near Havana, Cuba measured values of around 0.4-0.5 Kg/KWh (Amat et al., 1994). At this site there were many large steel structures in the water nearby, which attracted stray currents and reduced measured efficiency of mineral production on the cathode.
When one balances the chemical and charge equations, and assuming that all the hydroxyl ions produced by electrolysis of water are neutralized by limestone deposition, one gets 3.7 grams of calcium carbonate per amp hour of electricity.
To calculate the efficiency as yield per watt one must assume a voltage. The Jamaica experiments were done at 1.5 volts, and the Cuban ones at 6 volts. The lower the voltage is (as long as it is above the minimum voltage of 1.23V for electrolysis of water and ignoring junction potentials) the more efficient the process is (Table 1). For standard solar panels at 17 volts, only around 7% of the potential energy is used, and nearly 93% is wasted.
VOLTAGE (VOLTS)
EFFICIENCY (PERCENT)
1.23
100
1.5
82
3
41
6
20.5
12
10.25
17
7.24
Table 1.
Using 6 volts we get a limestone yield of 0.62 Kilograms of calcium carbonate per Kilowatt-hour, which is close to what the Cuban researchers found in the field despite stray current losses!
For high charge rates producing brucite, one produces half as many molecules of brucite for the same charge, because only one hydroxyl ion is needed for each calcium carbonate molecule, but two are needed for each brucite. As brucite molecules weigh 68% as much as limestone, the efficiency in weight produced per kilowatt should be one third that of limestone.
In addition for every two molecules of calcium carbonate (or one molecule of brucite) produced one also produces one molecule of hydrogen gas, which can be used as a fuel in fuel cells. And one would also be producing oxygen and chlorine at the other terminal in a ratio that depends on the voltage and can be calculated from the Nernst Equations.
The energy efficiency of production is inversely related to the voltage above the minimal value for seawater electrolysis because higher voltages produce electrons with much more energy than is needed to break down water, so the excess is wasted as heat. We have never felt or measured significant increases in temperature, so the effect seems to be very small in practice. This decrease of efficiency at higher voltages is equally true of efficiency of hydrogen production using photovoltaic panels. This fact was completely missed in a major review of the subject (Blankenship et al. 2011), which consequently greatly overestimated efficiency of the photovoltaic hydrogen production process. The previous generation of 17 volt photovoltaic panels cause nearly 93% of the potential energy to be wasted when applied to electrolysis for hydrogen production. Such 17 volt panels are now no longer being manufactured, while the new panels, with 24, 48, 60 volts or higher will be even more inefficient for Biorock materials or hydrogen production end uses, so it is clear that efficient use of power requires voltages matched to the minimum end use requirements.
If we assume that the yield is 1 Kg/KWh and that electricity costs from $.03 to $.30 per KWh, the electrical cost of the materials produced ranges from $.03-.30/Kg. This would be highly competitive with cement in many places where transport of cement affects the local cost, especially in small islands surrounded by the sea where cement is expensive because of transport costs.
The materials that are produced, if grown slowly, have a load bearing strength of around 80 MegaPascals, about 3 times stronger than concrete from ordinary Portland Cement, and can be grown in any size or shape. Wolf Hilbertz’s original vision was to grow prefabricated construction materials, like roofs, walls, arches, blocks, etc. in the sea and then use them on land for construction. The most effective use would be in what architects call “shells”, structures that are thin with regard to their other dimensions like domes, and whose strength in large part comes from tensile forces. Unfortunately the construction market wants buildings immediately, and is rarely willing to wait years for the material to be grown slowly and hard, when concrete will set in days. In addition, in the late 1980s our Biorock work switched away from building material applications to focus on coral reef restoration, and we never had a chance to get back into the construction aspects that Wolf had intended. However the principle is still valid, and such structures would be cost effective in many places far from cement plants.
By applying higher current densities, mineral production can be readily switched from calcium carbonate to magnesium hydroxide. While this material is soft, flaky and not useful for load bearing uses, it has many other applications. This material can be cast in molds to form bricks and blocks or other shapes, and we have done so successfully. Brucite can be readily converted into magnesium carbonate cements by absorbing CO2 and these are even harder than calcium carbonate.
8) Mg(OH)2 + CO2 = MgCO3 + H2O
The manufacture of Biorock cements therefore removes CO2 from the atmosphere as they set. In contrast cement manufacture, which combusts limestone to make quicklime, releasing CO2, is a major global source of greenhouse gases, about 5-10% as much as fossil fuel combustion. Therefore Biorock cements can be readily produced on a large scale that are far harder than contemporary cements and help to reduce global warming instead of causing it like conventional cements do.
Use of Biorock cements can therefore help undo the global warming that cement manufacture contributes to, and hence are truly “green” cements as long as sustainable energy resources like solar, wind, wave, biomass, or tidal current energy are used to make the electricity for its manufacture. We have used all of these energy sources, and currently work with top pioneering groups in the development of all of these energy technologies for growing Biorock materials.
Magnesium carbonate cements are far harder than either calcium carbonate or concrete, and were widely used by the Romans. Roman ruins in Italy built of limestone or marble blocks cemented with magnesium carbonate cements reveal that the limestone is dissolving with acid rain, while the cements are much more resistant. The cements stick out while the building blocks are caved in from dissolution by rain, the opposite effect of bricks whose mortar is crumbling. Using Biorock technology it is now possible to produce such cements in any desired quantity from seawater and hypersaline lakes and lagoons.
6. Biological responses
The biological effects of the electrical fields produced by seawater electrolysis result in astonishing increases in the settlement, growth, survival, and resistance to environmental stress of almost all marine organisms (Hilbertz & Goreau, 1996). Commercial divers on cathodically protected oil rigs, who spend much of their time replacing sacrificial anodes, have to spend a great deal of time scraping off the prolific growth of corals, oysters, and other marine organisms, which are far less abundant on rusting oil rigs that lack cathodic protection. Wolf Hilbertz’s first Biorock structures, built at Grand Isle, Louisiana, near the mouth of the Mississippi River, were completely overgrown with oysters that spontaneously settled on them and grew very rapidly. The first experiments with corals done at the Discovery Bay Marine Laboratory in Jamaica in the late 1980s used small pieces of corals attached to Biorock structures. They grew at record rates, up to nearly a centimeter a week (Goreau & Hilbertz, 2005). The results were so dramatic that after 1987 we immediately focused all of our efforts on coral reef restoration, as this is the most sensitive of all ecosystems to increases in temperature, sedimentation, and pollution.
Subsequent work by us and our students on hundreds of Biorock projects across the Atlantic, Pacific, Indian Ocean, and Southeast Asia showed that corals, oysters, seagrasses, saltmarsh, and apparently almost all marine organisms, had much higher settlement, growth, survival, and resistance to environmental stresses, including high temperatures, than genetically identical controls in the same habitat. For example coral growth rates are typically 2-6 times faster than controls, depending on species and conditions, and survival of corals from severe high temperature bleaching stress were 16-50 times higher (Goreau & Hilbertz, 2005). The data are presented in a 2012 book in press, Innovative Methods of Ecosystem Restoration, so the details will not be repeated here. Abstracts of most of the papers in that volume were presented at the Symposium on Innovative Methods of Marine Ecosystem Restoration at the 2011 World Conference on Ecological Restoration, Merida, Yucatan, Mexico, and can be found at:
Initially it was thought that the benefits were due to the higher pH around the Biorock structure, but direct pH measurements showed that the hydroxyl ions generated at the cathode were immediately neutralized by mineral deposition, and very little pH change could be measured in the water even very close by, unless the limestone was broken off to expose the bare shiny metal surface. In addition it was noted that organisms without limestone skeletons also had extraordinary growth rates, that the organisms on the structure had much faster budding and branching, brighter colors, and that there was greater coral settlement and growth in the areas AROUND the structures, not just on them. These benefits were observed to disappear when the power was turned off and growth decreased to levels similar to the controls, but immediately resumed when the power was turned back on. For much more detailed data on biological benefits of electrical fields and their interpretation, please see the forthcoming book, Innovative Methods of Ecosystem Restoration.
Applications of electrolysis to biological phenomena precede even the invention of the battery. In 1791 Luigi Galvani published his book on “Animal Electricity”, based on experiments with static electrical discharges that caused the limbs of dead frogs to twitch. This lead to the discovery of electrical propagation in nerves, and a long series of experiments on the effects of electrical currents on limb healing and regeneration in frogs and salamanders, followed by work on electrical stimulation of brains (Becker & Selden, 1985). Much of this work used high voltages or alternating current, and so are fundamentally different phenomena than the low voltage direct currents used in our work. The use of electroshock therapy gave the entire a field a bad name, and a reputation for quackery, so that the legitimate scientific applications of low voltage electrical fields were ridiculed and neglected, to the detriment of scientific understanding (Oschman, 2000, 2003). The “snake oil” or “Frankenstein” reputation has unfairly tarnished the serious science of biological/electrical interactions due to the bogus claims of charlatans or deluded people.
While full explanation of the effects of electrical fields at the biophysical and biochemical level requires further work, the empirical results show enormous benefits for biological health when they are in the right range. Electrical fields that are too low will have little impact, and those that are too high might well have negative impacts, with maximum benefits at some intermediate value. It is long known that organisms maintain a voltage gradient across their cell membrane of around a tenth of a volt, and that they must expend energy to maintain this gradient by enzymatically pumping cations and anions. The resulting voltage gradient drives flows of electrons and protons that are tapped by enzymes to form the high energy biochemical metabolites that serve as the cell’s “energy currency”, driving synthesis of compounds whose formation would otherwise be thermodynamically prohibited.
Thus electrical gradients of the right magnitude effectively provide living cells with available biological energy at lower cost, leaving them with extra energy for growth, reproduction, healing, and resisting environmental stress. Optimizing these benefits will take much further work on mechanisms. When these are fully explored, the benefits in terms of higher growth and better health will certainly prove revolutionary in many fields of biology, and result in more productive forms of mariculture, aquaculture, and agriculture.
7. Applications
To date electrolysis has largely been used to develop chemical processes in closed systems with controlled chemical composition. The only large-scale environmental application, corrosion control, is operated at the lowest possible level in order to prevent or minimize the applications described in this article. The work we have done since the mid 1970s opens the door to large-scale environmental applications of many novel kinds. These include:
protecting coral reefs against global warming, sedimentation, and pollution
restoring coral reefs where they have died or been degraded
restoring oyster reefs where they have died or been degraded
restoring fish habitat
restoring shellfish habitat
restoring seagrasses
restoring saltmarshes
mariculture
shore protection from erosion and global sea level rise
construction materials
hydrogen production
agricultural applications
Biorock applications involve low voltage and low current densities, and so do not use much electricity, in fact they usually cannot be felt even when one short circuits the system by grabbing the anode and cathode simultaneously with bare hands, since the electrons flow through much more conductive seawater. Using Biorock technology, coral reefs can be grown in front of hotels, which grow the beaches back using about as much electricity as the beach lights, or one or two air conditioners. This is a negligible amount of electricity for places that may be running hundreds of air conditioners at a time, and so the benefits far outweigh the costs. Biorock structures cost a small fraction of the cost of concrete or rock structures with the same dimensions. Reinforced concrete construction first assembles a framework of reinforcing bar, which is a negligible portion of the total structure cost. The concrete poured around it, and the labor, cost many times more than the steel. Biorock construction assembles a steel framework, but instead of purchasing concrete simply wires it to a power source and grows the material over the steel.
Since steel is the cheapest and most available construction material, Biorock costs are largely dependent on the price of electricity. Since most electricity is produced from fossil fuels like coal, oil, and natural gas, it is the largest source of greenhouse gases causing the global warming that is now the major killer of corals worldwide. For this reason we work very closely with the pioneers in sustainable energy systems, in particular wave, tidal, wind, and solar power, so that untapped renewable local energy sources can be used that do not generate CO2. We are especially focused on use of the development of new wave energy generators that work in waves of less than 10 cm amplitude, which will allow energy to be made along almost any coastline most of the time.
Generation of electricity on-site from renewable energy also avoids power losses in transmission, and will allow much larger structures to be grown with less energy. This will open the possibilities of very large environmental electrolysis projects to save entire coastlines from the effects of global sea level rise and restore their collapsing coral reefs, oyster reefs, and fisheries, while at the same time promoting the development of sustainable energy sources that do not produce produce CO2 and cause global warming and sea level rise.
Biorock reefs grown in front of severely eroding beaches, with trees and buildings collapsing into the sea, have grown back up to 15 meters (50 feet) of new beach back in a few years, by reducing wave impacts a the shoreline. Therefore they will have major applications as global sea level rise accelerates in the future. Artificial islands can be grown that keep pace with sea level rise, if Biorock technology was used on a large scale.
Acknowledgement
This paper is dedicated to the memory of the late Wolf Hilbertz (1938 – 2007), the inventor of the Biorock Process and an innovator in new applications of electrolysis. This paper is based on 25 years of close work with him in developing the Biorock technology that emerged from his pioneering vision.
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/40137.pdf",chapterXML:"https://mts.intechopen.com/source/xml/40137.xml",downloadPdfUrl:"/chapter/pdf-download/40137",previewPdfUrl:"/chapter/pdf-preview/40137",totalDownloads:3976,totalViews:836,totalCrossrefCites:2,totalDimensionsCites:15,totalAltmetricsMentions:1,impactScore:5,impactScorePercentile:94,impactScoreQuartile:4,hasAltmetrics:1,dateSubmitted:"January 14th 2012",dateReviewed:"April 18th 2012",datePrePublished:null,datePublished:"October 17th 2012",dateFinished:"October 15th 2012",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/40137",risUrl:"/chapter/ris/40137",book:{id:"2791",slug:"electrolysis"},signatures:"Thomas J. Goreau",authors:[{id:"150069",title:"Prof.",name:"Thomas",middleName:null,surname:"Goreau",fullName:"Thomas Goreau",slug:"thomas-goreau",email:"goreau@bestweb.net",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Physical properties of mineral production from sea water",level:"1"},{id:"sec_3",title:"3. Chemical mechanisms of mineral deposition",level:"1"},{id:"sec_4",title:"4. Effects of competing electrolytic side reactions",level:"1"},{id:"sec_5",title:"5. Efficiency and cost of mineral production ",level:"1"},{id:"sec_6",title:"6. Biological responses",level:"1"},{id:"sec_7",title:"7. Applications",level:"1"},{id:"sec_8",title:"Acknowledgement",level:"1"}],chapterReferences:[{id:"B1",body:'Enrique Amat Balbosa, Juan Carlos Prada, Frank Moore Wedderborn, & Eumelia Reyes Reyes,1994Estudio preliminar de la acrecion marina, Revista Arquitectura y Urbanismo, Vol XV, 243243116\n\t\t\t'},{id:"B2",body:'RobertO.BeckerGarySelden.1985The Body Electric: Electromagnetism and the Foundation of Life, William Morrow, New York'},{id:"B3",body:'RobertA.Berner1971Principles of Chemical Sedimentology, McGraw Hill, New York'},{id:"B4",body:'RobertA.BernerJ. T.WestrichR.GraberJ.SmithMartensC. S.1978Inhibition of aragonite precipitation from supersaturated seawater: a laboratory and field study, American Journal of Science, 278816837\n\t\t\t'},{id:"B5",body:'RobertE.BlankenshipDavid. M.TiedeJames.BarberGary. W.BrudvigGraham.FlemingMarina.GhirardiM. R.GunnerWolfgang.JungeDavid. M.KramerAnastasios.MelisThomas. A.MooreChristopher. C.MoserDaniel. C.NoceraArthur. J.NozikDonald. R.OrtWilliam. W.ParsonRoger. C.PrinceRichardT.Sayre2011Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement, Science, 332805809\n\t\t\t'},{id:"B6",body:'BusterN. A.HolmesC. W.GoreauT. J.HilbertzW.2006Crystal habits of the Magnesium Hydroxide mineral Brucite within Coral Skeletons, American Geophysical Union Annual Meeting, Abstract and Poster'},{id:"B7",body:'GoreauT. J.HilbertzW.2005Marine ecosystem restoration: costs and benefits for coral reefs, WORLD RESOURCE REVIEW, 17375409\n\t\t\t'},{id:"B8",body:'WolfH.Hilbertz1979Electrodeposition of minerals in sea water: Experiments and applications, IEEE Journal on Oceanic Engineering, 4119\n\t\t\t'},{id:"B9",body:'WolfH.Hilbertz1992Solar-generated building material from seawater as a sink for carbon, Ambio, 21126129\n\t\t\t'},{id:"B10",body:'HilbertzW. H.GoreauT. J.1996Method of enhancing the growth of aquatic organisms, and structures created thereby, United States Patent 5U. S. PATENT OFFICE (14pp.).'},{id:"B11",body:'KurtZenz.HouseChristopher. H.HouseDaniel. P.SchragMichaelJ.Aziz2007Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change, Environmental Science and Technology, 4184648470\n\t\t\t'},{id:"B12",body:'JohnD.Milliman1993Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochemical Cycles, 7927957\n\t\t\t'},{id:"B13",body:'JamesL.Oschman2000Energy Medicine: The Scientific Basis, Churchill Livingstone, Edinburgh'},{id:"B14",body:'JamesL.Oschman2003Energy Medicine in Therapeutics and Human Performance, Butterworth Heinemann, Edinburgh'},{id:"B15",body:'GregH.RauSusanA.Carroll2011Electrochemical enhancement of carbonate and silicate weathering for CO2 mitigation, Goldschmidt Conference Abstracts, Mineralogical Magazine, 1698\n\t\t\t'},{id:"B16",body:'JohnR.WareStephen. V.SmithMarjorieL.Reaka-Kudla1991Coral reefs: Sources or sinks of atmospheric CO2?, Coral Reefs, 11127130\n\t\t\t'},{id:"B17",body:'World Conference on Ecological Restoration,2011Abstracts: http://www.globalcoral.org/world_conference_on_ecological_r.htm'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Thomas J. Goreau",address:null,affiliation:'
'}],corrections:null},book:{id:"2791",type:"book",title:"Electrolysis",subtitle:null,fullTitle:"Electrolysis",slug:"electrolysis",publishedDate:"October 17th 2012",bookSignature:"Vladimir Linkov and Janis Kleperis",coverURL:"https://cdn.intechopen.com/books/images_new/2791.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-0793-4",pdfIsbn:"978-953-51-6250-6",reviewType:"peer-reviewed",numberOfWosCitations:89,isAvailableForWebshopOrdering:!0,editors:[{id:"17390",title:"Dr.",name:"Janis",middleName:null,surname:"Kleperis",slug:"janis-kleperis",fullName:"Janis Kleperis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"143910",title:"Dr.",name:"Vladimir",middleName:null,surname:"Linkov",slug:"vladimir-linkov",fullName:"Vladimir Linkov"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"701"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"40140",type:"chapter",title:"Alkaline Electrolysis with Skeletal Ni Catalysts",slug:"alkaline-electrolysis-with-skeletal-ni-catalysts",totalDownloads:4530,totalCrossrefCites:1,signatures:"A.M. Fernández and U. Cano",reviewType:"peer-reviewed",authors:[{id:"145622",title:"Dr.",name:"Arturo",middleName:null,surname:"Fernández",fullName:"Arturo Fernández",slug:"arturo-fernandez"},{id:"155195",title:"Dr.",name:"Ulises",middleName:null,surname:"Cano",fullName:"Ulises Cano",slug:"ulises-cano"}]},{id:"40142",type:"chapter",title:"Water Electrolysis with Inductive Voltage Pulses",slug:"water-electrolysis-with-inductive-voltage-pulses",totalDownloads:16819,totalCrossrefCites:3,signatures:"Martins Vanags, Janis Kleperis and Gunars Bajars",reviewType:"peer-reviewed",authors:[{id:"17390",title:"Dr.",name:"Janis",middleName:null,surname:"Kleperis",fullName:"Janis Kleperis",slug:"janis-kleperis"},{id:"147706",title:"Dr.",name:"Martins",middleName:null,surname:"Vanags",fullName:"Martins Vanags",slug:"martins-vanags"},{id:"148696",title:"Dr.",name:"Gunars",middleName:null,surname:"Bajars",fullName:"Gunars Bajars",slug:"gunars-bajars"}]},{id:"40146",type:"chapter",title:"Overview of Membrane Electrode Assembly Preparation Methods for Solid Polymer Electrolyte Electrolyzer",slug:"overview-of-membrane-electrode-assembly-preparation-methods-for-solid-polymer-electrolyte-electrolyz",totalDownloads:5710,totalCrossrefCites:13,signatures:"Bernard Bladergroen, Huaneng Su, Sivakumar Pasupathi and Vladimir Linkov",reviewType:"peer-reviewed",authors:[{id:"143910",title:"Dr.",name:"Vladimir",middleName:null,surname:"Linkov",fullName:"Vladimir Linkov",slug:"vladimir-linkov"},{id:"147471",title:"Prof.",name:"Bernard",middleName:null,surname:"Bladergroen",fullName:"Bernard Bladergroen",slug:"bernard-bladergroen"},{id:"148730",title:"Dr.",name:"Sivakumar",middleName:null,surname:"Pasupathi",fullName:"Sivakumar Pasupathi",slug:"sivakumar-pasupathi"},{id:"148732",title:"Dr.",name:"Huaneng",middleName:null,surname:"Su",fullName:"Huaneng Su",slug:"huaneng-su"}]},{id:"40164",type:"chapter",title:"Advanced Construction Materials for High Temperature Steam PEM Electrolysers",slug:"advanced-construction-materials-for-high-temperature-steam-pem-electrolysers",totalDownloads:2027,totalCrossrefCites:2,signatures:"Aleksey Nikiforov, Erik Christensen, Irina Petrushina, Jens Oluf Jensen and Niels J. Bjerrum",reviewType:"peer-reviewed",authors:[{id:"10875",title:"Dr.",name:"Jens Oluf",middleName:null,surname:"Jensen",fullName:"Jens Oluf Jensen",slug:"jens-oluf-jensen"},{id:"11530",title:"Prof.",name:"Niels J.",middleName:null,surname:"Bjerrum",fullName:"Niels J. Bjerrum",slug:"niels-j.-bjerrum"},{id:"146146",title:"Dr.",name:"Aleksey",middleName:null,surname:"Nikiforov",fullName:"Aleksey Nikiforov",slug:"aleksey-nikiforov"},{id:"147437",title:"Dr.",name:"Irina",middleName:null,surname:"Petrushina",fullName:"Irina Petrushina",slug:"irina-petrushina"},{id:"147439",title:"Dr.",name:"Erik",middleName:null,surname:"Christensen",fullName:"Erik Christensen",slug:"erik-christensen"}]},{id:"40135",type:"chapter",title:"Voltammetric Characterization Methods for the PEM Evaluation of Catalysts",slug:"voltammetric-characterization-methods-for-the-pem-evaluation-of-catalysts",totalDownloads:5028,totalCrossrefCites:4,signatures:"Shawn Gouws",reviewType:"peer-reviewed",authors:[{id:"144982",title:"Dr.",name:"Shawn",middleName:null,surname:"Gouws",fullName:"Shawn Gouws",slug:"shawn-gouws"}]},{id:"40145",type:"chapter",title:"Direct Electrolytic Al-Si Alloys (DEASA) – An Undercooled Alloy Self-Modified Structure and Mechanical Properties",slug:"direct-electrolytic-al-si-alloys-deasa-an-undercooled-alloy-self-modified-structure-and-mechanical-p",totalDownloads:3318,totalCrossrefCites:4,signatures:"Ruyao Wang and Weihua Lu",reviewType:"peer-reviewed",authors:[{id:"147985",title:"Prof.",name:"Ruyao",middleName:null,surname:"Wang",fullName:"Ruyao Wang",slug:"ruyao-wang"}]},{id:"40144",type:"chapter",title:"Electrolytic Enrichment of Tritium in Water Using SPE Film",slug:"electrolytic-enrichment-of-tritium-in-water-using-spe-film",totalDownloads:4440,totalCrossrefCites:1,signatures:"Takeshi Muranaka and Nagayoshi Shima",reviewType:"peer-reviewed",authors:[{id:"147550",title:"Prof.",name:"Takeshi",middleName:null,surname:"Muranaka",fullName:"Takeshi Muranaka",slug:"takeshi-muranaka"},{id:"148463",title:"Dr.",name:"Nagayoshi",middleName:null,surname:"Shima",fullName:"Nagayoshi Shima",slug:"nagayoshi-shima"}]},{id:"40141",type:"chapter",title:"Analysis of Kinetics Parameters Controlling Atomistic Reaction Process of a Quasi-Reversible Electrode System",slug:"analysis-of-kinetics-parameters-controlling-atomistic-reaction-process-of-a-quasi-reversible-electro",totalDownloads:2247,totalCrossrefCites:0,signatures:"Yuji Imashimizu",reviewType:"peer-reviewed",authors:[{id:"148368",title:"Dr.",name:"Yuji",middleName:null,surname:"Imashimizu",fullName:"Yuji Imashimizu",slug:"yuji-imashimizu"}]},{id:"40139",type:"chapter",title:"Scale-Up of Electrochemical Reactors",slug:"scale-up-of-electrochemical-reactors",totalDownloads:5704,totalCrossrefCites:4,signatures:"A. H. Sulaymon and A. H. Abbar",reviewType:"peer-reviewed",authors:[{id:"148531",title:"Dr",name:null,middleName:null,surname:"Sulaymon",fullName:"Sulaymon",slug:"sulaymon"}]},{id:"40136",type:"chapter",title:"Ultrasound in Electrochemical Degradation of Pollutants",slug:"ultrasound-in-electrochemical-degradation-of-pollutants",totalDownloads:3778,totalCrossrefCites:1,signatures:"Gustavo Stoppa Garbellini",reviewType:"peer-reviewed",authors:[{id:"144526",title:"Dr.",name:"Gustavo",middleName:"Stoppa",surname:"Garbellini",fullName:"Gustavo Garbellini",slug:"gustavo-garbellini"}]},{id:"40138",type:"chapter",title:"Electrocoagulation for Treatment of Industrial Effluents and Hydrogen Production",slug:"electrocoagulation-for-treatment-of-industrial-effluents-and-hydrogen-production",totalDownloads:9606,totalCrossrefCites:8,signatures:"Ehsan Ali and Zahira Yaakob",reviewType:"peer-reviewed",authors:[{id:"77958",title:"Prof.",name:"Zahira",middleName:null,surname:"Yaakob",fullName:"Zahira Yaakob",slug:"zahira-yaakob"},{id:"146956",title:"Dr.",name:"Ehsan",middleName:null,surname:"Ali",fullName:"Ehsan Ali",slug:"ehsan-ali"}]},{id:"40143",type:"chapter",title:"Electrolysis for Ozone Water Production",slug:"electrolysis-for-ozone-water-production",totalDownloads:5724,totalCrossrefCites:4,signatures:"Fumio Okada and Kazunari Naya",reviewType:"peer-reviewed",authors:[{id:"147954",title:"Prof.",name:"Fumio",middleName:null,surname:"Okada",fullName:"Fumio Okada",slug:"fumio-okada"}]},{id:"40137",type:"chapter",title:"Marine Electrolysis for Building Materials and Environmental Restoration",slug:"marine-electrolysis-for-building-materials-and-environmental-restoration",totalDownloads:3976,totalCrossrefCites:2,signatures:"Thomas J. Goreau",reviewType:"peer-reviewed",authors:[{id:"150069",title:"Prof.",name:"Thomas",middleName:null,surname:"Goreau",fullName:"Thomas Goreau",slug:"thomas-goreau"}]}]},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"36273",title:"Introduction to Infrared Spectroscopy",slug:"introduction-to-infrared-spectroscopy",signatures:"Theophile Theophanides",authors:[{id:"37194",title:"Dr.",name:"Theophile",middleName:null,surname:"Theophanides",fullName:"Theophile Theophanides",slug:"theophile-theophanides"}]},{id:"36166",title:"Using Infrared Spectroscopy to Identify New Amorphous Phases - A Case Study of Carbonato Complex Formed by Mechanochemical Processing",slug:"using-infrared-spectroscopy-to-identify-new-amorphous-phases-a-case-study-of-carbonato-complexes-fo",signatures:"Tadej Rojac, Primož Šegedin and Marija Kosec",authors:[{id:"25116",title:"Prof.",name:"Marija",middleName:null,surname:"Kosec",fullName:"Marija Kosec",slug:"marija-kosec"},{id:"105876",title:"Dr.",name:"Tadej",middleName:null,surname:"Rojac",fullName:"Tadej Rojac",slug:"tadej-rojac"},{id:"111754",title:"Prof.",name:"Primoz",middleName:null,surname:"Segedin",fullName:"Primoz Segedin",slug:"primoz-segedin"}]},{id:"36167",title:"Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites",slug:"application-of-infrared-spectroscopy-to-analysis-of-chitosan-clay-nanocomposites",signatures:"Suédina M.L. Silva, Carla R.C. Braga, Marcus V.L. Fook, Claudia M.O. Raposo, Laura H. Carvalho and Eduardo L. Canedo",authors:[{id:"104808",title:"Prof.",name:"Suedina Maria",middleName:"De Lima",surname:"Silva",fullName:"Suedina Maria Silva",slug:"suedina-maria-silva"},{id:"111910",title:"Prof.",name:"Carla",middleName:"Lima",surname:"R. C. Braga",fullName:"Carla R. C. Braga",slug:"carla-r.-c.-braga"},{id:"142933",title:"Prof.",name:"Marcus Vinícius",middleName:null,surname:"Lia Fook",fullName:"Marcus Vinícius Lia Fook",slug:"marcus-vinicius-lia-fook"},{id:"142934",title:"Prof.",name:"Claudia Maria",middleName:null,surname:"De Oliveira Raposo",fullName:"Claudia Maria De Oliveira Raposo",slug:"claudia-maria-de-oliveira-raposo"},{id:"142936",title:"Prof.",name:"Laura",middleName:null,surname:"Hecker De Carvalho",fullName:"Laura Hecker De Carvalho",slug:"laura-hecker-de-carvalho"},{id:"142939",title:"Dr.",name:"Eduardo Luis",middleName:null,surname:"Canedo",fullName:"Eduardo Luis Canedo",slug:"eduardo-luis-canedo"}]},{id:"36168",title:"Structural and Optical Behavior of Vanadate-Tellurate Glasses Containing PbO or Sm2O3",slug:"structural-and-optical-behavior-of-vanadate-tellurate-glasses",signatures:"E. Culea, S. Rada, M. Culea and M. Rada",authors:[{id:"114650",title:"Dr",name:"Eugen",middleName:null,surname:"Culea",fullName:"Eugen Culea",slug:"eugen-culea"},{id:"114653",title:"Dr.",name:"Simona",middleName:null,surname:"Rada",fullName:"Simona Rada",slug:"simona-rada"}]},{id:"36169",title:"Water in Rocks and Minerals - Species, Distributions, and Temperature Dependences",slug:"water-in-rocks-and-minerals-species-distributions-and-temperature-dependences",signatures:"Jun-ichi Fukuda",authors:[{id:"105384",title:"Dr.",name:"Jun-Ichi",middleName:null,surname:"Fukuda",fullName:"Jun-Ichi Fukuda",slug:"jun-ichi-fukuda"}]},{id:"36170",title:"Attenuated Total Reflection - Infrared Spectroscopy Applied to the Study of Mineral - Aqueous Electrolyte Solution Interfaces: A General Overview and a Case Study",slug:"attenuated-total-reflection-infrared-spectroscopy-applied-to-the-study-of-mineral-aqueous-el",signatures:"Grégory Lefèvre, Tajana Preočanin and Johannes Lützenkirchen",authors:[{id:"108416",title:"Dr.",name:"Johannes",middleName:null,surname:"Lützenkirchen",fullName:"Johannes Lützenkirchen",slug:"johannes-lutzenkirchen"},{id:"111675",title:"Dr.",name:"Gregory",middleName:null,surname:"Lefevre",fullName:"Gregory Lefevre",slug:"gregory-lefevre"},{id:"111676",title:"Prof.",name:"Tajana",middleName:null,surname:"Preocanin",fullName:"Tajana Preocanin",slug:"tajana-preocanin"}]},{id:"36171",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",fullName:"Liga Berzina-Cimdina",slug:"liga-berzina-cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",fullName:"Natalija Borodajenko",slug:"natalija-borodajenko"}]},{id:"36172",title:"FTIR Spectroscopy of Adsorbed Probe Molecules for Analyzing the Surface Properties of Supported Pt (Pd) Catalysts",slug:"ftir-spectroscopy-of-adsorbed-probe-molecules-for-analyzing-the-surface-properties-of-supported-pt-p",signatures:"Olga B. Belskaya, Irina G. Danilova, Maxim O. Kazakov, Roman M. Mironenko, Alexander V. Lavrenov and Vladimir A. Likholobov",authors:[{id:"107715",title:"Dr.",name:"Olga",middleName:null,surname:"Belskaya",fullName:"Olga Belskaya",slug:"olga-belskaya"},{id:"140198",title:"Dr.",name:"Irina",middleName:null,surname:"Danilova",fullName:"Irina Danilova",slug:"irina-danilova"},{id:"140200",title:"Dr.",name:"Maxim",middleName:null,surname:"Kazakov",fullName:"Maxim Kazakov",slug:"maxim-kazakov"},{id:"140202",title:"Mr.",name:"Roman",middleName:"Mikhailovich",surname:"Mironenko",fullName:"Roman Mironenko",slug:"roman-mironenko"},{id:"140203",title:"Dr.",name:"Alexander",middleName:null,surname:"Lavrenov",fullName:"Alexander Lavrenov",slug:"alexander-lavrenov"},{id:"140204",title:"Prof.",name:"Vladimir",middleName:null,surname:"Likholobov",fullName:"Vladimir Likholobov",slug:"vladimir-likholobov"}]},{id:"36173",title:"Hydrothermal Treatment of Hokkaido Peat - An Application of FTIR and 13C NMR Spectroscopy on Examining of Artificial Coalification Process and Development",slug:"hydrothermal-treatment-of-hokkaido-peat-an-application-of-ftir-and-13c-nmr-spectroscopy-on-examinin",signatures:"Anggoro Tri Mursito and Tsuyoshi Hirajima",authors:[{id:"104786",title:"Dr.",name:"Anggoro Tri",middleName:null,surname:"Mursito",fullName:"Anggoro Tri Mursito",slug:"anggoro-tri-mursito"},{id:"110978",title:"Prof.",name:"Tsuyoshi",middleName:null,surname:"Hirajima",fullName:"Tsuyoshi Hirajima",slug:"tsuyoshi-hirajima"}]},{id:"36174",title:"FTIR - An Essential Characterization Technique for Polymeric Materials",slug:"ftir-an-essential-characterization-technique-for-polymeric-materials",signatures:"Vladimir A. Escobar Barrios, José R. Rangel Méndez, Nancy V. Pérez Aguilar, Guillermo Andrade Espinosa and José L. Dávila Rodríguez",authors:[{id:"12709",title:"Dr.",name:"Jose Rene",middleName:null,surname:"Rangel-Mendez",fullName:"Jose Rene Rangel-Mendez",slug:"jose-rene-rangel-mendez"},{id:"12711",title:"Dr.",name:"Vladimir Alonso",middleName:null,surname:"Escobar Barrios",fullName:"Vladimir Alonso Escobar Barrios",slug:"vladimir-alonso-escobar-barrios"},{id:"112164",title:"Dr",name:"Guillermo",middleName:null,surname:"Andrade-Espinosa",fullName:"Guillermo Andrade-Espinosa",slug:"guillermo-andrade-espinosa"},{id:"112165",title:"Dr.",name:"José Luis",middleName:null,surname:"Dávila-Rodríguez",fullName:"José Luis Dávila-Rodríguez",slug:"jose-luis-davila-rodriguez"},{id:"112167",title:"Dr.",name:"Nancy Verónica",middleName:null,surname:"Pérez-Aguilar",fullName:"Nancy Verónica Pérez-Aguilar",slug:"nancy-veronica-perez-aguilar"}]},{id:"36175",title:"Preparation and Characterization of PVDF/PMMA/Graphene Polymer Blend Nanocomposites by Using ATR-FTIR Technique",slug:"preparation-and-characterization-of-pvdf-pmma-graphene-polymer-blend-nanocomposites-by-using-ft-ir-t",signatures:"Somayeh Mohamadi",authors:[{id:"108556",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohamadi",fullName:"Somayeh Mohamadi",slug:"somayeh-mohamadi"}]},{id:"36176",title:"Reflectance IR Spectroscopy",slug:"fundamental-of-reflectance-ir-spectroscopy",signatures:"Zahra Monsef Khoshhesab",authors:[{id:"111629",title:"Dr.",name:"Zahra",middleName:null,surname:"Monsef Khoshhesab",fullName:"Zahra Monsef Khoshhesab",slug:"zahra-monsef-khoshhesab"}]},{id:"36177",title:"Evaluation of Graft Copolymerization of Acrylic Monomers Onto Natural Polymers by Means Infrared Spectroscopy",slug:"evaluation-of-graft-copolymerization-of-acrylic-monomers-onto-natural-polymers-by-means-infrared-spe",signatures:"José Luis Rivera-Armenta, Cynthia Graciela Flores-Hernández, Ruth Zurisadai Del Angel-Aldana, Ana María Mendoza-Martínez, Carlos Velasco-Santos and Ana Laura Martínez-Hernández",authors:[{id:"37761",title:"Prof.",name:"Ana Laura",middleName:null,surname:"Martinez-Hernandez",fullName:"Ana Laura Martinez-Hernandez",slug:"ana-laura-martinez-hernandez"},{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",fullName:"Jose Luis Rivera Armenta",slug:"jose-luis-rivera-armenta"},{id:"108894",title:"MSc.",name:"Cynthia Graciela",middleName:null,surname:"Flores-Hernández",fullName:"Cynthia Graciela Flores-Hernández",slug:"cynthia-graciela-flores-hernandez"},{id:"108896",title:"MSc.",name:"Ruth Zurisadai",middleName:null,surname:"Del Angel Aldana",fullName:"Ruth Zurisadai Del Angel Aldana",slug:"ruth-zurisadai-del-angel-aldana"},{id:"108898",title:"Dr.",name:"Carlos",middleName:null,surname:"Velasco-Santos",fullName:"Carlos Velasco-Santos",slug:"carlos-velasco-santos"},{id:"108905",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Mendoza-Martínez",fullName:"Ana Maria Mendoza-Martínez",slug:"ana-maria-mendoza-martinez"}]},{id:"36178",title:"Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake",slug:"applications-of-ftir-on-epoxy-resins-identification-monitoring-the-curing-process-phase-separatio",signatures:"María González González, Juan Carlos Cabanelas and Juan Baselga",authors:[{id:"107857",title:"Prof.",name:"Juan",middleName:null,surname:"Baselga",fullName:"Juan Baselga",slug:"juan-baselga"},{id:"138113",title:"Dr.",name:"María",middleName:null,surname:"González",fullName:"María González",slug:"maria-gonzalez"},{id:"138114",title:"Dr.",name:"Juan C.",middleName:null,surname:"Cabanelas",fullName:"Juan C. Cabanelas",slug:"juan-c.-cabanelas"}]},{id:"36179",title:"Use of FTIR Analysis to Control the Self-Healing Functionality of Epoxy Resins",slug:"use-of-ft-ir-analysis-to-control-the-self-healing-functionality-of-epoxy-resins",signatures:"Liberata Guadagno and Marialuigia Raimondo",authors:[{id:"106836",title:"Prof.",name:"Liberata",middleName:null,surname:"Guadagno",fullName:"Liberata Guadagno",slug:"liberata-guadagno"}]},{id:"36180",title:"Infrared Analysis of Electrostatic Layer-By-Layer Polymer Membranes Having Characteristics of Heavy Metal Ion Desalination",slug:"infrared-analysis-of-electrostatic-layer-by-layer-polymer-membranes-having-characteristics-of-heavy",signatures:"Weimin Zhou, Huitan Fu and Takaomi Kobayashi",authors:[{id:"110384",title:"Dr.",name:"Takaomi",middleName:null,surname:"Kobayashi",fullName:"Takaomi Kobayashi",slug:"takaomi-kobayashi"}]},{id:"36181",title:"Infrared Spectroscopy as a Tool to Monitor Radiation Curing",slug:"infrared-spectroscopy-as-a-tool-to-monitor-radiation-curing",signatures:"Marco Sangermano, Patrick Meier and Spiros Tzavalas",authors:[{id:"112286",title:"Dr.",name:"Spiros",middleName:null,surname:"Tzavalas",fullName:"Spiros Tzavalas",slug:"spiros-tzavalas"},{id:"114382",title:"Prof.",name:"Marco",middleName:null,surname:"Sangermano",fullName:"Marco Sangermano",slug:"marco-sangermano"},{id:"114384",title:"Dr",name:"Patrick",middleName:null,surname:"Meier",fullName:"Patrick Meier",slug:"patrick-meier"}]},{id:"36182",title:"Characterization of Compositional Gradient Structure of Polymeric Materials by FTIR Technology",slug:"characterization-of-compositional-gradient-structure-of-polymeric-materials-by-ft-ir-technology",signatures:"Alata Hexig and Bayar Hexig",authors:[{id:"20867",title:"Dr.",name:"Bayar",middleName:null,surname:"Hexig",fullName:"Bayar Hexig",slug:"bayar-hexig"},{id:"111986",title:"Dr.",name:"Alata",middleName:null,surname:"Hexig",fullName:"Alata Hexig",slug:"alata-hexig"}]},{id:"36183",title:"Fourier Transform Infrared Spectroscopy - Useful Analytical Tool for Non-Destructive Analysis",slug:"fourier-trasform-infrared-spectroscopy-useful-analytical-tool-for-non-destructive-analysis",signatures:"Simona-Carmen Litescu, Eugenia D. Teodor, Georgiana-Ileana Truica, Andreia Tache and Gabriel-Lucian Radu",authors:[{id:"24425",title:"Dr.",name:"Simona Carmen",middleName:null,surname:"Litescu",fullName:"Simona Carmen Litescu",slug:"simona-carmen-litescu"},{id:"24429",title:"Prof.",name:"Gabriel-Lucian",middleName:null,surname:"Radu",fullName:"Gabriel-Lucian Radu",slug:"gabriel-lucian-radu"},{id:"108318",title:"Dr.",name:"Eugenia D.",middleName:null,surname:"Teodor",fullName:"Eugenia D. Teodor",slug:"eugenia-d.-teodor"},{id:"108323",title:"Dr.",name:"Georgiana-Ileana",middleName:null,surname:"Badea",fullName:"Georgiana-Ileana Badea",slug:"georgiana-ileana-badea"},{id:"136337",title:"Ms.",name:"Andreia",middleName:null,surname:"Tache",fullName:"Andreia Tache",slug:"andreia-tache"}]},{id:"36184",title:"Infrared Spectroscopy in the Analysis of Building and Construction Materials",slug:"infrared-spectroscopy-of-cementitious-materials",signatures:"Lucia Fernández-Carrasco, D. Torrens-Martín, L.M. Morales and Sagrario Martínez-Ramírez",authors:[{id:"107401",title:"Dr.",name:"Lucia J",middleName:null,surname:"Fernández",fullName:"Lucia J Fernández",slug:"lucia-j-fernandez"}]},{id:"36185",title:"Infrared Spectroscopy Techniques in the Characterization of SOFC Functional Ceramics",slug:"infrared-spectroscopy-techniques-in-the-characterization-of-sofc-functional-ceramics",signatures:"Daniel A. Macedo, Moisés R. Cesário, Graziele L. Souza, Beatriz Cela, Carlos A. Paskocimas, Antonio E. Martinelli, Dulce M. A. Melo and Rubens M. Nascimento",authors:[{id:"102015",title:"MSc.",name:"Daniel",middleName:null,surname:"Macedo",fullName:"Daniel Macedo",slug:"daniel-macedo"},{id:"112309",title:"MSc",name:"Moisés",middleName:"Romolos",surname:"Cesário",fullName:"Moisés Cesário",slug:"moises-cesario"},{id:"112310",title:"Ms.",name:"Graziele",middleName:null,surname:"Souza",fullName:"Graziele Souza",slug:"graziele-souza"},{id:"112311",title:"MSc.",name:"Beatriz",middleName:null,surname:"Cela",fullName:"Beatriz Cela",slug:"beatriz-cela"},{id:"112312",title:"Prof.",name:"Carlos",middleName:null,surname:"Paskocimas",fullName:"Carlos Paskocimas",slug:"carlos-paskocimas"},{id:"112314",title:"Prof.",name:"Antonio",middleName:null,surname:"Martinelli",fullName:"Antonio Martinelli",slug:"antonio-martinelli"},{id:"112315",title:"Prof.",name:"Dulce",middleName:null,surname:"Melo",fullName:"Dulce Melo",slug:"dulce-melo"},{id:"112316",title:"Dr.",name:"Rubens",middleName:"Maribondo Do",surname:"Nascimento",fullName:"Rubens Nascimento",slug:"rubens-nascimento"}]},{id:"36186",title:"Infrared Spectroscopy of Functionalized Magnetic Nanoparticles",slug:"infrared-spectroscopy-of-functionalized-magnetic-nanoparticles",signatures:"Perla E. García Casillas, Claudia A. Rodriguez Gonzalez and Carlos A. Martínez Pérez",authors:[{id:"104636",title:"Dr.",name:"Perla E.",middleName:null,surname:"García Casillas",fullName:"Perla E. García Casillas",slug:"perla-e.-garcia-casillas"},{id:"112440",title:"Dr.",name:"Carlos A.",middleName:null,surname:"Martínez Pérez",fullName:"Carlos A. Martínez Pérez",slug:"carlos-a.-martinez-perez"},{id:"112441",title:"Dr.",name:"Claudia A.",middleName:null,surname:"Rodriguez Gonzalez",fullName:"Claudia A. Rodriguez Gonzalez",slug:"claudia-a.-rodriguez-gonzalez"}]},{id:"36187",title:"Determination of Adsorption Characteristics of Volatile Organic Compounds Using Gas Phase FTIR Spectroscopy Flow Analysis",slug:"determination-of-adsorption-characteristics-of-volatile-organic-compounds-using-gas-phase-ftir-spect",signatures:"Tarik Chafik",authors:[{id:"107310",title:"Prof.",name:"Tarik",middleName:null,surname:"Chafik",fullName:"Tarik Chafik",slug:"tarik-chafik"}]},{id:"36188",title:"Identification of Rocket Motor Characteristics from Infrared Emission Spectra",slug:"identification-of-rocket-motor-characteristics-from-infrared-emission-spectra",signatures:"N. Hamp, J.H. Knoetze, C. Aldrich and C. Marais",authors:[{id:"112229",title:"Prof.",name:"Chris",middleName:null,surname:"Aldrich",fullName:"Chris Aldrich",slug:"chris-aldrich"},{id:"112232",title:"Prof.",name:"Hansie",middleName:null,surname:"Knoetze",fullName:"Hansie Knoetze",slug:"hansie-knoetze"},{id:"135327",title:"Ms.",name:"Corne",middleName:null,surname:"Marais",fullName:"Corne Marais",slug:"corne-marais"}]},{id:"36189",title:"Optical Technologies for Determination of Pesticide Residue",slug:"optical-technology-for-determination-of-pesticide-residue",signatures:"Yankun Peng, Yongyu Li and Jingjing Chen",authors:[{id:"113343",title:"Prof.",name:"Yankun",middleName:null,surname:"Peng",fullName:"Yankun Peng",slug:"yankun-peng"},{id:"116636",title:"Dr.",name:"Yongyu",middleName:null,surname:"Li",fullName:"Yongyu Li",slug:"yongyu-li"},{id:"116637",title:"Dr.",name:"Jingjing",middleName:null,surname:"Chen",fullName:"Jingjing Chen",slug:"jingjing-chen"}]},{id:"36190",title:"High Resolution Far Infrared Spectra of the Semiconductor Alloys Obtained Using the Synchrotron Radiation as Source",slug:"high-resolution-spectra-of-semiconductor-s-alloys-obtained-using-the-far-infrared-synchrotron-radi",signatures:"E.M. Sheregii",authors:[{id:"102655",title:"Prof.",name:"Eugen",middleName:null,surname:"Sheregii",fullName:"Eugen Sheregii",slug:"eugen-sheregii"}]},{id:"36191",title:"Effective Reaction Monitoring of Intermediates by ATR-IR Spectroscopy Utilizing Fibre Optic Probes",slug:"effective-reaction-monitoring-of-intermediates-by-atr-ir-spectroscopy-utilizing-fibre-optic-probes",signatures:"Daniel Lumpi and Christian Braunshier",authors:[{id:"109019",title:"Dr.",name:"Christian",middleName:null,surname:"Braunshier",fullName:"Christian Braunshier",slug:"christian-braunshier"},{id:"111798",title:"MSc.",name:"Daniel",middleName:null,surname:"Lumpi",fullName:"Daniel Lumpi",slug:"daniel-lumpi"}]}]}],publishedBooks:[{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11",title:"Multi-Robot Systems",subtitle:"Trends and Development",isOpenForSubmission:!1,hash:null,slug:"multi-robot-systems-trends-and-development",bookSignature:"Toshiyuki Yasuda",coverURL:"https://cdn.intechopen.com/books/images_new/11.jpg",editedByType:"Edited by",editors:[{id:"5669",title:"Dr.",name:"Toshiyuki",surname:"Yasuda",slug:"toshiyuki-yasuda",fullName:"Toshiyuki Yasuda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12",title:"Numerical Simulations",subtitle:"Examples and Applications in Computational Fluid Dynamics",isOpenForSubmission:!1,hash:null,slug:"numerical-simulations-examples-and-applications-in-computational-fluid-dynamics",bookSignature:"Lutz Angermann",coverURL:"https://cdn.intechopen.com/books/images_new/12.jpg",editedByType:"Edited by",editors:[{id:"13342",title:"Prof.",name:"Lutz",surname:"Angermann",slug:"lutz-angermann",fullName:"Lutz Angermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"13",title:"Paths to Sustainable Energy",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"paths-to-sustainable-energy",bookSignature:"Jatin Nathwani and Artie Ng",coverURL:"https://cdn.intechopen.com/books/images_new/13.jpg",editedByType:"Edited by",editors:[{id:"13730",title:"Dr.",name:"Artie",surname:"Ng",slug:"artie-ng",fullName:"Artie Ng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"14",title:"Traveling Salesman Problem",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"traveling-salesman-problem-theory-and-applications",bookSignature:"Donald Davendra",coverURL:"https://cdn.intechopen.com/books/images_new/14.jpg",editedByType:"Edited by",editors:[{id:"2961",title:"Prof.",name:"Donald",surname:"Davendra",slug:"donald-davendra",fullName:"Donald Davendra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"72238",title:"The Function of Seven Transmembrane Receptors in the Cardiovascular System and Their Role in the Development of Cardiomyopathy",doi:"10.5772/intechopen.92628",slug:"the-function-of-seven-transmembrane-receptors-in-the-cardiovascular-system-and-their-role-in-the-dev",body:'
1. Introduction
The 7 transmembrane receptors (7TMRs) also known as G-protein coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors. The superfamily of 7TMRs includes receptors for hormones, neurotransmitters and ion channels, and is critical to mediate physiological and cellular processes [1, 2].
Composed of seven transmembrane hydrophobic alpha (α) helices joined by three intracellular and three extracellular loop structures, a cytoplasmic carboxyl terminus and an extracellular amino terminus (Figure 1), 7TMRs signal by stimulating heterotrimeric G proteins following the presentation of an agonist to the receptor [3]. Agonist binding at the 7TMR extracellular region initiates the formation of a G protein. Guanosine diphosphate (GDP) is released from the G protein in exchange for guanosine triphosphate (GTP). The GTP bound α subunit disassociates from the βγ dimer, both of which activate several effectors such as adenylyl cyclase, phospholipases and ion channels [3]. The Gα subunit can be categorised in to sub groups Gαs, Gαi, Gαq/11 and Gα12/13 [3]. The Gα subunits and the Gβγ dimer deriving from the heterotrimeric G protein can combine with downstream effector molecules such as adenylyl cyclase or phospholipase C to control cellular signalling pathways involving secondary messengers [3]. Examples of secondary messengers include cyclic adenosine monophosphate (cAMP), inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which elicit cellular and physiological responses [4].
Figure 1.
General structure of a seven transmembrane receptor (7TMR)/G protein coupled receptor (GPCR). Extracellular loops 1–3 (EL1–3) and intracellular loops (IL1–3) connecting the 7 transmembrane helices (TM1–7). NH2▬N-terminal chain and COOH▬C-terminal chain.
2. Cardiovascular effects of 7TMRs and therapeutic drug targets
7TMRs are the target for a large proportion of therapeutic drugs, currently encompassing more than 30% of prescription medications [5] which directly or indirectly alter cellular signalling mechanisms.
2.1 Adrenoreceptors (β-adrenergic receptors)
Adrenergic receptors (ARs; also known as adrenoreceptors) are a class of 7TMRs located in the heart and vasculature and are responsible for relaying sympathetic nervous system (SNS) messages into cardiovascular reactions [1]. The neurotransmitters norepinephrine (NE) and epinephrine (Epi), which originate from the SNS, exert their effects on cardiac cells and tissues by binding to adrenoreceptors [6]. A number of adrenoreceptor subgroups are present in the mammalian heart, including three α1-ARs, three α2-ARs and three β-ARs (β1, β2 and β3) [6].
β-Adrenergic receptors (β-ARs) are the most important and one of the most frequently studied receptors belonging to the family of G-protein coupled receptors [7]. There are three subtypes of β-ARs: β1, β2 and β3, activation of which regulates important cardiovascular functions [7, 8]. The β1-ARs are characterised mainly for the heart, β2-ARs for blood vessels and β3-ARs for adipose tissue [9]. Within the vasculature the predominant subtype is β2-AR, which is 65–70% homologous to β1- and β3-ARs [8]. The agonists that bind with all three subtypes of β-ARs are the hormones adrenaline and noradrenaline, which help regulate cardiovascular and pulmonary function [10, 11].
Human genes encoding the β2-ARs are without introns and have been mapped to chromosome 5q31–32 [12]. The β-ARs consist of 413 amino acid residues, approximately 46.5 kDa [8]. There are three domains of β2-ARs: The extracellular domain, the transmembrane domain responsible for the ligands binding and the intracellular domain, which interacts with G protein and kinases such as β-ARK [13]. β2-ARs occur mainly in the lungs, where their presence has been shown in airway smooth muscle (30,000–40,000 per cell), epithelial and endothelial cells, type II cells and mast cells [8]. Moreover β2-ARs are in heart, kidney and blood vessels—mainly arterioles [8, 14].
As in the other G-receptors the signalling pathway of β2-ARs, which bind with a hormone ligand includes three basic steps: Receptor binding, G protein activation and effector system activation. β2-ARs may occur in two forms, activated and inactivated [6]. The binding of β-ARs agonist with β2-receptor activates the pathway in which Gs coupled proteins are involved. The stimulation of G proteins causes guanosine triphosphate (GTP) to bind to the α-subunit (Gsα) that activates it. The G-subunits dissociate, and α-subunits stimulate adenylate cyclase (AC) to formation of cyclic adenosine 3′,5′-monophosphate (cAMP). It is stated that cAMP acts as a catalyst for the process of activation of protein kinase A (PKA) and due to that it is involved in control of muscle tone. On the other hand cAMP inhibits the release of cytosolic calcium ion (Ca2+) in the smooth muscle cells, which leads to vascular relaxation (vasodilation) [8, 15].
Although the β2-ARs activated by β2-ARs agonists mostly influence the blood vessels (mainly arterioles and coronary arteries), they can also act in the heart and kidney. In the atrial and ventricular myocardium, stimulation of β2-ARs leads to increase in cardiac muscle contractility or relaxation, whilst in the kidneys it stimulates the release of renin, what it turn influences activation of the renin-angiotensin-aldosterone system [1, 8].
The primary role of the β-ARs in the heart is to coordinate the heart rate and contractility in response to the SNS neurotransmitters [6]. β1-AR is the most abundant subtype accounting for 75–80% in a healthy myocardium [6]. Around 15–18% of cardiomyocyte β-ARs are β2-AR whilst the remaining 2–3% of β-AR density is composed of β3-ARs [6]. Activation of β1-ARs and to a smaller degree β2-ARs, leads to an increase in cardiac contractility and an accelerated cardiac rate. Stimulation of the two predominate β-ARs also increases impulse transmission via the atrioventricular node [6]. The activation of cardiomyocyte β1- and β2-ARs also leads to a significant increase in free intracellular Ca2+ concentration [6]. Calcium is a secondary messenger in many biological systems. In cardiomyocytes, calcium affects ion channels which regulate ionic currents, impacting upon action potentials and muscle contractility [16]. Β3-AR appears to illicit an opposite effect on cardiac function to that induced by β1- and β2-ARs in that it acts to prevent cardiac hyperstimulation from NE and Epi (Table 1) [6].
Action
β1-AR
β2-AR
Β3-AR
Heart muscle contraction
Yes
Yes
Increases cardiac output
Yes
Yes
Increases heart rate in SA node
Yes
Yes
Increases atrial contractility
Yes
Yes
Increases contractility and automaticity of ventricular muscle
Yes
Yes
Dilates muscular blood vessels
Yes
Yes
Increases perfusion in blood vessels
Yes
Metabolism/lipolysis/thermogenesis
Yes
Prevent cardiac hyperstimulation
Yes
Table 1.
Actions of β-adrenergic receptors.
Constant elevation of catecholamines leading to β-AR signalling changes results in overstimulation of cardiac function [1]. Reducing the β-AR activity is vital to alleviate the risk of long-term cardiac tissue damage such as cardiomyopathy. Propanolol was discovered to be a β-AR antagonist in 1964, a so called β-blocker. Alprenolol and Practolol β-blockers have also been used for the management of heart failure [1]. β-Blockers function to overcome the harmful effects of norepinephrine which overstimulate the β1-AR, leading to a reduction in cardiac workload [1]. The most recently used β-blockers bisoprolol and carvedilol target both β1- and β2-ARs produce a survival benefit for heart failure patients [1]. In rats β2-AR agonists (fenoterol and zinterol) were shown to reduce progression of left ventricular modelling in dilated cardiomyopathy in addition to decreasing myocardial cell death [17]. In a later study the same group determined that in a rat model of dilated ischemic cardiomyopathy, Metoprolol, a β1-AR blocker, action is enhanced when given in combination with the β2-AR agonist fenoterol [18].
The β2-ARs have also been directed implicated in patients with ischaemic cardiomyopathy. A Gln27Glu polymorphism of β2-AR was discovered in a study investigating 155 people with heart failure of ischaemic aetiology with impaired Left Ventricular Ejection Fraction ≤35% [19]. Three allele categories were discovered, the most common genotype in heart failure was Gln27Gln, and the least common was Glu27Glu, whilst Gln27Glu was not significantly different between heart failure and control subjects. The study concluded that the Glu allele was associated with lower myocardial infarction rate and highlighted that patient response to β-blockade therapy may be altered [19]. Likewise β1-AR (Ser49Gly, Arg389Gly) and β2-AR (Arg16Gly, Gln27Glu, Thr164Ile) polymorphisms did not alter in a Polish cohort study of patients with idiopathic dilated cardiomyopathy [20]. It is of interest that in patients with Takotsubo cardiomyopathy, β-AR polymorphisms (β1-AR (Gly389Arg) and β2-AR (Arg16Gly and Gln27Glu)) were significantly different to controls but similar to patients with ST-elevation myocardial infarction [21]. Work combining beta-blockers with ACE-inhibitors/angiotensin receptor blockers over the years using meta-analysis data has shown reduced recurrence of the disorder [22].
A murine model depleting levels of β2-ARs also resulted in diabetic cardiomyopathy in vivo and reduced β2-ARs in cardiomyocytes grown under in hyperglycemic conditions [23]. Conversely, overexpression of β2-ARs (by 300 fold) in mice showed that over time severe cardiomyopathy was observed, resulting in interstitial fibrosis, loss of myocytes and myocyte hypertrophy. In the majority of the 81% of mice that died within 15 months, heart failure was observed [24]. These results were similar to other transgenic overexpression mouse lines. The authors hypothesised that a number of mechanisms from activation of growth or transcriptional factors, cross-talk with other pathways, necrosis or apoptosis of cardiac myocytes and/or high heart rates limiting energy supply.
The human heart also possesses α1 adrenoreceptors (α1-AR) although in a smaller quantity to the β-ARs [25]. The α1-ARs are expressed in the heart, both the α1A-and α1B-AR subtypes are expressed in human myocytes, and have been shown to regulate contractility [26, 27]. The α1-ARs combine with the Gq/11 family of G proteins, in turn activating phospholipase C. The secondary messenger IP3 binds to receptors on the membrane of the sarcoplasmic reticulum, triggering the release of intracellular Ca2+ [6]. The raised Ca2+ level leads an increase in vasoconstriction [6]. The coupling of α1-ARs to the Gq/11 family of G proteins also produces DAG and subsequent protein kinase C [6].
In heart failure the α1-ARs may offer a protective benefit to maintain cardiac inotropy, preventing cardiomyocyte apoptosis and maladaptive cardiac remodelling [6]. Although a small study, loss of β1-AR and no change in β2-AR levels in end-stage dilated cardiomyopathy patients was observed alongside a loss of α1A-ARs [28]. Although the role of β1-AR in heart failure has long been described, this interaction between the α-ARs was novel as the few previous studies had shown no change or increases in α-ARs binding but these were different types of heart failure. In addition a total of 26 proteins of interest were also identified in the cardiomyopathy patients, some of which have been linked to G-protein coupled receptor signalling and desensitisation [28]. Prostatic binding protein levels decreased whereas increases in ANP32A and clathrin were noted. Also of interest are Takotsubo cardiomyopathy (also known as stress cardiomyopathy) patients. This condition is often reversible, and two studies have shown that several β1-AR and α2c-AR polymorphisms were not implicated in Takotsubo cardiomyopathy [29, 30].
2.2 Angiotensin II type 1 and 2 receptors
Angiotensin II (AngII) is an important protein in the renin-angiotensin system (RAS). In the bloodstream renin converts angiotensinogen (derived from liver) into angiotensin I, which in turn is transformed into AngII by angiotensin converting enzyme (ACE) [14, 31, 32]. AngII can be also secreted in some local tissues including within the brain, heart, arteries and kidney [32].
The Angiotensin II type 1 and 2 receptors (AT1 and AT2 receptors) belong to the wide family of G-protein coupled receptors (GPCRs), members of which have seven transmembrane spanning domains and is the biggest member of the human genome [31, 33]. The distinction and classification of AT1 and AT2 receptors is based on their varied affinity for different non-peptide antagonists [34]. Moreover the AT1 and AT2 receptors differ between each other in their number of amino acids, tissue-specific expression and mechanisms of signal transferring [13]. Both of these receptors occur in all mammals and bind a peptide hormone angiotensin II (AngII), which is the most important effector in the RAS [32].
The main role of angiotensin becomes apparent in the cardiovascular and endocrine systems where it regulates blood pressure and hydro-electrolytic homeostasis [32, 33]. It is stated that the main physiological functions of AngII (vasoconstriction, aldosterone secretion, renal regulations cellular dedifferentiation and proliferation) are mediated mostly by the AT1 subtype of angiotensin receptor [14, 31, 33, 34, 35, 36]. In humans, the genes encoding AT1 receptors are mapped on chromosome 3q21–3q25 [37]. The AT1 receptors consist of 359 amino acids, with a molecular weight of 41 kDa, and their amino sequence reveals 20–35% homology with other GPCRs [31].
In adult mammals, AT1 receptors are mainly expressed in kidney (glomeruli, proximal tubules, vasculature, medullary interstitial cells), adrenal glands (cortex, medulla), heart (myocardium, ganglia, conduction system), brain (circumventricular organs, thalamus, basal ganglia, cerebellar cortex, medulla oblongata) and vasculature (smooth muscles, adventitia) [32, 38]. Rats and mice can have two isoforms of the Angiotensin II 1 receptor: AT1A and AT1B with amino acid sequence convergence seen at 94% [14, 31, 33, 34]. AT1A receptors are present predominantly in vascular smooth muscle, liver, lung and kidney whilst AT1B receptors occur mainly in the adrenal gland and anterior pituitary [31, 34, 38]. The rodent AT1A and AT1B receptor genes are situated on chromosomes 17 and 2 respectively [38].
The activity of angiotensin II through AT1 receptors should be considered in physiological and pathophysiological conditions. The physiological signalling pathway involves the renin-angiotensin-aldosteron system and leads to changes in blood pressure primarily through vasoconstriction of arteries and arterioles, secretion of aldosterone from adrenal gland and sodium reabsorption by via the kidney tubules [32]. Ang II mediates vasoconstriction through the IP3/DAG pathway, which uses Gq/11 protein-coupled receptors. Gq/11 activates phospholipase C (PLC), which hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) and produces diacyl glycerol (DAG) and inositol trisphosphate (IP3). IP3 causes an increase in intracellular calcium whilst DAG activates protein kinases C [31]. The increased concentration of calcium (Ca2+ ions) within vascular smooth muscle cells leads to vasoconstriction which results in an increase in blood pressure or may causing a localised reduction in blood flow in some specific tissues [32, 36]. AngII acting through the AT1 receptors located in the zona glomerulosa of the adrenal gland stimulates the release of aldosterone [32]. Aldosterone then acts on the distal convoluted tubules and the cortical collecting ducts in kidney, firstly causing sodium (Na+) retention, leading to increased peripheral resistance and secondly causing resorption of water from urine which also increases extracellular fluid volume. Both of these mechanisms lead to an elevation in arterial pressure [32].
Considering the pathological conditions, the activity of AngII through AT1 receptors may induce the proliferation of vascular smooth muscle cells which in turn promotes myocyte hypertrophy and causes vascular fibrosis. Proliferation of smooth muscle cells is also involved in the initial stages of atherosclerotic plaques formation in arteries [32]. AngII binding to AT1 receptors also activate the multiple intracellular signalling pathway that promotes atherosclerosis. The pathway includes oxidative stress, inflammation, endothelial dysfunction, tissue remodelling, proliferation fibrosis, thrombosis and autostimulation. Moreover AngII may participate in the process of atherosclerosis lesion formation as it stimulates the release of endothelin-1 (ET-1) from the endothelial cells [32]. In addition to inducing proliferation and atherosclerotic plaques formation, AngII may have an effect on the developing/developed plaques. Atherosclerotic plaque stability and disruption is in turn associated with matrix metalloproteinase (MMP) enzymes, the production of which can be stimulated by AngII [32]. The MMPs are inhibited by tissue inhibitors of metalloproteinases (TIMPs) and disruption of the balance between MMPs and TIMPs may lead to cardiovascular diseases [37, 39]. Moreover, in pathological states, the activation of AT1 receptor by AngII may cause vascular remodelling and growth by expression of autocrine growth factors (including fibroblast growth factor and platelet-derived growth factor) in vascular smooth muscle cells [32, 40].
The activation of AT2 receptors by AngII has an opposite effect to AT1 receptors. It means that the functions of AngII mediated by AT2 receptors are vasodilation, natriuresis and inhibition of cellular growth and proliferation [14]. Genes encoding AT2 receptors are localised on chromosome Xq22-q2 [13, 31]. The molecular weight of AT2 receptors is approximately 41 kDa and they consist of 363 amino acids [13, 41].
AT2 receptor expression has been localised in both foetal and adult tissues. In foetuses, expression of AT2 receptors is intense, especially in a cardiovascular system [13]. In adult mammals the expression of AT2 receptor is still observed in heart (mainly in myocardium) and renal blood vessels but is significantly lower than before birth [13, 38]. Expression of AT2 receptors has been also noted in the adrenal gland (cortex and medulla), brain (thalamus, cerebellar cortex), mesenteric and uterine arteries [38, 42].
It is stated that the AT2 receptor acts to stabilise blood pressure by controlling vascular tone by vasodilation [13]. In this action the AT2 receptor together with other GPCR family B2 receptors for bradykinin form a stable functional heterodimer, which causes the increase of nitric oxide (NO) and stimulating cyclic guanosine monophosphate (cGMP) synthesis. The cGMP contributes to relaxation of smooth muscles, which in large veins, large arteries, and smaller arterioles leads to vasodilation and causes decreased blood pressure. It has also been suggested that activation of AT2 receptors by AngII may inhibit arterial and myocardial hypertrophy and fibrosis in the ageing heart and vasculature.
Therefore AngII exerts its influence via the activation of the Angiotensin II type I receptor (AT1R), a 7TMR located in vascular smooth muscle as well as in the kidneys, brain and adrenal glands in an effort to maintain sodium/water homeostasis and moderate vasoconstriction [1]. AT1R acts to control arterial pressure, blood volume and to encourage growth and proliferation through the activation of cellular signalling mechanisms [15]. The AT1R is a Gq/11 coupled receptor [25]. Stimulation by AngII leads to the activation of phospholipase C-β and the release of DAG and IP3, followed by the activation of protein kinase C and movement of intracellular calcium [3]. AT1Rs are upregulated in cardiac tissue in response to hypertrophic triggers, encouraging unfavourable cardiac remodelling in heart failure [9]. These complex roles have resulted in a number of angiotensin receptor blockers (ARBs) and angiotensin converting enzyme (ACE) inhibitors to be developed and used as cardiovascular treatments. ARBs and ACE inhibitors have demonstrated a reduction in deleterious left ventricular remodelling, such as hypertrophy and myocardial stiffness which as associated with heart failure [6]. ACE inhibitors alongside antagonists of the AT1R, the -sartans, have become one of the main pharmaceutical treatments for hypertension and cardiovascular disease [1]. Commonly used ARBs include Losartan, Valsartan and Candesartan [43]. ARBs function to interfere with the renin-angiotensin system by preventing the binding of AngII to AT1R. This inhibition of AngII result in vascular smooth muscle relaxation, a reduction in cellular hypertrophy, and a decrease in plasma volume resulting from an increase in salt and water excretion [43].
A number of advances in terms of cardiomyopathy and ANGII and its receptors have been made in the last few years. In terms of cardiomyopathy, the AngII receptor inhibitor LCZ696 has been shown to inhibit extracellular signal-regulated kinase (ERK), resulting in increased survival in pregnancy-associated cardiomyopathy mice. The authors indicated that by reducing cardiac hypertrophy, fibrosis and apoptosis it could act as a potential treatment for this cardiomyopathy [44]. Another study showed that this angiotensin receptor-neprilysin inhibitor reduced inflammation, oxidative stress and apoptosis in vitro and in vivo [45]. It has also been stated that in end-stage hypertrophic cardiomyopathy, the modern Angiotensin receptor neprilysin inhibitor treatments are both safe and effective [46]. Angiotensin-converting enzyme 2 (ACE2) has also showed therapeutic potential when looking at doxorubicin-induced cardiomyopathy rat models [47]. The enzyme reduced apoptosis, inflammatory responses, and oxidative stress and reduced mortality and myocardial fibrosis whilst improving ventricular remodelling and cardiac function. They also showed activation of the AMPK and PI3K-AKT pathways, inhibition of the ERK pathway, and decreased TGF-β1 [47]. Sulforaphane, which activates nuclear factor erythroid 2-related factor 2 (Nrf2), has also been shown to present angiotensin II-induced cardiomyopathy via Akt/GSK-3ß/Fyn -mediated Nrf2 activation [48].
Aldehyde dehydrogenase 2 (ALDH2) has also been shown to protect against alcoholic cardiomyopathy [49]. By decreasing angiotensinogen and AngII this cardioprotective enzyme inhibited local RAS in mice by inhibiting the p38 MAPK/CREB pathway. In another form of cardiomyopathy, hypertrophic, ACE inhibitors angiotensin-receptor blockers have been used to try and regulate the renin-angiotensin-aldosterone system [50]. This has resulted in patients having a lower risk of developing atrial fibrillation which is associated with hypertrophic cardiomyopathy.
Much work has looked into polymorphisms in the angiotensin-converting enzyme gene itself in relation to hypertrophic cardiomyopathy risk; however, the studies have sometimes shown conflicting results. A systematic review and meta-analysis indicated that the ACE insertion/deletion (I/D of 287 base pairs in intron 16) polymorphism was probably a risk for hypertrophic cardiomyopathy [51]. People with the DD genotype have increased levels of ACE and angiotensin II and therefore more hypertrophy and fibrosis, as seen in other situations where their levels increase. Although many of the 1 in 500 people affected by hypertrophic cardiomyopathy have mutations in the genes coding for sarcomeric proteins, polymorphisms in the components of the RAS are implicated. ACE DD has also been associated with dilated cardiomyopathy patients, angiotensin receptor type 11166CC genotypes with both hypertrophic and dilated cardiomyopathy and the 235TT genotype of angiotensinogen (M235T) is associated with hypertrophic, dilated and restrictive cardiomyopathy [52].
Overstimulation of AngII has also been reported in dilated cardiomyopathy [53] and AT1R overexpression resulted in female mice being more affected (especially in terms of heart failure and increased mortality) than males [53]. In particular, ventricular hypertrophy and dilation and changes in Ca2+ activity and homeostasis were observed, and these reflect that clinical observations that dilated cardiomyopathy can be exacerbated in women in comparison to men. This can also be linked to oestrogen which increases angiotensinogen and decreased renin, ACE and AT1R expression but of course following menopause these effects are lost [54].
Much has been investigated in relation to the use of ACE inhibitors in patients with ischemic cardiomyopathy. Much work has been carried out in patients with an ejection fraction of less than 40% with these enzymes working well. More recently attention has turned to those with an ejection fraction of more than 40% who were studied less. In patients with 40–50% ejection fraction, the ACE inhibitors were seen to reduce the risk of mortality, nonfatal myocardial infarction and stroke by 21% [55].
2.3 Endothelin-1 (ET-1) receptor
There are three different forms of 21-amino acid peptides, which belong to the endothelin peptide family: ET-1, ET-2, and ET-3 [56]. They vary in biological function and may affect blood vessels as well as other tissues both within and outside of the cardiovascular system [56]. The predominant form of endothelin peptide is an isopeptide ET-1 with potent vasoconstrictor and proliferative properties [57]. ET-1 is synthetized by endothelial cells, airway smooth muscles cells, cardiomyocytes, macrophages, leukocytes and mesangial cells [57].
There are two subtypes of receptors which are mediated by endothelin, known as Endothelin Type A receptor (ETA) and type B (ETB) [57]. Although mediated by the same peptide agonist, activity of these two subtypes is usually opposite, as the ETA receptor promotes vasoconstriction, growth, and inflammation whilst ETB receptors may cause both vasoconstriction and vasodilation and also increases in sodium excretion and inhibition of growth and inflammation [57, 58, 59].
The potential to bind with ETA receptors is the same for ET-1 and ET-2 endothelin but lower for ET-3 endothelin, whilst the potential binding rate with ETB receptors is equal for every form of endothelin [57, 58]. In people the genes responsible for expression of the ETA receptors are situated on chromosome 4q31.22-q31.23, whilst genes encoding ETB receptors are mapped onto chromosome 13q22.3 [60]. The molecular weight of the ETA and ETB receptors are 48 and 50 kDa respectively [61, 62]. The human 427 amino acid long ETA receptors and 442 amino acid long ETB receptors are approximately 64% homologous [58]. The homology of ETA and ETB receptors in humans and other mammalian species is between 88% and 97% [58].
ETA receptors are expressed predominantly in the heart (coronary vasculature and cardiomyocytes), lungs (pulmonary artery), kidney (renal artery, afferent and efferent arteriole, cortical vasculature, mesangial cells), brain (cerebral vasculature) and adrenal gland. ETB receptors also occur in the heart (coronary vasculature and cardiomyocytes), lungs (pulmonary artery), kidney (renal artery, afferent and efferent arteriole, medullar vasculature), brain (cerebral vasculature) and adrenal gland [63].
The ETA receptors mediated by ET-1 endothelin in vascular smooth muscle cells promoting vasoconstriction, hypertension, hypertrophy, fibrosis and inflammatory changes, including atherosclerosis and due to that has activity similar to the AT1 receptors mediated by AngII [63]. The vasoconstrictive pathway of ETA receptors includes: Coupling to phospholipase C (PLC) via GTP-binding protein, phospholipase C activation, phosphatidyl inositol hydrolysis, inositol 1,4,5 triphosphate (IP3) generation and 1,2-diacylglycerol (DCG) accumulation. Inositol triphosphate is a signalling molecule that leads to mobilisation of Ca2+ from intra- and extra-cellular sources resulting in long-lasting vasoconstriction [56, 64].
The ETB receptors mediated by ET-1 endothelin in the vascular endothelium are involved in the clearance of ET-1 and stimulate vasodilation due to the nitric oxide and cyclooxygenase metabolites production, which also exert vasorelaxant effects on the underlying smooth muscle. Moreover, the ETB receptors have a natriuretic action causing sodium and water resorption from the distal tubules and collecting ducts in the kidney. The ETB receptors, which occur in smooth muscle cells, additionally act as vasoconstrictors [57, 63, 64].
In the last few years research into endothelin has progressed the information known about links to cardiomyopathies. Some of the early published studies showed that ET-1 and its receptor either played a causative role in hypertrophic cardiomyopathy, idiopathic dilated cardiomyopathy and uremic cardiomyopathy or could be a marker [65, 66, 67, 68]. Indeed work in cats has even reflected the increased ET-1 levels in cases of hypertrophic, dilated, restrictive and unclassified cardiomyopathy [69]. More work has now been carried out into other cardiomyopathies and the potential mechanisms of action. Much like ACE2, the endothelin receptor blocker bosentan has been shown to inhibit doxorubicin-induced cardiomyopathy in a rodent model [70]. This study looked at the receptor blocker as elevated levels of ET-1 were discovered in doxorubicin treated patients. The in vitro studies indicated that activation of the epidermal growth factor (EGF) receptor and the MEK1/2-ERK1/2 cascade were possible mechanisms of action [70]. A good review looking at endothelin-1 and atrial cardiomyopathy, published in 2019 brings together the information in this area. The work over the years has indicated that endothlin-1 plays an active role affecting Ca2+ levels, via the ET-1-superoxide-MMP9 cascade and via apoptosis, resulting in both electrical and anatomical remodelling [71].
Not only is endothelin-1 a potential therapeutic route but it also shows promise in predicting patient outcomes. A recent study investigating new-onset atrial fibrillation in patients with obstructive hypertrophic cardiomyopathy has shown that elevated pre-operative levels may indicate increased likelihood of atrial fibrillation [72]. Big endothelin-1, the precursor of endothelin-1 has also been shown to be useful when predicting prognosis for hypertrophic cardiomyopathy patients and the authors have suggested that it should be added to marker panels [73, 74]. Endothelin 1 has also been implicated as a modifier in dilated cardiomyopathy. With variations including the rare G > A and a C > T at c.90 seen in dilated cardiomyopathy patients and EDN1 polymorphisms linked to increased risk of the disorder, likely by altered the stability of the protein [75]. A model of diabetic cardiomyopathy in rats also showed that plasma endothelin-2 levels were higher that controls and that overexpression of the protein results in a more severe phenotype [76].
2.4 Muscarinic receptors
Cardiac function is controlled by the SNS and parasympathetic nervous system (PNS). Parasympathetic vagal nerves are distributed throughout all areas of the heart, particularly in the ventricles [77]. Cardiac muscarinic receptors are activated by acetylcholine, having been stimulated by vagal nerve activation. The muscarinic acetylcholine receptors (M-ChR) are glycoproteins belonging to the 7TMR superfamily [77]. The M2 subtype of M-ChR are the most prevalent group within the mammalian heart and their function is opposed to the β-ARs in that they cause a reduction in myocardium contractility and a lower cardiac rate [10]. M-ChR exert their influence on the myocardium via the Gα1-coupled receptors which inhibit adenylyl cyclase whilst the Gβγ dimer impedes the activity of potassium channels in the sinoatrial node [1]. M-ChR can also exert an effect over Ca2+ channels [77] affecting cardiac contractility.
Heart failure patients demonstrate an increase in M2 muscarinic receptor density, with activated M2 receptors encouraging an inotropic response [9]. One study using serum from a patient showed that when autoantibodies to the muscarinic receptors and β-ARs were activated it resulted in cardiomyopathy and atrial tachyarrhythmias [78]. Along a similar line, autoantibodies against β1-ARs have been shown to cause sudden death in idiopathic dilated cardiomyopathy patients [79]. Antibodies to β-ARs have been discovered in people with idiopathic dilated cardiomyopathy, even leading to the suggestion of a form of ‘adrenergic cardiomyopathy’ [80]. In addition autoantibodies against muscarinic receptors have also been noted in cases of peripartum cardiomyopathy [81], dilated cardiomyopathy [82, 83, 84, 85], and M2-muscarinic acetylcholine receptor autoantibodies have been implicated in playing a role in atrial fibrillation in dilated cardiomyopathy patients [86] Similar increases were not observed in patients with Takotsubo cardiomyopathy [87] or in rats with cirrhotic cardiomyopathy [88]. Autoantibodies against cardiomyocytes, β1- or β2-ARs or M2 muscarinic receptors were not noted in 20 people with Takotsubo cardiomyopathy in comparison to healthy controls, or in rats with cirrhotic cardiomyopathy.
3. Conclusions
The superfamily of 7TMRs includes receptors for hormones, neurotransmitters and ion channels, and are critical to mediate physiological and cellular processes [1, 2]. This chapter has investigated adrenoreceptors (both α- and β-adrenergic receptors) and the components of the renin-angiotensin system (RAS) especially AngII, ACE and the AT1 and AT2 receptors. The chapter has also looked at endothelin-1 (ET-1) and its receptor, and precursor Big endothelin-1 and finally the muscarinic receptors. By looking at their numerous effects in both healthy and diseased vasculature and cardiac disorders, especially cardiomyopathies, it can be seen that there are wide ranging effects. Developing these 7TMRs as markers of disease, for prognosis, diagnosis and therapeutic treatments is becoming more important as their many roles as being uncovered in the cardiovascular system.
Acknowledgments
The authors would like to thank their institutions for funding them. Ewelina Prozorowska, Kristýna Glocová, and Lucy Slater were undertaking research internships with Catrin Sian Rutland at The University of Nottingham, UK. Kristýna Glocová had her internship funded by The European Association of Veterinary Anatomists (EAVA), Young Research Career Development Award; therefore, Kristýna and Catrin would like to thank the EAVA. The ORCID ID of Catrin Rutland is https://orcid.org/0000-0002-2009-4898.
Conflicts of interest
The authors declare no conflicts of interest.
\n',keywords:"angiotensin, adrenoreceptors, cardiomyopathy, heart disease, endothelin-1, muscarinic receptors, vascular",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/72238.pdf",chapterXML:"https://mts.intechopen.com/source/xml/72238.xml",downloadPdfUrl:"/chapter/pdf-download/72238",previewPdfUrl:"/chapter/pdf-preview/72238",totalDownloads:696,totalViews:0,totalCrossrefCites:1,dateSubmitted:"October 17th 2019",dateReviewed:"April 22nd 2020",datePrePublished:"May 19th 2020",datePublished:"July 28th 2021",dateFinished:"May 19th 2020",readingETA:"0",abstract:"The G-protein-coupled receptors (GPCRs, also called seven-transmembrane receptor, 7TMRs, or heptahelical receptor) are a conserved family of seven transmembrane receptors which are essential not only in the healthy heart and blood vessels but also in for treatment and therapy of cardiovascular disease and failure. Heart failure is a global leading cause of morbidity and death and as such understanding 7TMRs, their functions, structures and potential for therapy is essential. This review will investigate the roles of the receptors in the healthy functioning cardiovascular system, and in cardiac disorders with an emphasis in cardiomyopathy. It will also explore the role of autoimmunity and autoantibodies against the G-protein-coupled receptors in cardiomyopathy.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/72238",risUrl:"/chapter/ris/72238",signatures:"Valentina Kubale, Ewelina Prozorowska, Kristýna Glocová, Lucy Slater and Catrin Sian Rutland",book:{id:"9578",type:"book",title:"Cardiac Diseases",subtitle:"Novel Aspects of Cardiac Risk, Cardiorenal Pathology and Cardiac Interventions",fullTitle:"Cardiac Diseases - Novel Aspects of Cardiac Risk, Cardiorenal Pathology and Cardiac Interventions",slug:"cardiac-diseases-novel-aspects-of-cardiac-risk-cardiorenal-pathology-and-cardiac-interventions",publishedDate:"July 28th 2021",bookSignature:"David C. Gaze and Aleksandar Kibel",coverURL:"https://cdn.intechopen.com/books/images_new/9578.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-162-2",printIsbn:"978-1-83968-161-5",pdfIsbn:"978-1-83968-163-9",isAvailableForWebshopOrdering:!0,editors:[{id:"71983",title:"Dr.",name:"David C.",middleName:null,surname:"Gaze",slug:"david-c.-gaze",fullName:"David C. Gaze"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",fullName:"Catrin Rutland",slug:"catrin-rutland",email:"catrin.rutland@nottingham.ac.uk",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",fullName:"Valentina Kubale",slug:"valentina-kubale",email:"valentina.kubaledvojmoc@vf.uni-lj.si",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",institution:{name:"University of Ljubljana",institutionURL:null,country:{name:"Slovenia"}}},{id:"315032",title:"Dr.",name:"Ewelina",middleName:null,surname:"Prozorowska",fullName:"Ewelina Prozorowska",slug:"ewelina-prozorowska",email:"ewelina.prozorowska@up.poznan.pl",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"315033",title:"Dr.",name:"Kristýna",middleName:null,surname:"Glocová",fullName:"Kristýna Glocová",slug:"kristyna-glocova",email:"GLOCOVAK@VFU.cz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"317649",title:"BSc.",name:"Lucy",middleName:null,surname:"Slater",fullName:"Lucy Slater",slug:"lucy-slater",email:"lucyslater@aol.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Cardiovascular effects of 7TMRs and therapeutic drug targets",level:"1"},{id:"sec_2_2",title:"2.1 Adrenoreceptors (β-adrenergic receptors)",level:"2"},{id:"sec_3_2",title:"2.2 Angiotensin II type 1 and 2 receptors",level:"2"},{id:"sec_4_2",title:"2.3 Endothelin-1 (ET-1) receptor",level:"2"},{id:"sec_5_2",title:"2.4 Muscarinic receptors",level:"2"},{id:"sec_7",title:"3. Conclusions",level:"1"},{id:"sec_8",title:"Acknowledgments",level:"1"},{id:"sec_11",title:"Conflicts of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Foster SR, Roura E, Molenaar P, Thomas WG. G protein-coupled receptors in cardiac biology: Old and new receptors. Biophysical Reviews. 2015;7(1):77-89'},{id:"B2",body:'Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nature Reviews. Molecular Cell Biology. 2002;3(9):639-650'},{id:"B3",body:'Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cellular Signalling. 2018;41:65-74'},{id:"B4",body:'Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415(6868):206-212'},{id:"B5",body:'Shenoy SK. Seven-transmembrane receptors and ubiquitination. Circulation Research. 2007;100(8):1142-1154'},{id:"B6",body:'Siryk-Bathgate A, Dabul S, Lymperopoulos A. Current and future G protein-coupled receptor signaling targets for heart failure therapy. Drug Design, Development and Therapy. 2013;7:1209-1222'},{id:"B7",body:'Sigg DD, Hezi-Yamit A. Cardiac and Vascular Receptors and Signal Transduction. Handbook of Cardiac Anatomy, Physiology and Devices. New York, USA: Humana Press; 2009. pp. 191-218'},{id:"B8",body:'Johnson M. Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. The Journal of Allergy and Clinical Immunology. 2006;117(1):18-24'},{id:"B9",body:'Wang J, Gareri C, Rockman HA. G-protein-coupled receptors in heart disease. Circulation Research. 2018;123(6):716-735'},{id:"B10",body:'Myslivecek J, Trojan S. Regulation of adrenoceptors and muscarinic receptors in the heart. General Physiology and Biophysics. 2003;22(1):3-14'},{id:"B11",body:'Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, et al. GPCR engineering yields high-resolution structural insights into beta(2)-adrenergic receptor function. Science. 2007;318(5854):1266-1273'},{id:"B12",body:'Johnson JA, Terra SG. Beta-adrenergic receptor polymorphisms: Cardiovascular disease associations and pharmacogenetics. Pharmaceutical Research. 2002;19(12):1779-1787'},{id:"B13",body:'Li Y, Li XH, Yuan H. Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovascular Diagnosis and Therapy. 2012;2(1):56-62'},{id:"B14",body:'Carey RM, Padia SH. Angiotensin AT2 receptors: Control of renal sodium excretion and blood pressure. Trends in Endocrinology and Metabolism. 2008;19(3):84-87'},{id:"B15",body:'Ainscough JF, Drinkhill MJ, Sedo A, Turner NA, Brooke DA, Balmforth AJ, et al. Angiotensin II type-1 receptor activation in the adult heart causes blood pressure-independent hypertrophy and cardiac dysfunction. Cardiovascular Research. 2009;81(3):592-600'},{id:"B16",body:'Bers DM. Calcium cycling and signaling in cardiac myocytes. Annual Review of Physiology. 2008;70:23-49'},{id:"B17",body:'Ahmet I, Lakatta EG, Talan MI. Complimentary effects of chronic pharmacologic manipulation of beta-adrenergic receptor (beta AR) subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation. 2003;108(17):95'},{id:"B18",body:'Ahmet I, Lakatta EG, Talan MI. Pharmacological stimulation of beta2-adrenergic receptors (beta2AR) enhances therapeutic effectiveness of beta1AR blockade in rodent dilated ischemic cardiomyopathy. Heart Failure Reviews. 2005;10(4):289-296'},{id:"B19",body:'Metaxa S, Missouris C, Mavrogianni D, Miliou A, Oikonomou E, Toli E, et al. Polymorphism Gln27Glu of beta2 adrenergic receptors in patients with ischaemic cardiomyopathy. Current Vascular Pharmacology. 2018;16(6):618-623'},{id:"B20",body:'Paczkowska A, Szperl M, Malek L, Mazurkiewicz L, Skora E, Grzybowski J, et al. Polymorphisms of the beta-1 and beta-2 adrenergic receptors in Polish patients with idiopathic dilated cardiomyopathy. Kardiologia Polska. 2009;67(3):235-241'},{id:"B21",body:'Vriz O, Minisini R, Zito C, Boccato E, Fimiani F, Pirisi M, et al. Can apical ballooning cardiomyopathy and anterior STEMI be differentiated based on beta1 and beta2-adrenergic receptors polymorphisms? International Journal of Cardiology. 2015;199:189-192'},{id:"B22",body:'Brunetti ND, Santoro F, De Gennaro L, Correale M, Gaglione A, Di Biase M, et al. Combined therapy with beta-blockers and ACE-inhibitors/angiotensin receptor blockers and recurrence of takotsubo (stress) cardiomyopathy: A meta-regression study. International Journal of Cardiology. 2017;230:281-283'},{id:"B23",body:'Mishra PK, Givvimani S, Metreveli N, Tyagi SC. Attenuation of beta2-adrenergic receptors and homocysteine metabolic enzymes cause diabetic cardiomyopathy. Biochemical and Biophysical Research Communications. 2010;401(2):175-181'},{id:"B24",body:'Du XJ, Gao XM, Wang B, Jennings GL, Woodcock EA, Dart AM. Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. Cardiovascular Research. 2000;48(3):448-454'},{id:"B25",body:'Capote LA, Mendez Perez R, Lymperopoulos A. GPCR signaling and cardiac function. European Journal of Pharmacology. 2015;763(Pt B):143-148'},{id:"B26",body:'Skomedal T, Borthne K, Aass H, Geiran O, Osnes JB. Comparison between alpha-1 adrenoceptor-mediated and beta adrenoceptor-mediated inotropic components elicited by norepinephrine in failing human ventricular muscle. The Journal of Pharmacology and Experimental Therapeutics. 1997;280(2):721-729'},{id:"B27",body:'Jensen BC, Swigart PM, De Marco T, Hoopes C, Simpson PC. Alpha 1-adrenergic receptor subtypes in nonfailing and failing human myocardium. Circulation: Heart Failure. 2009;2(6):654-663'},{id:"B28",body:'Shi T, Moravec CS, Perez DM. Novel proteins associated with human dilated cardiomyopathy: Selective reduction in alpha(1A)-adrenergic receptors and increased desensitization proteins. Journal of Receptor and Signal Transduction Research. 2013;33(2):96-106'},{id:"B29",body:'Handy AD, Prasad A, Olson TM. Investigating genetic variation of adrenergic receptors in familial stress cardiomyopathy (apical ballooning syndrome). Journal of Cardiology. 2009;54(3):516-517'},{id:"B30",body:'Sharkey SW, Maron BJ, Nelson P, Parpart M, Maron MS, Bristow MR. Adrenergic receptor polymorphisms in patients with stress (tako-tsubo) cardiomyopathy. Journal of Cardiology. 2009;53(1):53-57'},{id:"B31",body:'Guo DF, Sun YL, Hamet P, Inagami T. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Research. 2001;11(3):165-180'},{id:"B32",body:'Naik P, Murumkar P, Giridhar R, Yadav MR. Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists—A perspective. Bioorganic & Medicinal Chemistry. 2010;18(24):8418-8456'},{id:"B33",body:'Petrel C, Clauser E. Angiotensin II AT(1) receptor constitutive activation: From molecular mechanisms to pathophysiology. Molecular and Cellular Endocrinology. 2009;302(2):176-184'},{id:"B34",body:'Audoly LP, Oliverio MI, Coffman TM. Insights into the functions of type 1 (AT(1)) angiotensin II receptors provided by gene targeting. Trends in Endocrinology and Metabolism. 2000;11(7):263-269'},{id:"B35",body:'Unal H, Karnik SS. Constitutive activity in the angiotensin II type 1 receptor: Discovery and applications. Advances in Pharmacology. 2014;70:155-174'},{id:"B36",body:'Kawai T, Forrester SJ, O’Brien S, Baggett A, Rizzo V, Eguchi S. AT1 receptor signaling pathways in the cardiovascular system. Pharmacological Research. 2017;125(Pt A):4-13'},{id:"B37",body:'Liu P, Sun M, Sader S. Matrix metalloproteinases in cardiovascular disease. The Canadian Journal of Cardiology. 2006;22(Suppl B):25B-30B'},{id:"B38",body:'Allen AM, Zhuo J, Mendelsohn FA. Localization and function of angiotensin AT1 receptors. American Journal of Hypertension. 2000;13(1 Pt 2):31S-38S'},{id:"B39",body:'Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, et al. Inflammation, growth factors, and pulmonary vascular remodeling. Journal of the American College of Cardiology. 2009;54(1 Suppl):S10-S19'},{id:"B40",body:'Rubenstein DA, Yin W. Platelet-activation mechanisms and vascular remodeling. Comprehensive Physiology. 2018;8(3):1117-1156'},{id:"B41",body:'Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, et al. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. The Journal of Biological Chemistry. 1993;268(33):24543-24546'},{id:"B42",body:'Hannan RE, Widdop RE. Vascular angiotensin II actions mediated by angiotensin II type 2 receptors. Current Hypertension Reports. 2004;6(2):117-123'},{id:"B43",body:'Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. Journal of Human Hypertension. 2000;14(Suppl 1):S73-S86'},{id:"B44",body:'Wang Y, Guo Z, Gao Y, Liang P, Shan Y, He J. Angiotensin II receptor blocker LCZ696 attenuates cardiac remodeling through the inhibition of the ERK signaling pathway in mice with pregnancy-associated cardiomyopathy. Cell & Bioscience. 2019;9:86'},{id:"B45",body:'Ge Q , Zhao L, Ren XM, Ye P, Hu ZY. Feature article: LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Experimental Biology and Medicine (Maywood, N.J.). 2019;244(12):1028-1039'},{id:"B46",body:'Rubis P, Wisniowska-Smialek S, Holcman K, Lesniak-Sobelga A, Kostkiewicz M, Podolec P. Angiotensin receptor neprilysin inhibitor treatment is safe and potentially efficacious in endstage hypertrophic cardiomyopathy. Polish Archives of Internal Medicine. 2017;127(3):216-218'},{id:"B47",body:'Ma H, Kong J, Wang YL, Li JL, Hei NH, Cao XR, et al. Angiotensin-converting enzyme 2 overexpression protects against doxorubicin-induced cardiomyopathy by multiple mechanisms in rats. Oncotarget. 2017;8(15):24548-24563'},{id:"B48",body:'Xin Y, Bai Y, Jiang X, Zhou S, Wang Y, Wintergerst KA, et al. Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ss/Fyn pathway. Redox Biology. 2018;15:405-417'},{id:"B49",body:'Liu B, Zhang R, Wei S, Yuan Q , Xue M, Hao P, et al. ALDH2 protects against alcoholic cardiomyopathy through a mechanism involving the p38 MAPK/CREB pathway and local renin-angiotensin system inhibition in cardiomyocytes. International Journal of Cardiology. 2018;257:150-159'},{id:"B50",body:'Huang CY, Yang YH, Lin LY, Tsai CT, Hwang JJ, Chen PC, et al. Renin-angiotensin-aldosterone blockade reduces atrial fibrillation in hypertrophic cardiomyopathy. Heart. 2018;104(15):1276-1283'},{id:"B51",body:'Yuan Y, Meng L, Zhou Y, Lu N. Genetic polymorphism of angiotensin-converting enzyme and hypertrophic cardiomyopathy risk: A systematic review and meta-analysis. Medicine (Baltimore). 2017;96(48):e8639'},{id:"B52",body:'Rani B, Kumar A, Bahl A, Sharma R, Prasad R, Khullar M. Renin-angiotensin system gene polymorphisms as potential modifiers of hypertrophic and dilated cardiomyopathy phenotypes. Molecular and Cellular Biochemistry. 2017;427(1-2):1-11'},{id:"B53",body:'Mathieu S, El Khoury N, Rivard K, Paradis P, Nemer M, Fiset C. Angiotensin II overstimulation leads to an increased susceptibility to dilated cardiomyopathy and higher mortality in female mice. Scientific Reports. 2018;8(1):952'},{id:"B54",body:'Fischer R, Dechend R, Gapelyuk A, Shagdarsuren E, Gruner K, Gruner A, et al. Angiotensin II-induced sudden arrhythmic death and electrical remodeling. American Journal of Physiology. Heart and Circulatory Physiology. 2007;293(2):H1242-H1253'},{id:"B55",body:'Alzahrani T, Tiu J, Panjrath G, Solomon A. The effect of angiotensin-converting enzyme inhibitors on clinical outcomes in patients with ischemic cardiomyopathy and midrange ejection fraction: A post hoc subgroup analysis from the PEACE trial. Therapeutic Advances in Cardiovascular Disease. 2018;12(12):351-359'},{id:"B56",body:'Luscher TF, Barton M. Endothelins and endothelin receptor antagonists—Therapeutic considerations for a novel class of cardiovascular drugs. Circulation. 2000;102(19):2434-2440'},{id:"B57",body:'Ergul A. Endothelin-1 and endothelin receptor antagonists as potential cardiovascular therapeutic agents. Pharmacotherapy. 2002;22(1):54-65'},{id:"B58",body:'Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annual Review of Pharmacology. 2007;47:731-759'},{id:"B59",body:'Roig JC, Fink J, Burchfield DJ. Pharmacologic Adjuncts. I. Assisted Ventilation of the Neonate. 5th ed. London, UK: Elsevier Health Sciences; 2016. pp. 347-370'},{id:"B60",body:'Braasch I, Volff JN, Schartl M. The endothelin system: Evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication. Molecular Biology and Evolution. 2009;26(4):783-799'},{id:"B61",body:'Mazzuca MQ , Khalil RA. Vascular endothelin receptor type B: Structure, function and dysregulation in vascular disease. Biochemical Pharmacology. 2012;84(2):147-162'},{id:"B62",body:'Hayzer DJ, Rose PM, Lynch JS, Webb ML, Kienzle BK, Liu ECK, et al. Cloning and expression of a human endothelin receptor—Subtype-A. The American Journal of the Medical Sciences. 1992;304(4):231-238'},{id:"B63",body:'Dhaun N, Webb DJ. Endothelins in cardiovascular biology and therapeutics. Nature Reviews. Cardiology. 2019;16(8):491-502'},{id:"B64",body:'Miyauchi T, Sakai S. Endothelin and the heart in health and diseases. Peptides. 2019;111:77-88'},{id:"B65",body:'Hasegawa K, Fujiwara H, Koshiji M, Inada T, Ohtani S, Doyama K, et al. Endothelin-1 and its receptor in hypertrophic cardiomyopathy. Hypertension. 1996;27(2):259-264'},{id:"B66",body:'Hiroe M, Hirata Y, Fujita N, Umezawa S, Ito H, Tsujino M, et al. Plasma endothelin-1 levels in idiopathic dilated cardiomyopathy. The American Journal of Cardiology. 1991;68(10):1114-1115'},{id:"B67",body:'Wolf SC, Gaschler F, Brehm S, Klaussner M, Amann K, Risler T, et al. Endothelin-receptor antagonists in uremic cardiomyopathy. Journal of Cardiovascular Pharmacology. 2000;36(5 Suppl 1):S348-S350'},{id:"B68",body:'Kiowski W. The endothelin-type-A receptor in dilated cardiomyopathy: Another key player? European Heart Journal. 2001;22(20):1849-1851'},{id:"B69",body:'Prosek R, Sisson DD, Oyama MA, Biondo AW, Solter PE. Measurements of plasma endothelin immunoreactivity in healthy cats and cats with cardiomyopathy. Journal of Veterinary Internal Medicine. 2004;18(6):826-830'},{id:"B70",body:'Bien S, Riad A, Ritter CA, Gratz M, Olshausen F, Westermann D, et al. The endothelin receptor blocker bosentan inhibits doxorubicin-induced cardiomyopathy. Cancer Research. 2007;67(21):10428-10435'},{id:"B71",body:'Matsubara TJ, Fujiu K. Endothelin-1 and atrial cardiomyopathy. International Heart Journal. 2019;60(2):238-240'},{id:"B72",body:'Song C, Wang S, Guo Y, Zheng X, Lu J, Fang X, et al. Plasma big endothelin-1 predicts new-onset atrial fibrillation after surgical septal myectomy in patients with hypertrophic cardiomyopathy. BMC Cardiovascular Disorders. 2019;19(1):122'},{id:"B73",body:'Wang Y, Tang Y, Zou Y, Wang D, Zhu L, Tian T, et al. Plasma level of big endothelin-1 predicts the prognosis in patients with hypertrophic cardiomyopathy. International Journal of Cardiology. 2017;243:283-289'},{id:"B74",body:'Schwebe M, Ameling S, Hammer E, Monzel JV, Bonitz K, Budde S, et al. Protective effects of endothelin receptor A and B inhibitors against doxorubicin-induced cardiomyopathy. Biochemical Pharmacology. 2015;94(2):109-129'},{id:"B75",body:'Matsa LS, Sagurthi SR, Ananthapur V, Nalla S, Nallari P. Endothelin 1 gene as a modifier in dilated cardiomyopathy. Gene. 2014;548(2):256-262'},{id:"B76",body:'Liefeldt L, Rylski B, Walcher F, Manhart J, Kron S, Rosenke YW, et al. Effects of transgenic endothelin-2 overexpression on diabetic cardiomyopathy in rats. European Journal of Clinical Investigation. 2010;40(3):203-210'},{id:"B77",body:'Dhein S, van Koppen CJ, Brodde OE. Muscarinic receptors in the mammalian heart. Pharmacological Research. 2001;44(3):161-182'},{id:"B78",body:'Yu X, Patterson E, Stavrakis S, Huang S, De Aos I, Hamlett S, et al. Development of cardiomyopathy and atrial tachyarrhythmias associated with activating autoantibodies to beta-adrenergic and muscarinic receptors. Journal of the American Society of Hypertension. 2009;3(2):133-140'},{id:"B79",body:'Iwata M, Yoshikawa T, Baba A, Anzai T, Mitamura H, Ogawa S. Autoantibodies against the second extracellular loop of beta1-adrenergic receptors predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology. 2001;37(2):418-424'},{id:"B80",body:'Rosenbaum MB, Chiale PA, Schejtman D, Levin M, Elizari MV. Antibodies to beta-adrenergic receptors disclosing agonist-like properties in idiopathic dilated cardiomyopathy and Chagas’ heart disease. Journal of Cardiovascular Electrophysiology. 1994;5(4):367-375'},{id:"B81",body:'Ma G, Wang Y, Hou D, Liu J, Zhang J, Xu L, et al. Association of autoantibodies against the M2-muscarinic receptor with long-term outcomes in peripartum cardiomyopathy patients: A 5-year prospective study. Journal of Cardiology. 2019;74(3):251-257'},{id:"B82",body:'Martinez CG, Zamith-Miranda D, da Silva MG, Ribeiro KC, Brandao IT, Silva CL, et al. P2x7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: Autoantibody levels, heart functionality and cytokine expression. Scientific Reports. 2015;5:16940'},{id:"B83",body:'Wallukat G, Fu HM, Matsui S, Hjalmarson A, Fu ML. Autoantibodies against M2 muscarinic receptors in patients with cardiomyopathy display non-desensitized agonist-like effects. Life Sciences. 1999;64(6-7):465-469'},{id:"B84",body:'Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: An in vivo PET study. Circulation. 1997;96(10):3416-3422'},{id:"B85",body:'Fu ML. Anti-M2 muscarinic receptor autoantibodies and idiopathic dilated cardiomyopathy. International Journal of Cardiology. 1996;54(2):127-135'},{id:"B86",body:'Baba A, Yoshikawa T, Fukuda Y, Sugiyama T, Shimada M, Akaishi M, et al. Autoantibodies against M2-muscarinic acetylcholine receptors: New upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. European Heart Journal. 2004;25(13):1108-1115'},{id:"B87",body:'Juenemann M, Nef H, Mollmann H, Singh P, Troidl C, Schramm P, Kaps M, Gerriets T, Blaes F, Tschernatsch M. No evidence for humoral autoimmunity against cardiomyocytes, adrenergic or muscarinic receptors in patients with tako-tsubo cardiomyopathy. Immunobiology 2019;224(2):220-2'},{id:"B88",body:'Jaue DN, Ma Z, Lee SS. Cardiac muscarinic receptor function in rats with cirrhotic cardiomyopathy. Hepatology. 1997;25(6):1361-1365'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Valentina Kubale",address:null,affiliation:'
Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Slovenia
School of Veterinary Medicine and Science, Medical Faculty, University of Nottingham, UK
'},{corresp:"yes",contributorFullName:"Catrin Sian Rutland",address:"catrin.rutland@nottingham.ac.uk",affiliation:'
School of Veterinary Medicine and Science, Medical Faculty, University of Nottingham, UK
'}],corrections:null},book:{id:"9578",type:"book",title:"Cardiac Diseases",subtitle:"Novel Aspects of Cardiac Risk, Cardiorenal Pathology and Cardiac Interventions",fullTitle:"Cardiac Diseases - Novel Aspects of Cardiac Risk, Cardiorenal Pathology and Cardiac Interventions",slug:"cardiac-diseases-novel-aspects-of-cardiac-risk-cardiorenal-pathology-and-cardiac-interventions",publishedDate:"July 28th 2021",bookSignature:"David C. Gaze and Aleksandar Kibel",coverURL:"https://cdn.intechopen.com/books/images_new/9578.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-162-2",printIsbn:"978-1-83968-161-5",pdfIsbn:"978-1-83968-163-9",isAvailableForWebshopOrdering:!0,editors:[{id:"71983",title:"Dr.",name:"David C.",middleName:null,surname:"Gaze",slug:"david-c.-gaze",fullName:"David C. Gaze"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"44390",title:"Dr.",name:"Roberto",middleName:null,surname:"Garcia-Navarrete",email:"roberto.gns@gmail.com",fullName:"Roberto Garcia-Navarrete",slug:"roberto-garcia-navarrete",position:null,biography:"Surgical Neurology and Paediatric Neurosurgery at Instituto Nacional de Pediatria and Centro Medico Naval. MEXICO.",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/44390/images/36_n.jpg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"3",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Instituto Nacional de Pediatria",institutionURL:null,country:{name:"Mexico"}}},booksEdited:[],chaptersAuthored:[{id:"22466",title:"Biological Markers of Recurrence and Survival of High-Grade Gliomas: The Role of Hepatocyte Growth Factor",slug:"biological-markers-of-recurrence-and-survival-of-high-grade-gliomas-the-role-of-hepatocyte-growth-fa",abstract:null,signatures:"Roberto García-Navarrete, Esperanza García Mendoza, Alfonso Marhx-Bracho and Julio Sotelo",authors:[{id:"44390",title:"Dr.",name:"Roberto",surname:"Garcia-Navarrete",fullName:"Roberto Garcia-Navarrete",slug:"roberto-garcia-navarrete",email:"roberto.gns@gmail.com"},{id:"59356",title:"Dr.",name:"Alfonso",surname:"Marhx-Bracho",fullName:"Alfonso Marhx-Bracho",slug:"alfonso-marhx-bracho",email:"marhxalfons@yahoo.com.mx"},{id:"59357",title:"Prof.",name:"Julio",surname:"Sotelo",fullName:"Julio Sotelo",slug:"julio-sotelo",email:"jsotelo@unam.mx"},{id:"59362",title:"MSc",name:"Esperanza",surname:"Garcia",fullName:"Esperanza Garcia",slug:"esperanza-garcia",email:"egarciainnn@gmail.com"}],book:{id:"355",title:"Glioma",slug:"glioma-exploring-its-biology-and-practical-relevance",productType:{id:"1",title:"Edited Volume"}}},{id:"76106",title:"Awake Craniotomy and Brain Mapping for Brain Tumor Resection in Pediatric Patients",slug:"awake-craniotomy-and-brain-mapping-for-brain-tumor-resection-in-pediatric-patients",abstract:"Brain tumor resection in pediatric patients constitutes a real challenge. In order to improve survival and to preserve neurological function, we will further on describe our experience with awake craniotomy and functional mapping for brain tumor resection in pediatric patients. Although our experience with this technique was relatively short, we did not observe complications, and a gross total resection was successfully achieved in all cases. In the postoperative period we did not find any new deficiency in our patients. We observed functional recovery - motor and sensitive aphasia, motor strength improvement in hemiplegic patients, and recovery of neurodevelopmental milestones during follow-up. In our experience, the use of awake craniotomy and brain mapping for brain tumor resection in pediatric patients is truly safe and reliable.",signatures:"Roberto Garcia-Navarrete, Javier Terrazo-Lluch, Alfonso Marhx-Bracho, Ericka León Alvárez, Natael Olvera González, Beatriz Alvárez-Mora, Rosario Aguilar Silva, Cointa Arroyo, Vianey Maceda Morales, Luz María Cordero, Daniel Magos Rodríguez, Sandra Luz Lizarraga-Lopez, Ana Niembro Zúñiga and Juan Alberto Díaz Ponce Medrano",authors:[{id:"44390",title:"Dr.",name:"Roberto",surname:"Garcia-Navarrete",fullName:"Roberto Garcia-Navarrete",slug:"roberto-garcia-navarrete",email:"roberto.gns@gmail.com"},{id:"59356",title:"Dr.",name:"Alfonso",surname:"Marhx-Bracho",fullName:"Alfonso Marhx-Bracho",slug:"alfonso-marhx-bracho",email:"marhxalfons@yahoo.com.mx"},{id:"341463",title:"Dr.",name:"Rosario",surname:"Aguilar Silva",fullName:"Rosario Aguilar Silva",slug:"rosario-aguilar-silva",email:"charyas@yahoo.com"},{id:"341464",title:"Dr.",name:"Natael",surname:"Olvera González",fullName:"Natael Olvera González",slug:"natael-olvera-gonzalez",email:"nataelolveraglz@hotmail.com"},{id:"341465",title:"Dr.",name:"Ericka",surname:"León-Alvárez",fullName:"Ericka León-Alvárez",slug:"ericka-leon-alvarez",email:"erika-leon@hotmail.com"},{id:"341466",title:"Dr.",name:"Cointa",surname:"Arroyo Jiménez",fullName:"Cointa Arroyo Jiménez",slug:"cointa-arroyo-jimenez",email:"cointarroyo@gmail.com"},{id:"341568",title:"MSc.",name:"Javier",surname:"Terrazo-Lluch",fullName:"Javier Terrazo-Lluch",slug:"javier-terrazo-lluch",email:"jaterrazo@hotmail.com"},{id:"341571",title:"M.Sc.",name:"Beatriz",surname:"Alvarez-Mora",fullName:"Beatriz Alvarez-Mora",slug:"beatriz-alvarez-mora",email:"bamlorena@gmail.com"},{id:"341572",title:"Dr.",name:"Luz Maria",surname:"Cordero",fullName:"Luz Maria Cordero",slug:"luz-maria-cordero",email:"merieeg@yahoo.com.mx"},{id:"341573",title:"Dr.",name:"Daniel",surname:"Magos Rodríguez",fullName:"Daniel Magos Rodríguez",slug:"daniel-magos-rodriguez",email:"dmagos@hotmail.com"},{id:"341574",title:"Dr.",name:"Ana",surname:"Niembro-Zúñiga",fullName:"Ana Niembro-Zúñiga",slug:"ana-niembro-zuniga",email:"ananiembro@hotmail.com"},{id:"349717",title:"MSc.",name:"Vianey",surname:"Maceda Morales",fullName:"Vianey Maceda Morales",slug:"vianey-maceda-morales",email:"macedita_vianey@hotmail.com"},{id:"350364",title:"Dr.",name:"Juan Alberto",surname:"Díaz Ponce Medrano",fullName:"Juan Alberto Díaz Ponce Medrano",slug:"juan-alberto-diaz-ponce-medrano",email:"jadiazpm@gmail.com"},{id:"451630",title:"Dr.",name:"Sandra",surname:"Luz Lizarraga-Lopez",fullName:"Sandra Luz Lizarraga-Lopez",slug:"sandra-luz-lizarraga-lopez",email:"hthrthr22wth43ogo4ui@yahoo.com"}],book:{id:"10649",title:"Central Nervous System Tumors",slug:"central-nervous-system-tumors",productType:{id:"1",title:"Edited Volume"}}},{id:"76107",title:"Multimodal Neuronavigation for Brain Tumor Surgery",slug:"multimodal-neuronavigation-for-brain-tumor-surgery",abstract:"The current neuronavigation techniques increase safety and surgeon confidence during neurosurgical procedure performance. However, its real usefulness remains in integrating multimodal information from advanced magnetic resonance imaging, as tractography (DTI), functional studies that evaluate motor and sensitive language, motor function (BOLD techniques with different paradigms), and nuclear medicine. At the operating room, the fusion of sonographic information acquired in real-time with the predefined plan increase the chance to achieve gross-total resection of primary brain tumors. Combining these different image modalities with brain mapping and motor stimulation information in selected cases is possible, increasing surgery safety. In this review, we present our experience with multimodal neuronavigation to treat brain tumors in pediatric patients.",signatures:"Roberto Garcia-Navarrete, Constantino Contreras-Vázquez, Ericka León-Alvárez, Natael Olvera González, Alfonso Marhx-Bracho, Javier Terrazo-Lluch, José Luis Pérez-Gómez, Jorge Alberto Ocon Rodríguez, Judy Castañeda Goyes and Juan Alberto Díaz Ponce Medrano",authors:[{id:"44390",title:"Dr.",name:"Roberto",surname:"Garcia-Navarrete",fullName:"Roberto Garcia-Navarrete",slug:"roberto-garcia-navarrete",email:"roberto.gns@gmail.com"},{id:"341464",title:"Dr.",name:"Natael",surname:"Olvera González",fullName:"Natael Olvera González",slug:"natael-olvera-gonzalez",email:"nataelolveraglz@hotmail.com"},{id:"341465",title:"Dr.",name:"Ericka",surname:"León-Alvárez",fullName:"Ericka León-Alvárez",slug:"ericka-leon-alvarez",email:"erika-leon@hotmail.com"},{id:"341568",title:"MSc.",name:"Javier",surname:"Terrazo-Lluch",fullName:"Javier Terrazo-Lluch",slug:"javier-terrazo-lluch",email:"jaterrazo@hotmail.com"},{id:"350364",title:"Dr.",name:"Juan Alberto",surname:"Díaz Ponce Medrano",fullName:"Juan Alberto Díaz Ponce Medrano",slug:"juan-alberto-diaz-ponce-medrano",email:"jadiazpm@gmail.com"},{id:"94963",title:"Dr.",name:"Alfonso",surname:"Marhx-Bracho",fullName:"Alfonso Marhx-Bracho",slug:"alfonso-marhx-bracho",email:"marhxalfons@yahoo.com"},{id:"350359",title:"Dr.",name:"Jorge",surname:"Ocon Rodríguez",fullName:"Jorge Ocon Rodríguez",slug:"jorge-ocon-rodriguez",email:"al21@hotmail.com"},{id:"350360",title:"Dr.",name:"Judy",surname:"Castañeda Goyes",fullName:"Judy Castañeda Goyes",slug:"judy-castaneda-goyes",email:"jumacastgo@hotmail.com"},{id:"350362",title:"Dr.",name:"Constantino",surname:"Contreras Vázquez",fullName:"Constantino Contreras Vázquez",slug:"constantino-contreras-vazquez",email:"mednav15@gmail.com"},{id:"350365",title:"Dr.",name:"José Luis",surname:"Pérez Gómez",fullName:"José Luis Pérez Gómez",slug:"jose-luis-perez-gomez",email:"jlperezgomez@gmail.com"}],book:{id:"10649",title:"Central Nervous System Tumors",slug:"central-nervous-system-tumors",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"29038",title:"Prof.",name:"Rommel",surname:"Burbano",slug:"rommel-burbano",fullName:"Rommel Burbano",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"44339",title:"Dr.",name:"Jimmy",surname:"Efird",slug:"jimmy-efird",fullName:"Jimmy Efird",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"44715",title:"Dr.",name:"Kerrie",surname:"McDonald",slug:"kerrie-mcdonald",fullName:"Kerrie McDonald",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"59356",title:"Dr.",name:"Alfonso",surname:"Marhx-Bracho",slug:"alfonso-marhx-bracho",fullName:"Alfonso Marhx-Bracho",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Instituto Nacional de Ciencias Exactas",institutionURL:null,country:{name:"Dominican Republic"}}},{id:"59357",title:"Prof.",name:"Julio",surname:"Sotelo",slug:"julio-sotelo",fullName:"Julio Sotelo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"59362",title:"MSc",name:"Esperanza",surname:"Garcia",slug:"esperanza-garcia",fullName:"Esperanza Garcia",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"62462",title:"Prof.",name:"Clark",surname:"Chen",slug:"clark-chen",fullName:"Clark Chen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62462/images/1731_n.jpg",biography:"Dr. Clark C. Chen received his B.S. from Stanford University in 1992, M.S. from Columbia University in 1993, and his M.D.-Ph.D. from Harvard Medical School in 2001. He completed his neurosurgery training at the Massachusetts General Hospital and subsequently completed independent fellowships in stereotactic neurosurgery and radiosurgery. Dr. Chen previously served as the director of Clinical Neuro-Oncology at the Beth Israel Deaconess Medical Center before his current role as the Director of Stereotactic and Radiosurgery and Co-Director of Surgical Neuro-Oncology at the University of California, San Diego. Dr. Chen’s research is directed at identifying alterations in DNA repair pathways as they relate to brain cancer therapy. Dr. Chen is the recipient of the Damon Runyon Fellowship Award, the James Kerr Award, American Brain Tumor Association Investigator Award, Paul Calabresi Scholar Award, Burroughs Wellcome Career Award, William Guy Forbeck Scholar Award, the Doris Duke Clinical Scientist Award and the Kimmel Scholar Award.",institutionString:null,institution:{name:"University of California, San Diego",institutionURL:null,country:{name:"United States of America"}}},{id:"85623",title:"Prof.",name:"Kimberly",surname:"Ng",slug:"kimberly-ng",fullName:"Kimberly Ng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dana-Farber/Brigham and Women's Cancer Center",institutionURL:null,country:{name:"United States of America"}}},{id:"85624",title:"Prof.",name:"Santosh",surname:"Kesari",slug:"santosh-kesari",fullName:"Santosh Kesari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of California San Diego Medical Center",institutionURL:null,country:{name:"United States of America"}}},{id:"85625",title:"Prof.",name:"Bob",surname:"Carter",slug:"bob-carter",fullName:"Bob Carter",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of California, San Diego",institutionURL:null,country:{name:"United States of America"}}}]},generic:{page:{slug:"open-access-funding-funders-list",title:"List of Funders by Country",intro:"
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
IMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
Wellcome Trust (Funding available only to Wellcome-funded researchers/grantees)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6597},{group:"region",caption:"Middle and South America",value:2,count:5902},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12537},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17560}],offset:12,limit:12,total:132762},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"119"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"889",title:"Recycling",slug:"recycling",parent:{id:"146",title:"Waste Management",slug:"environmental-sciences-waste-management"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:71,numberOfWosCitations:35,numberOfCrossrefCitations:38,numberOfDimensionsCitations:87,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"889",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10855",title:"Waste Material Recycling in the Circular Economy",subtitle:"Challenges and Developments",isOpenForSubmission:!1,hash:"d19317ef8e4a35c32f3af20bd8d5d829",slug:"waste-material-recycling-in-the-circular-economy-challenges-and-developments",bookSignature:"Dimitris S. Achilias",coverURL:"https://cdn.intechopen.com/books/images_new/10855.jpg",editedByType:"Edited by",editors:[{id:"95620",title:"Dr.",name:"Dimitris S.",middleName:null,surname:"Achilias",slug:"dimitris-s.-achilias",fullName:"Dimitris S. Achilias"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7557",title:"Recovery and Utilization of Metallurgical Solid Waste",subtitle:null,isOpenForSubmission:!1,hash:"e9d20f98cdcbb7b5d0c35f53e06c74be",slug:"recovery-and-utilization-of-metallurgical-solid-waste",bookSignature:"Yingyi Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/7557.jpg",editedByType:"Edited by",editors:[{id:"221673",title:"Dr.",name:"Yingyi",middleName:null,surname:"Zhang",slug:"yingyi-zhang",fullName:"Yingyi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2254",title:"Post-Consumer Waste Recycling and Optimal Production",subtitle:null,isOpenForSubmission:!1,hash:"aecfc52fb19d9de94ca93473cbe7fd74",slug:"post-consumer-waste-recycling-and-optimal-production",bookSignature:"Enri Damanhuri",coverURL:"https://cdn.intechopen.com/books/images_new/2254.jpg",editedByType:"Edited by",editors:[{id:"96952",title:"Prof.",name:"Enri",middleName:null,surname:"Damanhuri",slug:"enri-damanhuri",fullName:"Enri Damanhuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"37110",doi:"10.5772/31530",title:"Electronics Waste: Recycling of Mobile Phones",slug:"electronics-waste-recycling-of-mobile-phones",totalDownloads:7267,totalCrossrefCites:5,totalDimensionsCites:18,abstract:null,book:{id:"2254",slug:"post-consumer-waste-recycling-and-optimal-production",title:"Post-Consumer Waste Recycling and Optimal Production",fullTitle:"Post-Consumer Waste Recycling and Optimal Production"},signatures:"Pia Tanskanen",authors:[{id:"87626",title:"Dr.",name:"Pia",middleName:null,surname:"Tanskanen",slug:"pia-tanskanen",fullName:"Pia Tanskanen"}]},{id:"37105",doi:"10.5772/33760",title:"The Role of Informal Collectors of Recyclable Waste and Used Goods in Indonesia",slug:"the-role-of-informal-collectors-of-recyclable-waste-and-used-goods-in-indonesia",totalDownloads:3118,totalCrossrefCites:9,totalDimensionsCites:13,abstract:null,book:{id:"2254",slug:"post-consumer-waste-recycling-and-optimal-production",title:"Post-Consumer Waste Recycling and Optimal Production",fullTitle:"Post-Consumer Waste Recycling and Optimal Production"},signatures:"Enri Damanhuri and Tri Padmi",authors:[{id:"96952",title:"Prof.",name:"Enri",middleName:null,surname:"Damanhuri",slug:"enri-damanhuri",fullName:"Enri Damanhuri"}]},{id:"37113",doi:"10.5772/34054",title:"Modelling of Recycling in LCA",slug:"modelling-of-recycling-in-lca",totalDownloads:8117,totalCrossrefCites:2,totalDimensionsCites:12,abstract:null,book:{id:"2254",slug:"post-consumer-waste-recycling-and-optimal-production",title:"Post-Consumer Waste Recycling and Optimal Production",fullTitle:"Post-Consumer Waste Recycling and Optimal Production"},signatures:"Tom N. Ligthart and Toon (A.)M.M. Ansems",authors:[{id:"98477",title:"Dr.",name:"Tom",middleName:null,surname:"Ligthart",slug:"tom-ligthart",fullName:"Tom Ligthart"}]},{id:"63120",doi:"10.5772/intechopen.80087",title:"The Comprehensive Utilisation of Red Mud Utilisation in Blast Furnace",slug:"the-comprehensive-utilisation-of-red-mud-utilisation-in-blast-furnace",totalDownloads:947,totalCrossrefCites:3,totalDimensionsCites:8,abstract:"State-of-the-art formation of red mud during industrial processing of bauxite in the Sverdlovsk region (Russian Federation) is presented. Red mud chemical composition is presented, and an analysis of existing ways in which they are utilised is executed. In the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, red mud is utilised by introducing it into the charge for the production of iron ore sinter and pellets following the use of sinter and pellets in the blast furnace charge. Metallurgical properties of sinter and pellets (reducibility, strength, softening and melting temperatures) with different contents of red mud in iron ore raw materials are also presented, including the technology of red mud usage in ferrous metallurgy carried out through industrial and laboratorial tests. Additionally, the main technical and economic indicators of blast furnace smelting (productivity, coke consumption, chemical composition of pig iron and slag, etc.) are presented. The possibility and expediency of utilisation of red mud in a blast furnace are shown.",book:{id:"7557",slug:"recovery-and-utilization-of-metallurgical-solid-waste",title:"Recovery and Utilization of Metallurgical Solid Waste",fullTitle:"Recovery and Utilization of Metallurgical Solid Waste"},signatures:"Andrey Dmitriev",authors:null},{id:"37118",doi:"10.5772/33969",title:"Size Reduction by Grinding as an Important Stage in Recycling",slug:"comminution-as-an-important-stage-in-recycling",totalDownloads:5409,totalCrossrefCites:3,totalDimensionsCites:6,abstract:null,book:{id:"2254",slug:"post-consumer-waste-recycling-and-optimal-production",title:"Post-Consumer Waste Recycling and Optimal Production",fullTitle:"Post-Consumer Waste Recycling and Optimal Production"},signatures:"Marek Macko",authors:[{id:"98075",title:"Dr.",name:"Marek",middleName:null,surname:"Macko",slug:"marek-macko",fullName:"Marek Macko"}]}],mostDownloadedChaptersLast30Days:[{id:"77881",title:"Chemical Recycling of Polyolefins (PE, PP): Modern Technologies and Products",slug:"chemical-recycling-of-polyolefins-pe-pp-modern-technologies-and-products",totalDownloads:391,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Chemical recycling is one of the most intensively developed potential solutions for the global plastic waste issue. This broadly defined term covers several different technologies that lead to many diverse products. Polyolefins (polyethylene and polypropylene) can be chemically recycled by pyrolysis (cracking) or gasification. These polymers’ chemical composition and structure make them a great potential source of valuable hydrocarbons or carbon atoms for syngas production. Thermal and catalytic cracking of polyethylene and polypropylene can be optimised to maximise specific types of hydrocarbons that, after optional additional processing, such as hydrotreatment, steam cracking or distillation, can be used as intermediates in petrochemical plants, fuels or fuel components, monomers for polymerisation of new, virgin polymers or as specialty chemicals (final market products). Gasification of plastic waste transforms polymers into a mixture of hydrogen, carbon monoxide and carbon dioxide, which can be further used as a source of these gasses, transformed into chemicals and fuels, or used directly to produce energy. This chapter presents all of these process paths with examples of existing technologies and their level of technology readiness and perspectives for scale-up.",book:{id:"10855",slug:"waste-material-recycling-in-the-circular-economy-challenges-and-developments",title:"Waste Material Recycling in the Circular Economy",fullTitle:"Waste Material Recycling in the Circular Economy - Challenges and Developments"},signatures:"Daria Frączak",authors:[{id:"353408",title:"Dr.Ing.",name:"Daria",middleName:null,surname:"Frączak",slug:"daria-fraczak",fullName:"Daria Frączak"}]},{id:"77840",title:"Recent Advances in Pre-Treatment of Plastic Packaging Waste",slug:"recent-advances-in-pre-treatment-of-plastic-packaging-waste",totalDownloads:321,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"There is an urgent need to close the loop of plastic waste. One of the main challenges towards plastic packaging waste recycling is the presence of a variety of contaminants. These contaminants include organic residues, additives, labels, inks and also other plastic types that can be present in the waste stream due to missorting or in multimaterial structures (e.g. multilayer films in packaging). In this context, pre-treatment processes are a promising route to tackle the difficulties that are encountered in mechanical and chemical recycling due to these contaminants. This chapter gives better insight on the already existing pre-treatment techniques and on the advances that are being developed and/or optimized in order to achieve closed-loop recycling. Some of these advanced pre-treatments include chemical washing to remove inks (deinking), extraction methods to remove undesired plastic additives and dissolution-based pre-treatments, such as delamination and dissolution-precipitation techniques.",book:{id:"10855",slug:"waste-material-recycling-in-the-circular-economy-challenges-and-developments",title:"Waste Material Recycling in the Circular Economy",fullTitle:"Waste Material Recycling in the Circular Economy - Challenges and Developments"},signatures:"Rita Kol, Martijn Roosen, Sibel Ügdüler, Kevin M. Van Geem, Kim Ragaert, Dimitris S. Achilias and Steven De Meester",authors:[{id:"95620",title:"Dr.",name:"Dimitris S.",middleName:null,surname:"Achilias",slug:"dimitris-s.-achilias",fullName:"Dimitris S. Achilias"},{id:"414071",title:"Ph.D. Student",name:"Rita",middleName:null,surname:"Kol",slug:"rita-kol",fullName:"Rita Kol"},{id:"414291",title:"Prof.",name:"Steven",middleName:null,surname:"De Meester",slug:"steven-de-meester",fullName:"Steven De Meester"},{id:"421741",title:"Prof.",name:"Kim",middleName:null,surname:"Ragaert",slug:"kim-ragaert",fullName:"Kim Ragaert"},{id:"421889",title:"Mr.",name:"Martijn",middleName:null,surname:"Roosen",slug:"martijn-roosen",fullName:"Martijn Roosen"},{id:"421890",title:"Mrs.",name:"Sibel",middleName:null,surname:"Ügdüler",slug:"sibel-ugduler",fullName:"Sibel Ügdüler"},{id:"421891",title:"Prof.",name:"Kevin M.",middleName:null,surname:"Van Geem",slug:"kevin-m.-van-geem",fullName:"Kevin M. Van Geem"}]},{id:"63364",title:"Comprehensive Utilization of Iron-Bearing Converter Wastes",slug:"comprehensive-utilization-of-iron-bearing-converter-wastes",totalDownloads:1099,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Basic oxygen furnace (BOF) sludge is composed of not only valuable iron but also impurities like Zn, Pb, and some alkaline oxides. It is collected from wet cleaning system in steelmaking plants. How to deal with these double identity wastes? Will the traditional landfill treatments result in environmental pollution? What technologies have been developed recently, and is it actually useful? In this chapter, physical-chemical properties and mineralogical phases of converter sludge were characterized, and different recycling technologies were introduced. The proven metalized pellet-producing process would be highlighted that green pellets made from iron-bearing sludge are dried and preheated in a traveling grate firstly, and then reduced at high temperature in a rotary kiln or a rotary hearth furnace (RHF) to get direct reduced iron (DRI), served as a good iron source for blast furnace.",book:{id:"7557",slug:"recovery-and-utilization-of-metallurgical-solid-waste",title:"Recovery and Utilization of Metallurgical Solid Waste",fullTitle:"Recovery and Utilization of Metallurgical Solid Waste"},signatures:"Hu Long, Dong Liu, Lie-Jun Li, Ming-Hua Bai, Yanzhong Jia and Wensheng Qiu",authors:null},{id:"77937",title:"An Evaluation of Recycled Polymeric Materials Usage in Denim with Lifecycle Assesment Methodology",slug:"an-evaluation-of-recycled-polymeric-materials-usage-in-denim-with-lifecycle-assesment-methodology",totalDownloads:259,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Today, World economy is only 8.6% circular, which creates a huge potential in materials reuse. To close the Emission Gap by 2032, this percentage needs to be doubled. The circular economy ensures that with less virgin material input and fewer emissions. With the help of effective recycling technologies, virgin material use can be decreased and especially petroleum based materials impact can fall within planetary boundaries. This book chapter analyzes different chemical and biological recycling technologies, their advantages and challenges in denim production. Moreover, Life Cycle Assessment (LCA) analysis will be used to evaluate the environmental impact of recycled polymeric materials usage in denim fabrics. Finally, it concludes by challenges and the future of chemically recycled materials in denim production and opportunities to evaluate waste as a raw material to design circular systems.",book:{id:"10855",slug:"waste-material-recycling-in-the-circular-economy-challenges-and-developments",title:"Waste Material Recycling in the Circular Economy",fullTitle:"Waste Material Recycling in the Circular Economy - Challenges and Developments"},signatures:"Sedef Uncu Aki, Cevza Candan, Banu Nergis and Neslihan Sebla Önder",authors:[{id:"172112",title:"Prof.",name:"Cevza",middleName:null,surname:"Candan",slug:"cevza-candan",fullName:"Cevza Candan"},{id:"304795",title:"Prof.",name:"Banu",middleName:null,surname:"Nergis",slug:"banu-nergis",fullName:"Banu Nergis"},{id:"320710",title:"Ms.",name:"Neslihan Sebla",middleName:null,surname:"Önder",slug:"neslihan-sebla-onder",fullName:"Neslihan Sebla Önder"},{id:"357366",title:"Dr.",name:"Sedef",middleName:null,surname:"Uncu Aki",slug:"sedef-uncu-aki",fullName:"Sedef Uncu Aki"}]},{id:"63272",title:"Treatments and Recycling of Metallurgical Slags",slug:"treatments-and-recycling-of-metallurgical-slags",totalDownloads:1379,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Steelmaking plants continuously strive to reduce the environmental load in the steelmaking process, resulting in the recycling of energy, water, and other byproducts. In this chapter, techniques for the treatment and recycling of metallurgical slags are described. Metallurgical slags are considered secondary raw materials and are used or added during the process to improve steelmaking practice. Steelmaking slag added into ladle slags makes it possible to minimize slag line wear. BOF-converter slags are also applied in buildup, foaming, or slag splashing practices carried out to prolong the lifespan of refractory lining. Also, EAF slags are commonly used to avoid refractory wear and decrease energy consumption. It is known that cement concrete is one of the most common building materials. Blast furnace crystallized slags are used in cement production, in different percentages. In this sense, understanding the properties of slags is a prerequisite to apply them in different functions. This chapter deals with the measurement and modeling of thermochemical properties of slags, thermophysical properties, and interproperty correlations. Different experimental tests applied in slag characterization are also detailed.",book:{id:"7557",slug:"recovery-and-utilization-of-metallurgical-solid-waste",title:"Recovery and Utilization of Metallurgical Solid Waste",fullTitle:"Recovery and Utilization of Metallurgical Solid Waste"},signatures:"Elena Brandaleze, Edgardo Benavidez and Leandro Santini",authors:null}],onlineFirstChaptersFilter:{topicId:"889",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:10,editor:{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:163,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11667",title:"Marine Pollution - Recent Developments",coverURL:"https://cdn.intechopen.com/books/images_new/11667.jpg",hash:"e524cd97843b075a724e151256773631",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 20th 2022",isOpenForSubmission:!0,editors:[{id:"318562",title:"Dr.",name:"Monique",surname:"Mancuso",slug:"monique-mancuso",fullName:"Monique Mancuso"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",hash:"cf1ee76443e393bc7597723c3ee3e26f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",hash:"f1043cf6b1daae7a7b527e1d162ca4a8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11665",title:"Recent Advances in Wildlife Management",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",hash:"73da0df494a1a56ab9c4faf2ee811899",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 25th 2022",isOpenForSubmission:!0,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",hash:"c8890038b86fb6e5af16ea3c22669ae9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 9th 2022",isOpenForSubmission:!0,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 17th 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:617,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNVJQA4/Profile_Picture_2022-03-07T13:23:04.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. His research interests include biochemistry, oxidative stress, reactive species, antioxidants, lipid peroxidation, inflammation, reproductive hormones, phenolic compounds, female infertility.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. degree from Integral University. Currently, he’s working as an Assistant Professor of Pharmaceutics in the Faculty of Pharmacy, Integral University. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than 32 original articles published in reputed journals, 3 edited books, 5 book chapters, and a number of scientific articles published in ‘Ingredients South Asia Magazine’ and ‘QualPharma Magazine’. He is a member of the American Association for Cancer Research, International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs that aim to provide practical solutions to current healthcare problems.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}},{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",biography:"Metin Budak, MSc, PhD is an Assistant Professor at Trakya University, Faculty of Medicine. He has been Head of the Molecular Research Lab at Prof. Mirko Tos Ear and Hearing Research Center since 2018. His specializations are biophysics, epigenetics, genetics, and methylation mechanisms. He has published around 25 peer-reviewed papers, 2 book chapters, and 28 abstracts. He is a member of the Clinical Research Ethics Committee and Quantification and Consideration Committee of Medicine Faculty. His research area is the role of methylation during gene transcription, chromatin packages DNA within the cell and DNA repair, replication, recombination, and gene transcription. His research focuses on how the cell overcomes chromatin structure and methylation to allow access to the underlying DNA and enable normal cellular function.",institutionString:"Trakya University",institution:{name:"Trakya University",country:{name:"Turkey"}}},{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",biography:"Anca Pantea Stoian is a specialist in diabetes, nutrition, and metabolic diseases as well as health food hygiene. She also has competency in general ultrasonography.\n\nShe is an associate professor in the Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. She has been chief of the Hygiene Department, Faculty of Dentistry, at the same university since 2019. Her interests include micro and macrovascular complications in diabetes and new therapies. Her research activities focus on nutritional intervention in chronic pathology, as well as cardio-renal-metabolic risk assessment, and diabetes in cancer. She is currently engaged in developing new therapies and technological tools for screening, prevention, and patient education in diabetes. \n\nShe is a member of the European Association for the Study of Diabetes, Cardiometabolic Academy, CEDA, Romanian Society of Diabetes, Nutrition and Metabolic Diseases, Romanian Diabetes Federation, and Association for Renal Metabolic and Nutrition studies. She has authored or co-authored 160 papers in national and international peer-reviewed journals.",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",country:{name:"Romania"}}},{id:"279792",title:"Dr.",name:"João",middleName:null,surname:"Cotas",slug:"joao-cotas",fullName:"João Cotas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279792/images/system/279792.jpg",biography:"Graduate and master in Biology from the University of Coimbra.\n\nI am a research fellow at the Macroalgae Laboratory Unit, in the MARE-UC – Marine and Environmental Sciences Centre of the University of Coimbra. My principal function is the collection, extraction and purification of macroalgae compounds, chemical and bioactive characterization of the compounds and algae extracts and development of new methodologies in marine biotechnology area. \nI am associated in two projects: one consists on discovery of natural compounds for oncobiology. The other project is the about the natural compounds/products for agricultural area.\n\nPublications:\nCotas, J.; Figueirinha, A.; Pereira, L.; Batista, T. 2018. An analysis of the effects of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae), in the Mondego River (Portugal). Journal of Oceanology and Limnology. in press. DOI: 10.1007/s00343-019-8111-3",institutionString:"Faculty of Sciences and Technology of University of Coimbra",institution:null},{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",biography:"Leonel Pereira has an undergraduate degree in Biology, a Ph.D. in Biology (specialty in Cell Biology), and a Habilitation degree in Biosciences (specialization in Biotechnology) from the Faculty of Science and Technology, University of Coimbra, Portugal, where he is currently a professor. In addition to teaching at this university, he is an integrated researcher at the Marine and Environmental Sciences Center (MARE), Portugal. His interests include marine biodiversity (algae), marine biotechnology (algae bioactive compounds), and marine ecology (environmental assessment). Since 2008, he has been the author and editor of the electronic publication MACOI – Portuguese Seaweeds Website (www.seaweeds.uc.pt). He is also a member of the editorial boards of several scientific journals. Dr. Pereira has edited or authored more than 20 books, 100 journal articles, and 45 book chapters. He has given more than 100 lectures and oral communications at various national and international scientific events. He is the coordinator of several national and international research projects. In 1998, he received the Francisco de Holanda Award (Honorable Mention) and, more recently, the Mar Rei D. Carlos award (18th edition). He is also a winner of the 2016 CHOICE Award for an outstanding academic title for his book Edible Seaweeds of the World. In 2020, Dr. Pereira received an Honorable Mention for the Impact of International Publications from the Web of Science",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",country:{name:"Portugal"}}},{id:"61946",title:"Dr.",name:"Carol",middleName:null,surname:"Bernstein",slug:"carol-bernstein",fullName:"Carol Bernstein",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61946/images/system/61946.jpg",biography:"Carol Bernstein received her PhD in Genetics from the University of California (Davis). She was a faculty member at the University of Arizona College of Medicine for 43 years, retiring in 2011. Her research interests focus on DNA damage and its underlying role in sex, aging and in the early steps of initiation and progression to cancer. In her research, she had used organisms including bacteriophage T4, Neurospora crassa, Schizosaccharomyces pombe and mice, as well as human cells and tissues. She authored or co-authored more than 140 scientific publications, including articles in major peer reviewed journals, book chapters, invited reviews and one book.",institutionString:"University of Arizona",institution:{name:"University of Arizona",country:{name:"United States of America"}}},{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/182258/images/system/182258.jpeg",biography:"Dr. Serra studied Agronomy on Universidade Federal de Mato Grosso do Sul (UFMS) (2005). He received master degree in Agronomy, Crop Science (Soil fertility and plant nutrition) (2007) by Universidade Federal da Grande Dourados (UFGD), and PhD in agronomy (Soil fertility and plant nutrition) (2011) from Universidade Federal da Grande Dourados / Escola Superior de Agricultura Luiz de Queiroz (UFGD/ESALQ-USP). Dr. Serra is currently working at Brazilian Agricultural Research Corporation (EMBRAPA). His research focus is on mineral nutrition of plants, crop science and soil science. Dr. Serra\\'s current projects are soil organic matter, soil phosphorus fractions, compositional nutrient diagnosis (CND) and isometric log ratio (ilr) transformation in compositional data analysis.",institutionString:"Brazilian Agricultural Research Corporation",institution:{name:"Brazilian Agricultural Research Corporation",country:{name:"Brazil"}}}]}},subseries:{item:{id:"9",type:"subseries",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11405,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"books",path:"/books",hash:"",query:{},params:{},fullPath:"/books",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()