Basic parameters of the tested fabric
\r\n\t- Traditionally accepted topics related to global health security,
\r\n\t- The impact of human activities and climate change on “planetary health”,
\r\n\t- The impact of global demographic changes and the emergence chronic health conditions as international health security threats.
\r\n\t- A theme dedicated to the COVID-19 Pandemic,
\r\n\t- Novel considerations, including the impact of social media and more recent technological developments on international health security.
\r\n\tThe goal of this book cycle is to provide a comprehensive compendium that will be able to stand on its own as an authoritative source of information on international health security.
",isbn:"978-1-78985-940-9",printIsbn:"978-1-78985-939-3",pdfIsbn:"978-1-83962-154-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"edbc267908c2f140f991de15d99276df",bookSignature:"Dr. Stanislaw P. Stawicki, Michael S. Firstenberg, Dr. Sagar C. Galwankar and Dr. Andrew C. Miller",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10624.jpg",keywords:"Threats, Monitoring, Food Security, Emerging Infections, Transmission, Geopolitics, Climate Change, Cyber Health Security, COVID-19, Novel Coronavirus, Pandemic, Coronavirus",numberOfDownloads:257,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 20th 2020",dateEndSecondStepPublish:"November 5th 2020",dateEndThirdStepPublish:"January 4th 2021",dateEndFourthStepPublish:"March 25th 2021",dateEndFifthStepPublish:"May 24th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"An Associate Professor of Surgery at Temple University School of Medicine and a Chair of the Department of Research and Innovation, St. Luke's University Health Network. A member of multiple editorial boards and co-author of over 550 publications.",coeditorOneBiosketch:"An Associate Professor of Surgery & Integrative Medicine at Northeast Ohio Medical University and Cardiothoracic Surgeon at the Summa Health Care System. A prolific writer and presenter, with multiple books, hundreds of peer-reviewed articles, and innumerable presentations around the world.",coeditorTwoBiosketch:"A CEO of the INDUSEM Health and Medicine Collaborative, Global Executive Director. of the American College of Academic International Medicine (ACAIM) and head of the World Academic Council of Emergency Medicine.",coeditorThreeBiosketch:"A Director of Research in the Department of Emergency Medicine at Nazareth Hospital in Philadelphia, USA, and co-chief editor of the International Journal of Critical Illness and Injury Science. A recipient of numerous local, regional, and national awards.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki",profilePictureURL:"https://mts.intechopen.com/storage/users/181694/images/system/181694.jpeg",biography:"Stanislaw P. Stawicki, MD, MBA, FACS, FAIM, is Chair of the Department of Research of Innovation, St. Luke's University Health Network, Bethlehem, Pennsylvania, and Professor of Surgery at Temple University School of Medicine. Dr. Stawicki has edited numerous books and book series on the topics of clinical research, medical education, medical leadership, patient safety, health security, and various other subjects. He is a member of multiple editorial boards and has co-authored more than 650 publications. He served as the inaugural president of the American College of Academic International Medicine (ACAIM) and directed its Taskforce on International Health Security. He has given a multitude of scientific presentations around the globe and is board certified in general surgery, surgical critical care and neurocritical care.",institutionString:"St. Luke's University Health Network",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"29",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"St. Luke's University Health Network",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"64343",title:null,name:"Michael",middleName:"S.",surname:"Firstenberg",slug:"michael-firstenberg",fullName:"Michael Firstenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/64343/images/system/64343.jpeg",biography:"Dr. Michael S. Firstenberg is a board-certified thoracic surgeon. He is the current Director of Research and Special Projects for the William Novick Global Cardiac Alliance. Previously, he was Chief of Cardiothoracic and Vascular Surgery at the Medical Center of Aurora and Rose Hospitals. He currently holds appointments in the Colleges of Medicine and Graduate Studies at Northeast Ohio Medical University. He attended Case Western Reserve University Medical School, received his General Surgery training at University Hospitals in Cleveland, and completed Fellowships at The Ohio State University (Thoracic Surgery) and The Cleveland Clinic (Surgical Heart Failure). He is an active member of the Society of Thoracic Surgeons (STS), American Association of Thoracic Surgeons (AATS), the American College of Cardiology (ACC), and the American College of Academic International Medicine (ACAIM – for which he is a Founding Fellow and President-elect). He also currently serves on several professional society committees. He is the author of well over 200 peer-reviewed manuscripts, abstracts, and book chapters. He has edited several textbooks on topics ranging from Medical Leadership, Patient Safety, Endocarditis, and Extra-corporeal Membrane Oxygenation – all of which include topics that he has lectured on world-wide.",institutionString:"William Novick Global Cardiac Alliance",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"22",totalChapterViews:"0",totalEditedBooks:"10",institution:null},coeditorTwo:{id:"293168",title:"Dr.",name:"Sagar C.",middleName:null,surname:"Galwankar",slug:"sagar-c.-galwankar",fullName:"Sagar C. Galwankar",profilePictureURL:"https://mts.intechopen.com/storage/users/293168/images/system/293168.jpeg",biography:"Sagar C. Galwankar, MBBS, DNB, MPH, FAAEM, FAIM, graduated from Pune University, India, as a MBBS Allopathic Physician in 1995. He is residency trained and board certified in internal medicine and emergency medicine in India and the United States, respectively. He is a prestigious fellow of the Royal College of Physicians, UK, and completed a MPH with additional training in Business Management in the United States. His academic experience over the last two decades includes consistent achievements and innovative strategies that have led to the creation of organizations, publication of landmark papers, and commendation with prestigious citations and honors for his works that have impacted academic medicine globally. He has played a defining role in founding and building internationally recognized interdisciplinary indexed journals. He is the CEO of the INDUSEM Health and Medicine Collaborative and heads the World Academic Council of Emergency Medicine (WACEM). Additionally, he serves as the Global Executive Director for the American College of Academic International Medicine (ACAIM). He is the Director for Research in Emergency Medicine at Florida State University (FSU) and serves as a core faculty for the FSU Emergency Medicine Residency Program, at Sarasota Memorial Hospital in Florida.",institutionString:"Florida State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}},coeditorThree:{id:"317540",title:"Dr.",name:"Andrew",middleName:"C.",surname:"Miller",slug:"andrew-miller",fullName:"Andrew Miller",profilePictureURL:"https://mts.intechopen.com/storage/users/317540/images/system/317540.jpg",biography:"Andrew C. Miller, MD, FACEP. Dr. Miller is the Director of Research in the Department of Emergency Medicine at Nazareth Hospital in Philadelphia, USA. He is a graduate of St. Louis University (2000) and Southern Illinois University School of Medicine (2005). He completed residencies in Emergency Medicine and Internal Medicine at the State University of New York (SUNY) Downstate Medical Center (2010) where he served as Chief Resident for Research. He completed fellowships in Pulmonary Medicine at the University of Pittsburgh Medical Center (2013) and Critical Care Medicine at the National Institutes of Health (2014). He is active in the American College of Academic International Medicine, and is co-chief editor of the International Journal of Critical Illness and Injury Science. He has a track record of publishing original research in high-impact journals, and has been the recipient of numerous local, regional and national awards from groups including the American Medical Association (AMA), Society for Academic Emergency Medicine (SAEM), American Academy of Emergency Medicine (AAEM), Emergency Medicine Residents Association (EMRA), and the Accreditation Council for Graduate Medical Education (ACGME).",institutionString:"Nazareth Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Nazareth Hospital",institutionURL:null,country:{name:"United States of America"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"74452",title:"Resilient Health System and Hospital Disaster Planning",slug:"resilient-health-system-and-hospital-disaster-planning",totalDownloads:49,totalCrossrefCites:0,authors:[null]},{id:"75488",title:"Management of Blood Supply and Blood Demand to Ensure International Health Security",slug:"management-of-blood-supply-and-blood-demand-to-ensure-international-health-security",totalDownloads:3,totalCrossrefCites:0,authors:[null]},{id:"75095",title:"COVID-19 Pandemic and Mental Health of Nurses: Impact on International Health Security",slug:"covid-19-pandemic-and-mental-health-of-nurses-impact-on-international-health-security",totalDownloads:20,totalCrossrefCites:0,authors:[null]},{id:"75171",title:"Improving International Health Security in Resource-Scarce Regions: Leveraging upon the Initial Success of Combating COVID-19 to Fight Emerging Health Threats",slug:"improving-international-health-security-in-resource-scarce-regions-leveraging-upon-the-initial-succe",totalDownloads:21,totalCrossrefCites:0,authors:[null]},{id:"73634",title:"Supply Chain Management and Restart of Economy in Post COVID-19",slug:"supply-chain-management-and-restart-of-economy-in-post-covid-19",totalDownloads:173,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6672",title:"Vignettes in Patient Safety",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"2c8b1831a8cceea8be146cbfbd582b81",slug:"vignettes-in-patient-safety-volume-3",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/6672.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7043",title:"Clinical Management of Shock",subtitle:"The Science and Art of Physiological Restoration",isOpenForSubmission:!1,hash:"0f79000187ae93618e2213631e00047c",slug:"clinical-management-of-shock-the-science-and-art-of-physiological-restoration",bookSignature:"Stanislaw P. Stawicki and Mamta Swaroop",coverURL:"https://cdn.intechopen.com/books/images_new/7043.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7925",title:"Embolic Disease",subtitle:"Evolving Diagnostic and Management Approaches",isOpenForSubmission:!1,hash:"70a90d1a07cc875f7eda4641fbf32339",slug:"embolic-diseases-evolving-diagnostic-and-management-approaches",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg and Mamta Swaroop",coverURL:"https://cdn.intechopen.com/books/images_new/7925.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8645",title:"Contemporary Topics in Graduate Medical Education",subtitle:null,isOpenForSubmission:!1,hash:"76d224ba3c158c43fda8141a61ababd6",slug:"contemporary-topics-in-graduate-medical-education",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, James P. Orlando and Thomas J. Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/8645.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7447",title:"Vignettes in Patient Safety",subtitle:"Volume 4",isOpenForSubmission:!1,hash:"88d9ec0c55c5e7e973a35eafa413ded2",slug:"vignettes-in-patient-safety-volume-4",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7447.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49017",title:"Weaving Complex Patterns — From Weaving Looms to Weaving Machines",doi:"10.5772/61091",slug:"weaving-complex-patterns-from-weaving-looms-to-weaving-machines",body:'The term textile is usually associated with a cloth that is produced on a loom or weaving machine as a fabric manufactured by interlacing warp and weft threads. Weaving is one of the oldest crafts and has a long historical development. Studying the history of the production of fabrics is based on archaeological finds, pictorial representations, frescoes, stone monuments, archival documents, etc. One of the valuable records is the Bible, which mentions the intricate network of Solomon\'s Temple. In Greek myths, Arachne, the weaver is mentioned who was turned into a spider by Athena; Homer describes decorative veils of the Temple of Athena. The beginnings of fabric production date back far into the past and cannot be precisely defined. The oldest sites as evidence of fabric production are certainly records and drawings in China and Egypt, carved in stone or clay pottery, which date back to 12,000 BC. It is assumed that the first interlacing of warp and weft occurred much earlier in making dwellings from brushwood. To create a roof area and better insulation of the space, mud and leaves were used, which were coiled and intertwined with each other in two directions (warp and weft directions). Thus, a solid and long-lasting roof structure was made. After that the manufacture of baskets, bags, and other household and transport articles developed. This interweaving of brushwood was probably the forerunner in the development of fabric making. By hand twisting twigs, leaves, and animal hair, an initially coarse, and afterward a finer thread was made from which fabric was manufactured by interlacing [1]. Despite coarse weaving, these fabrics had a definite advantage when worn compared to fur, especially in the summer. The preserved drawings show that fur was the first to have been used to cover the body. Fabric has gradually assumed the function of the fur and was primarily used to protect the body from bad weather. Sensitivity of textile products, and the tendency to decay, represents a particular difficulty in assessing the beginnings of making fabrics so that drawings of looms carved in stone or clay are more reliable and older evidence of the beginnings of the craft of weaving [2].
Weaving has always represented an extremely complex operation that requires not only a certain knowledge of the technological process, but also a way of creating patterns on the fabric. The production of yarns from different fibers and its transformation into a fabric is one of the oldest human crafts and technologies. Various historical textiles and materials, as an invaluable part of cultural material heritage, testify to social background and time of origin [3]. Throughout history more complex fabrics, especially silk fabrics with gold or silver threads, represented a status symbol of high society and were of great value. Most often they were used for garments, church vestments, and furniture decoration. Old simple fabrics without or with smaller patterns made from wool, linen, cotton, or similar fibers, are also greatly appreciated and carefully preserved [4].
The manufacture of closely woven silk fabric with multicolored Jacquard patterns always required a weaver with certain technological knowledge, skill of transferring a pattern on the fabric, and sense of matching colors in the pattern. Woven fabric is formed by interlacing warp and weft threads according to a weave and pattern in order to produce a compact fabric with an appropriate design. In addition, the appearance of the fabric depends on the density of warp and weft threads, composition and fineness of yarn, thread tension, loom type, and the weaver (precision, patience, skill, knowledge of weaves, matching of density and color, etc.), especially when it comes to hand weaving.
It is assumed that wool is the oldest fiber that was used for making fabric. However, the oldest preserved samples are not from wool, although records mention wool processing. Egyptians wrapped mummies mainly in linen, which did not decompose, and in addition, their religion did not allow taking animal fibers into the tomb; this is the main reason why wool fabrics are not the oldest preserved samples. Over time, certain skills and weaving techniques preserved in secrecy in narrower communities were developed. Increasingly more valuable and more beautiful fabrics recognizable by regions and communities of origin began to appear. The value of a fabric was assessed according to the raw materials’ complexity of manufacturing and pattern size. The fabric was evaluated according to the raw material (silk), fineness, density, and the complexity of manufacturing, had mostly a high price, and in some regions it was used as currency. Valuable preserved patterns belonged to the higher class, for vestments and appropriate clothing for various ceremonies.
Sensitivity of textile products and tendency to decompose represent a particular difficulty in assessing the beginnings of fabric manufacturing as well as manufacturing complexity. The oldest preserved samples of linen fabrics were taken from Egyptian mummies and date back to 5000 BC, when woven fabrics of certain dimensions were also woven. Most of the preserved fabrics with complex patterns were woven from natural silk. China had a centuries-old monopoly in the production and processing of natural silk. However, this monopoly was threatened as early as in the 12th century by the Italian city of Luca, which was the most famous producer of silk in the West. In the 13th century, the Silk Guild of Paris produced famous green silk fabrics woven with motifs of birds, lilies, and vine leaves. After that, the German city of Regensburg was known for its half-silk fabrics and Venice for samples of brocade with metallic golden threads. The following are some familiar names of fabrics woven on handlooms and their description [5].
Velvet is a fabric produced by weaving weft and warp threads in the form of loops, which are then cut to create the pile effect on the fabric face. It may be warp effect if warp threads are cut or weft effect if weft threads are cut. In hand weaving velvet is mostly made with patterns, and the pattern creates the pile effect which can be cut in different heights and in combination with loops (as terry cloth) depending on the pattern or the weaver’s imagination. Fabrics with greater pile densities are called velours.
Brocade is a heavy, Jacquard-type fabric with a raised pattern or floral design. Traditionally, the pattern is produced with gold or silver weft threads. Weft threads are actually made from linen or wool wrapped with thin flat metal which is gold-plated or silver-plated.
Damask fabric is a firm and glossy Jacquard-patterned fabric made of silk, wool, linen, cotton, or synthetic fibers, with a pattern formed by weaving. It is characterized by the combination of satin and sateen weave, made with one warp and one weft in which, generally, the satin warp and the sateen weft weaves interchange. The figures or the designs are in the weft and the background is in the warp. Twill or other binding weaves may sometimes be introduced. The term originally referred to ornamental silk fabrics, which were elaborately woven in colors, sometimes with the addition of gold and other metallic threads. Damask weaves are commonly produced today in silk, linen, or linen-type fabrics that feature woven patterns featuring flowers, fruit, forms of animal life, and other types of ornament.
Double cloth is a kind of woven fabric woven from two sets of warp threads and two sets of weft threads. Through weaving, two distinct fabrics are made, connected by the binding weft or warp threads. The fabric is very strong and compact and was mostly woven from wool in hand weaving.
Gros de tours fabric is a ribbed silk fabric made with a two- or three-ply warp interlaced with organzine and tram weft. Rep weave creates longitudinal or transversal stripes on the fabric. Stripes can be more or less distinct. This weave type is defined as plain weave with double threads in one thread system (mostly double weft threads) forming a ribbed appearance of the fabric. The fabric is made with a high density so it is necessary to draw into more than two heddle shafts with straight or broken draft. This disburdens shafts and warps are arranged in several shafts although they bind in the same way, so they do not cover in the fabric which is possible, especially if they are drawn into the same dent of the reed. Thus, the fabric appearance is nicer and more uniform because each thread has a certain width within the fabric and they are mutually parallel in spite of a high density. In this manner double threads that bind in the same way create stripes.
Lame is a shimmering fabric that is created by combining metallic threads, often of gold or silver, and natural or synthetic threads into a woven fabric.
Lampas is a figured textile in which a pattern composed of weft floats bound by a binding warp is added to a ground fabric formed by a main warp and a main weft. The ground fabric is mainly woven in plain, twill, or satin weave or their derived weaves with the smallest weave units. The weft, which creates the pattern, may be in the same color as the main weft or the decorative (multicolor) one, binding in plain, twill, or satin or only floats on the fabric face as extra weft-figured and/or brocaded.
Lisere is a fabric with a pattern created by the floating main weft.
Taffeta is a dense plain woven fabric. In hand weaving these fabrics are mainly woven figured with lance (extra) or brocaded wefts.
Extra weft fabric – the weft creating the pattern on the fabric is inserted over the entire fabric width. It is on the fabric face only where the pattern is created.
Brocaded weft fabric – the weft creating the pattern is on the face of the fabric and is seen only where the pattern is, and it is not woven in the other parts of the fabric. For this reason the weft consumption is lower which is especially significant if gold or silver threads are used. During insertion the brocaded weft is not cut for each weft thread, but at the end of the pattern it is returned into the pattern in the next shed, and thus relatively strong edges of the pattern are made. Pattern design of fabrics with brocaded wefts is performed with the fabric face pointing downward which facilitates and accelerates the weaving.
At the beginning of weaving longitudinal threads (warp threads) were hung next to each other on a bar with hanging weights forming one set of threads which were then interlaced with horizontally arranged threads (weft threads). Wefts were inserted, beaten up from bottom to top. This way a fabric of specific structure, softness, breathability, and comfort was produced.
In the old records weaving frames are described. The warp was taut during weaving, previously dimensioned fabrics were woven and later they were joined laterally and transformed into simple articles of clothing.
The form of the first loom changed through history and it cannot be said for certain whether the first loom was vertical or horizontal (Fig. 1). Vertical looms take up less space and are more suitable for weaving outside dwellings, but their height required prolonged abnormal body posture and standing work, especially in the beginnings of weaving when the warp was hung to weights and the weft was inserted from top to bottom. This made weft beating up more difficult. No higher warp and weft densities could be achieved, warp tension was irregular, and each weft was inserted by interlacing the warp with fingers, until the formation of the shed was invented. Vertical looms were developed mostly for weaving loosely woven fabrics in the warp direction, but with very high strength. The assumption is that the tapestries, rugs and carpets were mainly woven on vertical looms with larger widths where the colored weft conceals the loosely woven warp and creates a pattern. By tightening the warp on both sides of the frames, thereby eliminating the weights for tightening the warp, it is possible to weave from bottom to top, which made weft beating up easier and achieving a higher weft density. Additional bars and strings enabled to form two sheds, specifically for weaving in plain weave; this increased the fabric production and quality of these looms. Vertical looms are more suitable than horizontal ones for weaving larger patterns, according to the picture, which can be easily placed under the warp (no shafts that prevent placing the picture below the warp as on horizontal looms) as well as drawing pictures or drawings on the warp before weaving. This has resulted in unique items of immeasurable values. Despite slower work, and thus lower productivity in relation to the horizontal loom, vertical looms were probably more numerous at the beginning of weaving. Because of their simpler construction, vertical looms allowed achieving the utilization of the whole warp whereby it is possible to weave fabrics with selvedges on all four sides to make one article of clothing without cutting. This fact is confirmed by the preserved samples of fabrics (e.g., oldest woollen fabric woven in Europe with the edges on all four sides found in Bosnia and Herzegovina 1983; fabric age dates back to 3550-3800) [6]. It can be interpreted from the loom drawings carved in stone or clay that they are more reliable and older evidence of the beginnings of the craft of weaving and weaving process than the preserved samples of fabrics [7].
Warping on the loom in the form of a frame to produce a fabric with selvedges on all four sides; a) vertical loom, b) horizontal loom
Horizontal looms are more suitable for weaving in dwellings; weavers wove in a sitting or squatting position. With the introduction of shafts and treadles weaving on the horizontal loom became easier because of the use of the feet (to press treadles) and hands (weft beating). Horizontal looms experienced a noticeable development as weaving the most complex patterns. Their productivity rose, with the introduction of the shuttle with a cop, especially in case of simpler patterns. Their development was in several directions, e.g., with regard to raw materials, weaving processes, and pattern complexity. Over time, the increasing weavers’ skills became more apparent in interlacing warp and weft threads creating more complex weaves, using different raw materials, finer yarn counts, and greater thread densities. In weaving greater lengths and widths of fabrics were achieved, and fabrics were later cut and sewn into more complex items of clothing. Larger and more complex patterns requiring an excellent skill and knowledge of weavers were created. The yarn was dyed with natural dyestuffs and woven, or less frequently, the fabric was dyed after weaving. Woollen fabrics were sometimes filled in order to produce warmer and softer articles of clothing. At the same time looms were adapted for weaving more complex patterns and lightweight fabrics. In this regard, horizontal looms were at an advantage: the fabric had regular and uniform dimensions across the width; it was possible to create a shed by pressing the treadles with a variety of connecting shafts and treadles, which made it easier to insert the weft; easier and faster weaving; better quality fabrics; and more possibilities of pattern design. Horizontal looms became increasingly complicated when making larger patterns and larger dimensions with extreme fineness and density of threads, which required a complex and longer warp and weft preparation. For larger fabric widths looms with two pairs of treadles and with two weavers working in pairs were constructed (Fig. 2). Sometimes, weavers were also artists or worked with them closely in weaving large patterns. Art paintings, which corresponded to proportions of drawings and colors, were adapted and woven. This required long training of weavers for weaving such patterns and reading the records of the pattern, but also artistic talent in matching colors according to the model, and skill in using different weaving techniques and knowledge of weaves that were the most suitable for the development of certain patterns and designs. Horizontal looms were specialized in weaving specific raw materials (for lightweight silk fabrics, heavy woollen fabrics, etc.), in the technique of weaving (velvet, terry, damask, lampas, etc.), in the complexity of a pattern (with extra floating wefts (lance), with brocaded wefts, with metal (gold-plated or silver-plated wefts etc.). The complexity of making patterns begins with the use of fiber (e.g., natural silk, linen, wool, cotton), yarn count (from the finest silk threads to coarse wool and metallic threads), and warp and weft density amounting to 150 threads/cm.
On the first looms, the warp had a relatively small length which sufficed for making an article of clothing. That the skill of weaving existed in the Stone Age is witnessed by findings of bone needles and dressmaking equipment made of stone. One of the more valuable artifacts are stone weights for the warp, which originate from Troy 2500 years BC, confirming the use of looms at that time [8].
Horizontal loom for larger fabric widths
The first looms for making larger patterned fabrics with larger repeats that were predecessors to the Jacquard loom had a very complex construction (Fig. 3a). Before making a Jacquard loom with programming cards, making patterns with a great weave unit in combination of different weaves required a very complex weaving preparation and weaving itself [9]. A stencil plate (Fig. 3b) was prepared according to a painting, which was usually an artist’s work of art. A copy of the painting and sometimes the original work was divided into squares that were 1 cm wide and 1 cm long.
a) Weaving loom for making old complex patterns before the Jacquard weaving loom, b) picture prepared for weaving with number of effects in the picture
First, it was necessary to determine the density of ends/1 cm and to calculate the total number of warp threads (density of ends/1 cm multiplied by the fabric width to be woven with the addition of threads for selvedges). According to the painting, the number of effects on the fabric pattern, which were distinguished by color and / or weave, were determined. One thread system was single-colored (or hidden) and another multicolored (creating the fabric face). In such patterns, the warp is usually single-colored, and the weft is in different colors, which creates a pattern on the fabric face. In this way, the preparation of single-colored warp is simpler and faster. According to this weaving technique, the warp threads were hidden within the fabric by beating up the weft, whereas the multicolored weft created versatile effects on the fabric. In order to hide the warp threads on the fabric face, the warp threads should be loosely warped, tauter, stronger, twisted, and preferably thinner than the weft threads. This relationship is mostly based on experience, now known as double weft, triple weft, or multiweft fabrics. In multiwarp fabrics the weft is invisible, the warp threads create a pattern, and they are finer and denser than the weft threads. Warp threads were dyed before warping, so warp preparation and warping lasted longer, but weaving was faster because the weft was mostly single-colored. A group of cords for drawing warp threads for the corresponding effect is assigned to each effect on the picture or the fabric. One of the weavers pulled the cords (weaving with two weavers) according to the corresponding effect over the whole warp width. The other weaver had to watch out for the effect in the direction of the fabric width and insert the corresponding weft color. In order to insert the warp thread over the whole fabric width, the cords for each effect in the fabric fell had to be drawn. The weft color corresponding to the effect was inserted in that fabric segment where this effect was drawn according to the pattern and the program for raising the cords for this effect depended on the weave. After the weft thread had been inserted over the whole fabric width for all effects being woven at that moment, the weft threads were beaten up, and the process was repeated for the next weft insertion. The pattern was woven face downward for easier weft insertion, and a mirror was used to control the fabric pattern. The number of picks/cm depended on weft thickness and beat-up force. The thinner the weft thread and the stronger the beat up force of the weft, the more beautiful the pattern, with more distinct and accurate pattern contours created, but weaving time was longer or more weft threads had to be inserted per 1 cm. Similarly, the density of warp threads affected the quality and appearance of the fabric pattern. The greater the warp density and the finer the warp threads, the more distinct were the contours and the fabric pattern was more beautiful and more faithful. Fabric patterns made by hand weaving large patterns from natural silk, especially in combination with gold-plated and silver-plated threads (brocades) are of exceptional value [10].
The first weaving loom on which punched cards raised and lowered warp threads according to a program was invented by Joseph Marie Jacquard [9] in 1805 (Fig. 4). This loom raised warp threads with the help of a program card. This eliminated pulling cords according to effects. One cord was pulled attached to the prism and moved the card for one weft thread. By pressing the treadle the needles would come into contact with the card. The card is read for each weft and usage of hooks and the harness raises warp threads (punched hole in the card) or remains in the lower shed (unpatched hole in the card) over the whole width.
Jacquard loom (1805)
A punched hole in the card means that the needle passes through it and pulls the hook because it is engaged with the knife and will raise all the cords fastened to this hook and the heddles hung on the corresponding cords, and thus the threads drawn into the corresponding heddles. If there is no hole in the card, the needle remains on the card surface and does not pull the hook, it is not in contact with the knife and will not pull it, as cords or heddles and warp threads will remain in the lower shed position. One or more weft threads are inserted by colors and fineness, depending on fabric effects in this fabric segment. The technique of weft insertion by effects is the same as on the previous loom without punched card, only the shed is inactive until all weft threads are inserted as required by the pattern. This weaving technique using punched card (Jacquard punched card loom) achieves higher production, enables easier operation, and machine operation is built for one weaver and there are fewer possible faults [11].
Some inventors attempted to build a mechanically driven machine back in the eighteenth century. Cartwright applied steam power to drive the loom. Mechanical machines increasingly dominated in weaving mills of that time. Industrial production began in the second half of the eighteenth century. In 1894, Northrop invented a pirn changer, a mechanical device that provides automatic supply of weft in looms by changing the contents of the shuttle without stopping the loom. Large-patterned fabrics became possible because of weft pattern forming (two shuttle boxes on each side of the machine or 3 multicolored weft threads) and the use of the Jacquard power loom (Fig. 5).
Mechanical Jacquard shuttle loom with weave design
The production increased a number of times; the machines were improved dramatically and new manufacturers appeared. Weft pattern forming was made possible by adding four shuttle boxes on each side of the machine, which allowed up to 7 multicolored weft threads. Automatic shuttle looms were improved and used for nearly one century and played a predominant role in the historical development of weaving. Shuttle-less weaving machines appeared in the mid-twentieth century (Fig. 6) [12].
The advantage of shuttle-less weaving machines is their high productivity, higher product quality, and easier and more comfortable machine operation. On shuttle-less weaving machines, weft threads are inserted into the shed only from one side; they are unwound from the supply package outside the machine which causes problems for making strong and quality selvedges on the fabric. These machines run at high speeds because the weft inserter picks up each weft individually and it is lighter than the shuttle. On shuttle looms, the shuttle inserts the weft on the weft cop; they are slow and cannot achieve the speed of shuttle-less looms. The basic construction of shuttle-less looms does not differ significantly from the construction of shuttle looms; the only exception is the weft inserter. All devices on the loom can be classified into four basic groups: warp-unwinding devices, shed forming devices, weft inserters, and fabric winding devices.
The looms are divided into the following according to shed formation: cam loom, dobby loom, and Jacquard loom, and according to weft insertion: projectile, rapier (rigid and flexible), air jet, and water jet looms. Besides single-phase weft insertion (one weaving cycle is one weft thread), there are multiphase weaving looms. The weaving machine being developed in this direction is serial shed weaving machine which inserts 4 weft threads at each moment over the fabric width, and its productivity amounts to 6.000 m of weft/min. The other devices are weft patterning devices, warp and weft stop motions, weft accumulators, control devices, etc. [13].
Electronic Jacquard shuttle-less weaving machine
Electronic Jacquard shuttle-less weaving machines have several advantages over looms with weave design. Electronic Jacquard allows better and more productive weaving. Using CAD/CAM systems in weaving shortens the pattern preparation for weaving by several times. The CAD (Computer Aided Design) system processes fabric design parameters and adapts the pattern (figure) for weaving. The CAM (Computer Aided Manufacturing) system for weaving allows controlling the production process of the loom and contains the data required for the process of weaving. CIM (Computer Integrated Manufacturing) for the process control of the whole weaving mill allows complete overview of the production, Internet contact with each loom allowing remote control, service, correction, and repair of the program.
The latest developments in Jacquard weaving are harness-less looms (Fig. 7). The upper part of the Jacquard loom (Jacquard) is “lowered” directly above the bottom machine performing the weaving process. In this way, the machine height has been considerably reduced and no harness is necessary that has to be replaced after a certain time period. These weaving machines have certain drawbacks compared with Jacquard looms with harness, but their development goes on indicating a new, more cost-effective way of weaving fabrics with large patterns.
Electronic Jacquard loom without harness (Grosse’s Unished Jacquard)
Despite the rapid development of the textile industry in the twentieth century, hand weaving has remained in handcraft industry, even in factories for manufacturing carpets having high value and quality. Today, Mexican and Persian carpets made on vertical hand looms are famous for their long life and beauty throughout the world.
The silk fabric, which will be analyzed here as an example, was woven on the Jacquard loom (Table 1, Fig. 8). The ground warp is black and has an even density across the fabric width. The ground warp (black) and the ground weft (black) are woven in plan weave across the whole fabric surface, regardless of whether it is the ground fabric or the pattern. Various weaves and color combinations of the warp and weft compose fabric effects. The weaving machine is equipped with two warp beams: one warp beam is intended for the ground warp, and the other warp beam is intended for the pattern warp.
\n\t\t\t\tWarp density (ends/cm)\n\t\t\t | \n\t\t\tGround warp (black) | \n\t\t\t92 | \n\t\t
Pattern warp (in 7 colors) | \n\t\t\t50 | \n\t\t|
\n\t\t\t\tWeft density (picks/cm)\n\t\t\t | \n\t\t\tGround weft (black) | \n\t\t\t35 | \n\t\t
Pattern warp (blue and red) | \n\t\t\t36 | \n\t\t|
\n\t\t\t\tFineness of warp threads (dtex)\n\t\t\t | \n\t\t\tGround warp (black) | \n\t\t\t44 | \n\t\t
Pattern warp (in 7 colors) | \n\t\t\t94 | \n\t\t|
\n\t\t\t\tFineness of weft threads (dtex)\n\t\t\t | \n\t\t\tGround weft (black) | \n\t\t\t82 | \n\t\t
Pattern warp (blue and red) | \n\t\t\t242 | \n\t\t
Basic parameters of the tested fabric
Fabric pattern with a multicolored warp (ground: black, pattern: cream-colored, pale gray, gray, dark gray, yellow, brown, and dark brown) and multicolored wefts (ground: black, extra floating weft: blue and red) 1-4 effects created by the pattern
Weave design for 1x1 cm fabric (pronounced square on the fabric pattern, Fig. 8)
The first effect or ground fabric is created by the warp (black) and weft (black) in plain weave; a) weave unit; b) cross section in the weft direction
The third effect is created by different colors of warp threads; a) cream-colored, b) pale gray, c) gray, d) dark gray, d) yellow, f) brown, g) dark brown; they interlace with the ground in 5-end warp satin; on the back side, ground warp (black) and ground weft (black) interlace in plain weave
The third effect is created by the red and blue weft threads which interlace with pattern warp threads in 5-end weft satin; on the back side, the ground warp (black) and ground weft (black) interlace in plain weave, in the middle section of the fabric the pattern warp threads interlace with the ground warp threads in 8-end warp satin; a) 5-end weft satin, b) 8-end weft satin; c) plain weave, d) cross section with blue weft on the fabric face, e) cross section with red warp thread on the fabric face
The fourth effect is created by different colors of the warp threads: a) cream-colored, b) pale gray, c) gray, d) dark gray, e) yellow, f) brown, g) dark brown interlace with the ground weft in 8-end warp satin; on the fabric face, the ground warp (black) and ground weft (black) interlace in plain weave
Marked effects on the fabric are only those created by different weaves. Effects by the colors of warp and weft threads are not specifically identified, but they are visible on the fabric and in the weave development. In addition to the ground weft, two extra floating wefts (lance) (red and blue) creating the pattern with the pattern warp run in the weft direction. The pattern warp and lance weft threads are on the back side of the fabric and do not interlace in the ground fabric part. The fabric was woven on the Jacquard weaving machine, and the pattern does not include the weave unit. The weave is drawn on the appropriate graph paper which corresponds to the ratio of warp-to-weft density. Since the weave unit is relatively large, the total number of warp and weft threads is not covered by the analysis of drawing the weave. That is why the weave of only one fabric part has been drawn, covering all the effects. It is important that in the transition from one into another effect there is opposing thread (warp or weft) float. In that case, a certain displacement of interlacing points in favor opposing thread float is allowed which was done in the figure representing the weave development (Fig. 9).
The looms, which were used to weave pattern fabrics before Jacquard weaving, had to be adjusted for this kind of interlacement which required a specific skill and knowledge of the weaver. In transition areas of effects the weave is disrupted, meaning that the weft interlacing point is applied in one effect opposite the warp interlacing point in the other effect and vice versa in order to point out the boundary between two effects. In hand weaving, the weaver had to pull weft threads past the shed in transition areas of effects in order to create opposing thread float. Pulling the weft thread through in these areas was difficult and resulted in faults in the weave, breaks of warp threads and longer weaving. This problem disappeared when Jacquard looms were introduced because cards were punched according to the prepared weaving pattern where opposing thread float had been drawn. In this way, the shed was opened for each warp with opposing thread float in areas between effects, resulting in a great increase of productivity and fabric quality. Punching cards for each warp thread allowed forming one shed for all effects and weft colors to be inserted into the corresponding shed. Thus, it was unnecessary that the other weaver raised warp threads according to the effects because the card was punched for all warp threads over the whole fabric width or all effects across the fabric width at this moment.
Each effect is explained in detail below:
The first effect is the ground part of the fabric, where the ground warp (black) and the ground weft (black) are interlaced in plain weave (Fig. 10).
The pattern warp in different colors (cream-colored, pale gray, gray, dark gray, yellow, brown, and dark brown) and the ground weft makes the second effect (black). The weave on the fabric face (pattern warp and ground weft) is 5-end warp satin (A 4/1 with a leap to the right), and plain weave on the backside (ground black warp and ground black weft) (Fig. 11).
The third effect is made by the lance weft (black or red) and the pattern warp in different colors (cream-colored, pale gray, gray, dark gray, yellow, brown, or dark brown) which interlace in weft 5-end satin (A ¼ with a leap 3 to the right), and the weft is visible on the fabric face. In one fabric segment the red weft and the blue weft interchange, and the logic rule of their interchange in the pattern is not visible. In the second effect, the ground weft and the pattern warp in different colors interlace in 8-end warp satin (A 7/1 with a leap 3 to the right) which is the middle layer of the fabric, while the ground warp and the ground weft interlace in plain weave on the backside of the fabric (Fig. 12).
The fourth effect is made by the pattern warps in different colors (cream-colored, pale gray, gray, dark gray, yellow, brown, and dark brown) and the ground weft (black) in 8-end warp satin (A 7/1 with a leap 3 to the right) (Fig. 13).
The historical development of weaving dates back before the Neolithic period. Interweaving brushwood in building dwellings is the forerunner of interlacing warp and weft threads in fabric making. At first, a coarse textile fabric with low-density simple weaves was made; by increasing yarn fineness and improving weaving procedures, the fabric became finer and more comfortable. Gradually, weaving skills and techniques kept in secrecy in the narrower community were developed. Larger and more complex patterns were introduced. Weaving looms changed throughout history and were adapted to types of fabrics woven on the loom. The manufacture of fabrics with larger and more complex patterns, before Jacquard looms had been constructed, was performed on more complex designed Jacquard looms operated by two weavers according to a drawing or a picture. Productivity was very low regardless of the skill and training of weavers. Yarn preparation (spinning, dyeing, warping, drawing in) required an operator\'s knowledge and skills. With the advent of the Jacquard loom in the early nineteenth century, productivity rose several times as well as the quality of weaving; one weaver operated the loom.
The principle of the shed formation using a card with punched and unpunched holes did not change for decades. Only the Jacquard gauge changed and the possibility of weaving with several differently interlacing warp threads increased. With the advent of shuttle weft insertion power looms productivity increased several times. Machine operation was simpler, because of the automatic pirn change in the shuttle, one weaver could operate several looms, and the fabric became better and cheaper. The electronic Jacquard loom with CAD/CAM weaving system increased the pattern preparation for weaving as well as the possibility of making larger patterns or greater weave units. Moreover, the consumption of cards was eliminated as well as trial weaving, and greater faults in weaving were not possible.
In order to analyze the pattern of the fabric, it is necessary to define the face of the fabric, the warp and weft direction, and the size of the weaving unit if the fabric pattern involves the weave unit. The analysis of the large pattern fabric involves analyzing the fabric construction parameters for each design or the development of each fabric effect. Due to the complexity of making the weave in the pattern, the analysis is often conducted only on a small area of fabric (1×1cm), preferably that it encompasses all designs or analyzes each design separately. The implementation of such an analysis is important because in order to prepare a certain amount of yarn by color, warp length, and the method of winding on one or two warp beams. Besides, it is important to define the density, contraction, and yarn fineness. According to warp thread density, fabric width, and arrangement of colors in the fabric width it is possible to calculate the total number of warp threads as well as the number of threads by colors. According to the weaves per designs, it is necessary to draw in warp threads into the harness according to the weave, design program, and lowering warp threads (manual pulling the hooks before the Jacquard, punching the cards after the Jacquard or pattern preparation using the CAD/CAM weaving system). In order for the fabric pattern to have precise contours (or boundaries) between individual designs, it is necessary to subsequently move the warp and weft interlacing points (to achieve opposing thread float as much as possible) on the edges of the design.
One of the pressing problems of collision zones of the study is to elucidate the evolution of magmatism occurring within them. Display magmatic associations, their petrochemical characteristics reflect the specificity of their manifestations, as well as the development of magmatism from magma generation to the evolution of magmatic melt in the Earth’s crust. Materials on the distribution of rare and rare earth elements in different rock types, as well as other of their geochemical and petrological characteristics allow using the well-known models [1, 2, 3, 4, 5, 6, 7, 8] to analyze some aspects of the processes of birth, evolution, and crystallization of deep magmatic melts.
\nIn this sense, the study of the geochemical characteristics of mantle and crystal sources of magmatism that have come out in a collision like the continent – the continent is quite topical. Therefore, the study late collision volcanism of the Lesser Caucasus is a theoretical and practical interest.
\nSuch, more than 10 geodynamic models have been proposed on the genesis of Cenozoic collision volcanism including the Eastern Anatolian-Caucasian zone. The most popular models are: (1) lateral upper mantle flow of plume material from the East African rifts [3, 6]; (2) break-off of a subduction slab at the early collision (inversion) stage and, as a result, formation of an asthenospheric uplift under the growing collision orogen directly below the Moho boundary [2, 4, 5, 6, 9, 10]; (3) collision magmatism with a leading role of oxidation of deep fluids [1]; (4) Paleogene collision-riftogenic volcanoplutonic magmatism, which occurred from lateral compression of the lithosphere and uplift of a less compacted mantle substrate [11]; (5) relationship of late collision volcanism with longitudinal and latitudinal extension structures, which formed in the suture-collision zone during activation of an area along the junction zone [12]; and (6) collision-riftogenic origin of late collision volcanism with mantle metasomatosis playing a leading role [13].
\nSome of these models do not contradict each other and, as noted by Koronovskii and Demina [1], differ in the heat sources necessary for melting and mechanisms by which sources of late collision volcanism melt. On the basis of seismic tomographic, geological-petrochemical, and geophysical data, we have developed a geodynamic model that relates the geodynamic processes and magmatism at the late collision stage of the evolution of the Lesser Caucasus. We also used seismic and seismic tomographic data for the Lesser Caucasus and adjacent collision regions (Eastern Anatolia, northwestern Iran). Having developed the model and analyzed previous models, we tried to assess the role of lithospheric mantle and asthenosphere in the Late Cenozoic collision volcanism of the Lesser Caucasus.
\nLate Cenozoic geodynamics of the Alpine-Himalayan belt is defined sector of the Mediterranean collision of Eurasian and the Afro-Arabian megaplate [1]. According to modern concepts, folded structures of the Caucasus emerged as a result of their convergence. According to Koronovsky and Demina [1] in the Caucasian segment of the Alpine-Himalayan orogen Late Cenozoic volcanism manifested itself in an atmosphere of NS compression in the region, led to an accelerated movement towards the north of the Arabian plate due to disclosure in the Late Miocene (about 11–10 million years ago) the Red Sea [1]. This collision stage is divided into the stage of mild collisions (late Middle Eocene – Middle Miocene) and the stage of hard collisions (with the Late Miocene to present). This fragmentation of rigid crust was accompanied by volcanism; mark the sites of local stretching of the lithosphere.
\nWithin the Lesser Caucasus Late Cenozoic volcanism covers part of the Transcaucasian transverse uplift (Akhalkalaki volcanic region, Kechut, Aragats volcano-structural sub-zones) and the eastern volcanic zone (Gegham, Vardenis, Syunik, Kaphan – in Armenia, Karabakh, Kelbajar, Nakhchivan in Azerbaijan) (Figure 1).
\nThe distribution of Neogene-Quaternary volcanoes in Eastern Anatolia, the Caucasus, North-West Iran.
Since the Middle Miocene, in these zones formed a high volcanic terrain, located on 2–3 km above sea level. Their association corresponds to the Caucasian age of folding, when the intense collision of the Arabian and Eurasian plates. Due to volcanic activity, there were formed many relatively large volcano-tectonic structures, such as Aragats, Ishygly, and others, erupting volcanoes of the central, central-type fracture (Figure 1).
\nProducts of the Late Cenozoic volcanism in the Azerbaijan distributions upper river Terter and Akera are characterized by lava flows and pyroclastics varied composition.
\nNeogene volcanism in the Lesser Caucasus is mainly manifested itself, starting from the upper Sarmatian, Meotis-Ponte to the Upper Pliocene. However, Rustamov in the south-western part of Lesser Caucasus to carry a Molasse basin (Nakhchivan, Karadag) trachyandesite-teschenite and analcite alkaline basalt-trachyandesite, with the absolute age of 14–15 million years, volcanic fissure and concludes that the Neogene stage of volcanism in the region did not begin in the upper Sarmatians and in the Middle Miocene (based on determining the age of rocks with the K-Ar method, and by the stratigraphic position of the studied rocks) [11].
\nIn the central part of the Lesser Caucasus upper-volcanogenic complex with a capacity of 200 m in the literature described as Agdzhagyz suite and submitted dacite, rhyolite, pyroclastic rhyodacites and their derivatives – dacite and rhyolite tuffs. The layers of fine-sedimentary rocks – carbonaceous shales, lignites are present between the volcanic rocks.
\nVolcanic complex with a thickness of 1150 m Meotis-Pont age first isolated as Basarkechar suite [14] and submitted dacite-trachydasite, andesite and trachyandesite, and latites (Figure 2). This complex with the angular and azimuthally unconformity lies at Agdzhagyz suite and places, Eocene and Cretaceous sediments. They overlap with an angular unconformity Upper Pliocene and Quaternary volcanic rocks in the volcanic highlands (Figure 2).
\nGeological map of Late Cenozoic volcanic associations in the central part of the Lesser Caucasus (Azerbaijan), scale 1:100,000. Compiled by Imamverdiyev [13]. Volcanic association: Quaternary: 1 – trachybasalts, basaltic trachyandesites, and trachyandesites; 2 – tuffs, volcanic ashes, tuff breccias; 3 – rhyolites, perlite, and obsidian; Upper Pliocene-Low Quaternary: 4 – trachybasalts, basaltic trachyandesites, and trachyandesites; Upper Miocene-Low Pliocene: 5 – dacites, rhyodacites, rhyolites; 6 – andesites, trachyandesites, quartz latites, dacites, trachydacites (Basarkechar formation) 7 – dacites, trachydacites, rhyodacites and rhyolites (Ajagz formation); 8 – diorites, granodiorites, syenites; Upper Oligocene-Low Miocene: 9 – granodiorites, granites, monsonites, quartz syenites; Eocene: 10 – andesites, trachyandesites and their tuffs; 11 – granodiorites, monsonites, quartz diorites; Base rocks (Cretaceous): 12 – ophiolites; 13 – flysch; limestone’s, sandstone’s, tuffs; 14 – faults; 15 – Terter deep fault; 16 - largest centers of volcano eruption; 17 – rivers; 18 – lakes.
These volcanic complexes are distinguished in the differentiated andesite-dacite-rhyolite association [13]. Based on geological data, the age of association is defined as the Late Miocene-Low Pliocene. Volcanics of close age are also known in other regions of the Lesser Caucasus. For example, an Early Pliocene andesite-dacite association is developed within the Miskhan-Zangezur and Yerevan-Ordubad zones. Similar rocks are found within the Gegham and Vardenis highlands in Armenia.
\nLate Pliocene-quaternary acidic volcanic associations as independent volcanism are widely developed within the Caucasian segment of the Mediterranean belt. Within Azerbaijan, they are confined Kelbajar and Karabakh uplands and form a dome-shaped volcanoes, and a number of small extrusive domes (Kechaldag, Devegezy) with their lava flows composed of rhyolite, rhyodacites their subalkaline varieties, as well as obsidian and perlite (Figure 2).
\nThe age of acidic volcanic rocks of the Lesser Caucasus in the studied region based on their stratigraphic position was considered late Pliocene-Akchagyl-Absheron [15]. This is confirmed by the absolute age. Thus, according to [16] age of rhyolite volcanic rocks Devegezy identified 0.61 million years, Kechaldagh 0.7 million years. Based on these data, the age of acidic volcanic rocks can be considered Quaternary.
\n\nUpper Pliocene-Quaternary volcanic associations with a more basic and medium composition, cover the entire Lesser Caucasus, form vast volcanic plateaus and large volcanoes and occupies about 5000 km2 of surface area. These volcanic associations in the eastern area of Armenia and Azerbaijan within the differentiated form a continuous trachybasalt-basaltic trachyandesite-trachyandesite-trachyte series and cover Geghama, Vardenis and Syunik, Karabakh, Kelbajar highlands. In Armenia Kaphan zone has recently been formed basanite-tephrite-picro-bazaltic series.
\nThis chapter used data from the Neogene-Quaternary volcanism of the Azerbaijan part of Lesser Caucasus based on the authors. Chemical analysis of rocks was determined by the Institute of Geology of Azerbaijan Academy of Sciences X-ray fluorescence method. Rare and rare-earth elements are in Geological and Geochemical Bronitsk expeditions in Russia. Microprobe analysis of mineral composition written in Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow and Russian Geological Research Institute (VSEGEI), St. Petersburg. Measuring the isotopic composition of He performed in Geochemistry Institute of Academy of Sciences Russia, also used the data Sr and Nd [17, 18] performed on the material of Armenia and Georgia.
\nThe rocks of the andesite-dacite-rhyolite associations form thin flows and subvolcanic body in the form of dikes, extrusions and other recent distributed along the Tartar, Lachin-Bashlybel, Istibulag-Agyatak deep faults (Figure 2). Texture of porphyritic rocks, with high (25–30%) content of phenocrysts. In andesites, trachyandesites, latites phenocrysts are plagioclase, feldspar, clinopyroxene, and amphibole. In the more acidic varieties (dacites, rhyodacites, rhyolites their varieties), the proportion of dark-colored minerals decreases, leucocratic minerals also increased to 10%, there is quartz, biotite. The bulk of these rocks have hyalopilitic, glass texture (Figure 3).
\nPhotomicrographs of the thin sections of rocks of the andesite-dacite-rhyolite association. Plagioclase and hornblende phenocrysts in andesites and trachyandesites, ×80, with an analyzer; zoned-plagioclase and quartz phenocrysts in dacites, ×80, with an analyzer.
The compositions of plagioclase in the rocks have An30–40\n and are paragenesis with amphibole, biotite, clinopyroxene, and feldspar. Plagioclases second generation are relatively acid composition (An20–30\n), crystallized on its own effusive stage. Feldspar in the rocks present in quartz latites, trachyandesites. The composition ranges from Or55.3Ab26.3An0.3\n to Or73.4Ab44.0 An3.4\n (Table 1). They belong to an intermediate structural-optical type and are monoclinic, but not homogeneous and presented albite and orthoclase phases. Composition of clinopyroxene varies from medium to acid rocks and the proportion of the component increases Fs: Wo37.1–41.4 En43.9–40.0 Fs19–19.6\n (for andesites), Wo40.0–44.4 En45.4–44.8 Fs15.2–11.2\n (for quartz latites), and Wo41.7–42.7 En36.3–34.6 Fs22–22.7\n (for dacites) (Table 1) [13, 19]. The compositions of amphiboles in the classification of B.E. Like [20] are responsible chermakit-, pargasit- and magnesian hornblendes.
\nComponent | \n1 | \n2 | \n3 | \n4 | \n5 | \n6 | \n7 | \n8 | \n9 | \n10 | \n|||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2\n | \n53.51 | \n50.60 | \n52.28 | \n49.54 | \n48.93 | \n39.57 | \n42.97 | \n42.17 | \n39.32 | \n40.71 | \n|||
TiO2\n | \n0.54 | \n0.27 | \n0.64 | \n0.69 | \n1.52 | \n0.08 | \n2.94 | \n3.00 | \n\n | 2.91 | \n4.09 | \n||
Al2O3\n | \n3.92 | \n2.34 | \n5.00 | \n4.10 | \n6.98 | \n— | \n11.56 | \n10.79 | \n13.55 | \n13.87 | \n|||
FeO* | \n8.46 | \n12.12 | \n7.63 | \n7.53 | \n7.96 | \n14.94 | \n12.08 | \n14.29 | \n12.77 | \n11.51 | \n|||
MnO | \n0.22 | \n0.25 | \n0.13 | \n0.18 | \n0.13 | \n0.28 | \n0.14 | \n0.25 | \n\n | 0.16 | \n0.10 | \n||
MgO | \n14.63 | \n12.81 | \n15.09 | \n15.46 | \n13.72 | \n44.86 | \n13.11 | \n13.06 | \n12.91 | \n14.44 | \n|||
CaO | \n18.50 | \n20.43 | \n18.65 | \n19.94 | \n19.97 | \n0.22 | \n9.94 | \n10.68 | \n12.06 | \n11.70 | \n|||
Na2O | \n0.52 | \n0.47 | \n0.56 | \n0.64 | \n0.53 | \n— | \n2.48 | \n2.76 | \n\n | 2.88 | \n2.63 | \n||
K2O | \n— | \n— | \n— | \n0.04 | \n0.04 | \n— | \n0.92 | \n0.92 | \n\n | 1.42 | \n1.49 | \n||
Total | \n100.27 | \n99.65 | \n100.0 | \n98.11 | \n99.58 | \n99.95 | \n96.14 | \n97.92 | \n97.99 | \n100.54 | \n|||
Component | \n11 | \n12 | \n13 | \n14 | \n15 | \n16 | \n|||||||
SiO2\n | \n58.47 | \n64.59 | \n\n | 62.87 | \n57.06 | \n52.52 | \n\n | 51.39 | \n|||||
Al2O3\n | \n25.23 | \n19.48 | \n\n | 24.02 | \n26.82 | \n28.94 | \n\n | 30.62 | \n|||||
FeO* | \n0.42 | \n0.09 | \n\n | 0.22 | \n0.36 | \n0.43 | \n\n | 0.75 | \n|||||
CaO | \n7.16 | \n0.17 | \n\n | 5.55 | \n8.68 | \n13.17 | \n\n | 12.99 | \n|||||
Na2O | \n7.61 | \n4.12 | \n\n | 6.96 | \n6.14 | \n4.39 | \n\n | 3.79 | \n|||||
K2O | \n0.63 | \n11.22 | \n\n | 1.02 | \n0.87 | \n0.12 | \n\n | 0.23 | \n|||||
Total | \n99.52 | \n99.66 | \n100.63 | \n99.93 | \n99.52 | \n99.77 | \n|||||||
Component | \n17 | \n18 | \n19 | \n20 | \n21 | \n22 | \n|||||||
TiO2\n | \n1.10 | \n4.14 | \n\n | 5.49 | \n6.10 | \n5.41 | \n\n | 11.10 | \n|||||
Al2O3\n | \n0.60 | \n2.71 | \n\n | 3.04 | \n4.55 | \n4.23 | \n\n | 5.10 | \n|||||
Fe2O3\n | \n— | \n\n | 65.89 | \n\n | 53.62 | \n53.08 | \n60.33 | \n\n | 43.22 | \n||||
FeO | \n91.0 | \n\n | 14.02 | \n\n | 28.39 | \n19.60 | \n15.68 | \n\n | 17.76 | \n||||
MgO | \n4.0 | \n\n | 2.95 | \n\n | 1.99 | \n5.97 | \n7.69 | \n\n | 4.06 | \n||||
Total | \n96.70 | \n89.71 | \n82.53 | \n89.30 | \n93.34 | \n81.24 | \n
Chemical composition (wt %) of (1–5) clinopyroxene, (6) olivine, (7–10) amphibole, (11–16) plagioclase, and (17–22) magnetite from the late Cenozoic volcanic rocks [13, 19].
Note: Rocks: Andesite-dacite-rhyolite association: 11, 17 – rhyodacite; 1, 7, 12, 18 – dacite; 2, 8, 13, 19 – andesite; trachybasalt-trachyandesites association: 3, 9, 14, 20 – basaltic trachyandesite; 4, 10, 15, 21 – trachybasalt; 5, 6, 16, 22 – alkaline olivine basalt.
Analyses of rock-forming minerals were carried out at the analytical laboratories of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow State University; Moscow and Russian Geological Research Institute (VSEGEI), St. Petersburg on a Camebax microprobe. Magnetite was analyzed by conventional chemical techniques at Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Analysts A.I. Tsepin, V.K. Garanin, and V.S. Pavshukov.
\nThe rocks of the rhyolite association of petrographic composition and structural and textural features are divided into crystallized – rhyolites, trachyrhyolites, rhyodacites and glass – obsidians and perlites. Phenocrysts crystallized rocks are plagioclase (An30–40\n), quartz, less feldspar, biotite and hornblende. Number of phenocrysts is 5–10%.
\nThe rocks of the trachybasalt-trachyandesites associations form a continuous series of differentiated trachybasalts to trachyandesites, sometimes comes to trachytes. Moderately alkaline olivine basalts are the most mafic rocks of the studied association. They are porphyritic and aphyric and contain phenocrysts of olivine, clinopyroxene, plagioclase, and amphibole. In places, sanidine megacrysts occur. The rock matrix is of pilotaxitic, hyalopilitic, and microlitic textures (Figure 4).
\nPhotomicrographs of the thin sections of rocks of the trachybasalt-trachyandesite association. Trachyandesite (one can see a glomeroporphyritic cluster of clinopyroxenes and opacitized hornblende, plagioclase, and clinopyroxene phenocrysts), ×80, with an analyzer; moderately alkaline olivine basalt with olivine, clinopyroxene, and plagioclase phenocsrysts, ×80, with an analyzer; crushed olivine in trachybasalt, ×80, with an analyzer; trachydolerite, ×80, with an analyzer.
Clinopyroxene rock associations more calcium and composition correspond to augite and salite. Plagioclases have relatively basic composition (An63–75) (Table 1). Olivine in the mafic rocks is more magnesian (Fo83–87) and corresponds to forsterite-chrysolite (Table 1). Olivine in trachyandesites and basaltic trachyandesites is more ferruginous (Fo61–70).
\nThe rocks occur as idiomorphic porphyritic crystals of apatite precipitates; the number of which reaches 0.5–1.25%, and fluoro-apatite. Often present as inclusions in phenocrysts of clinopyroxene and hornblende, indicating that the earlier crystallization.
\nIn the rocks of andesite-dacite-rhyolite and trachybasalt-trachyandesites associations there are two types of inclusions: 1-inclusion, representing cumulates parent rocks, (pyroxenites, gabbro, hornblendites, etc.), 2-crustal inclusion - xenoliths of country rocks, trapped melts of crustal rocks (gabbro-amphibolites, quartz-diorite, quartz-feldspar rocks, etc.). Typical mantle inclusions in rocks associations are absent. Along with the rocks in the rocks of these associations are marked megacrystes sanidine, clinopyroxene, amphibole, phlogopite.
\nThe association rocks form a continuous series from andesites to rhyolites by SiO2 contents (SiO2 > 60%) (Table 2), and the ratio (Na2O + K2O)-SiO2 [21] are the rocks of normal alkalinity (Figure 5) (some rocks – mid alkaline) in the diagram K2O-SiO2 [22] most of the samples falls within the high K calc-alkaline series, the diagram FeO */ MgO-SiO2 composition points are located in the field calc-alkaline series.
\n\n | 1 | \n2 | \n3 | \n4 | \n5 | \n6 | \n7 | \n8 | \n9 | \n10 | \n11 | \n12 | \n13 | \n14 | \n15 | \n16 | \n|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | \n40 | \n8 | \n15 | \n100 | \n190 | \n194 | \n106 | \n74 | \n96 | \n12/13 | \n6/174 | \nOA 409 | \nMA 19 | \n105 | \n129 | \n132 | \n|
SiO2\n | \n61.09 | \n62.1 | \n62.32 | \n62.99 | \n63.75 | \n63.89 | \n64.81 | \n65.99 | \n68.19 | \n73.99 | \n75.51 | \n76.75 | \n77.01 | \n51.23 | \n48.35 | \n48.88 | \n|
TiO2\n | \n0.59 | \n0.49 | \n0.58 | \n0.6 | \n0.81 | \n0.75 | \n0.6 | \n0.52 | \n0.27 | \n0.01 | \n0.01 | \n0.08 | \n0.09 | \n1.39 | \n1.2 | \n1.57 | \n|
Al2O3\n | \n15.7 | \n15.41 | \n16.9 | \n16.6 | \n14.81 | \n17.15 | \n17.03 | \n16.41 | \n15.77 | \n13.48 | \n13.79 | \n12.85 | \n12.67 | \n16.49 | \n15.77 | \n15.86 | \n|
Fe2O3\n | \n3.47 | \n2.5 | \n3.91 | \n3.28 | \n3.91 | \n4.94 | \n3.38 | \n3.59 | \n1.69 | \n1.2 | \n0.55 | \nn.d. | \nn.d. | \n7.74 | \n6.38 | \n5.61 | \n|
FeO | \n1.29 | \n0.94 | \n1.01 | \n1.29 | \n2.46 | \n0.43 | \n0.73 | \n0.28 | \n0.43 | \n1.78 | \n0.71 | \n0.66 | \n0.71 | \n0.86 | \n2.16 | \n2.73 | \n|
MnO | \n0.06 | \n0.06 | \n0.04 | \n0.09 | \n0.1 | \n0.09 | \n0.03 | \n0.09 | \n0.04 | \n0.01 | \n0.01 | \n0.08 | \n0.06 | \n0.13 | \n0.15 | \n0.14 | \n|
MgO | \n1.85 | \n1.77 | \n1.95 | \n1.9 | \n3.18 | \n1.86 | \n1.43 | \n1.31 | \n0.05 | \n0.14 | \n0.36 | \n0.11 | \n0.05 | \n6.04 | \n6.74 | \n6.29 | \n|
CaO | \n4.85 | \n5.34 | \n4.24 | \n4.32 | \n6.13 | \n5.25 | \n3.97 | \n3.19 | \n1.32 | \n0.53 | \n1.9 | \n0.44 | \n0.47 | \n8.33 | \n9.8 | \n9.09 | \n|
Na2O | \n4.19 | \n3.93 | \n4.07 | \n4.08 | \n3.37 | \n3.3 | \n4.27 | \n4.05 | \n4.57 | \n3.27 | \n2.92 | \n4.44 | \n4.06 | \n4.22 | \n3.61 | \n4 | \n|
K2O | \n3.54 | \n2.73 | \n2.95 | \n3.08 | \n2.37 | \n1.87 | \n3.47 | \n2.55 | \n4.14 | \n4.87 | \n3.96 | \n4.59 | \n4.86 | \n1.42 | \n1.96 | \n1.92 | \n|
P2O5\n | \n0.41 | \n0.38 | \n0.28 | \n0.3 | \n0.28 | \n0.35 | \n0.33 | \n0.23 | \n0.06 | \n0.01 | \n0.01 | \nn.d. | \n0.01 | \n0.65 | \n1.03 | \n1.18 | \n|
LOI | \n0.81 | \n1.96 | \n0.54 | \n0.46 | \n0.13 | \n0.83 | \n0.47 | \n0.96 | \n0.27 | \n0.38 | \n0.54 | \nn.d. | \nn.d. | \n0.7 | \n1.5 | \n0.93 | \n|
Total | \n98.63 | \n99.31 | \n99.08 | \n98.1 | \n98.3 | \n99.21 | \n100.72 | \n98.15 | \n99.23 | \n99.67 | \n100.27 | \n100 | \n99.99 | \n99.2 | \n98.65 | \n98.1 | \n|
Rb | \n83 | \n66 | \n63 | \n74 | \n42 | \n51 | \n86 | \n72 | \n97 | \n160 | \n180 | \n209 | \n174 | \n23 | \n34 | \n32 | \n|
Li | \n20 | \n14 | \n19 | \n19 | \n19 | \n8 | \n12 | \n14 | \n13 | \n67 | \n70 | \nn.d. | \nn.d. | \n9 | \n9 | \n9 | \n|
Sr | \n1105 | \n935 | \n935 | \n850 | \n520 | \n860 | \n935 | \n833 | \n420 | \n150 | \n100 | \n10 | \n16 | \n1190 | \n1700 | \n1700 | \n|
Ba | \n1250 | \n640 | \n650 | \n690 | \n400 | \n850 | \n690 | \n760 | \n830 | \n100 | \n100 | \n10 | \n26 | \n748 | \n780 | \n1060 | \n|
Cr | \n120 | \n180 | \n180 | \n180 | \nn.d. | \nn.d. | \n180 | \n100 | \nn.d. | \n30 | \nn.d. | \n3.13 | \n2.75 | \n346 | \n412 | \n270 | \n|
V | \n170 | \n40 | \n60 | \n60 | \n150 | \n110 | \n40 | \n100 | \n40 | \nn.d. | \n20 | \nn.d. | \nn.d. | \n170 | \n170 | \n210 | \n|
Ni | \n24 | \n22 | \n30 | \n31 | \n69 | \n25 | \n32 | \n25 | \n15 | \n20 | \n3 | \nn.d. | \nn.d. | \n115 | \n113 | \n110 | \n|
Co | \n20 | \n30 | \n35 | \n16 | \n34 | \n24 | \n3 | \n15 | \n9 | \n5 | \n3 | \n0.1 | \n0.2 | \n31 | \n29 | \n50 | \n|
Zr | \n178 | \n150 | \n160 | \n150 | \n130 | \n160 | \n170 | \n150 | \n240 | \n100 | \n80 | \n83 | \n86 | \nn.d. | \n230 | \n240 | \n|
Nb | \n12 | \n10 | \n11 | \n10 | \n8 | \n11 | \n14 | \n14 | \n17 | \n15 | \n10 | \n37 | \n34 | \nn.d. | \n20 | \n18 | \n|
Ta | \n0.84 | \n0.82 | \n0.72 | \n0.94 | \n0.46 | \n0.77 | \n1.4 | \n1.1 | \n1.2 | \nn.d. | \nn.d. | \n3.11 | \n2.71 | \n0.85 | \n0.92 | \n0.92 | \n|
Hf | \n4.8 | \n4 | \n3.6 | \n3.3 | \n3.8 | \n4.3 | \n4.7 | \n4.2 | \n6 | \nn.d. | \nn.d. | \n3.87 | \n3.51 | \n4.7 | \n4.6 | \n5.2 | \n|
Th | \n11 | \n11 | \n9.3 | \n10 | \nn.d. | \n10 | \n18 | \n16 | \n5.2 | \n25 | \n31 | \n37.3 | \n34.5 | \n3.2 | \n2.6 | \n2.6 | \n|
U | \n2.7 | \n4.7 | \n5.7 | \n4.4 | \n4 | \n4 | \n5.4 | \n3.3 | \n14 | \n9.3 | \n12 | \n12.1 | \n10.2 | \n4 | \n4 | \n4 | \n|
La | \n45 | \n37 | \n43 | \n36 | \n23 | \n47 | \n47 | \n38 | \n47 | \n33.5 | \n36 | \n23.5 | \n30.7 | \n40 | \n65 | \n63 | \n|
Ce | \n88 | \n73 | \n77 | \n76 | \n57 | \n91 | \n87 | \n74 | \n78 | \n60 | \n59 | \n41.4 | \n53 | \n81 | \n130 | \n130 | \n|
Sm | \n4.2 | \n3.6 | \n3.9 | \n4.2 | \n7.5 | \n5.1 | \n3.6 | \n4.4 | \n5 | \n3 | \n2.8 | \n2.42 | \n2.51 | \n5.3 | \n9.5 | \n9.8 | \n|
Eu | \n1.2 | \n1 | \n1.2 | \n1 | \n1.6 | \n1.6 | \n1.1 | \n0.95 | \n0.79 | \n0.2 | \n0.65 | \n0.1 | \n0.16 | \n1.7 | \n2.5 | \n2.5 | \n|
Tb | \n0.67 | \n0.43 | \n0.56 | \n0.58 | \n1.1 | \n0.9 | \n0.44 | \n0.42 | \n0.57 | \n0.6 | \n0.68 | \n0.15 | \n0.13 | \n0.88 | \n1.5 | \n1.3 | \n|
Yb | \n1.2 | \n1.3 | \n1.4 | \n1.5 | \n3.6 | \n1.8 | \n1.3 | \n1.3 | \n1.4 | \n2.3 | \n2.3 | \n1.3 | \n1.32 | \n2.4 | \n2.7 | \n2.4 | \n|
Lu | \n0.19 | \n0.18 | \n0.2 | \n0.2 | \n0.69 | \n0.23 | \n0.17 | \n0.17 | \n0.18 | \n0.32 | \n0.42 | \n0.24 | \n0.22 | \n0.42 | \n0.39 | \n0.33 | \n|
Y | \n36 | \n16 | \n11 | \n10 | \n11 | \n16 | \nn.d. | \n11 | \n29 | \n10 | \n10 | \n11 | \n11 | \n31 | \n30 | \n34 | \n
\n | 17 | \n18 | \n19 | \n20 | \n21 | \n22 | \n23 | \n24 | \n25 | \n26 | \n27 | \n28 | \n29 | \n30 | \n31 | \n32 | \n33 | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | \n134 | \n21 | \n57 | \n208 | \n53 | \n87 | \n109 | \n120 | \n167 | \n174 | \n13 | \n25 | \n33 | \n143 | \n160 | \n185 | \n73/P | \n
SiO2\n | \n48.05 | \n51.84 | \n49.42 | \n52.97 | \n53.32 | \n53.05 | \n54.92 | \n55.67 | \n54.31 | \n54.01 | \n57.66 | \n58.52 | \n59.85 | \n57.08 | \n59.28 | \n57.85 | \n67.8 | \n
TiO2\n | \n1.45 | \n1.36 | \n1.44 | \n1.3 | \n0.97 | \n1.14 | \n1.14 | \n1.08 | \n1.18 | \n1.5 | \n0.79 | \n0.82 | \n0.8 | \n1.24 | \n1.24 | \n0.75 | \n0.48 | \n
Al2O3\n | \n15.53 | \n16.64 | \n16.27 | \n16.46 | \n17.39 | \n17.46 | \n16.38 | \n17.13 | \n16.82 | \n17.49 | \n16.41 | \n16.23 | \n16.57 | \n17.25 | \n16.55 | \n17.7 | \n15.7 | \n
Fe2O3\n | \n3.55 | \n6.11 | \n7.16 | \n7.04 | \n6.11 | \n5.66 | \n4.54 | \n6.59 | \n5.02 | \n5.79 | \n4.09 | \n4.8 | \n4.88 | \n4.62 | \n4.95 | \n3.79 | \nn.d. | \n
FeO | \n4.46 | \n1.01 | \n0.72 | \n0.3 | \n0.57 | \n1.65 | \n2.59 | \n0.43 | \n2.17 | \n2.46 | \n1.87 | \n0.87 | \n0.5 | \n3.09 | \n1.3 | \n1.88 | \n3 | \n
MnO | \n0.13 | \n0.11 | \n0.12 | \n0.12 | \n0.1 | \n0.13 | \n0.1 | \n0.12 | \n0.12 | \n0.12 | \n0.05 | \n0.09 | \n0.11 | \n0.11 | \n0.1 | \n0.13 | \n0.05 | \n
MgO | \n6.81 | \n4.42 | \n5.27 | \n3.65 | \n3.81 | \n4.12 | \n3.76 | \n4.66 | \n3.84 | \n3.37 | \n3.18 | \n3.23 | \n2.67 | \n2.29 | \n2.79 | \n2.77 | \n1.1 | \n
CaO | \n9.19 | \n8.58 | \n9.1 | \n7 | \n7.17 | \n6.71 | \n6.88 | \n6.24 | \n6.66 | \n6.8 | \n6.25 | \n6.24 | \n5.61 | \n6.09 | \n5.82 | \n6.12 | \n2.2 | \n
Na2O | \n4.18 | \n4.14 | \n3.22 | \n4.39 | \n5.03 | \n4.27 | \n0.7 | \n4.22 | \n4.78 | \n4.53 | \n3.85 | \n4 | \n4.38 | \n4.53 | \n4.65 | \n4.53 | \n5.5 | \n
K2O | \n1.73 | \n2.92 | \n2.48 | \n3.16 | \n2.8 | \n2.77 | \n2.17 | \n2.6 | \n2.96 | \n3.25 | \n3.01 | \n2.8 | \n3.11 | \n2.87 | \n3.46 | \n2.89 | \n4 | \n
P2O5\n | \n1.13 | \n1.31 | \n1.04 | \n0.93 | \n0.82 | \n0.83 | \n0.94 | \n0.58 | \n0.75 | \n0.94 | \n0.57 | \n0.68 | \n0.79 | \n0.68 | \n0.76 | \n0.44 | \n0.35 | \n
LOI | \n1.79 | \n0.61 | \n1.9 | \n1.1 | \n0.14 | \n0.35 | \n0.85 | \n0.41 | \n0.19 | \n0.44 | \n0.64 | \n0.4 | \n0.35 | \n0.27 | \n0.2 | \n1.15 | \n0.01 | \n
Total | \n98 | \n99.05 | \n98.14 | \n98.42 | \n98.23 | \n98.14 | \n98.47 | \n99.07 | \n98.8 | \n100.7 | \n98.32 | \n98.68 | \n99.72 | \n100.12 | \n101.1 | \n100 | \n100.19 | \n
Rb | \n34 | \n60 | \n31 | \n60 | \n37 | \n36 | \n42 | \n54 | \n70 | \n43 | \n55 | \n49 | \n66 | \n40 | \n56 | \n48 | \n70 | \n
Li | \n9 | \n14 | \n9 | \n13 | \n12 | \n12 | \n13 | \n14 | \n14 | \n13 | \n10 | \n12 | \n16 | \n14 | \n17 | \n15 | \n20 | \n
Sr | \n1700 | \n2635 | \n2550 | \n1900 | \n1615 | \n1615 | \n1445 | \n1020 | \n1275 | \n1785 | \n1360 | \n1275 | \n1615 | \n1647 | \n1360 | \n790 | \n1356 | \n
Ba | \n990 | \n1300 | \n1170 | \n1170 | \n1140 | \n1000 | \n1080 | \n680 | \n1100 | \n1770 | \n830 | \n1060 | \n900 | \n900 | \n1016 | \n930 | \n1100 | \n
Cr | \n450 | \n170 | \n220 | \nn.d. | \n157 | \n200 | \n224 | \n280 | \nn.d. | \nn.d. | \n160 | \n188 | \n100 | \nn.d. | \nn.d. | \nn.d. | \n140 | \n
V | \n260 | \n140 | \n200 | \n150 | \n200 | \n200 | \n150 | \n170 | \n240 | \n150 | \n80 | \n130 | \n100 | \n140 | \n140 | \n110 | \n70 | \n
Ni | \n100 | \n43 | \n64 | \n45 | \n46 | \n48 | \n34 | \n65 | \n40 | \n39 | \n50 | \n54 | \n50 | \n33 | \n29 | \n31 | \n13.5 | \n
Co | \n24 | \n26 | \n50 | \n45 | \n19 | \n50 | \n22 | \n45 | \n55 | \n35 | \n45 | \n16 | \n20 | \n40 | \n19 | \n13 | \n11 | \n
Zr | \n250 | \n200 | \n220 | \n250 | \n180 | \n210 | \n250 | \n190 | \n250 | \n250 | \n190 | \n180 | \n220 | \n207 | \n200 | \n160 | \n303 | \n
Nb | \n20 | \n28 | \n27 | \n23 | \n10 | \n21 | \n18 | \n19 | \n23 | \n22 | \n18 | \n13 | \n18 | \n21 | \n23 | \n15 | \n33 | \n
Ta | \n0.96 | \n1.2 | \n1.7 | \n1.5 | \n0.8 | \n0.99 | \nn.d. | \n1 | \n1.4 | \n1.3 | \n0.81 | \n0.87 | \n1 | \n0.98 | \n1.4 | \n0.88 | \n1.43 | \n
Hf | \n5.1 | \n4.5 | \n4.6 | \n5.2 | \n4.2 | \n4.7 | \nn.d. | \n4.4 | \n4.8 | \n5 | \n4.8 | \n4.5 | \n5.3 | \n4.7 | \n4.7 | \n4.3 | \n6.6 | \n
Th | \n4.9 | \n5.2 | \n7.4 | \n8.1 | \n6.1 | \n5.3 | \nn.d. | \n5.6 | \n6.4 | \n6.5 | \n6.3 | \n6.5 | \n8.8 | \n5.6 | \n9.5 | \n9.7 | \n3.2 | \n
U | \n4 | \n4 | \n4 | \n3 | \n4 | \n4 | \nn.d. | \n4 | \n3 | \n4 | \n3.6 | \n6.3 | \n4 | \n4 | \n4 | \n4 | \n12.2 | \n
La | \n62 | \n76 | \n77 | \n77 | \n59 | \n66 | \n69 | \n52 | \n96 | \n80 | \n60 | \n60 | \n70 | \n59 | \n67 | \n48 | \n72 | \n
Ce | \n120 | \n150 | \n160 | \n160 | \n120 | \n130 | \n130 | \n98 | \n120 | \n160 | \n120 | \n120 | \n120 | \n120 | \n140 | \n88 | \n115 | \n
Sm | \n9.1 | \n10 | \n11 | \n9.5 | \n6.3 | \n7.4 | \n7.4 | \n5.9 | \n7.4 | \n9.8 | \n5.7 | \n5.3 | \n5.8 | \n7.2 | \n8.6 | \n5.7 | \n6 | \n
Eu | \n2.4 | \n2.5 | \n2.8 | \n2.5 | \n1.6 | \n1.8 | \n2 | \n1.7 | \n2.2 | \n2.7 | \n1.6 | \n1.7 | \n1.7 | \n2 | \n2 | \n1.4 | \n1.5 | \n
Tb | \n1.1 | \n1 | \n1.3 | \n1.3 | \n1 | \n1.4 | \n1.1 | \n0.9 | \n1.1 | \n0.95 | \n1.1 | \n0.94 | \n0.85 | \n1.8 | \n1.2 | \n0.59 | \n1.12 | \n
Yb | \n2.2 | \n1.8 | \n1.9 | \n2.3 | \n1.8 | \n2.1 | \n2 | \n2 | \n2.2 | \n2 | \n1.8 | \n1.9 | \n2 | \n2.2 | \n2.1 | \n1.3 | \n2.1 | \n
Lu | \n0.31 | \n0.22 | \n0.34 | \n0.34 | \n0.25 | \n0.28 | \n0.22 | \n0.39 | \n0.31 | \n0.27 | \n0.31 | \n0.3 | \n0.26 | \n0.25 | \n0.24 | \n0.24 | \n0.25 | \n
Y | \n29 | \n16 | \n23 | \n23 | \n20 | \n24 | \n21 | \n19 | \n27 | \n25 | \n14 | \n15 | \n19 | \n16 | \n19 | \n15 | \n10 | \n
Major (wt %) and trace-element (ppm) composition of a representative rocks of the Late Cenozoic associations in the Lesser Caucasus (Azerbaijan).
1–9 – andesite-dacite-rhyolite; 10–14 – rhyolitic association; 15–33 – trachybasalt-trachyandesite associations.
Total alkali vs. -SiO2 (TAS) classification diagrams [21] of Late Cenozoic volcanic associations of the Lesser Caucasus. In. 1 – andesite-dacite-rhyolite; 2 – rhyolitic association; 3 – trachybasalt-trachyandesite associations.
The rocks of this association are characterized by different contents of major elements. In volcanic rocks with increasing SiO2 content decreases TiO2, Al2O3, Fe2O3, MgO, CaO, and P2O5, due to fractionation of titanomagnetite, clinopyroxene, plagioclase, and possibly apatite. Weak rates increased content of K2O. Na2O is distributed evenly, but also an increase in the number of its slower rate. The reason for this pattern may be a potassium feldspar in the more acidic varieties of rocks.
\nRocks associations, in contrast to the previous rock associations, are characterized by ultra-structure and high alkalinity. There is approximately equal ratio of Na2O and K2O and low contents of CaO, MgO, and FeO (Table 2). In the normative composition of the rocks are calculated high content of salic components of quartz, feldspar, and corundum.
\nFor silica rock associations form a continuous series from basalts to andesites (Table 2) and belong to the mildly alkaline series (Figure 5). In the diagram K2O-SiO2 composition points fall in the region high-K calc-alkaline and shoshonite series. In rock associations in the range of “trachybasalt-basaltic trachyandesite” with increasing silica content of TiO2, MgO, Fe2O3, CaO, and P2O5 is reduced to a large extent, the contents of the same Al2O3, Na2O decreases the slow pace. In the transition to trachyandesites content of these elements varies in a narrow range. The maximum content of MgO is observed in trachybasalts and alkaline olivine basalts and varies from 3.97 to 6.81% (Table 2), and the coefficient of Mg≠ (M) from 56 to 71. In subsequent decrease differentiates the content of MgO and “M.”
\nIn the normative part of some mildly alkali olivine basalts and trachybasalts calculated normative nepheline and olivine, and in more acidic differentiates calculated hypersthene and quartz. Normative and mineral composition reflects the characteristic feature of the association: transition nepheline-normative, olivine containing mildly alkaline rocks to hypersthene-normative, and sometimes quartz-bearing alkaline rocks.
\nThe concentrations of rare and rare earth elements are in rocks of andesite-dacite-rhyolite association as a whole regularly changing. Thus, the concentration of lithophile elements increases from andesite to rhyolites (Rb from 44 to 128 ppm, Th 6 to 24 ppm) (Table 2). From the coherent elements in increasing the acidity of rocks in general, the content of V, Cr, Co, and Ni decreases. These elements are the same Sr form of silica negative dependence. Positive, but more vague correlation with silica form the content of Y and highly charged elements (HFSE – Nb, Zr, Hf). The above features show the leading role of crystallization differentiation in the association of rocks. As shown Dilek et al. [2] comparison of impurity elements rocks andesite-dacite-rhyolite association and the primitive mantle [23] shows the reduced content of Nb and Ta and elevated levels of lung large ionic lithophile elements (Rb, Ba, Th, La, Ce, and Sr) (LILE). Thus, in relation to the primitive mantle, there is a maximum Rb, Ba, Th, La, Ce, Sr, and negative Ta-Nb anomalies (Figure 6).
\nNormalized to the primitive mantle [23] spider diagrams for the andesite-dacite-rhyolite association.
It is conceivable that this feature brings these rocks with subduction volcanic associations. From the same type of rocks of andesite-dacite-rhyolite association rocks rhyolite associations differ depleted femic components, a lower content of iron group elements, highly charged elements, and enrichment of ore elements in the earth crust, as well as lithophile elements (Pb, Th, U). The distribution of trace elements normalized to primitive mantle for the rhyolite showed that, like the rock of the previous association, rhyolite is enriched in LILE and depleted in highly charged elements. However, the nature of the schedule of rhyolites differs from the schedule of rocks of the previous association and is similar to the composition of the rocks of the earth’s crust, which indicates a different genesis of the rocks of this association. In the rocks, trachybasalt-trachyandesite association occurs in about the same pattern as in the rocks of andesite-dacite-rhyolite association, but more clearly. Rocks of this association are inherent to the high content of Rb, Ba, La, Sr, as well as high values of La/Yb, La/Sm relations. Compared with the composition of primitive mantle [23], alkaline basalts are enriched in most LILE and some highly charged elements: Rb, Ba, Th, La, Ce, Sr, Zr (Figure 7).
\nNormalized to the primitive mantle [23] spider diagrams for the trachybasalt-trachyandesite association.
Geochemical data for this association show that the diversity of species association is due mainly to fractional crystallization. This is evidenced by: (1) with increasing SiO2 content decreases compatible elements (Cr, Ni) and increasing concentrations of incompatible elements (Rb, Th, U) due to fractionation of olivine and clinopyroxene, and (2) revealed clear positive correlation connection LREE with phosphorus, calcium and fluoride, due to the concentration of light rare earth elements in apatite (the distribution coefficients of REE for apatite is 10–100). These data indicate that fractional crystallization is particularly important for trachybasalts and basaltic trachyandesites. In the process of differentiation of the content of trace elements naturally varies depending on the composition of the melt, its temperature, as well as the composition and crystal-chemical properties of rock-forming minerals. Content and types of spectra of these elements of the rock trachybasalt-trachyandesite associations of the Lesser Caucasus are close to the rocks of oceanic islands and the rift zones formed from the enriched mantle source. Similarity of plots, the distribution of elements on the primitive mantle may indicate comagmatic members of the association.
\nFor the Neogene-Quaternary rocks of the Lesser Caucasus, we have obtained for the seven samples of volcanic rocks and their nodules isotopic compositions of He (Table 2). The highest ratio of 3He/4He (3He/4He = 0.93 × 10−5) is characteristic for alkali olivine basalts, which brings them to the mantle derivatives. Approximately, the same value is obtained for amphibole megacrysts from trachyandesite approaching the isotope ratios of primary helium mantle reservoirs (1–5 × 10−5) [24] and to the gases carbon sources, the most active areas associated with manifestations of modern volcanism of the Lesser Caucasus (3He/4He = 10−5) [24]. A fractional difference between the rocks of trachybasalt-trachyandesite association, their nodules, as well as andesite of andesite-dacite-rhyolite association has lower values of helium isotopes (Table 3). These data indicate that differentiate the first association, incorporation, and andesite second association crystallized in the earth crust.
\nNo samples | \nRocks and minerals | \n\n3He/4He·10−6\n | \n\n4He·10−6\n | \n
---|---|---|---|
132 | \nAlkaline olivine basalte | \n9.29 (±1.46) | \n0.604 (±0.006) | \n
21 | \nTrachybasalte | \n1.76 (±0.27) | \n2.70 (±0.03) | \n
13 | \nTrachyandesite | \n1.05 (±0.18) | \n1.54 (±0.02) | \n
15 | \nAndesite | \n0.924 (±0.162) | \n2.36 (±0.02) | \n
Nodules | \n\n | \n | |
25-b | \nPyroxsenites | \n3.33 (±0.49) | \n3.43 (±0.03) | \n
13-m | \nMegacryste amphybole | \n9.39 (±1.42) | \n2.90 (±0.03) | \n
Isotopic composition He in Late Cenozoic rocks of the Lesser Caucasus.
Unfortunately, Sr and Nd isotope data for Late Cenozoic volcanics in the Azerbaijani part of the Lesser Caucasus are absent. There is anecdotal evidence about the Armenian and Georgian part of the Lesser Caucasus. Chernyshev and his co-workers [17, 18] determined the absolute age of alkali basalts Javakheti Plateau; they proposed a new version of the geochronological scale of the Neogene-Quaternary magmatism of the Caucasus. Dan precises absolute age of rhyolite volcanism for different volcanic highlands of the Lesser Caucasus [16]. Data above authors argue that the dominant role in the petrogenesis of lavas played by processes of fractional crystallization and contamination of the parent melts geochemically distinct from them, crustal matter [17]. A sour rhyolite volcanism developed in the context of tectonic and thermal activity of mantle lesions and relationship with the processes of local anatexis in the lower crust zones of metamorphism [16]. Our petrology and geochemistry data confirm these findings.
\nThis section discusses the nature of the mantle substrate region under study as well as the origin of each of volcanic associations.
\nThese isotopic compositions of Sr and Nd for late Cenozoic volcanic rocks of the Lesser Caucasus show that the primary melts to produce a mantle sources. Acid rock has mostly crustal origin. There have been offset mantle and crustal magmas. In general, this assumption is acceptable for the Azerbaijan part of the region.
\nA common feature for most of the Neogene-Quaternary volcanic rocks of the Lesser Caucasus is a relative enrichment in light REE and large lithophile elements (Rb, Ba), and weak depletion for heavy rare earth elements, as well as Nb, Ta, Hf [1, 2, 3, 7, 8, 13, 18, 25, 26, 27, 28, 29, 30, 31, 32, 33]. These geochemical data confirm the presence of restite of garnet in the magmatic source for the andesite-dacite-rhyolite and trachybasalt-trachyandesite associations. In addition, we believe in the petrogenesis of Late Cenozoic collision basaltoids important role played mantle substance metasomatically processed by previous subduction processes, as evidenced by the relatively high oxidized rocks associations.
\n\nFigure 8 (Ce/Yb)MN – Yb MN shows the calculated line of equilibrium partial melting of garnet peridotite with different contents of garnet. Calculated trends melting portions of garnet peridotite, containing 2.5, and 4% garnet, borrowed from [34]. As seen from Figure 8, composition points of rocks of andesite-dacite-rhyolite associations are in the range of values with a relatively high degree of melting (3–10%) mantle source containing 4% garnet. Lineups alkali basaltoids trachybasalt-trachyandesite association on this chart are in the range of values with a low degree of melting (1–2.5%) garnet peridotite and, apparently, mantle source was more metasomatized [13]. It can be assumed that a lower degree of melting of the mantle of the substrate led to the association of basaltic melt at high alkalinity and a significant enrichment of the melt K, P, F, Ba, LREE due priority to the melting of phlogopite, apatite, amphibole, which are the main carriers of these elements.
\nNormalized to primitive mantle [23] the ratio of Ce/Yb-Yb in the Late Cenozoic basalts and andesites of the Lesser Caucasus. Calculated trends melting portions of garnet peridotite, containing 2.5 and 4% garnet [38]. The numbers along the curves – the percentage of melting. Legend: 1 – andesite-dacite-rhyolite association, 2 – trachybasalt-trachyandesite association.
At present, the association of these volcanic rocks is often associated with the association of subduction “windows” (slab-window) and sees the result of decompression melting of asthenospheric diapir. These volcanics differ from typical subduction magma and have geochemical characteristics of OIB sources. They are described for the active continental margin of North America, Philippines, Kamchatka, East Sikhote-Alin [35, 36]. For collision volcanics, this idea is developed [3, 4, 5, 6, 7, 8, 9, 10, 25, 26, 30, 31, 32, 33, 37]. Such rocks are called adakites. They are characterized by high ratio LREE/HREE and are formed by melting of garnet containing material (eclogite) oceanic plate.
\nNote that we also do not deny the delamination subduction lithospheric slab in the association of Late Cenozoic volcanic rocks of the Lesser Caucasus [2, 7, 8, 30, 31]. This is evidenced Seismic and some of petrology and geochemistry data. Part of Late Cenozoic andesite and dacite of the Lesser Caucasus can be considered derivatives adakites melts. They (La/Yb)n vary from 17.5 to 26.4, the concentration of Y from 6 to 13 ppm, Yb from 1.2 to 1.8 ppm. Figure Sr/Y-Y majority of species fall into the field adakites [38] (Figure 9).
\nSr/Y vs. Y in the Neogene andesite-dacite-rhyolite association. The range of adakite and arc magmatic rocks is after [38].
Thus, it is found that the rocks of the Neogene andesite-dacite-rhyolite and Upper Pliocene-Quaternary trachybasalt-trachyandesite association smelt garnet sources at a depth of not less than 60–80 km [8, 33]. Not be excluded on the association of andesite melting subduction oceanic crust [39]. As Upper Pliocene-Quaternary acidic volcanic rocks, as shown by the full range of studies and published isotopic data for the region, the source of rhyolite-dacite magmas could serve as a rock granite-metamorphic layer, metamorphosed to amphibolite, and granulite facies metamorphism. The high concentrations of K, Li, Rb, Cs, U, Th, Rb and low Sr, Ba, Zr, Ti and light lanthanides, the presence of a deep negative Eu – anomalies may indicate relatively low levels of fusion substrate, in which a significant portion of plagioclase and accessories remained in the restite. The eastern part of the Lesser Caucasus (Vardenis and Syunik uplands) (Figure 1) 87Sr/86Sr are 0,70,444–0,70,811 [18].
\nPetrochemical data show that the association of andesite-dacite-rhyolite and trachybasalt-trachyandesite association of fractional crystallization occurred. Thus, in the rocks of andesite-dacite-rhyolite association with increasing silica content decreases femic rock-forming oxides, increasing the content of incompatible elements due to fractionation of dark-colored minerals and feldspars. However, fuzzy trends show the influence of processes of assimilation and crustal contamination on the association of these rocks. Thus, an attempt to get out of andesitic dacites and from dacitic rhyolites by fractionation of clinopyroxene, amphibole, biotite, magnetite, and feldspar failed [31, 32, 33]. Therefore, as will be shown below, apparently, the formation of these rocks is dominated by a single process of AFC, that is, assimilation and fractional crystallization.
\nWe believe that fractional crystallization played a leading role in the association of rocks trachybasalt-trachyandesite association [13, 32, 33]. This is evidenced by the behavior of a number of rock-forming trace elements. For example, a change in slope of trends MgO-SiO2, TiO2-SiO2, and Ni-SiO2 in the field trachyandesite explained by fractionation of olivine, clinopyroxene, and magnetite.
\nPast balance calculations on a computer showed that the evolution of the melt occurred as a result of changes in the composition and quantity of rock-forming minerals. The results of balance calculation of fractional crystallization of alkaline olivine basalt-trachybasalts showed that the latter is obtained by fractionation of 19.8% Cpx, 57.6% Pl (An65), 15.0% Ol (Fo 84) and 7.6% Mt. As seen from Table 4, the absolute and calculated values for major and trace elements in the whole match (ΔR2 = 0.507). The degree of fractionation at the same time is about 61%.
\n\n | \n | SiO2\n | \nTiO2\n | \nAl2O3\n | \nFeO* | \nMgO | \nCaO | \nNa2O | \nK2O | \nP2O5\n | \n
---|---|---|---|---|---|---|---|---|---|---|
Parental magma | \n1 | \n51.36 | \n1.05 | \n16.77 | \n7.76 | \n6.29 | \n10.48 | \n3.14 | \n2.10 | \n1.05 | \n
Calculated parental magma | \n2 | \n51.76 | \n0.84 | \n16.68 | \n7.80 | \n6.31 | \n10.46 | \n3.36 | \n1.61 | \n1.14 | \n
Daughter magma | \n3 | \n54.60 | \n1.07 | \n17.13 | \n6.85 | \n4.28 | \n8.57 | \n4.28 | \n2.14 | \n1.07 | \n
\n | Rb | \nBa | \nSr | \nV | \nCr | \nNi | \nZr | \nSc | \nCu | \nLa | \nCe | \nSm | \nEu | \nYb | \nY | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | \n35 | \n943 | \n1871 | \n105 | \n315 | \n105 | \n240 | \n11 | \n73 | \n63 | \n130 | \n9.8 | \n2.5 | \n2.4 | \n19 | \n
2 | \n44 | \n953 | \n1956 | \n2119 | \n575 | \n56 | \n151 | \n22 | \n73 | \n158 | \n112 | \n7.5 | \n1.5 | \n0.8 | \n12 | \n
3 | \n64 | \n1392 | \n2821 | \n150 | \n182 | \n46 | \n214 | \n21 | \n101 | \n81 | \n161 | \n10.7 | \n2.1 | \n1.1 | \n17 | \n
D | \n0.01 | \n0.01 | \n0.04 | \n1.99 | \n4.02 | \n1.53 | \n0.08 | \n1.12 | \n0.16 | \n0.03 | \n0.05 | \n0.08 | \n0.09 | \n0.11 | \n0.11 | \n
Fractionation of the above minerals and amphibole leads to further differentiates associations and the result is a continuous differential series – trachybasalt-basaltic trachyandesite-trachyandesite. Possible further differentiation of the melt to the trachytes, trahyriodasites, that is, for example, in a large polygenic volcano Ishygly.
\nAlthough, FC simulation of least squares using the basic rock-forming oxides and some trace elements gives good results, the majority of trace elements do not conform to this model. Thus, the content of LREE and HREE for different types of rocks vary in narrow limits. At Harker diagrams micronutrients – SiO2, where not all elements give a clear linear dependence. This suggests their association by other mechanisms, too.
\nBy Imamverdiyev previously shown that the role of crustal contamination in the genesis of Late Cenozoic volcanic rocks of the Lesser Caucasus is negligible [13]. In other works [12, 18, 39] speculation is about a significant transassociation of the primary magmas of crustal processes. We obtained the last petrogeochemical data suggest involvement in petrogenesis Late Cenozoic volcanic enriched mantle source (lithospheric mantle) and a significant contribution to processes of crustal contamination. The calculations show AFC – a model of crustal material required for the appropriate changes to the source mantle composition of rocks trachybasalt-trachyandesite association can be achieved during the fractionation of basalts (degree of fractionation of F = 0.5–0.6) with the absorption of a large number of acid melt (the ratio of assimilation rock and cumulates r = 0.3–0.5) (Table 5). A similar pattern is observed for rocks of andesite-dacite-rhyolite association, but this shift is achieved with a high degree of fractionation (F = 0.7–0.9) and with a large number of acidic substances (r = 0.6). Obviously, with such volumes of assimilation acidic substances are not stored petrochemical characteristics of the primary rocks (andesites and basalts). Therefore, Harkers figures are not observed clear trends.
\nElements | \n1 | \n2 | \n3 | \n4 | \n5 | \n6 | \n7 | \n8 | \n
---|---|---|---|---|---|---|---|---|
SiO2\n | \n52.46 | \n79.17 | \n64.73 | \n64.94 | \n55.74 | \n79.17 | \n58.76 | \n58.90 | \n
TiO2\n | \n1.09 | \n0.00 | \n0.00 | \n0.10 | \n1.09 | \n0.00 | \n0.00 | \n0.61 | \n
Al2O3\n | \n16.39 | \n13.54 | \n17.86 | \n17.87 | \n16.39 | \n13.54 | \n18.16 | \n17.89 | \n
FeO* | \n7.10 | \n0.00 | \n4.02 | \n4.04 | \n6.01 | \n0.00 | \n5.98 | \n5.99 | \n
MgO | \n6.56 | \n0.00 | \n2.23 | \n2.24 | \n4.37 | \n0.00 | \n3.21 | \n2.96 | \n
CaO | \n9.84 | \n0.00 | \n5.58 | \n5.55 | \n8.74 | \n0.00 | \n7.48 | \n7.51 | \n
Na2O | \n4.37 | \n4.17 | \n3.35 | \n3.34 | \n4.37 | \n4.17 | \n4.27 | \n3.95 | \n
K2O | \n1.09 | \n3.13 | \n2.23 | \n1.87 | \n2.19 | \n3.13 | \n2.14 | \n1.75 | \n
P2O5\n | \n1.09 | \n0.00 | \n0.00 | \n0.04 | \n1.09 | \n0.00 | \n0.00 | \n0.47 | \n
Rb | \n32 | \n180 | \n59 | \n68 | \n37 | \n174 | \n35 | \n58 | \n
Sr | \n1700 | \n100 | \n1819 | \n1918 | \n2635 | \n16 | \n1543 | \n1306 | \n
Ba | \n1060 | \n100 | \n815 | \n524 | \n1300 | \n26 | \n662 | \n666 | \n
Zr | \n240 | \n80 | \n223 | \n125 | \n250 | \n86 | \n205 | \n152 | \n
Ni | \n110 | \n3 | \n45 | \n28 | \n43 | \n3 | \n43 | \n56 | \n
Cr | \n270 | \n30 | \n180 | \n174 | \n170 | \n3 | \n214 | \n166 | \n
V | \n110 | \n20 | \n78 | \n790 | \n140 | \n20 | \n128 | \n142 | \n
∑R2 = 0.154 r = 0.53 F = 0.57 | \n\n | \n | \n | \n | \n | \n | \n | ∑R2 = 0.93 r = 0.25 F = 0.68 | \n
Results AFC – modeling for rocks trachybasalt-trachyandesite association.
1 – alkaline olivine basalts (initial melt), 2 – rhyolite (assimilation rock), 3 – trachyandesite (hybrid), 4 – calculated composition of trachyandesites, 5 – trachybasalt (initial melt), 6 – rhyolite (assimilation rock), 7 – basaltic trachyandesite (hybrid), 8 – calculated composition (all analyses have been converted to 100%).
Below are the results of AFC – modeling for rocks trachybasalt-trachyandesite association.
\nAs seen from Table 4, the intermingling rhyolite and basic rocks (alkaline olivine basalts and trachybasalt) may be formed basaltic trachyandesite and trachyandesite.
\nSummarizing the above data, the association of Late Cenozoic volcanic series of the Lesser Caucasus can be represented as follows.
\nWithin the Lesser Caucasus in the late Cenozoic volcanism expressed high-K calc-alkaline, mildly alkaline, and partly alkaline associations. In Neogene time (Upper Miocene-Lower Pliocene), with decompression occurs anatexis metasomatized mantle and lower strata of basalt layer at a sufficiently large depth, which determines the enrichment of these melts with alkali, alkaline earth, and light rare earth elements.
\nThis process resulted in association of basaltic melts, enriched in alkalis. Perhaps such a melt was formed at low degrees of partial melting (3–10%) of garnet peridotite or eclogite. We can assume that it corresponds subduction oceanic crust. In the future, as a result of growing tension mantle melts penetrated the upper layers of the earth crust, where it mixes basic and acid magma, with the association of hybrid andesite, andesite-dacite lavas (Figure 10). Progressive cooling of the deep source magma origin may be the cause of education dike fields in the region studied and possibly fractured outpouring mildly alkaline volcanism observed in the other parts of the Lesser Caucasus. Due to additional heating and the flow of volatiles formed fairly large volcanoes of calc-alkaline composition of Neogene age. Then Upper Pliocene-Quaternary formed bimodal volcanism. Thus, the temporal spatial conjugation of crustal and mantle magmatism led to the introduction of mantle melts, under conditions of tension in the lower crust, which resulted in its melting and the association of acidic volcanic rocks rich in radiogenic Sr and Nd (rhyolite association). Simultaneously, in this situation, a change of scenery compression and tensile contributed to the development rifts depressions, arching and exercise slow differentiated and undifferentiated volcanic (trachybasalt-basaltic trachyandesite-trachyandesite and basanite-tefrite series). Thus, the evolution of the melt in the earth crust is dominated by a single process of AFC (assimilation and fractional crystallization). As the fractionation rare elements, intermediate rocks can be formed by mixing trachybasaltic and rhyolite melts.
\nScheme of tectonic development and volcanism of the areas of matium magma formation at the Late Cenozoic stage of development of the Lesser Caucasus [8]. (a) Initial stage of mantle diapir growth; (b) Upper Miocene-Lower Pliocene stage; (c) in the Upper Pliocene is a new stage; (d) Upper Pliocene-Quaternary stage – stage of general extension. 1 – granite layer; 2 – basalt layer; 3 – mantle; 4 – astonesphere; 5 – metasomatized mantle; 6 – region anatexis; 7 – partially molten basalt layer; 8 – dykes; 9 – partially molten granite-metamorphic layer; 10 – partially molten material of the upper mantle; 11 – upward mantle fluid flows.
A distinctive feature of the investigated Late Miocene-Early Pliocene rocks of the Lesser Caucasus is that they are generally medium and acid. Volcanite composition meets mainly andesites and trachyandesites, dacites and trachydacites and also rhyolites. The volcanism was very powerful in relation to the attic tectonic activity of Late Miocene-Early Pliocene. During this period, there occurs Pre-Mesozoic base uplift and volcanism is mainly manifested in the central parts of the anticlinal zones of the Lesser Caucasus. The andesites and andesidacites with acid pyroclasts dominate in the products’ composition at the beginning of the volcanic phase and at its end – andesite lavas. Magmatism of the main composition of high alkalinity has locally been manifested in the extreme parts of the anticlinal zones. Subvolcanic appearings of formation invaded after volcanogenic strata (Basarkechar suite) formation and have more acid composition. After active effusive-explosive activity of Meotian-Pontian-Early Pliocene volcanoes, more acid and viscous magma, cooling at a depth, rising along fractures at shallow depths hardened in the form of dikes and other subvolcanic bodies.
\nOn the basis of nine petrogenic elements oxides (SiO2, TiO2, Al2O3, FeO*, MgO, CaO, Na2O, K2O, P2O5) such independent groups as andesite-trachyandesite-quartz latites, dacite-trachydatsites and rhyodacite-rhyolites have been defined for andesite-dacite-rhyolite formation using factorial diagram.
\nIt has been shown that with increasing SiO2 content in the rocks composition, the content of TiO2, Al2O3, FeO*, MgO, CaO, P2O5 decreases due to fractionation of titanomagnetite, clinopyroxene, plagioclase, amphibole, and apatite. The calc-alkaline trend of andesite-dacite-rhyolite series is controlled not only by magnetite fractionation but also by the hornblende crystallization, having a high Fe/Mg ratio and by SiO2 under saturation. First, it has been proved that the early hornblende crystallization in the Neogene magmatism evolution is the principal factor in the calc-alkaline series formation. This regularity is especially obvious during change of SiO2 content between 60 and 64%. The slow increase of K2O and Na2O content in the rocks formation is explained by potassium feldspar crystallization.
\nIn formation’s volcanites with increasing SiO2 content from andesites to rhyolites and with decreasing MgO quantity the coherent (compatible) elements as macroelements give a linear and sometimes expressed broken dependence. The figurative points of the homogenous inclusions are at the beginning of these dependence trends. These elements distribution in the rocks of formation is controlled by fractionation of rock-forming minerals and accumulative (homogenous) crystallization of the inclusions. The incompatible elements content (Rb, Th, Nb, Zr, Hf, LREE, etc.) is minimal in the deep-seated inclusions.
\nIn rocks of formation the light lanthanoids prevail in relation to heavy, and therefore La/Sm, La/Yb relations are high. In medium rocks (quartz latites and andesites), it is defined approaching Eu/Eu* relation to unit (Eu/Eu* = 0.94–1.05) and in more acid rocks – Eu-minimum (Eu/Eu* = 0.58–0.63) that indicates on plagioclase fractionation. It has been established that the content of Ba and Ba/Y, Rb/Y, Th/Yb relations are rapidly increased in the formation’s rocks. The formation’s rocks enrichment with lithophylous and rare-earth elements caused by relatively high degree of fusion melting that enriched by fluids.
\nBased on the modeling, it was determined that as a result of high fractionation of the initial melt (F = 0.96) during mixing of 32.4% andesite and 63.4% rhyodacite; it is possible to obtain dacite of hybrid origin. The leading role of single process of Assimilation and Fractional Crystallization (AFC) is responsible for forming the igneous rocks of formation.
\nIt has been shown that the enrichment of formation’s rock with light rare-earth elements and many incompatible elements indicates on sufficiently important role of the enriched mantle matter in their formation. The high-alumina basalts can be considered as the parental magma for formation’s rocks. Their formation is connected with fractionation in the environment of high water pressure from the initial high-magnesian melt of the olivine-clinopyroxene association.
\nSo, the Neogene volcanic series formation of the Lesser Caucasus can be represented as follows.
\nAt the beginning of the Late Cenozoic, the mantle metasomatism occurred as a result of regional compression in the lifting diapir. In the Late Miocene-Early Pliocene anatexis of the metasomatized mantle and lower parts of the basalt layer occurs due to decompression at sufficiently great depth that determines these melts enrichment with alkali, alkaline-earth, light rare-earth elements. As a result of this process, there is formed basalt melts enriched by alkalines. Further evolution of these melts occurs in conditions of continental Earth crust where medium-acidic rocks as steeply dipping dikes and volcanic edifices of the central, central-fractured type are formed due to melts differentiation (Figure 10).
\nThe primary magma evolution was accompanied by fractionation of olivine-clinopyroxenic mineral associations and the appearance of high-alumina residual magma in the deep-seated foci. The last ones outcropping are accompanied by a stop at the intermediate foci, fractionation of plagioclase, clinopyroxene, amphibole, surrounding rock melting, crustal material contamination, and by hybrid magma formation.
\nThe works area can be considered metallogenetically perspective in relation to new Au, Ag, Hg, As, Sb, Cu-Mo with Au, Pb-Zn, Cu-Pb-Zn fields and ore occurrences. The investigated area is also rich by non-metallic raw materials – tuffs, scorias, pumices, etc.
\nTherefore, for andesite-dacite-rhyolite formation, developed in the central part of Lesser Caucasus, rocks formation of high-potassium calc-alkaline series is specific unlike the rocks of calc-alkaline series of normal alkalinity. Rocks formation of andesite-dacite-rhyolite formation is caused by fractionation of the rock-forming minerals in the intermediate foci and later due to contamination of the differentiated basaltic melt by the surrounding rocks. Single process of crystallization and assimilation caused the rocks buildup of the formation.
\nTwo volcanic formations of the Late Pliocene-Quaternary age are separated at the end of the collision stage of development of the Azerbaijan part of the Lesser Caucasus, forming a bimodal association: 1 – rhyolite; 2 – trachybasalt-trachyandesite.
\nIn the mafic volcanics of the behavior of major elements indicate their origin by fractionation of olivine, clinopyroxene, hornblende, basic plagioclase, apatite, magnetite. Acidic volcanic rocks associated with the formation of “dry” high temperature of the melt in the intermediate chambers are not of fractional crystallization.
\nThe distribution of rare earth elements in rocks trachybasalt-trachyandesite formation indicates that the source was the metasomatic alteration of volcanic rocks containing garnet mantle. In the studied volcanics, (Tb/Yb)n = 1.7–3.0 indicates the presence of garnet in the source of the primary magma.
\nIn the rocks of rhyolite formation contents of rare earth elements is low (REE = 66–116 ppm), there is a pronounced low ratio of europium, which indicates that early removal of the molten plagioclase and alkali feldspar.
\nTrace element composition of the rocks trachybasalt-trachyandesite formation and their relationships complicate the model and determine the fractional crystallization of the magma mantle interaction with the substrate of the crust. In this substrate can be rhyolites, geochemical, and isotopic composition similar to the Earth’s crust and forming a spatio-temporal association with the rocks contrast trachybasalt-trachyandesite formation.
\nThe simulation revealed that the evolution of moderately alkaline olivine basalts (considered a primary mantle melt the rocks trachybasalt-trachyandesite formation) occurs due to changes in the composition of the main rock-forming and accessory minerals. Average rock formations formed by the assimilation of poorly differentiated primary magma acidic melt. Geochemical features of moderately alkaline olivine basalts indicate that the source of magma is metasomaticized, phlogopite-garnet-rutile containing lithospheric mantle. It is very possible that the melting of such a source is rutile to a restaurant, and magma is depleted Nb and Ta.
\nThe calculations have shown that the proportion of melting rhyolitic melt separated from andesite substrate close to 15%. After removal of the remaining melt restite entirely consistent with the composition of the lower crust. The typical ratio of rare earth elements is to confirm this.
\nThese fact sheets, model calculations indicate various sources of education salic and mafic melts. Thus, the generation of mafic melt (moderately alkaline olivine basalt composition) came from a differentiated mantle protolith formation of a salic melt occurs during lifting mafic magma by melting of crustal substrate. On the other hand, the salic is going to melt in the top of the magma reservoir and prevents lifting heavier mafic magma, and in a short time in the melt is subjected to intermediate focuses differentiated. During subsequent evolution differentiated mafic melt reacts with rhyolitic melt, which entails the formation of secondary rocks.
\nThus, the formation of bimodal volcanism in contrast, the central part of the Lesser Caucasus in the Late Pliocene-Quaternary period is as follows.
\nTemporary space conjugate crust and mantle magmatism led to the introduction of mantle melts under tension in the lower crust, which led to its melting and the formation of acidic volcanic rocks enriched in radiogenic Sr and Nd (rhyolite formation). At the same time in this situation, a change of scenery compression tensile contributed to the manifestation of poorly differentiated volcanism. At the same time, the evolution of the melt in the earth’s crust is dominated by a single process of AFC (assimilation and fractional crystallization), and intermediate chambers became necessary mixing of mafic (trachybasalt) and salic (rhyolite) melts and created the conditions for the formation of intermediate rocks. However, due to different densities and viscosities of melts, salic mafic and such mixing occurred in small quantities.
\nThus, in the petrogenesis of the majority of Caucasian young volcanic rocks has played a significant role lower mantle source material which is close to the tank “Common” with characteristic isotopic 87Sr/86Sr = 0.7041 ± 0.0001, ∋Nd = +4.1 ± 0.2; 147Sm/144Nd = 0.105–0.114 and named “Caucasus” [17, 18]. The primary melt composition corresponds to K-Na moderately alkaline olivine basalts. The magma formed by the plume of the Caucasus in the atmosphere of Earth’s crust formed the ever-increasing mantle diapir; he’s at the very beginning of its process uplift served the development of large volumes of mantle fluids. Due to the hot magma mantle diapir melts the material of Earth’s crust, magma is formed, which corresponds to the isotopic composition of the Earth’s crust, and subsequently, to varying degrees due to contamination of the mantle and crustal magma formed hybrid rocks.
\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\\n\\n9. Please send any complaints about advertising to: info@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\n\n9. Please send any complaints about advertising to: info@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:202},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics",parent:{title:"Mathematics",slug:"mathematics"},numberOfBooks:34,numberOfAuthorsAndEditors:669,numberOfWosCitations:440,numberOfCrossrefCitations:249,numberOfDimensionsCitations:503,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"applied-mathematics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9325",title:"Mathematical Theorems",subtitle:"Boundary Value Problems and Approximations",isOpenForSubmission:!1,hash:"38c88a4ec0ff6c0184a6694c21ddedc5",slug:"mathematical-theorems-boundary-value-problems-and-approximations",bookSignature:"Lyudmila Alexeyeva",coverURL:"https://cdn.intechopen.com/books/images_new/9325.jpg",editedByType:"Edited by",editors:[{id:"232525",title:"Prof.",name:"Lyudmila",middleName:"Alexeyevna",surname:"Alexeyeva",slug:"lyudmila-alexeyeva",fullName:"Lyudmila Alexeyeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8521",title:"Multicriteria Optimization",subtitle:"Pareto-Optimality and Threshold-Optimality",isOpenForSubmission:!1,hash:"05baea741edde509bab2259dad7f6384",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",bookSignature:"Nodari Vakhania and Frank Werner",coverURL:"https://cdn.intechopen.com/books/images_new/8521.jpg",editedByType:"Edited by",editors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7428",title:"Advances on Tensor Analysis and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"2339ac5eb978557d01451489e961b102",slug:"advances-on-tensor-analysis-and-their-applications",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/7428.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7662",title:"Nonlinear Systems",subtitle:"Theoretical Aspects and Recent Applications",isOpenForSubmission:!1,hash:"fdcb3bf6de1d84506ffc6aa9e5b691b3",slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",bookSignature:"Walter Legnani and Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/7662.jpg",editedByType:"Edited by",editors:[{id:"199059",title:"Dr.",name:"Walter",middleName:"Edgardo",surname:"Legnani",slug:"walter-legnani",fullName:"Walter Legnani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8656",title:"Probability, Combinatorics and Control",subtitle:null,isOpenForSubmission:!1,hash:"9993ec9b59bcb38d206f2e31125028b7",slug:"probability-combinatorics-and-control",bookSignature:"Andrey Kostogryzov and Victor Korolev",coverURL:"https://cdn.intechopen.com/books/images_new/8656.jpg",editedByType:"Edited by",editors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9324",title:"Dynamical Systems Theory",subtitle:null,isOpenForSubmission:!1,hash:"413cbcf9c048bb251eca1b5e32bbc640",slug:"dynamical-systems-theory",bookSignature:"Jan Awrejcewicz and Dariusz Grzelczyk",coverURL:"https://cdn.intechopen.com/books/images_new/9324.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",middleName:null,surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7776",title:"Research Advances in Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"e9646ec4b2bff873ce958ed4d5ad7248",slug:"research-advances-in-chaos-theory",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7776.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7751",title:"Fault Detection, Diagnosis and Prognosis",subtitle:null,isOpenForSubmission:!1,hash:"d54796f7da58f58fa679b94a2b83af00",slug:"fault-detection-diagnosis-and-prognosis",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/7751.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8345",title:"Boundary Layer Flows",subtitle:"Theory, Applications and Numerical Methods",isOpenForSubmission:!1,hash:"14d9725e87983a03938f073f6c5ee815",slug:"boundary-layer-flows-theory-applications-and-numerical-methods",bookSignature:"Vallampati Ramachandra Prasad",coverURL:"https://cdn.intechopen.com/books/images_new/8345.jpg",editedByType:"Edited by",editors:[{id:"146601",title:"Dr.",name:"Vallampati",middleName:null,surname:"Ramachandra Prasad",slug:"vallampati-ramachandra-prasad",fullName:"Vallampati Ramachandra Prasad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7653",title:"Wavelet Transform and Complexity",subtitle:null,isOpenForSubmission:!1,hash:"74bd7559ad44e50940d35974905e98ee",slug:"wavelet-transform-and-complexity",bookSignature:"Dumitru Baleanu",coverURL:"https://cdn.intechopen.com/books/images_new/7653.jpg",editedByType:"Edited by",editors:[{id:"105623",title:"Dr.",name:"Dumitru",middleName:null,surname:"Baleanu",slug:"dumitru-baleanu",fullName:"Dumitru Baleanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8181",title:"Applied Mathematics",subtitle:null,isOpenForSubmission:!1,hash:"85b873324d4e1af230fea39738ba9be5",slug:"applied-mathematics",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/8181.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:34,mostCitedChapters:[{id:"14634",doi:"10.5772/15998",title:"The Application of FT-IR Spectroscopy in Waste Management",slug:"the-application-of-ft-ir-spectroscopy-in-waste-management",totalDownloads:6074,totalCrossrefCites:16,totalDimensionsCites:27,book:{slug:"fourier-transforms-new-analytical-approaches-and-ftir-strategies",title:"Fourier Transforms",fullTitle:"Fourier Transforms - New Analytical Approaches and FTIR Strategies"},signatures:"Ena Smidt, Katharina Böhm and Manfred Schwanninger",authors:[{id:"20376",title:"Dr.",name:"Katharina",middleName:null,surname:"Böhm",slug:"katharina-bohm",fullName:"Katharina Böhm"},{id:"22840",title:"Dr.",name:"Ena",middleName:null,surname:"Smidt",slug:"ena-smidt",fullName:"Ena Smidt"},{id:"22915",title:"Dr.",name:"Manfred",middleName:null,surname:"Schwanninger",slug:"manfred-schwanninger",fullName:"Manfred Schwanninger"}]},{id:"15157",doi:"10.5772/15959",title:"Fourier Transform Mass Spectrometry for the Molecular Level Characterization of Natural Organic Matter: Instrument Capabilities, Applications, and Limitations",slug:"fourier-transform-mass-spectrometry-for-the-molecular-level-characterization-of-natural-organic-matt",totalDownloads:3807,totalCrossrefCites:5,totalDimensionsCites:21,book:{slug:"fourier-transforms-approach-to-scientific-principles",title:"Fourier Transforms",fullTitle:"Fourier Transforms - Approach to Scientific Principles"},signatures:"Rachel L. Sleighter and Patrick G. Hatcher",authors:[{id:"22676",title:"Dr.",name:"Rachel L.",middleName:null,surname:"Sleighter",slug:"rachel-l.-sleighter",fullName:"Rachel L. Sleighter"},{id:"23168",title:"Dr.",name:"Patrick G.",middleName:null,surname:"Hatcher",slug:"patrick-g.-hatcher",fullName:"Patrick G. Hatcher"}]},{id:"40430",doi:"10.5772/50403",title:"Mathematical Modelling and Numerical Investigations on the Coanda Effect",slug:"mathematical-modelling-and-numerical-investigations-on-the-coanda-effect",totalDownloads:4636,totalCrossrefCites:12,totalDimensionsCites:18,book:{slug:"nonlinearity-bifurcation-and-chaos-theory-and-applications",title:"Nonlinearity, Bifurcation and Chaos",fullTitle:"Nonlinearity, Bifurcation and Chaos - Theory and Applications"},signatures:"A. Dumitrache, F. Frunzulica and T.C. Ionescu",authors:[{id:"151443",title:"Dr.",name:"Dumitrache",middleName:null,surname:"Alexandru",slug:"dumitrache-alexandru",fullName:"Dumitrache Alexandru"},{id:"151449",title:"Dr.",name:"Frunzulica",middleName:null,surname:"Florin",slug:"frunzulica-florin",fullName:"Frunzulica Florin"},{id:"151451",title:"Dr.",name:"Ionescu",middleName:null,surname:"Tudor",slug:"ionescu-tudor",fullName:"Ionescu Tudor"}]}],mostDownloadedChaptersLast30Days:[{id:"70366",title:"Solving Partial Differential Equation Using FPGA Technology",slug:"solving-partial-differential-equation-using-fpga-technology",totalDownloads:508,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"boundary-layer-flows-theory-applications-and-numerical-methods",title:"Boundary Layer Flows",fullTitle:"Boundary Layer Flows - Theory, Applications and Numerical Methods"},signatures:"Vu Duc Thai and Bui Van Tung",authors:null},{id:"65411",title:"Transition Modeling for Low to High Speed Boundary Layer Flows with CFD Applications",slug:"transition-modeling-for-low-to-high-speed-boundary-layer-flows-with-cfd-applications",totalDownloads:1039,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"boundary-layer-flows-theory-applications-and-numerical-methods",title:"Boundary Layer Flows",fullTitle:"Boundary Layer Flows - Theory, Applications and Numerical Methods"},signatures:"Unver Kaynak, Onur Bas, Samet Caka Cakmakcioglu and Ismail Hakki Tuncer",authors:null},{id:"66522",title:"TBL-Induced Structural Vibration and Noise",slug:"tbl-induced-structural-vibration-and-noise",totalDownloads:363,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"boundary-layer-flows-theory-applications-and-numerical-methods",title:"Boundary Layer Flows",fullTitle:"Boundary Layer Flows - Theory, Applications and Numerical Methods"},signatures:"Zhang Xilong, Kou YiWei and Liu Bilong",authors:null},{id:"66869",title:"Roughness Effects on Turbulence Characteristics in an Open Channel Flow",slug:"roughness-effects-on-turbulence-characteristics-in-an-open-channel-flow",totalDownloads:602,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"boundary-layer-flows-theory-applications-and-numerical-methods",title:"Boundary Layer Flows",fullTitle:"Boundary Layer Flows - Theory, Applications and Numerical Methods"},signatures:"Abdullah Faruque",authors:[{id:"217678",title:"Associate Prof.",name:"Abdullah",middleName:null,surname:"Faruque",slug:"abdullah-faruque",fullName:"Abdullah Faruque"}]},{id:"69291",title:"Dimple Generators of Longitudinal Vortex Structures",slug:"dimple-generators-of-longitudinal-vortex-structures",totalDownloads:405,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"boundary-layer-flows-theory-applications-and-numerical-methods",title:"Boundary Layer Flows",fullTitle:"Boundary Layer Flows - Theory, Applications and Numerical Methods"},signatures:"Volodymyr Voskoboinick, Andriy Voskoboinick, Oleksandr Voskoboinyk and Volodymyr Turick",authors:null},{id:"68809",title:"Singularly Perturbed Parabolic Problems",slug:"singularly-perturbed-parabolic-problems",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"boundary-layer-flows-theory-applications-and-numerical-methods",title:"Boundary Layer Flows",fullTitle:"Boundary Layer Flows - Theory, Applications and Numerical Methods"},signatures:"Asan Omuraliev and Ella Abylaeva",authors:null},{id:"70067",title:"Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines and the Complex Probability Paradigm",slug:"analytic-prognostic-in-the-linear-damage-case-applied-to-buried-petrochemical-pipelines-and-the-comp",totalDownloads:1429,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Abdo Abou Jaoude",authors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}]},{id:"54366",title:"Solution of Differential Equations with Applications to Engineering Problems",slug:"solution-of-differential-equations-with-applications-to-engineering-problems",totalDownloads:5413,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Cheng Yung Ming",authors:[{id:"191017",title:"Dr.",name:"Cheng",middleName:null,surname:"Y.M.",slug:"cheng-y.m.",fullName:"Cheng Y.M."}]},{id:"53524",title:"Fourier Analysis for Harmonic Signals in Electrical Power Systems",slug:"fourier-analysis-for-harmonic-signals-in-electrical-power-systems",totalDownloads:3382,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"fourier-transforms-high-tech-application-and-current-trends",title:"Fourier Transforms",fullTitle:"Fourier Transforms - High-tech Application and Current Trends"},signatures:"Emmanuel Hernández Mayoral, Miguel Angel Hernández López,\nEdwin Román Hernández, Hugo Jorge Cortina Marrero, José\nRafael Dorrego Portela and Victor Ivan Moreno Oliva",authors:[{id:"187793",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Hernández",slug:"emmanuel-hernandez",fullName:"Emmanuel Hernández"},{id:"202757",title:"Dr.",name:"Miguel Angel",middleName:null,surname:"Hernández López",slug:"miguel-angel-hernandez-lopez",fullName:"Miguel Angel Hernández López"},{id:"202758",title:"Dr.",name:"Hugo Jorge",middleName:null,surname:"Cortina Marrero",slug:"hugo-jorge-cortina-marrero",fullName:"Hugo Jorge Cortina Marrero"},{id:"202759",title:"Dr.",name:"Edwin Román",middleName:null,surname:"Hernández",slug:"edwin-roman-hernandez",fullName:"Edwin Román Hernández"},{id:"202760",title:"Dr.",name:"Victor Iván Moreno",middleName:null,surname:"Oliva",slug:"victor-ivan-moreno-oliva",fullName:"Victor Iván Moreno Oliva"},{id:"202761",title:"Dr.",name:"José Rafael Dorrego",middleName:null,surname:"Portela",slug:"jose-rafael-dorrego-portela",fullName:"José Rafael Dorrego Portela"}]},{id:"64463",title:"Fractal Analysis of Time-Series Data Sets: Methods and Challenges",slug:"fractal-analysis-of-time-series-data-sets-methods-and-challenges",totalDownloads:1819,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"fractal-analysis",title:"Fractal Analysis",fullTitle:"Fractal Analysis"},signatures:"Ian Pilgrim and Richard P. Taylor",authors:[{id:"262574",title:"Ph.D.",name:"Ian",middleName:null,surname:"Pilgrim",slug:"ian-pilgrim",fullName:"Ian Pilgrim"},{id:"262816",title:"Prof.",name:"Richard",middleName:null,surname:"Taylor",slug:"richard-taylor",fullName:"Richard Taylor"}]}],onlineFirstChaptersFilter:{topicSlug:"applied-mathematics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/biofuel-production-recent-developments-and-prospects",hash:"",query:{},params:{book:"biofuel-production-recent-developments-and-prospects"},fullPath:"/books/biofuel-production-recent-developments-and-prospects",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()