\r\n\t(i) Quantum dots of very high-quality optical applications, Quantum dot light-emitting diodes (QD-LED) and ‘QD-White LED’, Quantum dot photodetectors (QDPs), Quantum dot solar cells (Photovoltaics).
\r\n\r\n\t(ii) Quantum Computing (quantum bits or ‘qubits’), (vii) The Future of Quantum Dots (broad range of real-time applications, magnetic quantum dots & graphene quantum dots), Superconducting Loop, Quantum Entanglement, Quantum Fingerprints.
\r\n\r\n\t(iii) Biomedical and Environmental Applications (to study intracellular processes, tumor targeting, in vivo observation of cell trafficking, diagnostics and cellular imaging at high resolutions), Bioconjugation, Cell Imaging, Photoelectrochemical Immunosensor, Membranes and Bacterial Cells, Resonance Energy-Transfer Processes, Evaluation of Drinking Water Quality, Water and Wastewater Treatment, Pollutant Control.
",isbn:"978-1-80356-594-1",printIsbn:"978-1-80356-593-4",pdfIsbn:"978-1-80356-595-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"0dd5611c62c91569bd2819e68852002a",bookSignature:"Prof. Jagannathan Thirumalai",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11756.jpg",keywords:"LED, Organic LEDs, Dyes & Pigments, Solar Cells, Laser Photonics, Electronic Switching Devices, Qubits, Josephson Junction, Bioconjugation, Cell Imaging, Photoelectrochemical Immunosensor, Membranes, and Bacterial Cells",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 16th 2022",dateEndSecondStepPublish:"May 27th 2022",dateEndThirdStepPublish:"July 26th 2022",dateEndFourthStepPublish:"October 14th 2022",dateEndFifthStepPublish:"December 13th 2022",remainingDaysToSecondStep:"10 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. J. Thirumalai received his Ph.D. from Alagappa University, Karaikudi, He was also awarded the Post-doctoral Fellowship from Pohang University of Science and Technology (POSTECH), the Republic of Korea. His research interests focus on luminescence, self-assembled nanomaterials, and thin-film optoelectronic devices. He has published more than 60 SCOPUS/ISI indexed papers and 11 book chapters, edited 4 books, and member of several national and international societies like RSC, OSA, etc. His h-index is 19.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai",profilePictureURL:"https://mts.intechopen.com/storage/users/99242/images/system/99242.png",biography:"Dr. J. Thirumalai received his Ph.D. from Alagappa University, Karaikudi in 2010. He was also awarded the Post-doctoral Fellowship from Pohang University of Science and Technology (POSTECH), Republic of Korea, in 2013. He worked as Assistant Professor of Physics, B.S. Abdur Rahman University, Chennai, India (2011 to 2016). Currently, he is working as Senior Assistant Professor of Physics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam (T.N.), India. His research interests focus on luminescence, self-assembled nanomaterials, and thin film opto-electronic devices. He has published more than 60 SCOPUS/ISI indexed papers and 11 book chapters, edited 4 books and member in several national and international societies like RSC, OSA, etc. Currently, he served as a principal investigator for a funded project towards the application of luminescence based thin film opto-electronic devices, funded by the Science and Engineering Research Board (SERB), India. As an expert in opto-electronics and nanotechnology area, he has been invited as external and internal examiners to MSc and PhD theses, invited to give talk in some forum, review papers for international and national journals.",institutionString:"SASTRA University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"6",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"5348",title:"Luminescence",subtitle:"An Outlook on the Phenomena and their Applications",isOpenForSubmission:!1,hash:"d982c49fed4423a0ea7367af4f917b82",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5348.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6489",title:"Light-Emitting Diode",subtitle:"An Outlook On the Empirical Features and Its Recent Technological Advancements",isOpenForSubmission:!1,hash:"20818f168134f1af35547e807d839463",slug:"light-emitting-diode-an-outlook-on-the-empirical-features-and-its-recent-technological-advancements",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6489.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6242",title:"Hydroxyapatite",subtitle:"Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets",isOpenForSubmission:!1,hash:"6a18a9b6617ae6d943649ea7ad9655cc",slug:"hydroxyapatite-advances-in-composite-nanomaterials-biomedical-applications-and-its-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6242.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6124",title:"Micro/Nanolithography",subtitle:"A Heuristic Aspect on the Enduring Technology",isOpenForSubmission:!1,hash:"c94caf617c31b349bd3d9dd054a022a3",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6124.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5699",title:"Thin Film Processes",subtitle:"Artifacts on Surface Phenomena and Technological Facets",isOpenForSubmission:!1,hash:"164177fc1e3eca542ebad5fd34a79d1e",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5699.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9414",title:"Advances in Condensed-Matter and Materials Physics",subtitle:"Rudimentary Research to Topical Technology",isOpenForSubmission:!1,hash:"3aebac680de7d3af200eadd0a0b2f737",slug:"advances-in-condensed-matter-and-materials-physics-rudimentary-research-to-topical-technology",bookSignature:"Jagannathan Thirumalai and Sergey Ivanovich Pokutnyi",coverURL:"https://cdn.intechopen.com/books/images_new/9414.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5884",title:"Unraveling the Safety Profile of Nanoscale Particles and Materials",subtitle:"From Biomedical to Environmental Applications",isOpenForSubmission:!1,hash:"5e5811aa0f15ab9d8b6a235e8408875d",slug:"unraveling-the-safety-profile-of-nanoscale-particles-and-materials-from-biomedical-to-environmental-applications",bookSignature:"Andreia C. Gomes and Marisa P. Sarria",coverURL:"https://cdn.intechopen.com/books/images_new/5884.jpg",editedByType:"Edited by",editors:[{id:"146466",title:"Prof.",name:"Andreia",surname:"Ferreira de Castro Gomes",slug:"andreia-ferreira-de-castro-gomes",fullName:"Andreia Ferreira de Castro Gomes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7325",title:"Nanostructures in Energy Generation, Transmission and Storage",subtitle:null,isOpenForSubmission:!1,hash:"8e49924dd2c3e28c82fdc115ce04f925",slug:"nanostructures-in-energy-generation-transmission-and-storage",bookSignature:"Yanina Fedorenko",coverURL:"https://cdn.intechopen.com/books/images_new/7325.jpg",editedByType:"Edited by",editors:[{id:"199149",title:"Dr.",name:"Yanina",surname:"Fedorenko",slug:"yanina-fedorenko",fullName:"Yanina Fedorenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9230",title:"Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis",subtitle:null,isOpenForSubmission:!1,hash:"1d1af591d87490c9ad728a1352e62d96",slug:"smart-nanosystems-for-biomedicine-optoelectronics-and-catalysis",bookSignature:"Tatyana Shabatina and Vladimir Bochenkov",coverURL:"https://cdn.intechopen.com/books/images_new/9230.jpg",editedByType:"Edited by",editors:[{id:"237988",title:"Prof.",name:"Tatyana",surname:"Shabatina",slug:"tatyana-shabatina",fullName:"Tatyana Shabatina"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9322",title:"Hybrid Nanomaterials",subtitle:"Flexible Electronics Materials",isOpenForSubmission:!1,hash:"beff6cce44f54582ee8a828759d24f19",slug:"hybrid-nanomaterials-flexible-electronics-materials",bookSignature:"Rafael Vargas-Bernal, Peng He and Shuye Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/9322.jpg",editedByType:"Edited by",editors:[{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51590",title:"Detergents and Soaps as Tools for IPM in Agriculture",doi:"10.5772/64343",slug:"detergents-and-soaps-as-tools-for-ipm-in-agriculture",body:'\nIntegrated pest management is a strategy developed to control agricultural pests and, at the same time solve problems derived from the extensive and intensive implementation of chemical control in conventional agriculture, where broad spectrum, specific action site, and persistent pesticides are used. Compounds with this profile have been called “conventional pesticides” and are responsible for causing resistance in pest populations, destruction of beneficial arthropods, and presence of pesticide residues in foods, soils, water, and air [1]. In order to obtain an economic, environmental, and ecologically sustainable food production, IPM encompasses several components, including cultural, biological, and chemical control [2]. Therefore, the use of pesticides is not excluded from IPM programs, for instance, when there is no other available tools to avoid economic damage [3], synergy occurs between chemical and biological control [4], or a diverse pest complex affects the crop [5]. Under those circumstances, the products used should target several sites and mechanisms (multisite), be shortly persistent in the environment and crops (non-residual), and have both a narrow spectrum (selective) and low toxicity to mammals. Many compounds having these attributes have been called “alternative pesticides”, including oils, pheromones, botanicals, entomopathogens, and soaps and detergents, among the most frequently used [6, 7]. For definition purposes, agriculture detergents and soaps, from now on “D + S”, correspond to surfactants from either natural or synthetic origin, formulated specifically for pest control or other uses in crops. Within these options, D + S have additional particularities, being relatively inexpensive, easy to produce and apply, versatile (controlling juvenile and adults), allowed as postharvest treatment, etc. [8, 9].
\nResistance is a consequence of the elimination of susceptible genotypes and selection, over time, of the tolerant part of the population by the frequent and wide use of pesticides with specific sites of action that lose afterwards their capability to control pests [1]. The alternating use of conventional products with different action sites has been one way to face resistance, but a more holistic approach is necessary to provide a sustainable solution [10]. That is why IPM was developed during the second half of the twentieth century, attempting to either avoid or reverse resistance by replacing chemical control by other strategies, and/or by using several different chemicals with multiple modes of action, as D + S that, therefore, should become useful tools for IPM [8, 11].
\nEnvironmental contamination, diversity threatening, and toxic effects on mammals and other animal species are well known and severe impacts from the use of conventional pesticides. Environmental toxicity by soaps, on the other hand, is considered very low [12], but detergents in wastewater (sometimes in large concentrations) are considered important pollutants when they reach rivers and streams, where they form foam layers and affect the aquatic fauna. However, the greater biodegradability of current surfactants has significantly reduced those problems [13]. Besides, sprays in farms should not massively reach water courses, therefore minimizing the potential impact in surface and groundwater. Based on studies of wastewater used for irrigation [14], some surfactants alter physical, chemical, and biological properties of some types of soils [15]. However, linear alkylbenzene sulfonates (LAS, widely used in detergents) are considered not to be a threat to terrestrial ecosystems on a long-term basis because of biodegradation [16], although nonylphenol has been questioned [17]. Thus, their impact depends largely on the type of surfactant chemistry, providing room for testing, selecting, and using those less hazardous products.
\nIn general, D + S have low acute toxicity [18], particularly non-ionic or anionic detergents, which are, by far, less dangerous than conventional insecticides [19]. For instance, the soap Safer has an oral LD50 of 16.500 ppm (= median lethal dose, i.e., the amount of active substance per body weight required to kill half of an exposed population), which is by far less dangerous than conventional insecticides, including botanicals [12]. The risk should be even lower considering both the necessary dilution and the small chance of ingestion. Conventional pesticides on the foliage are an important risk for applicators by dermal exposure, making necessary reentry intervals after their application, which are not needed when D + S are used. Detergents can cause dermal [20] or eye irritation, but in general this type of exposure represents a very low risk to agriculture workers wearing the basic personal protective equipment, although some respiratory disorders have been reported to detergent exposure, mainly on asthma sufferers [21, 22]. There are some concerns regarding specific housecleaning products (e.g., those containing alkyl phenols), which have been related to breast cancer [23], although under normal exposure in the field the risks are reduced, since no systemic toxicity is expected for most D + S and several components of their formulations [18, 19, 24], but this issue needs a case-by-case analysis. Another important issue is the persistence of conventional pesticide residues in/on the marketable part of the crop that makes necessary to establish regulations of MRLs (maximum residue limits) for foods. Thus, PHIs (preharvest intervals) are established to comply with the law, whereas most D + S are not subjected to this type of restrictions. In fact, some D + S are applied right before harvest [9] and others are authorized for postharvest treatments [25], being easily washed off from the epidermis of fruits and vegetables by rinsing before consumption, having minimum risk and being therefore exempt of MRLs [26].
\nRegarding the impact on beneficial fauna in crops, D + S have been considered more selective than conventional insecticides, being compatible with biological control due to their low adverse impact on not sprayed insect and mites and the lack of residual activity [4, 27]. The only threat occurs by the direct spray or when the solution persists on the foliage, usually for short periods, killing predators and parasitoids. Therefore, the release of beneficial arthropods after a spray, once deposits are dry, allows them to survive. Available EIQ (environmental impact quotient that considers environmental and ecological threats) values for soaps indicate their low impact (e.g., 19.45 for M-Pede), close to most botanicals or IGRs (insecticide growth regulators), and smaller than those of horticulture oils [28]. However, no data on detergents were available. Therefore, research to identify efficient (current or new), but also nontoxic and ecologically safe D + S for pest control is required.
\nConventional pesticides are subject to a complex and expensive registration process where, after agronomic and toxicological reviews, they might obtain legal authorization to be used on crops. On the other hand, D + S are not necessarily subjected to registration, since some products are not labeled as pesticides, but as tree cleaners. However, it is important to transparent the real purpose of its use in agriculture [11]. Even when explicitly recommended to control pests, D + S should be easier to register after considering their risk assessment due to their low acute and chronic toxicity and, in some cases, their status as food additives or edible surfactants [29]. Considering the growing demand for residue-free foods, the eventual replacement of conventional pesticides for D + S will make those foods preferred by customers, increasing their value and making their trade easier. Therefore, all the actors involved should deeply assess D + S uses for pest control.
\nThe modes of action for D + S against pests have not been well understood yet [30, 31]. In fact, D + S are not considered on the IRAC (Insecticide Resistance Action Committee) lists that classify the pesticides mode of action for those with known specific target sites [32]. This is because D + S are not known to act at specific target sites, but at multiple sites [11]. Despite that, wax removal, arthropod dislodging, and drowning have been mentioned as lethal mechanism in D + S.
\nThe arthropod epicuticle is mainly made of lipids. The outermost part is a wax layer constituted mostly by hydrocarbons, serving mainly for waterproofing to avoid dehydration [33]. This is a serious threat for small insects and mites, particularly those sessile and exposed individuals. It has been proposed that when arthropods are sprayed with detergent, lipids are removed from the epicuticle, losing its waterproof ability, which in turn causes important water losses and, finally, the death of treated pests [34]. In fact, a significant reduction in both residual epicuticular lipids and body weight (assumed to occur mainly due to water losses) on the obscure mealybug
Santibáñez [35] proposed that mealybug mortality by exposure to detergents might be caused by several mechanisms, including the initial wax removal that might lead to further damage of the integument, but this was not demonstrated. Many reports of pest management with D + S reveal that individuals present a degreased and dehydrated aspect after exposure, suggesting that water losses might be involved in mortality. For instance, the cotton aphid
Treatments1 | \nDetergent (mL a.i.2/100 mL) | \nWater loss3 (mg) | \nResidual waxes4 (mg/mL) | \n
---|---|---|---|
LC90 | \n8.17 | \n1.85 a5 | \n14.95 b5 | \n
LC50 | \n4.45 | \n1.48 b | \n6.85 b | \n
LC10 | \n0.74 | \n0.89 c | \n54.76 a | \n
Control | \n0.00 | \n0.47 c | \n55.06 a | \n
1 LC = lethal concentration estimated by Probit analysis; study conducted using a Potter tower, control sprayed with water.
2 Active ingredient, the sum of surfactants formulated in TS 2035 (see Table 3)
3 Difference between initial (before) and final weight.
4 Residual waxes extracted with chloroform from 20 P.
5 Means with different letters in a column are significantly different (p ≤ 0.05) according to Tukey’s test. Data extracted from Santibáñez [35].
Healthy hemipterans before (left column) and either minutes or a few hours after exposure in 1–2% detergent solutions (right), presenting symptoms of dehydration, browning, body collapse, and wax removal. A,
Detergents1 (%, v/v) | \n% dislodgment2 (D) | \n% mortality (M) | \nCD = 100×D/[D + M]) | \n
---|---|---|---|
1.00% | \n22.2 | \n59.4 | \n27.2 | \n
0.50% | \n21.7 | \n32.6 | \n40.0 | \n
0.25% | \n14.1 | \n17.6% | \n44.5 | \n
Control3 | \n3.2 | \n18.8% | \n14.5 | \n
Detergents and soaps contain surfactants, that is, compounds that reduce the surface tension of solutions, enhancing their capability to wet and wash arthropods off. Thus, sprays can dislodge motile forms of phytophagous pests, as nymphs and adults of mites, thrips, etc. (particularly when the solution runoffs on the leaves). Even not necessarily all removed individuals die, and dislodgement causes significant reductions of populations infesting the foliage. Dislodgement has been highlighted as an anti-herbivore trait [36] that reduces their phytophagous performance on the plant. In a laboratory study, up to 22% dislodgment of the citrus red mite
Not many reports have demonstrated dislodgment when soaps and detergents are used for pest control, although surfactants have been mentioned as useful tools to wash out arthropods plant substrates (including plant organs) for cleaning produce or pest sampling purposes [39]. For instance, ca. 28% of the western flower thrips,
Arthropod respiratory system is formed by a net of conducts (traqueae) that allow direct gas exchange with tissues. It is connected to the exterior by spiracles that regulate opening by muscles [33]. The surfactant properties of detergents and soaps allow the solutions to enter the spiracles [41, 42]. The solutions fill the traqueae, causing drowning and death. No reports have been found describing this mechanism for pest control, but several papers have mentioned drowning as a mortality factor after surfactant sprays on insects and mites [43, 44]. In larger insects, this seems to be a lethal mechanism after exposure to D + S [43].
\nInterference with cellular metabolism [41], repellency [30], breakdown of cell membranes [42], abnormal juvenile development [12], caustic activity, uncoupling oxidative phosphorylation, and/or even nervous system disruption [45] have been also indicated as possible modes of action of D + S, but further details have not been found. Interestingly, in nature, surfactants have been highlighted as a mechanism of defense developed by some insects against their predators by producing oral secretions containing surfactants that, for instance, stop ants attacking beet armyworm,
Table 3 presents the characteristics and origin of 16 detergents and soaps used for pest control, or as co-adjuvants, reported in here. Many are liquids that perform better as insecticides and miticides [47], and a few are bars or powders. All were mixed in water to be applied, but bars needed, additionally, chipping and boiling before dilution. Several of the main world producers of cleaning products are represented in the list. About 44% of the products listed in Table 3 correspond to either dishwashing, housecleaning, or personal cleaning products tested or used as alternatives to conventional pesticides. Thus, most products were not registered for pest control or agriculture use, but the results from research led later, in some cases, to the development of agriculture detergents (e.g., TS 2035 or SU 120 in Chile). Some D + S are produced locally, by relatively small producers, with raw materials easy to obtain, making suppliers and growers, particularly in developing countries, more independent from foreign surfactant producers. Information on D + S formulae was not always readily available and their components were not completely described, indicating only generically the type of compound (no chemical names given) or giving the range of the total surfactant content, but not precise figures. In fact, in many scientific publications reporting on the topic, there are no details on the specific inert ingredients or the surfactants (considered the active ingredients), or their respective proportions [47, 48].
\nCommercial names and formulations2 | \nCompanies3 and countries | \nSurfactants (a.i.) and %4 in c.p. | \nDeclared uses5 and references | \n
---|---|---|---|
Acco Highway Plant Spray Soap, L | \nAcme Chemical Company, PA, USA | \nCoconut oil soap6 (38.5) | \nASo, Moore et al. [63] | \n
Break, L | \nBASF, Chile | \nTrisiloxane7 (75) | \nCo, Sazo et al. [54] | \n
Disolkyn, L | \nBramell Ltda., Chile | \nSodium disoctyl sulfosuccinate6 (70) | \nSu, Sazo et al. [66] | \n
Ivory Clear detergent, L | \nProctor and Gamble, OH, USA | \nAcids salts of coconut oil and tallow6 | \nHCD, Sclar et al. [69] | \n
Key soap, B | \nUnilever, Ghana | \nNot provided | \nPCSo, Asiedu et al. [48] | \n
LK dishwashing, P | \nBiotec S.A., Chile | \nNot provided | \nDiD, Arias et al. [47] | \n
M-Pede, L | \nMycogen Corp., CA, USA | \nPotassium salts of fatty acids6 (49) | \nASo, Butler et al. [30] | \n
Nobla, P | \nJohnson and Diversey, Chile | \nSodium alkyl benzene- sulfonate6 (5-15) | \nHCD, Curkovic et al. [57] | \n
Palmolive, L | \nColgate-Palmolive S.A., Chile | \nTotal fatty acids6 (71) | \nPCSo, Arias et al. [47] | \n
Quix, L | \nLever S.A., Chile | \nSodium benzene- sulfonate6 (15-30%) | \nHCD, Curkovic et al. [34] | \n
Safer, L | \nAgro-Chem, CA, USA | \nPotassium salts of fatty acids6 (50) | \nASo, Osborne and Petit [65] | \n
SU 120, L | \nJohnson and Diversey, Chile | \nSulfonates (14.9); lauryleter sulpfnate6 (17.8) | \nAD, Ripa et al. [55] | \n
Sunlight Dishwashing Detergent, L | \nUnilever, Ghana | \nLAS6 (10-20) + sodium lauryl ether sulfate6 (5-10) | \nDiD, Asiedu et al. [48] | \n
Tecsa fruta, L | \nProtecsa, Chile | \nXylene sulfonate6 + nonylphenol7 (1.5-2) | \nAD, Curkovic et al. [38] | \n
Triton X, L | \nSigma, MO, USA | \nOctyl-phenol hydrophobe series Polyethylene glycol ether7 | \nASu, Warnock and Loughner [40] | \n
TS 2035, L | \nPace Intl., Chile | \n15-17% sodium dodecyl sulfate6, 4-6 ethoxilated alcohol%7 | \nAD, Curkovic et al. [9] | \n
Characteristic1 and origin of some of the detergents and soaps reported herein.
1 Not an exhaustive web search, thus, the characteristics were not found for all products; some of them can have different commercial names elsewhere.
2 Liquid (L), powder (P) or bars (B).
3 Fabricant or distributor at the time the original paper was published or current owner of the product.
4 Either % w/v or v/v of surfactant(s) (considered the active ingredient) reported in the commercial product (c.p.) when available
5 Reported use, housecleaning (HC), personal cleaning (PC), agriculture (A), horticulture (H), detergent (D), soap (So), or surfactant (Su) used as co-adjuvant (Co) or dishwashing (Di) detergent; bibliographical references where the product was cited
6 Anionic surfactant.
7 Non-ionic surfactant.
The first synthesized surfactants were soaps, molecules with a relatively long hydrocarbon hydrophobic chain in one extreme, capable of binding lipids, and a hydrophilic carboxylic group in the other extreme bonded to either sodium or potassium [49]. Soaps are relatively easy to produce from natural raw materials (animal fat or vegetable oils). They were used in pest control as far back as the eighteenth century [50]. However, soaps did not perform efficiently in hard water (where they precipitate) or at low temperatures. Therefore, and also considering the shortage of raw materials in Europe after World War I, detergents were developed in the 1930s, overcoming the limitations of soaps [20], mainly by substituting the carboxylic end by a sodium sulfate or sulfonate, or other hydrophilic group. The main uses of both types of compounds worldwide are housecleaning (laundry and dishwashing), personal care (body washers, shampoos), but also in agriculture, food processing, etc. Today, the main raw materials used to produce surfactants are petroleum-based materials and plant oils (mainly from soybean and palm). The latter has an increasing production due to, among other factors, its low cost and toxicity, and natural origin. In fact, from the point of view of their use in agriculture, detergents, unlike soaps, cannot be used in organic farms because they are synthetic, nonnatural products. The recent changes in surfactant markets (including the need for safer, environmentally friendly, and economical products) have stimulated the production of new compounds. For instance, food and pharmaceutical processing surfactants or edible surfactants are available, providing alternatives that need to be tested as pesticides, besides older compounds [29, 51]. Surfactants in D + S reported herein are described in Table 3. In solution, surfactants tend to adsorb to the surface or interphase of materials, reducing hydrogen bridges between water molecules, thus improving their wetting capabilities. Besides, in contact with water, surfactants form micelles or small spheres, usually having the hydrophobic end inside, binding lipids, and the hydrophilic end outside. In this way, lipids are removed (degreasing effect) from the substrate and get diluted (solubilized). The electric charge of the hydrophilic end in solution can be neutral (non-ionic surfactants), negative (anionic, the most common among the D + S reported herein), positive (cationic), or both (negative and positive) [49]. Ionic surfactants can modify the pH of the solution. For instance, anionic surfactants tend to slightly acidify the pH, but they perform better at basic pH; therefore, the detergent formulae include some buffer agents. In fact, it was found that agriculture detergents (including all co-adjuvants) tend to alkalinize the solution in distilled water (pH: 7.8–8.9, depending on the concentration) [35], but only when above 1% (v/v) was prepared, maintaining the pH neutral otherwise [52]. In many cases, the surfactants vary between D + S formulations (in their chemistry and/or proportions), affecting their insecticide/miticide performance [38, 53]. Therefore, the activity of D + S needs some standardizing procedure in order to compare their activities as pesticides, for instance, comparing the proportion of surfactants (see below the case of some mealybugs), although differences can also be due to the particular type of surfactant, so this issue needs further research. Besides the house or personnel cleaning products, and some agriculture detergents, other sources for pest control are the co-adjuvants commercialized for specific functions, for example, wetting agents when mixed with pesticides or fertilizers in agriculture. Some of them have been individually or in mixtures tested as insecticides and miticides [52, 54].
\nMost reports of pest control with D + S state relatively high levels of control (measured as either density reduction or mortality) against target pests. Those levels were usually achieved with the highest concentration tested, in most cases under or equal to 2%, either w/v or v/v, and considering the largest number of sprays [31]. The efficacy was directly related to coverage (the volume of water/ha used) and the stage of the pest (younger instars, except eggs, are the more susceptible ones, see Table 4) [11, 55]. In a few reports, however, the level of control obtained with soaps was poor [31, 56] or not significant when compared to some standard treatments (a recommended conventional pesticide). Maximum control was frequently measured when evaluations were conducted about a week after application, presumably due to a slower activity on arthropods than conventional pesticides [9], but some rapid stop-feeding response was also reported for insecticidal soaps, although mortality was achieved more slowly [12]. A few formulations include insecticides (e.g., pyrethrins are added in small amounts, [12]) for uses as agriculture soaps or louse shampoos [45], increasing their biocidal activity because of the addition of the natural neurotoxicant, but this is not the case of the products reported herein.
\nDetergents | \nLC50 on | \nLC903 on | \n
---|---|---|
Tecsa fruta | \n1.4 b2 (nymphs) | \n4.2 (nymphs) | \n
\n | 2.5 a (adults) | \n9.7 (adults) | \n
SU 120 | \n1.2 c (nymphs) | \n7.5 (nymphs) | \n
\n | 1.4 b (adults) | \nn/d4 (adults) | \n
LC501 and LC90 for
1 LC50 obtained by Probit analysis of data from commercial products in solutions (%, v/v) applied with a Potter tower (SU 120) or immersed 3 s in a solution (Tecsa fruta), values at 24 h after exposure.
2 Means with different letters are significantly different based on Curkovic et al. [68].
3 LC90, values calculated from unpublished data, LC90 were 3–6× greater than the LC50.
4 No data are provided because maximum observed mortality was <50%.
Toxicity to plants is a risk associated to the use of D + S, particularly at concentrations above 1–2% (v/v), but this effect should be a function of the proportion and type of surfactant(s) in the commercial formulation. It also depends on the plant species (its specific susceptibility or tolerance), their physiological condition, morphology, and growth stage. Phytotoxicity affects mainly leaves, flowers, and fruits [27, 57]; symptoms on the foliage range from yellowing to bronzing, and wilting or curling, up to necrosis and defoliation, whereas in fruits they range from small brown spots or massive epidermal browning to fruit dropping (Figure 2). Petal flowers can become brown or even necrotic when D + S are applied during flower bud appearance and blooming. These symptoms are also observed after repeated sprays with high concentrations (usually above 1%) of detergents [58] or when plants are under some type of stress (e.g., shaded plants, see below the case of
Symptoms of phytotoxicity on recently set olives during the spring (October, left), and on apple foliage in the middle of the summer (February, right), after a spray with detergents (0.5% or 1%, v/v, respectively).
Treatments | \n# sprays Dafs3 | \n% mortality | \n
---|---|---|
TS 2035 0.5% | \n1 (0) | \n15.2% e4 | \n
“ | \n2 (0 and 7) | \n38.0% de | \n
“ | \n3 0, 7, and 14 | \n62.8% bcd | \n
TS 2035 1.0% | \n1 (0) | \n61.1% cd | \n
“ | \n2 (0 and 7) | \n84.4% abc | \n
“ | \n3 (0, 7, and 14) | \n90.5% ab | \n
Chlorpyrifos1 | \n1 (0) | \n94.4% a | \n
Control2 | \n3 (0, 7, and 14) | \n0.0% f | \n
Mortality of
1 Lorsban 75 WG was applied once on February 12, 2014 (= day 0), at 80 g c.p./hL.
2 Tap water was applied every time.
3 Total number of sprays during the 2-week period.
4 Days after first spray (dafs) the successive applications were conducted.
5 Means with different letters are significantly different (p≤0.05) according to Tukey’s test.
Some reports state that insecticidal soaps are not persistent since they suffer rapid degradation [12]. However, some other studies on detergents or surfactants have demonstrated that their residues persist on the substrate after application. Triton X and Tween 80 (see Table 3 for details), two surfactants used as co-adjuvants, produced persistent residues, at least a week after the spray on tomato fruits or tobacco leaves, respectively [60, 62]. Despite that, D + S residues do not have residual activity in terms of protection over time [31], which occurs only in solution [45], thus they are considered strictly contact pesticides (spray or topic exposure), some affecting the pest quickly [12]. Some soaps have been incorporated into a diet causing a slight mortality in the laboratory [56], showing some ingestion activity, but only at high concentrations (5× the recommended field rate). There is, however, some “residual” activity shortly after the application of D + S, if the solution lasts as either droplets or a liquid layer on the foliage and contacts the arthropod [47]. There is also the possibility of re-hydration if, for instance, relative humidity increases enough and shortly (after the spray) during fog events, to re-dilute D + S residues. It has been proposed to conduct repeated and frequent sprays of D + S to counteract their lack of residual activity on recurrent pests (see Tables 5 and 6 for successful examples), but some concerns have been mentioned about the potential buildup of surfactants in the soil [63], although specific studies have not been conducted, except for some co-adjuvants [64]. On the other hand, the lack of residual effect turns out to be an advantage, preventing mortality of beneficial arthropods released after residues, which are dry, making D + S compatible with biological control and IPM programs.
\nTreatments | \n# sprays3 | \nDafs4 | \n% mortality5 | \n
---|---|---|---|
TS 203511 | \n1 | \n0 | \n29.0 cde | \n
2 | \n0 and 10 | \n23.7 de | \n|
3 | \n0, 10, and 20 | \n51.7 abc | \n|
4 | \n0, 10, 20 and 30 | \n54.2 ab | \n|
1 | \n30 | \n49.6 cd | \n|
Imidacloprid2 | \n1 | \n0 | \n78.8 a | \n
Control | \n0 | \n0 | \n12.0 e | \n
Mortality of
1 At 0.5% c.p. (v/v).
2 Confidor 350 SC applied once on January 24, 2013 (day 0), at 60 cc c.p./hL.
3 Total number of sprays/treatment.
4 Days after first spray (dafs) the successive applications were done.
5 Means with different letters are significantly different (p ≤ 0.05) according to Tukey’s test. Unpublished data.
Authorization is an obligatory requirement to legally utilize D + S as pesticides in agriculture. It implies the demonstration of no toxicological risks (including ecotoxicology) and agronomic efficiency, based on science, excluding compounds that do not comply. The process requires a large effort, and it is slow and expensive, making the agrochemical industry to proceed only when the economic return is attractive. There are a few cases of registered D + S as insecticides and/or miticides for agriculture, a few in the United States [30, 65]. In Chile, there has been one registration (Disolkyn, see Table 3) for a few years during the mid-2000s [66], but it was not renewed, so there are no legally available D + S for pest control currently in this country. Despite that, non-registered D + S have been used in Chile for pest control, suggesting that they do not cause problems. Their use with no sanctions has occurred because this is an issue not regulated specifically, since the products can be declared as used, for instance, as tree cleaners (an authorized use in some agricultural detergents), pest control being the real purpose [11]. However, growers subjected to the certification process do not use D + S. This causes a serious bottleneck for registration and development for these compounds as tools for pest management. Besides, the chemical and agrochemical industry have not made large efforts for detergent registration as pesticides, in part for a low market expectative in economic terms (low profit), and also due to the difficulty and elevated costs involved. For D + S, government agencies require the same requisite used for the registration of conventional pesticides, making even more difficult for the industry to spend efforts in a registration process for these types of compounds. However, as mentioned before, many surfactants, detergents, and soaps are safe for the environment and the users, and some are even food additives or edible surfactants, so there is room for pesticide development to identify and select those D + S with very low risks. Similar to the case of horticulture oils, pheromones, or biological pesticides [12, 13, 18], D + S should be developed as safe products, obviously excluding those questioned and dangerous [15, 17]. Therefore, authorization for D + S must be addressed by all the actors involved: government (registration agency, Departments of Health and of Agriculture), producers (the surfactants industry and agrochemical companies, suppliers, and distributors), the academic sector (researchers from the agronomic, chemistry, and toxicology areas), and even grower and consumer organizations (particularly those advocated to consumption of safer foods). Only by acting jointly, the analysis, selection, and development will lead to register and use D + S in pest management. Once available, these compounds will serve in IPM, but also to conventional or organic production schemes, and serve in many complex scenarios (e.g., used very close to harvest with no other management options).
\nSince D + S work strictly by direct contact, application should maximize the exposure of the pest as much as possible. Spray equipment must be adapted, for instance, modifying nozzles orientation in order to apply from underneath the leaves or fruits, where mealybugs, spider mites, or whiteflies use to feed [9]. Air-blast or powered backpack sprayers have been preferred for D + S applications, since better coverage and smaller droplets are achieved [9, 27]. If possible, trees might be pruned before spraying surfactants in order to increase pest exposure and air circulation that will help in the dehydration of treated insects and mites [9]. Solutions should be applied considering whole coverage of infested organs, using high volumes of water/ha and high-pump pressure during the spray [8, 63]. Besides, sprays should be done early in the morning or late in the evening to increase the duration of the wet layer and extend their insecticide lifetime [31].
\nThe habits, biology, and morphology of the pest should also be considered to maximize exposure by D + S sprays. For instance, nocturnal pests (armyworms (Lepidoptera: Noctuidae) or snails (Mollusca: Pulmonata, Helicidae)) should be sprayed at night for direct exposure. In fact, some noctuids have not been controlled efficiently by diurnal soap sprays in the field [56]. For the greenhouse whitefly
Most examples of pest species controlled with D + S belong to this insect Order. They are the main target group because of their (a) size, being small (most), therefore highly dependent on their protective wax layer; (b) exposure on plant tissues, many being relatively easy to reach and/or remove from the foliage by the spray; (c) type of cuticle, being either soft or thin, thus more susceptible to D + S; (d) damage, as most species cause it when reaching high populations, thus, a significant reduction (but maybe not eradication) is enough to secure satisfactory yields, as expected for surfactants; and (e) null development of resistant populations as with conventional insecticides, thus, management with multisite D + S helps to avoid or reverse the problem, etc. The following review presents the most important hemipteran groups controlled with these types of compounds.
\nWhiteflies are plant-sucking pests, having many generations per crop cycle, which infest mainly the foliage (usually the underside of leaves) of vegetables, tree fruit orchards, and ornamentals. They affect plant growth and yield by sap sucking, transmission of some diseases during feeding, and release of honeydew on the foliage and fruits, allowing the colonization by sooty mold. This fungus reduces both photosynthetic capacity and the value of the produce (downgrading the price of fruits and vegetables). Honeydew also serves as food for attendant ants that disturb biological control agents. Whiteflies have externally a conspicuous white-dusting wax layer to protect them from dehydration, also serving to reduce insecticide exposure. Detergent and soap sprays have been widely used to target the underside of the leaves and control whiteflies, despite some limitations against these pests as the lack of both systemic activity and residual effect. To counteract these narrowing factors, sprays require to be frequent, to cover the whole population. Besides, as whiteflies have several generations lasting about a month per crop cycle, each one should receive sprays. Butler et al. [30] were one of the first researchers in testing 16 D + S (e.g., M-Pede, Palmolive, etc.; see details in Table 3) on the control of the sweet-potato whitefly,
Aphids (
Woolly aphids (
Coccids or “soft scales” are important plant-sucking pests that infest mainly leaves and branches, and occasionally fruits, affecting plants similarly than whiteflies and aphids. Scales are relatively exposed to sprays, but their bodies are protected by a thick and hard shield. Because of that, sprays with contact insecticide target mainly young nymphs that have a poorly developed shield. Since coccids have usually one or two generations/year, the timing for insecticide contact sprays must be precisely defined by monitoring. Detergents and soaps have been informed to control coccid pests since several decades ago (e.g., Singh and Rao, 1979, on the green scale,
It is worth noting that other coccid species have been reported to be satisfactorily controlled by D + S: the soft scale
Armored scales are also sucking pests, but have a dorsal and protective shield not glued to the body. They colonize mainly branches and fruits (and eventually the leaves) of tree fruit orchards and ornamentals, but do not produce honeydew. Only nymphs I are mobile (crawlers), but once they set on a structure, they lose their legs and become sessile. Diaspidids have usually two to four generations/year. Reports on armored scale control with D + S are less frequent. For instance, the mortality of the oleander scale
Mortality (%) of
Mealybugs are, in general, similar to soft scales regarding the effect on infested plants. However, mealybugs do not significantly reduce plant growth and tend to infest fruits and branches instead of leaves, wood crevices and cuts, zones of fruit contact and calyx cavities, where they can stay even after harvest. Some are serious quarantine problems for exports. Because of that, detergents or soaps are usually not used for mealybug control in orchards oriented to export (however, see the use as postharvest treatment below). Consequently, an intense chemical control program is applied in Chilean orchards exporting fresh fruit, using conventional insecticides (preferring systemic and/or residual products), but their efficacy is still relatively low. This is due mainly to the insect’s habits (see Section “Pest biology and ecology”), its phenology (having three to four generations/season they infest the plant the entire season), and morphology (mealybugs are superficially covered and protected by a layer of waxes and woolly filaments). When exposed to sprays, however, mealybugs are highly susceptible to contact insecticides, including D + S. For instance, two agriculture detergents, Tecsa fruta and SU 120, were compared to control
Thrips are serious pests of vegetables, flowers, and fruit orchards, mainly affecting cut flowers and the skin of fruits (causing russet). They can produce silvering on flowers, leaves, and fruits, downgrading their value. Adults and nymphs are not sessile but tend to stay inside flower structures, under sepals, or at the contact point between either fruits or leaves and fruits. Therefore, D + S can be useful resources to reach them at those protected sites, by being used alone or as co-adjuvants (as surfactants) for conventional insecticides. However, trials evaluating thrips control have achieved different results in terms of mortality or density reduction when D + S have been used alone. For instance, the use of an agricultural soap (Acco Highway plant spray soap at 1% v/v) on the greenhouse thrips,
Spider mites feed mainly on the content of epidermal and parenchymal plant cells. While feeding, they do not reach vascular vessels; therefore, they do not produce honeydew. However, high populations can quickly develop on leaves causing bronzing, necrosis, and defoliation due to cell damage and the release of toxic substances. Mites tend to colonize the underside of leaves, where they need to be sprayed with contact and residual miticides, since colonization (for instance, from overwintering sites to the foliage developing during the spring) can last several weeks. During their development, they have sessile phases (proto- and deuto-nymphs), otherwise they are considered mobile arachnids. Besides, spider mites have several generations a year, being necessary to repeatedly control them along the season when populations reach dangerous densities. Some of the first modern reports of D + S used to control agricultural pests are related to spider mites [63, 65].
\nOsborne and Petit [65] found that the lowest insecticidal soap concentration (Safer at 1.25%, v/v) was effective in controlling adults and eggs of
Treatments1 | \nDays after a spray | \n||
---|---|---|---|
\n | 0 | \n2 | \n9 | \n
M-Pede | \n60.0 a3 | \n17.5 ab | \n20.8 b | \n
TS 2035 | \n54.8 a | \n11.5 ab | \n9.3 b | \n
Horticulture oil | \n56.0 a | \n12.0 ab | \n33.8 ab | \n
Pyridaben2 | \n53.3 a | \n1.8 b | \n6.5 b | \n
Control | \n127.3 a | \n138.3 a | \n199.3 a | \n
Densities of
1 Surfactants and oil (Ultraspray) at 1% c.p. (v/v).
2 Sanmite 20 WP applied at 75 g c.p./hL.
3 Means with different letters within a column are significantly different (p ≤ 0.05) according to Tukey’s test. Extracted from Curkovic et al. [9].
A recent report indicates that the detergent SU 120 at 1.5% (v/v) sprayed in an infested vineyard had a significant effect on reducing
Other insects than those addressed herein, as armyworms (Lepidoptera: Noctuidae, [56]), cockroaches (Blattodea: Blatellidae [43]), and ants (Hymenoptera: Formicidae [44]) have been reported as controlled by D + S, or at least affected. Besides, the control of other organisms including mollusks [85] and fungi [86] with D + S or surfactants has also been reported. All this evidence demonstrates that the potential target for this type of control tactic is far beyond sessile, soft integument, and small insects or spider mites.
\nCosts of detergents or soaps used against agricultural pests, in general, should be relatively low per spray (and it will become even lower if D + S increase their use in agriculture), but there are some exceptions (e.g., expensive insecticidal soaps sold in smaller containers for garden pests in the United States). Table 8 compares the direct costs of applying a detergent program versus a conventional insecticide, considering having a residual effect shorter or similar to the period of evaluation in the field, and conditions where both strategies have achieved statistically similar levels of control for two pests in either apples or vines (see Tables 5 and 6). When comparing the detergent program versus chlorpyrifos used against the apple woolly aphid, the TS 2035 program cannot outcompete the conventional insecticide, being more than 2× more expensive. If Lorsban 4E be used (another much inexpensive chlorpyrifos formulation recommended at 120 mL/hL, with a cost of US$9.7/L), the cost of the detergent program would be about 3× more expensive. However, if other insecticides as buprofezin (Applaud 25 WP used at 120 g p.c./hL, US$42.1/kg) or imidacloprid (Confidor 350 SC) are used (modern and less restricted insecticides, but also more expensive products), considering application conditions and assumptions as described for chlorpyrifos, the standard strategy/detergent program ratio would increase, to near 0.79 (the detergent program being now only 20% more expensive than Applaud) and 1.49, respectively. In the latter case, the detergent program was 49% cheaper (including costs of products, equipment, and workers) than the conventional neonicotinoid. Now, when comparing the use of a neonicotinoid in vines against scales versus the detergent program, results also become very competitive in favor of the detergent strategy (ratio = 1.63). Even considering increasing the detergent concentration to 1% (see discussion in Table 6), the detergent program (three sprays) would be 1% less expensive than the use of imidacloprid once. Thus, detergents tend to be competitive when new, more expensive molecules, are used as standard treatments, a trend expected in the next years. The two main factors increasing costs of detergent treatments have been (1) the need to re-apply in order to counteract the lack of residual effect to achieve a level of control similar to that of conventional (and residual) pesticides. Thus, the cost rises due to the increasing value of motorized equipment and drivers, used two to three times (against just one application of the standard); (2) the use of concentrations about 8× greater than conventional pesticides to obtain similar results (detergents need to be used at 0.5–1% c.p. vs. the standards used at 0.06% (imidacloprid) or 0.12% (v/v chlorpyrifos or w/v buprofezin). Besides, since D + S must be applied using high volumes at relatively high concentrations, the amount of product used is larger. The examples presented are based on particular conditions (see the Table 8 legend). However, the costs should vary among different countries, crops, management strategies, pesticide values, or pest species.
\nPest species and crops | \n#1 of detergent sprays ≈ to standard2 control | \nA: US$ cost of standard (appl./ha)TF8-3 | \nB: US$ cost of detergent (appl./ha)4 | \nRatio A/B5 | \n
---|---|---|---|---|
3 | \n113.5 | \n23.2 | \n1.63 | \n|
2 | \n74.4 | \n77.0 | \n0.48 | \n
Comparison of costs (US$) for detergent programs versus conventional insecticides, both as efficiently used to control
1 Minimal number of detergent sprays necessary to achieve mortality not significantly different from the standard treatment (see details in Tables 5 and 6).
2 Standard treatments; one application with imidacloprid (vines) or chlorpyrifos (apples) provided the best control during the period of evaluation.
3 Cost of application + insecticide in Chile; considering 1 h of equipment (tractor + air-blast sprayer owned by the grower + the driver salary) to cover 1 ha (US$20 for apples or US$8.9 for vines, figures provided by growers); cost of insecticide product for either Confidor 350 SC used at 60 mL p.c./hL in vines (US$174.3/L), or Lorsban 75 WG used at 80 g p.c./hL in apples (US$34/kg), as standard treatments, prices provided by local suppliers.
4 Cost of application of detergent TS 2035 (US$2.85/L), at 0.5% (v/v) for vines (coverage of 1000 L/ha), or at 1% (v/v) for apples (2000 L/ha).
5 Ratio between the cost of the standard treatment/detergent program; when greater than 1, the detergent strategy is proportionally more convenient.
It is important to point out that the exercise above does not consider other benefits of using D + S (used instead of conventional pesticides), as the avoidance of both pest resistance development to chemical pesticides or pest resurgence, or the relative improvement of the environment and the agro-ecosystem, or the reduction of risks of human intoxications (workers and consumers), and so on, because their costs are difficult to estimate. Therefore, if all those costs were valuable, it would probably make the figures much more favorable for D + S. Additionally, the access to markets preferring food not treated with conventional pesticides might also be considered an economic benefit. For instance, IPM or organic products can eventually achieve higher prices than conventional agriculture produce. Besides, foods treated with soaps or detergents will not have major restrictions to reach many different countries since they do not present questionable residues, making easier (and cheaper) the marketing process. In favor of conventional pesticides, an additional economic benefit of their use is their wider spectrum of action against some pest complexes in some crops, but D + S have also demonstrated an extended range of action on pests. Besides, some conventional products can protect for long periods against pests. However, some cannot be used during some phenological stages (Lorsban 4E is used today mainly as postharvest or winter treatment).
\nAmong other examples in the literature, an IPM program was cost-effective at most of the studied sites where the majority of pest were controlled using spot sprays of insecticidal soap or horticultural oil versus the management with conventional pesticides applied on the whole plantation [87]. Another report showed that up to five detergent sprays could be applied before reaching the cost equivalent of controlling pests with conventional pesticides applied twice (only considering the value of the commercial product, but no other application costs) [11]. Similarly, a recommended mixture of a miticide plus the synergic surfactant co-adjuvant Silwet 77 was over 5× more expensive than the cost of using the surfactant alone, which provided most of the control. Unfortunately, the surfactant was not registered as miticide, and was not allowed as a legally authorized control method [53]. Reduced pest control costs, by the use of soaps, were also mentioned by Lee et al (2006) [88].
\nThe use of surfactants, including D + S, as adjuvant, improves both the active ingredient solubility in the formulation and its physical and biocidal performance (e.g., wetting properties on plant or insect cuticle). Co-adjuvants are added directly to the tank before applications with the same purposes [11]. The oldest report of using soaps (as co-adjuvant) in mixture with other pesticides in the tank was published in Australia in 1969 [74], as a part of the phytosanitary program in Citrus, providing a satisfactory degree of both, coccids and diaspidids control. Later, surfactants were described as co-adjuvants, particularly for cuticle penetration in insects [89]. Last year, an entomopathogen spore suspension (
Treatments1 | \nTime (h)3 | \nLC504 | \n
---|---|---|
24 | \n8.8 × 106 ab5 | \n|
24 | \n8.6 × 107 c | \n|
72 | \n7.8 × 106 a | \n|
72 | \n3.3 × 107 c | \n|
144 | \n6.1 × 106 a | \n|
144 | \n3.0 × 107 bc | \n
1 Suspensions (2 mL) of
2 TS 2035 at 0.001% (v/v).
3 Three evaluation times were considered given the relatively slow activity reported for
4 LC50values were transformed to the respective amount of
5 Means with different letters are significantly different (p ≤ 0.05) according to Tukey’s test. Extracted from Villar [52].
Immersion of the fruit in warm water has been used as postharvest pest control against several pests on diverse fruit species [90, 91]. Besides, several D + S are allowed for postharvest uses, including fruit cleaning. The combination of both approaches (warm detergent solution) was tested, finding that pomegranates infested with mealybugs and immersed in a 1% (v/v) TS 2035 solution (at 47°C) for 15 min, maintaining the pH at either 5.5 and 8.5, notably (but not totally) controlled
Temp.1 (°C) | \nDet. Conc.2 | \npH3 | \nExposure time (min)4 | \nAdult females | \nNymphs II and III | \nNymphs I | \nAll mealybug stages | \n
---|---|---|---|---|---|---|---|
15 ± 2 | \n0 | \n5.5 | \n15 | \n2.755 | \n8.50 | \n8.75 | \n20.00 | \n
15 ± 2 | \n0 | \n8.5 | \n15 | \n2.00 | \n6.25 | \n22.00 | \n30.25 | \n
15 ± 2 | \n1 | \n5.5 | \n15 | \n3.50 | \n3.25 | \n11.00 | \n17.75 | \n
15 ± 2 | \n1 | \n8.5 | \n15 | \n2.25 | \n7.75 | \n18.00 | \n28.00 | \n
47 ± 2 | \n0 | \n5.5 | \n15 | \n1.25 | \n7.50 | \n9.50 | \n18.25 | \n
47 ± 2 | \n0 | \n8.5 | \n15 | \n6.00 | \n4.75 | \n15.25 | \n26.00 | \n
47 ± 2 | \n1 | \n5.5 | \n15 | \n0.50 | \n0.25 | \n12.75 | \n13.50 | \n
47 ± 2 | \n1 | \n8.5 | \n15 | \n1.00 | \n1.25 | \n2.75 | \n5.00 | \n
Survivals of
1 Water temperature.
2 % TS 2035 c.p., v/v.
3 pH corrected from neutral to acid (by adding phosphoric acid) or basic (by adding sodium hydroxide).
4 Time pomegranates were immersed in solution (minutes).
5 Means of selected treatments, showing greatest contrasts. Extracted from Carpio [92].
Many different agriculture pests (mainly hemipterans and spider mites) are efficiently controlled by detergents and soaps, provided they are directly covered by the spray. The knowledge of their biology and ecology must be used to improve their performance by increasing the pest exposure. The research on new potential targets and the combination of D + S with biological control agents should be studied. D + S can be used as well to avoid or even reverse pest resistance problems.
\nThe modes of action of D + S as insecticides and/or miticides seem to be mainly wax removal, arthropod dislodgement, and drowning, but it is an unsolved issue in many situations yet. It is then necessary to keep researching on this issue to optimize the use of surfactants as pesticides.
\nDespite some environmental and toxicological concerns, the appropriate use of D + S, and the selection and formulation of surfactants with minimum risks (for instance, among the offer of new, safe, and low-cost surfactants), makes them potentially useful pesticides, but it is necessary to confirm their relatively safety (for mammals and the environment) and capacity for pest control, in food products.
\nThere is a need to standardize the biocidal activity when comparing D + S, maybe based on the proportion of surfactants in the formulae or contrasting with some standard compound.
\nDetergents and soaps can be used as co-adjuvants (in the tank) for conventional or biological pesticides. D + S can also be applied first to debilitate pest insects and mites, spraying later insecticides and miticides. In both cases, a rate reduction for conventional (and more expensive and restricted products) is possible, but these issues need further research.
\nDetergents and soaps can be used in orchards, vegetables, or greenhouses, serving to conventional, IPM, or organic growers, making possible to reach highly selective markets and consumers willing to pay for foods free of insecticide residues and, at the same time, take advantage of their relative sustainable status, replacing conventional pesticides. D + S could be applied very close to harvest, when conventional pesticides cannot, due to the insufficient preharvest intervals.
\nHowever, in order to provide satisfactory control and become a greater tool for pest control, D + S need to solve the (a) lack of residual effect, (b) potential for plant toxicity, (c) legal status, and (d) cost. For multivoltine pests, or those infesting crops for long periods, their repeated use over relatively short periods has probed in several cases to provide a control equivalent to conventional (and residual) insecticides. Plant toxicity has been diminished by selecting tolerant crops, or tolerant phenology stages of the crops, excluding otherwise the use of D + S. This issue needs more research to identify tolerant crops and the conditions and mechanism causing plant toxicity, in order to develop safer D + S. The repeated applications of small concentrations of D + S have overcome these two problems, becoming useful tools for IPM productive schemes, particularly considering their multi-site action, selectivity to beneficial organisms, lack of residual effect, and relatively low environment and human toxicity. The facts that D + S are relatively quick to control, easy to produce and use, versatile, and lack major legal restrictions just improve their possibilities to be incorporated in pest programs.
\nThe cost of efficient programs of control with D + S can be competitive with conventional pesticides, depending on the crop, pest, type of grower, and alternatives of pesticides, and it deserves a more detailed analysis, including the precise valorization of several benefits associated to the use of D + S, although some of them are difficult to measure, as lower probability of inducing insecticide resistance or pest resurgence, lower risks of intoxications to workers, etc.
\nBesides the cost issue, the authorization of D + S as pesticide products seems to be the next main challenge, being necessary that the industry (producers and suppliers), government agencies (regulatory apparatus), scientists (agronomists, entomologists, chemists, toxicologists), and even growers and consumers interact in order to develop a regulation process that allows to increase D + S registrations, particularly those safer compounds, that can be efficiently used with minimum risk (by far lower than conventional pesticides) at pre- and postharvest, becoming valuable tools for sustainable pest management.
\nEffluents of industrial wastes are the important source of water pollution that are toxic in the environment and are becoming the biggest problem that influence the survival of human beings and other creatures in the environment. The demand of clean water is increasing with the rapid growth of global population; in the present, several treatment techniques that include biodegradation, membrane process, coagulation, adsorption, precipitation, sonochemical degradation, micellar-enhanced ultrafiltration, and advanced oxidation process (AOP) have been utilized to remove pollutants from wastewater [1]. Among them, AOP is an efficient method to remove the contaminants that are not degradable by means of biological processes. Since these processes involve the production of very reactive oxygen species (ROS), it can be able to destroy a wide range of organic compounds. A wide range of semiconductor photocatalysts have been utilized in AOPs. The first photocatalyst, TiO2, discovered by Fujima and Honda in 1972 was found as gold standard due to its significant characteristics that include high chemical stability, nontoxicity, and relatively low price [2]. However, it only absorbs ultraviolet irradiation from sunlight due to its wide bandgap. To overcome this problem, several studies are focusing on finding ways to extend the absorption wavelength range of TiO2. In this regard, metal or nonmetal elements doped onto TiO2 and visible light response photocatalysts are being developed as the future generation. Among which transition metal chalcogenide (TMC) materials gained worldwide attention in recent decades because of their significant characteristics, such as excellent optical absorption due to its tunable indirect bandgap energies (1–2 eV) [3]. Moreover TMCs with graphene oxides [4], carbon nitride [5], metal oxides [6], and metals [7] were found to increase the conductivity of electrons, provide active sites, and effectively separate the electron and hole pairs generated by the semiconductor photocatalysts [4]. This chapter explores the synthesis, characterization, and the applications of TMCs.
\nTransition metal chalcogenides are considered as emerging candidates due to their unique physical and chemical properties and are being researched for use in lithium-ion batteries, solar cells, hydrogen evolution, and photocatalytic degradation due to their indirect bandgaps, optoelectronic behavior, and stability. In addition, nanodots (quantum dots)/nanostructures of these metal chalcogenides show stronger edge effects, and the quantum confinement effect makes it possible to utilize under solar-simulated irradiation [8, 9].
\nThere are several methods to synthesize transitional metal chalcogenides, including ultrasonic chemical method, hydrothermal method, simple template-free one-pot method, an ion-exchange and precipitation methods, simple microwave-assisted solvothermal process, and surface modification method [5, 6, 7, 8, 9, 10, 11, 12]. The following sections explore the most common preparation methods of TMCs.
\nHydrothermal reaction usually occurs in the reaction vessel of stainless steel autoclave. The presence of aqueous solution or mineralizers under high pressure and low temperature encourages interaction of precursor materials during the process. This method has the feature to make high crystalline nanostructures or products at relatively low temperature [13, 14]. A range of TMCs that include NiS [15], CuS, FeS2, NiS2 [10], etc. have been synthesized using hydrothermal treatment method due to low temperature requirement (150°C), short time duration (~4 h), and high yield (>90%). In addition, there is no need to use any complexing agents or no need to control the pH [10] (Figure 1).
\nSchematic illustration of the hydrothermal synthesis of FeS2, CuS, and NiS2 powders. Reproduced with permission from [
Synthesis of CdS nanosheet-RGO hybrid. Reproduced with permission from [
Further, hydrothermal method has been utilized to synthesize TMC-doped metal [16], metal oxides [17], or carbonaceous [18] materials. The following schematic illustration represents the preparation of CdS nanosheet-RGO hybrid material using hydrothermal treatment method (Figure 2).
\nApart from these, microwave-assisted synthesis method has also been used to prepare TMCs with controllable size and shape compared with conventional heating method due to the homogeneous heating process. Further, this method can promote nucleation and, thus, reduce the time required for synthesis [18].
\nSimple template-free one-pot method is a simple synthetic approach that was used to develop certain metal oxide hollow spheres based on direct solid evacuation arising from Ostwald ripening, the Kirkendall effect, or chemically induced self-transformation [19].
\nFigure 3 illustrates the mechanism for the simple template-free one-pot method to prepare hollow sphere, Ni-doped CdS material. Herein, biomolecular glutathione was used as sulfur and bubble source [7].
\nMechanism for the formation of Ni-doped CdS. Reproduced with permission from [
The essential techniques used to characterize the transition metal chalcogenide materials are discussed in this section.
\nX-ray diffraction (XRD) spectroscopy is a nondestructive method used to analyze the crystallinity, crystal structure, crystallite size, and phase composition of the photocatalytic materials which presents in powder form or thin film.
\nXRD pattern for MoS2 on g-C3N4 in different amounts. Reproduced with permission from [
In the study by Li and co-workers, MoS2 nanosheets coupled into the carbon nitride to form MoS2/C3N4 heterostructures synthesized by a facile ultrasonic chemical method were characterized by using XRD. All the samples prepared showed similar patterns, and the peaks at 32.6 and 58.3° were assigned to the (100) and (110) crystal plane formation of MoS2. Peak at 27.4° indicated to the (002) stacking layered structure, while the 13.0° peak corresponds to the (100) in-plane repeated units. The observation from XRD confirms the formation of MoS2/C3N4 heterostrucuture [5] (Figure 4).
\nIn another study, NiS nanoparticles prepared hydrothermally were characterized by powder XRD method.
\nFigure 5 illustrates the XRD patterns of as-prepared nanostructured NiS samples. The patterns were indexed to rhombohedral structured NiS with the space group of R3m. The cell parameters were found to be a = 9.61 Å and c = 3.16 Å [15].
\nXRD for synthesized NiS. Reproduced with permission from [
XRD pattern (Figure 6) confirmed the formation of CdS, and Ni-doped CdS materials prepared by one-pot synthesis method show similar pattern and are assigned to hexagonal phase. It was also found that the peak intensity increases with the increase in Ni2+ doping concentration. Average crystallite size was estimated based on the broadening of the (002) peak, and it was found that the crystallite size also increased with the %Ni doped on CdS [7].
\nXRD for Ni doped on CdS. Reproduced with permission from [
X-ray powder diffraction patterns of different metal sulfides were reported by Ali and co-workers as illustrated in Figure 7. The diffraction patterns of the samples are indexed to pyrite FeS2, covellite CuS, and vaesite NiS2. The purity of the phases was confirmed by the absence of additional peaks in their XRD. XRD patterns of cubic FeS2 and NiS2 were found to be isostructural, whereas CuS was found in a hexagonal symmetry. The crystallite sizes of the materials were estimated as 50, 45, and 22 nm for FeS2, CuS, and NiS2, respectively [10].
\nXRD diffraction patterns and schematic representations of the crystalline structure of (a) FeS2, (b) CuS, and (c) NiS2. Reproduced with permission from [
Scanning electron microscopy (SEM) is one of the electron microscopic techniques that images the sample surface using high beam electrons. In this technique, beam electrons strike the surface of the specimen and interact with atoms and form the secondary electrons, which characterized the information about the morphology of sample surface in high-resolution images colored in black and white. SEM is used to view dispersion of nanoparticles in different nanostructures, such as nanotubes, nanoclays, nanofillers, and nanofibers. In addition, the method used X-ray to identify elemental composition known as energy-dispersive ray method (EDX). The transmission electron microscopy (TEM) images form when beam of electron is transmitted through the sample and magnified by objective lens. This technique is the most preferred to measure the particle size and thickness of sample. In particular, for the morphology of materials, monitoring morphology and dispersion is very crucial compared to scanning electron microscopy [20].
\nFigure 8(a) shows SEM images of carnation flowerlike morphology with a diameter of about 500–700 nm. Figure 8(b)
(a–c) SEM images of SnS2 flowerlike structure, (d–e) TEM images of SnS2 flowerlike structure, and (f) SEM images of SnS2 nanoparticles. Reproduced with permission from [
SEM and EDS analysis of (a, b) FeS2, (c, d) CuS, and (e, f) NiS2. Reproduced with permission from [
In the green synthesis of earth-abundant metal sulfides by Ali and co-workers, the samples prepared exhibited uniform morphology and particle size distribution, which is due to a controlled growth during the hydrothermal synthesis. The presence of iron, copper, nickel, sulfur, and carbon and its purity obtained using SEM analysis was found to be in good agreement with the phases observed by XRD. In addition, the atomic content of Fe, Cu, Ni, and S in the samples had a good correlation with theoretical atomic% of all the phases. The morphological analysis confirmed that as-prepared sulfides are in the form of agglomerated particles. In addition, polyhedral particles with the size of ~676 ± 44 nm were obtained for FeS2 sample, whereas CuS and NiS2 exhibited irregular- and spherical-shaped particles with the size of ~783 ± 53 and 933 ± 68 nm, respectively [10] (Figure 9).
\nLi et al. studied the morphology and microstructure of the as-prepared samples of WS2 by using SEM and TEM. The detailed structural information of the WS2/Bi2MoO6 composite was obtained by TEM analysis, and an irregular platelet-shaped nanostructure was observed with the length ranging from 500 nm to 2 μm. The results obtained from TEM were in good agreement with SEM analysis. The HRTEM of the prepared materials further confirm the nanojunction structure. Figure 10 illustrates two sets of different lattice images with the lattice fringe of 0.27 and 0.46 nm obtained from TEM corresponded to the (100) plane of WS2 and (120) plane of Bi2MoO6 resulted from the XRD [17].
\nTEM and HRTEM images of the hierarchical WS2/Bi2MoO6 composite (5 wt% of WS2). Reproduced with permission from [
XPS or X-ray photoelectron spectroscopy is used as surface analytic technique based on the photoelectric effect. XPS is mainly used to find the composition of elements in the surface of the materials and to determine the valence band structure and chemical state of components.
\nFigure 11(a) illustrates the XPS molybdenum 3d spectra for MoSe2, which exhibit peaks on 228.84 and 232.01 eV indicating binding energy of Mo 3d5/2 and Mo 3d3/2 for Mo4+ ions, respectively. In addition, Figure 11(c) depicts the XPS of MoSeX (at 120°C) indicating additional peaks at 232.07 and 229.45 eV which can be attributed to the binding energy of Mo5+ ions. The results confirmed the synthesis at 120°C, which resulted in two chemical states (IV and V) of molybdenum. Further, it was found that the amorphous MoSe2 showed a very broad Se 3d peak than the crystalline MoSe2. The Se 3d5/2 and Se 3d3/2 peaks for amorphous and crystal samples of MoSe2 were found to lie between the range of 52 and 57 eV; however, the intensity of the peaks varied in amorphous sample. Peak-fitting analysis showed that the ratio of Mo to Se in the amorphous MoSex sample was 1:3:1 [3].
\n(a, b) XPS for MoSe2, (c, d) XPS for MoSeX. Reproduced with permission from [
Figure 12(a) shows the schematic of PtSe2 in monolayer format, in that one sublayer of Pt atoms is sandwiched between two Se sublayers. Figure 12(b) shows the XPS measurements for Se during the growth of PtSe2 at 270°C. The peaks at 55.68 and 54.80 eV indicate the binding energy of Se(0) chemical state at 25°C, and at 270°C, the peaks were found at 55.19 and 54.39 eV corresponding to the binding energy of Se2− chemical state; in between that, at 200°C, the curve indicates the coexistence of Se(0) and Se2− states. The binding energies of Se confirmed the formation of PtSe2 at 270°C [22].
\n(a) PtSe2 monolayer and (b) XPS for PtSe2. Reproduced with permission from [
The XPS survey spectrum of SnS2-AP (Figure 13) confirmed the presence of Sn and S components, whereas Cr, C, and O were found to be the contaminants. High-resolution XPS spectra of Sn 3d and S 2p core levels proved that the binding energies of Sn 3d and S 2p of SnS2-AP were very close to those of SnS2-(c). The binding energies of Sn 3d5/2 and S 2p3/2 of SnS2-AP and SnS2-(c) were 486.61 and 486.65, 161.68, and 161.74 eV, respectively. It was also found that the binding energies of Sn 3d5/2 and S 2p3/2 of SnS2-AP and SnS2-(c) were of close proximity with the reference data of Sn4+ and S2− in SnS2.
\nXPS spectra of SnS2-AP and SnS2-(c). Reproduced with permission from [
Apart from these, a peak attained at 577.36 eV is due to the binding energy of Cr 2p3/2 corresponding to Cr (III) in Cr(OH)3. The hydrolysis-precipitation of Cr(III) ion leads to the formation of Cr(OH)3 on the surface of SnS2-AP. Cr(III) were generated from the photocatalytic reduction of adsorbed Cr(VI) [23].
\nPersistent organic pollutants (POPs) are of global concern because of their potential for long-range transport, persistence in the environment, ability to biomagnify and bioaccumulate in ecosystems, as well as possess negative effects on human health and the environment. In particular, the agrochemicals and textile effluents involve processes that produce compounds that are very toxic to the environment. Thus, it is necessary to remove these colored pollutants from the environment. Several catalysts have been utilized to remove the pollutants from the polluted environment, and the transition metal chalcogenide has recently gained much attention in this regard due to their significant characteristic properties.
\nRepeated tests using recycled CdS 0.03(MoS2/0.01rGO) composite catalyst for photocatalytic 4-nitrophenol reduction. Reproduced with permission from [
Wen-chao Peng et al. synthesized MoS2/reduced graphene oxide hybrid with CdS nanoparticle for photocatalytic reduction of nitroaromatic compounds to aromatic amines under visible light irradiation in the presence of sacrificial agent. It was also noted that composite of CdS-0.03 (MoS2/0.01rGO) exhibited remarkable enhancement on the 4-nitrophenol reduction due to the separation of electron-hole pairs generated by CdS nanoparticles [4] (Figure 14). In addition, it was found that the photocatalyst appeared to be stable confirmed by recycling study as illustrated in the following figure.
\nIn another study, Peitao Liu and co-workers worked on prepared N-doped MoS2 nanoflowers (specific surface area of 114.2 m2 g−1) and α-Fe2O3@N-doped MoS2 heterostructures for decoloring or the removal of the Rhodamine B (RhB) under visible light irradiation. When comparing the activity of these two materials, N-doped MoS2 nanoflowers showed optimum rate constant as 0.0928 min−1, which was 26.4 times greater than that of MoS2 nanosheets. Further, 20 mg of these catalysts completely degraded the 50 mL of 30 mgL−1 RhB within 70 min [24] (Figure 15).
\nPhotocatalytic degradation of RhB by different photocatalysts (N-doped MoS2 nanoflower, without light, bulk N-doped MoS2, and MoS2 nanosheets) under visible light irradiation, where C and C0 are the RhB concentrations at time t min. And 0 min, respectively. Reproduced with permission from [
MoS2 nanosheets were coated into carbon nitride synthesized by facile ultrasonic chemical method to form heterostructures. These materials were used to explore the photocatalytic degradation of the dyes, RhB and MO, and the optimum reaction rate constant was found to be 301 min−1 with the 0.05 wt% MoS2 [5].
\nYangyang Liu and co-workers synthesized ZnO nanosheet doped with P by using conventional chemical vapor transport and condensation (CVTC) method and then coated with an atomic layer of MoS2 on it (Figure 16).
\nMechanism of photolysis on ZnO decorated with MoS2. Reproduced with permission from [
The photocatalytic activity of the catalyst was tested by degradation of organic dyes, such as methylene blue (MB) and Rhodamine B (RhB), under natural sunlight. It was found that 95% of organic dyes were degraded within 6 min and photocatalytic rate constant was found to be 1.413 min−1, which was 3.4 times better than that of P25 due to the enhanced light adsorption efficiency obtained by synergetic effect of MoS2 [6].
\nSchematic illustration of photo-charge separation through 1 T@2H-MoS2/Ag under visible light irradiation. Reproduced with permission from [
In another study, Haiyang Liu et al. worked on 1 T@2H-MoS2/Ag composite synthesized by microwave-hydrothermal and photoreduction methods for photocatalytic degradation of conventional dyes and photocatalytic reduction of Cr(VI) under visible light irradiation. It was observed that 1 T@2H-MoS2/Ag effectively enhanced photocatalytic activity compared with 2H-MoS2 due to the enhancement in the light response range and charge separation by using Ag quantum dots and 1 T phase. In addition, 1 T@2H-MoS2 showed 81 and 41% of increment in photocatalytic reduction of Cr(VI) and photocatalytic degradation of methylene blue, respectively [16] (Figure 17).
\nIn a different study, Xi Yang et al. worked on amorphous and crystalline molybdenum selenide synthesized by facile low-temperature hydrothermal method for adsorption and degradation of Rhodamine and methylene blue under dark and visible light irradiation. Due to the excellent optical absorption and narrow bandgap (1–2 eV), molybdenum selenide (MoSe2) is preferred for the photocatalytic degradation of pollutants. Hole and free radical studies concluded that the photocatalytic effect of the amorphous samples was higher than that of the crystalline samples due to the different active substances. The active substances, superoxide radicals, in particular, predominated the process of degrading the dye. When comparing the amorphous and crystalline materials, amorphous molybdenum selenide showed better performance in adsorption and degradation process due to the formation of superoxide radical (˙O2−) and more unsaturated atoms and greater specific surface area than crystalline structure; further, the holes and hydroxyl radicals were found to be the main active substances [3].
\nHongxu Guo et al. synthesized NiS nanoparticles for photocatalytic degradation and adsorption of Congo red under visible light irradiation. NiS nanoparticles were synthesized by hydrothermal method, and it exhibited efficient photocatalytic activity. 30 mg/L of Congo red was completely degraded after illumination of 210 min. In addition, OH radicals were identified by using fluorescence technique, and those highly reactive radicals were found to be the major factor for the photocatalytic process [15].
\nIn a different study, Aniruddha Molla et al. synthesized Ag-In-Ni-S nanocomposites with different shapes for the degradation of methylene blue under dark and visible light irradiation. It is noteworthy to mention here that 20 mg of the catalyst showed a complete degradation of methylene blue within 12 min, when there was no light exposure. Notably, the degradation took only 2 min, when visible light was exposed with a 100 W lamp source. Further, the reactive oxygen species generated during the process was confirmed in their study [2].
\nCdS and Ni-doped CdS hollow spheres were used by Man Luo and his group for the degradation or removal of RhB and phenol. These materials were synthesized by simple template-free one-pot method. 1.2 mol% of Ni-doped CdS hollow spheres exhibited better performance in the removal of organic pollutants due to the reduce recombination rate of the electrons and hole pairs [7]. Figure 18 illustrates the UV-absorbance profile for the degradation of RhB dye with the 1.2 mol% of Ni-doped CdS.
\nUV-visible absorption spectra of RhB in the presence of 1.2 Mol% of Ni-doped CdS. Reproduced with permission from [
Earth-abundant transition metal sulfides, such as FeS2, CuS, and NiS2, were synthesized by fast and low-cost hydrothermal synthesis method and utilized for photocatalytic hydrogen evolution and photocatalytic degradation of indigo carmine dye under visible light irradiation. Different sacrificial agents, such as Na2S/Na2SO3, EDTA, and ethanol, were used when the H2 evolution was tested. FeS2 showed higher activity for the hydrogen evolution (32 μmolg−1 h−1), and an 88% of dye (indigo carmine) degradation was attained due to their suitable electronic and optical properties. The better activity was credited to a larger crystallite size, smaller particle size, and lower recombination rate of FeS2 than other materials that include CuS and NiS2. In addition, the presence of Na2S/Na2SO3 exhibited higher enhancement in the activity for the production of hydrogen among the other scavenging reagents used in this study [10].
\nIn another study, Yongje Zhao and co-workers utilized the bimetallic chalcogenides material, FeCoS2, synthesized by using a modulated hydrothermal method for photodegradation of methylene blue and anode materials for Na-ion batteries under UV radiation. The photocatalytic activity of FeCoS2 which was hydrothermally treated at 190°C was found to be a better candidate with the degradation efficiency of 90% (in 150 min) under UV irradiation. The better photocatalytic activity was related with the microstructure, specific surface area, and charge separation of catalytic materials [25].
\nAlireza et al. prepared NiS-clinoptilolite zeolite as a catalyst via an ion-exchange and precipitation methods. The catalyst was utilized for photodegradation of furfural in aqueous solution over UV irradiation. An optimum photocatalytic efficiency was observed when 330 mg L−1 of the catalyst was used at pH 5 in 6 mM of furfural solution. In addition, it was found that the degradation rate increased with increasing amount of hydrogen peroxide and potassium bromate in the solution [12].
\nXi Li et al. used SnS2 and CdS for photocatalytic degradation of different types of organic dyes, such as methyl orange (MO), Rhodamine B (RhB), Congo red (CR), orange II (OII), malachite green (MG), and methylene blue (MB), under visible light irradiation, and the activity of these two materials were compared. SnS2 showed higher activity in the degradation of MO and lower activity in the degradation of RhB-like organic dyes, when compared to CdS material. In the degradation of azo dyes (dyes containing N〓N double bond), SnS2 followed a reduction mechanism with photoelectrons via the SnIV/SnII transition, whereas an oxidation mechanism was observed with both SnS2 and CdS for photodegradation of organic dyes which do not consist of N〓N double bond. ˙O2− and ˙OH radicals were found to be the major contributors for the oxidation mechanism. Since the reduction of dye molecules was faster than migration of the radicals, SnS2 exhibited much higher activity than the CdS for the dyes containing N〓N double bond. However, SnS2 showed lower efficiency than CdS in the photocatalytic degradation of other organic dyes without N〓N double bond, due to the slow production of reactive oxidative species mentioned above. Additional experiments were carried out in the presence of the scavengers NO, N2, O2, and IPA [26]. Figure 19 depicts the rate of degradation of both catalysts against the azo and non-azo dyes.
\nPlots of normalized concentration (C0/C) of MB vs. different time intervals (a) MO and (b) RhB photocatalytic degradation. Reaction conditions: 20 mg (a) or 50 mg (b) photocatalyst, 50 mL 6.0 × 10−5 Mol/L organic dyes, a 300 W xenon lamp(>420 nm), reaction temperature = 30°C. Reproduced with permission from [
In a different study, 3D carnation flowerlike hexagonal SnS2 nanostructures were synthesized by a simple microwave-assisted solvothermal process for photocatalytic degradation of Rhodamine (RhB) and phenol under visible light irradiation. The 3D carnation flowerlike hexagonal SnS2 nanostructures exhibited enhanced photocatalytic activity compared to SnS2 nanoparticles due to its high BET surface area, high surface-to-volume ratios, and increased light absorbance of hierarchical mesoporous structures [21].
\nYong Cai Zhang et al. synthesized SnS2 nanoflakes from SnCl2.H2O for photocatalytic degradation of methyl orange (MO) under both the visible light and real sunlight irradiation. The SnS2 material synthesized at 200°C exhibited high photocatalytic efficiency than others (i.e., 100% of degradation of MO after 60 min in the first cycle and 86% in the fifth cycle). The reason for the better degradation efficiency correlated with the combined action of several factors that include bandgap (2.21–2.25 eV), size, dispersibility, suspensibility, surface area, crystallinity, crystal defects, and photochemical stability. Almost all the materials showed better efficiency than the P25 material used for the comparison purpose [27].
\nPhotodegradation of Cr(VI) in the presence of SnS2. Reproduced with permission from [
SnS2 nanocrystals with adjustable sizes were synthesized by Yong Cai Zhang and co-workers by utilizing hydrothermal method with the precursor of SnCl4.5H2O. The materials were tested for the reduction of aqueous Cr(VI) under visible light irradiation (Figure 20).
\nIt was found that the reduction of aqueous Cr(VI) depends on their hydrothermal conditions. Particularly, SnS2, synthesized at 150°C for 12 hours, showed highest photocatalytic activity in reducing aqueous Cr(VI) [10]. In a separate study, the same group worked on size-controlled synthesis of SnS2 by using hydrothermal method, and their photocatalytic activity tested against the degradation of methyl orange under visible light irradiation [23].
\nZhenyi Zhang et al. synthesized nanosheets of SnS2 on g-C3N4 as 2D/2D heterojunction photocatalyst for the photocatalytic degradation of organics including dye (RhB) and phenols over visible light irradiation. It was found that the heterosamples exhibited an enhancement in the photocatalytic degradation of organics than pure g-C3N4 and SnS2 nanosheets. In this study, a better efficiency was attained for the catalyst loaded with 5.0 wt% SnS2 (rate constant of ∼0.2 min−1) for the RhB photodegradation [28].
\nAtkin and co-workers utilized two-dimensional tungsten disulfide (WS2) nanoflakes, hybridized with carbon dots prepared using two-step method for photocatalytic degradation of organic dyes. This material shows photocatalytic efficacy for the degradation of dyes. Twelve percent of degradation was obtained against the Congo red dye when 0.24 mg/L photocatalyst was utilized [29].
\nMechanism for the photocatalytic activity of WS2/Bi2MoO6 in the presence of organic pollutants. Reproduced with permission from [
In another study, few layered WS2/Bi2MoO6 heterojunction composites were prepared by Xiang Li et al. using hydrothermal method for photodegradation of organics under visible light irradiation. A higher degradation efficiency was attained by the materials further proved by the percentage removal of 99.5 and 91.7% for Rhodamine B (RhB), 98.9 and 89.8% for ciprofloxacin (CIP), 76.0 and 67.8% for methylene blue (MB), and 69.3 and 58.6% for methimazole (MMI), respectively. The reason for the removal efficiency was correlated with the structure of the materials, which may provide larger contact area for interfacial charge transfer and can shorten the migration distance of charge transfer [17] (Figure 21).
\nHua-Bin Fang and co-workers used WS2 nanosheets on manganese oxide (MnOX) prepared by photo-deposition in MnSO4 solution. Here, manganese oxide (MnOX) was used as a hole-trapping material. MnOX/WS2 showed better performance in the degradation of RhB under visible light than pure WS2, because of the efficient charge separation in the composite promoted by MnOx [30].
\nPrabhakar Vattikuti et al. synthesized 1D Bi2S3 nanorod/2D e-WS2 nanosheet heterojunction by hydrothermal method for the degradation of methyl orange (MO) dye in aqueous solution and evolution of hydrogen under visible light irradiation. The material showed enhanced photocatalytic activity due to the presence of strong surface active sites and fast transfer of electron–hole pairs in the heterostructure of the composite. In addition, 84.4% of methyl orange was degraded after 90 min of exposure of visible light irradiation when 3% of Bi2S3/e-WS2 composite was used [31].
\nRajesh Bera et al. synthesized CdS nanosheet (0D, 1D, and 2D) on graphene oxide composite by surface modification method. The catalysts prepared were utilized for the photocatalytic degradation of 4-aminothiophenol under visible light. The photocatalytic activity of CdS nanosheet/RGO composite was found to nearly 4 times, 3.4 times, and 2.5 times higher than CdS nanoparticle/RGO, CdS nanorod/RGO, and pure CdS nanosheet samples, respectively. In addition, 2D-2D nanoarchitecture was found to more effective than 0D-2D and 1D-2D hybrid systems due to its better ability for harvesting of photon from sunlight and transport of excitons to their reaction sites than others [18].
\nSohrabnezhad et al. worked on CoS nanoparticles supported on Al-MCM-41 material, which was synthesized by ion-exchange method. The materials were utilized for photocatalytic degradation of basic blue 9 or methylene blue (MB). Seven percent loading of CoS on the mesoporous support exhibited maximum efficiency for the photocatalytic degradation of methylene blue, and the optimum pH was found to be 9. The degradation followed pseudo-first-order reaction with the rate constant (k) of 0.0361. The effect of pH, amount of photocatalyst, and initial concentration of dye were also examined in their studies [11].
\nMetal sulfides/selenites (metal chalcogenides) have attracted considerable interest due to their electronic and optical applications. In addition, most of the common metal sulfides are nontoxic with narrow bandgap. Due to these characteristic features, metal chalcogenides have been utilized as potential candidates for photocatalysis. This chapter reviewed the most common synthetic protocol of several transition metal chalcogenides that include metal sulfides and metal selenites. Further, a brief section covered the basic characterization techniques, which have been commonly used to characterize the chalcogenide materials. Most importantly, the application of different metal chalcogenides toward environmental remediation applications, i.e., degradation of organic pollutants, is also explored herein.
\nThe authors would like to thank the Department of Chemistry, University of Jaffna, Jaffna, Sri Lanka.
\nThe authors declare no conflict of interests.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25 FILLER ads"},books:[{type:"book",id:"11592",title:"COVID-19 Pandemic, Mental Health and Neuroscience - New Scenarios for Understanding and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"fa5536e967d8b33da78e7e5369abaf75",slug:null,bookSignature:"Ph.D. Sara Palermo and Prof. Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/11592.jpg",editedByType:null,editors:[{id:"233998",title:"Ph.D.",name:"Sara",surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11565",title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",subtitle:null,isOpenForSubmission:!0,hash:"e642ce6df40b676fae9ab16d5c414af1",slug:null,bookSignature:"Prof. Laura Cristina Rusu and Dr. Lavinia Ardelean",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",editedByType:null,editors:[{id:"174262",title:"Prof.",name:"Laura",surname:"Rusu",slug:"laura-rusu",fullName:"Laura Rusu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11878",title:"Advances in the Auditory and Vestibular Systems",subtitle:null,isOpenForSubmission:!0,hash:"a664ad52eded5aa2ca06403e76bab30a",slug:null,bookSignature:"Prof. Stavros Hatzopoulos and Dr. Andrea Ciorba",coverURL:"https://cdn.intechopen.com/books/images_new/11878.jpg",editedByType:null,editors:[{id:"174266",title:"Prof.",name:"Stavros",surname:"Hatzopoulos",slug:"stavros-hatzopoulos",fullName:"Stavros Hatzopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11580",title:"Recent Advances in Canine Medicine",subtitle:null,isOpenForSubmission:!0,hash:"1806716f60b9be14fc05682c4a912b41",slug:null,bookSignature:"Dr. Carlos Eduardo Fonseca-Alves",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",editedByType:null,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11873",title:"Arthroplasty - Advanced Techniques and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"ced605018c59717c3e55f59474339ca9",slug:null,bookSignature:"M.D. Alessandro Rozim Zorzi",coverURL:"https://cdn.intechopen.com/books/images_new/11873.jpg",editedByType:null,editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11586",title:"Schizophrenia - Recent Advances and Patient-Centered Treatment Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2ba14221aca01660b2547004d9b5c2d9",slug:null,bookSignature:"Dr. Jane Yip",coverURL:"https://cdn.intechopen.com/books/images_new/11586.jpg",editedByType:null,editors:[{id:"156214",title:"Dr.",name:"Jane",surname:"Yip",slug:"jane-yip",fullName:"Jane Yip"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11600",title:"Recent Update on Multiple Myeloma\ufeff",subtitle:null,isOpenForSubmission:!0,hash:"c8e2b12df4fc2d313aced448fe08a63e",slug:null,bookSignature:"Dr. Khalid Ahmed Al-Anazi",coverURL:"https://cdn.intechopen.com/books/images_new/11600.jpg",editedByType:null,editors:[{id:"37255",title:"Dr.",name:"Khalid",surname:"Al-Anazi",slug:"khalid-al-anazi",fullName:"Khalid Al-Anazi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11691",title:"Orthognathic Surgery and Dentofacial Deformities",subtitle:null,isOpenForSubmission:!0,hash:"413b0d1441beac767fe0fbf7c0e98622",slug:null,bookSignature:"Dr. H. Brian Sun",coverURL:"https://cdn.intechopen.com/books/images_new/11691.jpg",editedByType:null,editors:[{id:"184302",title:"Dr.",name:"H. Brian",surname:"Sun",slug:"h.-brian-sun",fullName:"H. Brian Sun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11597",title:"Glioblastoma - Current Evidences",subtitle:null,isOpenForSubmission:!0,hash:"da69711754eb5ed95bdea15fcfab0b2a",slug:null,bookSignature:"Prof. Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/11597.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11655",title:"Atrial Fibrillation - Diagnosis and Management in the 21st Century",subtitle:null,isOpenForSubmission:!0,hash:"a0ecc730df6b37a0e1cb00968a5be34d",slug:null,bookSignature:"Dr. Ozgur Karcioglu and Associate Prof. Funda Karbek Akarca",coverURL:"https://cdn.intechopen.com/books/images_new/11655.jpg",editedByType:null,editors:[{id:"221195",title:"Prof.",name:"Ozgur",surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11595",title:"Recent Understanding of Colorectal Cancer Treatment",subtitle:null,isOpenForSubmission:!0,hash:"1c5db5892553734d258782d03d4384bb",slug:null,bookSignature:"Dr. Keun-Yeong Jeong",coverURL:"https://cdn.intechopen.com/books/images_new/11595.jpg",editedByType:null,editors:[{id:"258919",title:"Dr.",name:"Keun-Yeong",surname:"Jeong",slug:"keun-yeong-jeong",fullName:"Keun-Yeong Jeong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:132},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"953",title:"Thermal Engineering",slug:"metals-and-nonmetals-thermal-engineering",parent:{id:"158",title:"Metals and Nonmetals",slug:"metals-and-nonmetals"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:89,numberOfWosCitations:301,numberOfCrossrefCitations:135,numberOfDimensionsCitations:318,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"953",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5802",title:"Ion Implantation",subtitle:"Research and Application",isOpenForSubmission:!1,hash:"b7a1bd893c9f0b454cf061b5906d99de",slug:"ion-implantation-research-and-application",bookSignature:"Ishaq Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/5802.jpg",editedByType:"Edited by",editors:[{id:"25524",title:"Prof.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2183",title:"Shape Memory Alloys",subtitle:"Processing, Characterization and Applications",isOpenForSubmission:!1,hash:"99c926b3930c93145173801b18b8a5aa",slug:"shape-memory-alloys-processing-characterization-and-applications",bookSignature:"Francisco Manuel Braz Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/2183.jpg",editedByType:"Edited by",editors:[{id:"147555",title:"Dr.",name:"Francisco Manuel",middleName:null,surname:"Braz Fernandes",slug:"francisco-manuel-braz-fernandes",fullName:"Francisco Manuel Braz Fernandes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3480",title:"Recent Developments in the Study of Recrystallization",subtitle:null,isOpenForSubmission:!1,hash:"a56b6e28967152fcfcce3021465d0709",slug:"recent-developments-in-the-study-of-recrystallization",bookSignature:"Peter Wilson",coverURL:"https://cdn.intechopen.com/books/images_new/3480.jpg",editedByType:"Edited by",editors:[{id:"92584",title:"Prof.",name:"Peter",middleName:null,surname:"Wilson",slug:"peter-wilson",fullName:"Peter Wilson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2448",title:"Heat Treatment",subtitle:"Conventional and Novel Applications",isOpenForSubmission:!1,hash:"fe6f42d3837b5d92c89a243b4829515f",slug:"heat-treatment-conventional-and-novel-applications",bookSignature:"Frank Czerwinski",coverURL:"https://cdn.intechopen.com/books/images_new/2448.jpg",editedByType:"Edited by",editors:[{id:"16295",title:"Dr.",name:"Frank",middleName:null,surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"39389",doi:"10.5772/50282",title:"A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys",slug:"a-review-on-the-heat-treatment-of-al-si-cu-mg-casting-alloys",totalDownloads:8208,totalCrossrefCites:32,totalDimensionsCites:65,abstract:null,book:{id:"2448",slug:"heat-treatment-conventional-and-novel-applications",title:"Heat Treatment",fullTitle:"Heat Treatment - Conventional and Novel Applications"},signatures:"A.M.A. Mohamed and F.H. Samuel",authors:[{id:"146853",title:"Prof.",name:"Fawzy",middleName:null,surname:"Samuel",slug:"fawzy-samuel",fullName:"Fawzy Samuel"},{id:"148963",title:"Dr.",name:"A.M.A",middleName:null,surname:"Mohamed",slug:"a.m.a-mohamed",fullName:"A.M.A Mohamed"},{id:"148969",title:"Prof.",name:"Saleh",middleName:null,surname:"Alkahtani",slug:"saleh-alkahtani",fullName:"Saleh Alkahtani"},{id:"161853",title:"Prof.",name:"Adel",middleName:null,surname:"Mohamed",slug:"adel-mohamed",fullName:"Adel Mohamed"}]},{id:"39403",doi:"10.5772/51566",title:"Thermochemical Treatment of Metals",slug:"thermochemical-treatment-of-metals",totalDownloads:11357,totalCrossrefCites:21,totalDimensionsCites:37,abstract:null,book:{id:"2448",slug:"heat-treatment-conventional-and-novel-applications",title:"Heat Treatment",fullTitle:"Heat Treatment - Conventional and Novel Applications"},signatures:"Frank Czerwinski",authors:[{id:"16295",title:"Dr.",name:"Frank",middleName:null,surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}]},{id:"42487",doi:"10.5772/54992",title:"Ice Recrystallization Inhibitors: From Biological Antifreezes to Small Molecules",slug:"ice-recrystallization-inhibitors-from-biological-antifreezes-to-small-molecules",totalDownloads:4293,totalCrossrefCites:3,totalDimensionsCites:26,abstract:null,book:{id:"3480",slug:"recent-developments-in-the-study-of-recrystallization",title:"Recent Developments in the Study of Recrystallization",fullTitle:"Recent Developments in the Study of Recrystallization"},signatures:"Chantelle J. Capicciotti, Malay Doshi and Robert N. Ben",authors:[{id:"161986",title:"Dr.",name:"Robert",middleName:"N.",surname:"Ben",slug:"robert-ben",fullName:"Robert Ben"},{id:"163487",title:"Ms.",name:"Chantelle",middleName:null,surname:"Capicciotti",slug:"chantelle-capicciotti",fullName:"Chantelle Capicciotti"},{id:"163488",title:"Mr.",name:"Malay",middleName:null,surname:"Doshi",slug:"malay-doshi",fullName:"Malay Doshi"}]},{id:"44019",doi:"10.5772/50067",title:"The Methods of Preparation of Ti-Ni-X Alloys and Their Forming",slug:"the-methods-of-preparation-of-ti-ni-x-alloys-and-their-forming",totalDownloads:3824,totalCrossrefCites:11,totalDimensionsCites:21,abstract:null,book:{id:"2183",slug:"shape-memory-alloys-processing-characterization-and-applications",title:"Shape Memory Alloys",fullTitle:"Shape Memory Alloys - Processing, Characterization and Applications"},signatures:"Radim Kocich, Ivo Szurman and Miroslav Kursa",authors:[{id:"144007",title:"Dr.",name:"Radim",middleName:null,surname:"Kocich",slug:"radim-kocich",fullName:"Radim Kocich"},{id:"151385",title:"Dr.",name:"Ivo",middleName:null,surname:"Szurman",slug:"ivo-szurman",fullName:"Ivo Szurman"},{id:"151386",title:"Prof.",name:"Miroslav",middleName:null,surname:"Kursa",slug:"miroslav-kursa",fullName:"Miroslav Kursa"}]},{id:"44018",doi:"10.5772/48419",title:"NiTi Shape Memory Alloys, Promising Materials in Orthopedic Applications",slug:"niti-shape-memory-alloys-promising-materials-in-orthopedic-applications",totalDownloads:4408,totalCrossrefCites:7,totalDimensionsCites:20,abstract:null,book:{id:"2183",slug:"shape-memory-alloys-processing-characterization-and-applications",title:"Shape Memory Alloys",fullTitle:"Shape Memory Alloys - Processing, Characterization and Applications"},signatures:"Marjan Bahraminasab and Barkawi Bin Sahari",authors:[{id:"143764",title:"Mrs.",name:"Marjan",middleName:null,surname:"Bahraminasab",slug:"marjan-bahraminasab",fullName:"Marjan Bahraminasab"},{id:"145956",title:"Prof.",name:"B.B.",middleName:null,surname:"Sahari",slug:"b.b.-sahari",fullName:"B.B. Sahari"}]}],mostDownloadedChaptersLast30Days:[{id:"42487",title:"Ice Recrystallization Inhibitors: From Biological Antifreezes to Small Molecules",slug:"ice-recrystallization-inhibitors-from-biological-antifreezes-to-small-molecules",totalDownloads:4295,totalCrossrefCites:3,totalDimensionsCites:26,abstract:null,book:{id:"3480",slug:"recent-developments-in-the-study-of-recrystallization",title:"Recent Developments in the Study of Recrystallization",fullTitle:"Recent Developments in the Study of Recrystallization"},signatures:"Chantelle J. Capicciotti, Malay Doshi and Robert N. Ben",authors:[{id:"161986",title:"Dr.",name:"Robert",middleName:"N.",surname:"Ben",slug:"robert-ben",fullName:"Robert Ben"},{id:"163487",title:"Ms.",name:"Chantelle",middleName:null,surname:"Capicciotti",slug:"chantelle-capicciotti",fullName:"Chantelle Capicciotti"},{id:"163488",title:"Mr.",name:"Malay",middleName:null,surname:"Doshi",slug:"malay-doshi",fullName:"Malay Doshi"}]},{id:"39403",title:"Thermochemical Treatment of Metals",slug:"thermochemical-treatment-of-metals",totalDownloads:11358,totalCrossrefCites:21,totalDimensionsCites:37,abstract:null,book:{id:"2448",slug:"heat-treatment-conventional-and-novel-applications",title:"Heat Treatment",fullTitle:"Heat Treatment - Conventional and Novel Applications"},signatures:"Frank Czerwinski",authors:[{id:"16295",title:"Dr.",name:"Frank",middleName:null,surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}]},{id:"39389",title:"A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys",slug:"a-review-on-the-heat-treatment-of-al-si-cu-mg-casting-alloys",totalDownloads:8210,totalCrossrefCites:32,totalDimensionsCites:65,abstract:null,book:{id:"2448",slug:"heat-treatment-conventional-and-novel-applications",title:"Heat Treatment",fullTitle:"Heat Treatment - Conventional and Novel Applications"},signatures:"A.M.A. Mohamed and F.H. Samuel",authors:[{id:"146853",title:"Prof.",name:"Fawzy",middleName:null,surname:"Samuel",slug:"fawzy-samuel",fullName:"Fawzy Samuel"},{id:"148963",title:"Dr.",name:"A.M.A",middleName:null,surname:"Mohamed",slug:"a.m.a-mohamed",fullName:"A.M.A Mohamed"},{id:"148969",title:"Prof.",name:"Saleh",middleName:null,surname:"Alkahtani",slug:"saleh-alkahtani",fullName:"Saleh Alkahtani"},{id:"161853",title:"Prof.",name:"Adel",middleName:null,surname:"Mohamed",slug:"adel-mohamed",fullName:"Adel Mohamed"}]},{id:"44019",title:"The Methods of Preparation of Ti-Ni-X Alloys and Their Forming",slug:"the-methods-of-preparation-of-ti-ni-x-alloys-and-their-forming",totalDownloads:3826,totalCrossrefCites:11,totalDimensionsCites:21,abstract:null,book:{id:"2183",slug:"shape-memory-alloys-processing-characterization-and-applications",title:"Shape Memory Alloys",fullTitle:"Shape Memory Alloys - Processing, Characterization and Applications"},signatures:"Radim Kocich, Ivo Szurman and Miroslav Kursa",authors:[{id:"144007",title:"Dr.",name:"Radim",middleName:null,surname:"Kocich",slug:"radim-kocich",fullName:"Radim Kocich"},{id:"151385",title:"Dr.",name:"Ivo",middleName:null,surname:"Szurman",slug:"ivo-szurman",fullName:"Ivo Szurman"},{id:"151386",title:"Prof.",name:"Miroslav",middleName:null,surname:"Kursa",slug:"miroslav-kursa",fullName:"Miroslav Kursa"}]},{id:"55259",title:"Introductory Chapter: Introduction to Ion Implantation",slug:"introductory-chapter-introduction-to-ion-implantation",totalDownloads:1950,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"5802",slug:"ion-implantation-research-and-application",title:"Ion Implantation",fullTitle:"Ion Implantation - Research and Application"},signatures:"Ishaq Ahmad and Waheed Akram",authors:[{id:"204045",title:"Dr.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}]}],onlineFirstChaptersFilter:{topicId:"953",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11671",title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",hash:"2bd98244cd9eda2107f01824584c1eb4",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 17th 2022",isOpenForSubmission:!0,editors:[{id:"270856",title:"Associate Prof.",name:"Suna",surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:26,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}},{id:"81272",title:"Pain Identification in Electroencephalography Signal Using Fuzzy Inference System",doi:"10.5772/intechopen.103753",signatures:"Vahid Asadpour, Reza Fazel-Rezai, Maryam Vatankhah and Mohammad-Reza Akbarzadeh-Totonchi",slug:"pain-identification-in-electroencephalography-signal-using-fuzzy-inference-system",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:8,group:"subseries"},{caption:"Computational Neuroscience",value:23,count:9,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:null,institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80959",title:"Biological Application of Essential Oils and Essential Oils Components in Terms of Antioxidant Activity and Inhibition of Cholinesterase Enzymes",doi:"10.5772/intechopen.102874",signatures:"Mejra Bektašević and Olivera Politeo",slug:"biological-application-of-essential-oils-and-essential-oils-components-in-terms-of-antioxidant-activ",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80859",title:"Antioxidant Effect and Medicinal Properties of Allspice Essential Oil",doi:"10.5772/intechopen.103001",signatures:"Yasvet Yareni Andrade Avila, Julián Cruz-Olivares and César Pérez-Alonso",slug:"antioxidant-effect-and-medicinal-properties-of-allspice-essential-oil",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80777",title:"Starch: A Veritable Natural Polymer for Economic Revolution",doi:"10.5772/intechopen.102941",signatures:"Obi P. Adigwe, Henry O. Egharevba and Martins O. Emeje",slug:"starch-a-veritable-natural-polymer-for-economic-revolution",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80673",title:"Teucrium ramosissimum Derived-Natural Products and Its Potent Effect in Alleviating the Pathological Kidney Damage in LPS-Induced Mice",doi:"10.5772/intechopen.102788",signatures:"Fatma Guesmi and Ahmed Landoulsi",slug:"teucrium-ramosissimum-derived-natural-products-and-its-potent-effect-in-alleviating-the-pathological",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80600",title:"Essential Oil as Green Preservative Obtained by Ecofriendly Extraction Techniques",doi:"10.5772/intechopen.103035",signatures:"Nashwa Fathy Sayed Morsy",slug:"essential-oil-as-green-preservative-obtained-by-ecofriendly-extraction-techniques",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Nashwa",surname:"Morsy"}],book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79875",title:"Comparative Study of the Physiochemical Composition and Techno-Functional Properties of Two Extracted Acorn Starches",doi:"10.5772/intechopen.101562",signatures:"Youkabed Zarroug, Mouna Boulares, Dorra Sfayhi and Bechir Slimi",slug:"comparative-study-of-the-physiochemical-composition-and-techno-functional-properties-of-two-extracte",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80395",title:"History, Evolution and Future of Starch Industry in Nigeria",doi:"10.5772/intechopen.102712",signatures:"Obi Peter Adigwe, Judith Eloyi John and Martins Ochubiojo Emeje",slug:"history-evolution-and-future-of-starch-industry-in-nigeria",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80122",title:"Pharmaceutical and Therapeutic Potentials of Essential Oils",doi:"10.5772/intechopen.102037",signatures:"Ishrat Nazir and Sajad Ahmad Gangoo",slug:"pharmaceutical-and-therapeutic-potentials-of-essential-oils",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80018",title:"Potato Starch as Affected by Varieties, Storage Treatments and Conditions of Tubers",doi:"10.5772/intechopen.101831",signatures:"Saleem Siddiqui, Naseer Ahmed and Neeraj Phogat",slug:"potato-starch-as-affected-by-varieties-storage-treatments-and-conditions-of-tubers",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80023",title:"Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response",doi:"10.5772/intechopen.101833",signatures:"Veda Krishnan, Monika Awana, Debarati Mondal, Piyush Verma, Archana Singh and Shelly Praveen",slug:"binary-interactions-and-starch-bioavailability-critical-in-limiting-glycemic-response",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79835",title:"Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside",doi:"10.5772/intechopen.101702",signatures:"Kashif Haider and Mohammad Shahar Yar",slug:"advances-of-benzimidazole-derivatives-as-anticancer-agents-bench-to-bedside",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79856",title:"Starch-Based Hybrid Nanomaterials for Environmental Remediation",doi:"10.5772/intechopen.101697",signatures:"Ashoka Gamage, Thiviya Punniamoorthy and Terrence Madhujith",slug:"starch-based-hybrid-nanomaterials-for-environmental-remediation",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:86,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:96,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:283,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:138,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:128,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:100,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Artificial Intelligence",id:"14"},selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 7th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:96,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda",middleName:"R.",surname:"Gharieb",fullName:"Reda Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/445682",hash:"",query:{},params:{id:"445682"},fullPath:"/profiles/445682",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()