Chemical composition of the Cu-Ni-alloyed ductile iron.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"8081",leadTitle:null,fullTitle:"Trichoderma - The Most Widely Used Fungicide",title:"Trichoderma",subtitle:"The Most Widely Used Fungicide",reviewType:"peer-reviewed",abstract:"Trichoderma is a genus of fungi that are present in all soils, where they are the most prevalent culturable fungi. They are also the most successful biofungicides used in today's agriculture. These green-colored fungi are well known for their antifungal and plant-growth-stimulating effects. This book provides comprehensive information on Trichoderma and its use in medical, agricultural and industrial applications. Section I focuses mainly on identification of Trichoderma species, and Section II is concerned with Trichoderma as a biological control agent. Chapters in these sections cover topics ranging from taxonomic status and biodiversity to biochemical analysis and bio-control application.",isbn:"978-1-78923-918-8",printIsbn:"978-1-78923-917-1",pdfIsbn:"978-1-83881-855-5",doi:"10.5772/intechopen.77912",price:119,priceEur:129,priceUsd:155,slug:"trichoderma-the-most-widely-used-fungicide",numberOfPages:116,isOpenForSubmission:!1,isInWos:1,hash:"fb120bd787a35aeeb72997edc44d0c5d",bookSignature:"Mohammad Manjur Shah, Umar Sharif and Tijjani Rufai Buhari",publishedDate:"September 4th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8081.jpg",numberOfDownloads:6108,numberOfWosCitations:9,numberOfCrossrefCitations:4,numberOfDimensionsCitations:16,hasAltmetrics:0,numberOfTotalCitations:29,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 5th 2018",dateEndSecondStepPublish:"September 26th 2018",dateEndThirdStepPublish:"November 25th 2018",dateEndFourthStepPublish:"February 13th 2019",dateEndFifthStepPublish:"April 14th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah",profilePictureURL:"https://mts.intechopen.com/storage/users/94128/images/system/94128.jpg",biography:"Dr. Mohammad Manjur Shah , born in the state of Manipur obtained Ph.D. from Aligarh Muslim University, India in 2003. He is a pioneer in the field of insect parasitic nematodes in the North East Part of India. He has presented his findings in several conferences and published his articles in various reputed international journals. He completed post-doctoral fellowship twice under the Ministry of Science and Technology, Government of India before joining the Yusuf Maitama Sule University, Kano, Nigeria. Apart from the present book, he has already edited six books with IntechOpen. He is also the reviewer of several journals of international repute. He has been listed in various biographies published from the USA and UK. At present he is working as an Associate Professor in Biology at the Yusuf Maitama Sule University, Kano, Nigeria",institutionString:"Yusuf Maitama Sule University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"Maitama Sule University Kano",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"240922",title:"Dr.",name:"Umar",middleName:null,surname:"Sharif",slug:"umar-sharif",fullName:"Umar Sharif",profilePictureURL:"https://mts.intechopen.com/storage/users/240922/images/system/240922.jpg",biography:"Dr. Umar Sharif obtained an MSc and PhD from Byero University,\nKano, Nigeria. Currently, he is head of the Department of Biological\nSciences at Yusuf Maitama Sule University, Kano, Nigeria.\nSince 1990, Dr. Sharif has been actively involved in teaching\nas well as various research activities. He has good expertise in the\nfields of pathology and biology, and is a member of various scientific\nsocieties in Nigeria. He has presented his research findings\nat various conferences and has published papers in journals of international repute.",institutionString:"NorthWest University Kano",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"272727",title:"Dr.",name:"Tijjani Rufai",middleName:null,surname:"Buhari",slug:"tijjani-rufai-buhari",fullName:"Tijjani Rufai Buhari",profilePictureURL:"https://mts.intechopen.com/storage/users/272727/images/7843_n.png",biography:"Dr. Tijjani Rufai Buhari obtained a PhD from the Universiti Putra\nMalaysia in 2012. At present, he is the Deputy Dean of the Faculty\nof Science, Yusuf Maitama Sule University. Since 2007, he\nhas been engaged in teaching and research. His areas of interest\ninclude developmental biology, embryology, fisheries and aquaculture,\nmarine biology, environmental microbiology, genetics,\ngeneral biology, food and nutrition, and food sanitation. In addition\nto publishing many papers in journals of international repute, Dr. Buhari has\nattended and presented at several conferences, seminars, and workshops.",institutionString:"Yusuf Maitama Sule University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"366",title:"Mycetology",slug:"mycetology"}],chapters:[{id:"65413",title:"Introductory Chapter: Identification and Isolation of Trichoderma spp. - Their Significance in Agriculture, Human Health, Industrial and Environmental Application",doi:"10.5772/intechopen.83528",slug:"introductory-chapter-identification-and-isolation-of-em-trichoderma-em-spp-their-significance-in-agr",totalDownloads:1968,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Mohammad Manjur Shah and Hamisu Afiya",downloadPdfUrl:"/chapter/pdf-download/65413",previewPdfUrl:"/chapter/pdf-preview/65413",authors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],corrections:null},{id:"65048",title:"Trichoderma: Invisible Partner for Visible Impact on Agriculture",doi:"10.5772/intechopen.83363",slug:"-em-trichoderma-em-invisible-partner-for-visible-impact-on-agriculture",totalDownloads:980,totalCrossrefCites:3,totalDimensionsCites:9,signatures:"Snježana Topolovec-Pintarić",downloadPdfUrl:"/chapter/pdf-download/65048",previewPdfUrl:"/chapter/pdf-preview/65048",authors:[{id:"66211",title:"Prof.",name:"Snježana",surname:"Topolovec-Pintaric",slug:"snjezana-topolovec-pintaric",fullName:"Snježana Topolovec-Pintaric"}],corrections:null},{id:"65901",title:"Trichoderma as a Biocontrol Agent against Sclerotinia Stem Rot or White Mold on Soybeans in Brazil: Usage and Technology",doi:"10.5772/intechopen.84544",slug:"-em-trichoderma-em-as-a-biocontrol-agent-against-em-sclerotinia-em-stem-rot-or-white-mold-on-soybean",totalDownloads:750,totalCrossrefCites:0,totalDimensionsCites:4,signatures:"Fernando C. Juliatti, Anakely A. Rezende, Breno Cezar Marinho Juliatti and Tâmara P. Morais",downloadPdfUrl:"/chapter/pdf-download/65901",previewPdfUrl:"/chapter/pdf-preview/65901",authors:[{id:"146372",title:"Dr.",name:"Fernando Cezar",surname:"Juliatti",slug:"fernando-cezar-juliatti",fullName:"Fernando Cezar Juliatti"}],corrections:null},{id:"64952",title:"A Review Study on the Postharvest Decay Control of Fruit by Trichoderma",doi:"10.5772/intechopen.82784",slug:"a-review-study-on-the-postharvest-decay-control-of-fruit-by-em-trichoderma-em-",totalDownloads:827,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ramsés González-Estrada, Francisco Blancas-Benítez, Beatriz Montaño-Leyva, Cristina Moreno-Hernández, Luz Del Carmen Romero-Islas, Jovita Romero-Islas, Rosa Avila-Peña, Anelsy Ramos-Guerrero, Angel Fonseca-Cantabrana and Porfirio Gutierrez-Martinez",downloadPdfUrl:"/chapter/pdf-download/64952",previewPdfUrl:"/chapter/pdf-preview/64952",authors:[null],corrections:null},{id:"65709",title:"A Review Report on the Mechanism of Trichoderma spp. as Biological Control Agent of the Basal Stem Rot (BSR) Disease of Elaeis guineensis",doi:"10.5772/intechopen.84469",slug:"a-review-report-on-the-mechanism-of-em-trichoderma-em-spp-as-biological-control-agent-of-the-basal-s",totalDownloads:1017,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Syed Ali Nusaibah and Habu Musa",downloadPdfUrl:"/chapter/pdf-download/65709",previewPdfUrl:"/chapter/pdf-preview/65709",authors:[null],corrections:null},{id:"65206",title:"Trichoderma harzianum Rifai: A Beneficial Fungus for Growth and Development of Abroma augusta L. Seedlings with Other Microbial Bio-Inoculants",doi:"10.5772/intechopen.83533",slug:"-em-trichoderma-harzianum-em-rifai-a-beneficial-fungus-for-growth-and-development-of-em-abroma-augus",totalDownloads:568,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Vipin Parkash, Akshita Gaur, Rahul Agnihotri and Ashok Aggarwal",downloadPdfUrl:"/chapter/pdf-download/65206",previewPdfUrl:"/chapter/pdf-preview/65206",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1692",title:"Parasitology",subtitle:null,isOpenForSubmission:!1,hash:"b2110e81c765897e4ffdfbd340495e25",slug:"parasitology",bookSignature:"Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/1692.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6019",title:"Nematology",subtitle:"Concepts, Diagnosis and Control",isOpenForSubmission:!1,hash:"986caa9915f3701347de93affb89c70f",slug:"nematology-concepts-diagnosis-and-control",bookSignature:"Mohammad Manjur Shah and Mohammad Mahamood",coverURL:"https://cdn.intechopen.com/books/images_new/6019.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4692",title:"Microbiology in Agriculture and Human Health",subtitle:null,isOpenForSubmission:!1,hash:"253eae9043fbdabe3fe0bdf315200d7a",slug:"microbiology-in-agriculture-and-human-health",bookSignature:"Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/4692.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6619",title:"Insect Science",subtitle:"Diversity, Conservation and Nutrition",isOpenForSubmission:!1,hash:"08241b041b2072a88452041f8fdebe7e",slug:"insect-science-diversity-conservation-and-nutrition",bookSignature:"Mohammad Manjur Shah and Umar Sharif",coverURL:"https://cdn.intechopen.com/books/images_new/6619.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"22",title:"Fungicides",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"fungicides",bookSignature:"Odile Carisse",coverURL:"https://cdn.intechopen.com/books/images_new/22.jpg",editedByType:"Edited by",editors:[{id:"14447",title:"Dr.",name:"Odile",surname:"Carisse",slug:"odile-carisse",fullName:"Odile Carisse"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6923",title:"Candida Albicans",subtitle:null,isOpenForSubmission:!1,hash:"b037c09c5e2980ef09b650b87fabb668",slug:"candida-albicans",bookSignature:"Doblin Sandai",coverURL:"https://cdn.intechopen.com/books/images_new/6923.jpg",editedByType:"Edited by",editors:[{id:"179627",title:"Dr.",name:"Doblin",surname:"Sandai",slug:"doblin-sandai",fullName:"Doblin Sandai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9463",title:"An Introduction to Mushroom",subtitle:null,isOpenForSubmission:!1,hash:"989e23dafb2b12c71acfe79ce04c3c2b",slug:"an-introduction-to-mushroom",bookSignature:"Ajit Kumar Passari and Sergio Sánchez",coverURL:"https://cdn.intechopen.com/books/images_new/9463.jpg",editedByType:"Edited by",editors:[{id:"304710",title:"Dr.",name:"Ajit",surname:"Kumar Passari",slug:"ajit-kumar-passari",fullName:"Ajit Kumar Passari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68990",slug:"erratum-application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodies",title:"Erratum - Application of Design for Manufacturing and Assembly: Development of a Multifeedstock Biodiesel Processor",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68990.pdf",downloadPdfUrl:"/chapter/pdf-download/68990",previewPdfUrl:"/chapter/pdf-preview/68990",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68990",risUrl:"/chapter/ris/68990",chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]}},chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]},book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10363",leadTitle:null,title:"Abiotic Stress in Plants",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tPlants are dependent on temperature, light, moisture, and carbon dioxide to produce grains and other plant products to satisfy basic human needs. Climate change is very likely to affect food security at the global, regional, and local levels. Climate change can disrupt food availability, reduce access to food, and affect food quality. Increases in temperature, changes in precipitation patterns, changes in extreme weather events, and reductions in water availability may all result in reduced agricultural productivity. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yield and maintain productivity under both normal and adverse conditions.
\r\n\r\n\tThis book highlights state-of-the-art research and practices for adaptation to climate change in food production systems. The main topics covered include production technologies, management practices, and stress tolerance of agronomic plants in a single source, current scientific understanding of observed and projected climate change impacts on agronomic plant production and quality, modeling of autonomous and planned adaptation, and development of early warning and/or support systems for climate-related decision-making.
",isbn:"978-1-83881-062-7",printIsbn:"978-1-83881-055-9",pdfIsbn:"978-1-83881-063-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e4d0b0a5b0d55843e704d38d55206b91",bookSignature:"Dr. Shah Fahad, Dr. Shah Saud, Prof. Yajun Chen, Dr. Chao Wu and Dr. Depeng Wang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10363.jpg",keywords:"Climate, Growth Characteristics, Physiological Attributes, Wheat, Rice, Maize, Cotton, Cereals, Growth Regulators, Cereal Plants, Abiotic Stress, Water Availability",numberOfDownloads:2992,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfDimensionsCitations:6,numberOfTotalCitations:9,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 26th 2020",dateEndSecondStepPublish:"June 16th 2020",dateEndThirdStepPublish:"August 15th 2020",dateEndFourthStepPublish:"November 3rd 2020",dateEndFifthStepPublish:"January 2nd 2021",remainingDaysToSecondStep:"10 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Fahad is an editor and reviewer for more than 10 peer-reviewed international journals and was a recipient of the Publons Peer Review Award 2019, also he has been honored by different authorities for his outstanding performance in different fields like research and education and received the Young Rice Scientist Award in 2014 and Distinguish Ph.D. Scholar of Huazhong Agricultural University in 2015.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"194771",title:"Dr.",name:"Shah",middleName:null,surname:"Fahad",slug:"shah-fahad",fullName:"Shah Fahad",profilePictureURL:"https://mts.intechopen.com/storage/users/194771/images/system/194771.jpeg",biography:"Dr. Shah Fahad is currently working as Assistant professor in Agriculture department, the University of Swabi, Khyber Pakhtunkhwa Pakistan. He studied in Pakistan at Agricultural University Khyber Pakhtunkhwa and Quiad-I-Azam University Islamabad where he successfully completed two degrees: a BSC (HONS) in Agronomy and Mphil. In Plant Physiology. As a scholar he continued for another degree, in graduate studies at Huazhong Agricultural University Wuhan, China pursuing Ph.D. in Agronomy which was achieved with honors in 2015. Mr. Shah Fahad did his Post Doctorate at Huazhong Agricultural University in 2017. He is a contributor to many international journals with focuses on global warming and their influences on rice crop attributes in his articles. He is a member of the Editorial Board and a Critic of ten international journals.",institutionString:"University of Swabi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Swabi",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:{id:"320321",title:"Dr.",name:"Shah",middleName:null,surname:"Saud",slug:"shah-saud",fullName:"Shah Saud",profilePictureURL:"https://mts.intechopen.com/storage/users/320321/images/system/320321.jpg",biography:"The co-editor\\'s short CV, as specified on the book preparation formDr. Shah Saud is currently working as a Post Doctorate researcher at the Northeast Agricultural University, Harbin, China. He received his PhD in 2017 from the Northeast Agricultural University, Harbin, China. He has completed several national and international research projects. Dr. Shah Saud has published 135 articles and chapters related to horticulture, climate change, landscaping, plant physiology and environmental stresses with Springer, Elsevier, and Wiley, etc. According to Scopus®, Dr. Shah Saud publications have received roughly 3200 citations with an h-index of 29. He is an editor and reviewer for more than 23 peer-reviewed international journals.",institutionString:"Northeast Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Northeast Agricultural University",institutionURL:null,country:{name:"China"}}},coeditorTwo:{id:"320323",title:"Prof.",name:"Yajun",middleName:null,surname:"Chen",slug:"yajun-chen",fullName:"Yajun Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/320323/images/system/320323.jpg",biography:"Dr. Yajun Chen has completed a Ph.D. in 2005 in the field of Crop Cultivation and Farming System from Northeast Agricultural University, Harbin, China. Later, she completed her postdoctoral research in the field of biology in Northeast forestry university, Harbin, China. Currently, she is a professor working in Horticulture College of Northeast Agricultural University. Over the course of a dozen years, she had studied in Australia (2003-2004), the United States (2010-2011) and Norway (2015-2016) as a visiting scholar that was funded by the Chinese government. Her research work encompasses ornamental plant adverse physiology and ecology, coping with ecological environment adaptation and restoration of garden plants. Dr. Yajun Chen has published over 110 research papers in peer-reviewed journals in her field at home and abroad. She as a chief editor has edited more than 20 books on important aspects of local flora, turf and flower culture, plant stress physiology. She has also trained more than 80 masters and 5 PhDs in these fields. Her outstanding work was recognized and won 8 awards for scientific and technological progress in Heilongjiang province, China. Dr. Yajun Chen has won 2 international and 13 national projects.",institutionString:"Northeast Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Northeast Agricultural University",institutionURL:null,country:{name:"China"}}},coeditorThree:{id:"320324",title:"Dr.",name:"Chao",middleName:null,surname:"Wu",slug:"chao-wu",fullName:"Chao Wu",profilePictureURL:"https://mts.intechopen.com/storage/users/320324/images/system/320324.jpg",biography:"Dr. Chao Wu engages in the field crop cultivation and physiology, and plant phenomics. He has completed his Ph.D during 2013-2016 from Huazhong Agricultural University, Wuhan, China, and completed his post Ph.D during 2017-2019 from Nanjing Agricultural University, Nanjing, China. Now, he is associate research fellow in Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, China. He chairs a Natural Science Foundation of Jiangsu Province, and two Postdoctoral Science Foundation researches, and focus mainly on physiological mechanisms of abiotic-stress tolerance (heat, drought) in crops and medicinal plants. He has published over 20 papers in international journals, such as field crops research, the crop journal, and frontiers in plant science.",institutionString:"Guangxi Institute of Botany",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Guangxi Institute of Botany",institutionURL:null,country:{name:"China"}}},coeditorFour:{id:"320325",title:"Dr.",name:"Depeng",middleName:null,surname:"Wang",slug:"depeng-wang",fullName:"Depeng Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/320325/images/system/320325.jpg",biography:"Dr. Depeng Wang has completed Ph.D. in 2016 in the field of Agronomy and Crop Physiology from Huazhong Agriculture University, Wuhan, China. Presently he is serving as a professor in College of Life Science, Linyi University, Linyi, China. He is the principal investigator of Crop Genetic Improvement, Physiology & Ecology Center in Linyi University. His current research focus on crop ecology and physiology, agronomy. Such as the key characteristics associated with high yielding crop, the effect of temperature on crop grain yield and solar radiation utilization, morphological plasticity to agronomic manipulation in leaf dispersion and orientation, optimal integrated crop management practices for maximizing crop grain yield. Dr. Depeng Wang has published over 36 papers in reputed journals. He has edited 1 book and witten 4 book chapters on important aspects of crop physiology, environmental stress, and crop quality formation. According to Google Scholar Citation, his publications have received about 100 citations. He is a reviewer for 5 peer-reviewed international journals. Dr. Depeng Wang is a provincial crop expert in green, high quality and efficient technology, has participated 6 National projects with more than 4 million research fundings.",institutionString:"Linyi University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Linyi University",institutionURL:null,country:{name:"China"}}},coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"73771",title:"Morphophysiological Traits, Biochemical Characteristic and Productivity of Wheat under Water and Nitrogen-Colimitation: Pathways to Improve Water and N Uptake",slug:"morphophysiological-traits-biochemical-characteristic-and-productivity-of-wheat-under-water-and-nitr",totalDownloads:121,totalCrossrefCites:0,authors:[null]},{id:"73824",title:"Advances in Developing Multigene Abiotic and Biotic Stress-Tolerant Rice Varieties",slug:"advances-in-developing-multigene-abiotic-and-biotic-stress-tolerant-rice-varieties",totalDownloads:233,totalCrossrefCites:0,authors:[null]},{id:"74119",title:"Molecular Abiotic Stress Tolerans Strategies: From Genetic Engineering to Genome Editing Era",slug:"molecular-abiotic-stress-tolerans-strategies-from-genetic-engineering-to-genome-editing-era",totalDownloads:165,totalCrossrefCites:0,authors:[null]},{id:"73995",title:"Management of Abiotic Stress in Forage Crops",slug:"management-of-abiotic-stress-in-forage-crops",totalDownloads:75,totalCrossrefCites:0,authors:[{id:"321310",title:"M.Sc.",name:"Amanpreet",surname:"Singh",slug:"amanpreet-singh",fullName:"Amanpreet Singh"},{id:"323216",title:"MSc.",name:"Harmandeep Singh",surname:"Chahal",slug:"harmandeep-singh-chahal",fullName:"Harmandeep Singh Chahal"}]},{id:"74080",title:"Influence of Water Stress on Growth, Chlorophyll Contents and Solute Accumulation in Three Accessions of Vicia faba L. from Tunisian Arid Region",slug:"influence-of-water-stress-on-growth-chlorophyll-contents-and-solute-accumulation-in-three-accessions",totalDownloads:30,totalCrossrefCites:0,authors:[null]},{id:"73439",title:"Ecological and Economic Potential of Major Halophytes and Salt Tolerant Vegetation in India",slug:"ecological-and-economic-potential-of-major-halophytes-and-salt-tolerant-vegetation-in-india",totalDownloads:203,totalCrossrefCites:0,authors:[null]},{id:"73719",title:"TIP Aquaporins in Plants: Role in Abiotic Stress Tolerance",slug:"tip-aquaporins-in-plants-role-in-abiotic-stress-tolerance",totalDownloads:100,totalCrossrefCites:0,authors:[null]},{id:"73432",title:"Responses of Neotropical Savannah Plant Species to Abiotic Stresses: A Structural and Functional Overview",slug:"responses-of-neotropical-savannah-plant-species-to-abiotic-stresses-a-structural-and-functional-over",totalDownloads:96,totalCrossrefCites:0,authors:[null]},{id:"73281",title:"Adapting Cereal Grain Crops to Drought Stress: 2020 and Beyond",slug:"adapting-cereal-grain-crops-to-drought-stress-2020-and-beyond",totalDownloads:201,totalCrossrefCites:0,authors:[null]},{id:"73340",title:"Plant Growth and Morphophysiological Modifications in Perennial Ryegrass under Environmental Stress",slug:"plant-growth-and-morphophysiological-modifications-in-perennial-ryegrass-under-environmental-stress",totalDownloads:80,totalCrossrefCites:0,authors:[null]},{id:"73274",title:"A Review on Kentucky Bluegrass Responses and Tolerance to Drought Stress",slug:"a-review-on-kentucky-bluegrass-responses-and-tolerance-to-drought-stress",totalDownloads:110,totalCrossrefCites:0,authors:[null]},{id:"73344",title:"An Insight into the Responses of Early-Maturing Brassica napus to Different Low-Temperature Stresses",slug:"an-insight-into-the-responses-of-early-maturing-brassica-napus-to-different-low-temperature-stresses",totalDownloads:121,totalCrossrefCites:0,authors:[null]},{id:"73412",title:"Abiotic Stress Tolerance in Crop Plants: Role of Phytohormones",slug:"abiotic-stress-tolerance-in-crop-plants-role-of-phytohormones",totalDownloads:223,totalCrossrefCites:0,authors:[null]},{id:"73618",title:"Protagonist of Mineral Nutrients in Drought Stress Tolerance of Field Crops",slug:"protagonist-of-mineral-nutrients-in-drought-stress-tolerance-of-field-crops",totalDownloads:81,totalCrossrefCites:0,authors:[null]},{id:"73636",title:"Elevated CO2 Concentration Improves Heat-Tolerant Ability in Crops",slug:"elevated-co2-concentration-improves-heat-tolerant-ability-in-crops",totalDownloads:252,totalCrossrefCites:3,authors:[null]},{id:"73474",title:"Drought Responses on Physiological Attributes of Zea mays in Relation to Nitrogen and Source-Sink Relationships",slug:"drought-responses-on-physiological-attributes-of-zea-mays-in-relation-to-nitrogen-and-source-sink-re",totalDownloads:102,totalCrossrefCites:0,authors:[null]},{id:"73200",title:"Effects of Salinity on Seed Germination and Early Seedling Stage",slug:"effects-of-salinity-on-seed-germination-and-early-seedling-stage",totalDownloads:232,totalCrossrefCites:0,authors:[null]},{id:"73168",title:"Salt Stress in Plants and Amelioration Strategies: A Critical Review",slug:"salt-stress-in-plants-and-amelioration-strategies-a-critical-review",totalDownloads:284,totalCrossrefCites:0,authors:[null]},{id:"73265",title:"Ecofriendly Marigold Dye as Natural Colourant for Fabric",slug:"ecofriendly-marigold-dye-as-natural-colourant-for-fabric",totalDownloads:121,totalCrossrefCites:0,authors:[null]},{id:"73257",title:"Abiotic Stress Responses in Plants: Current Knowledge and Future Prospects",slug:"abiotic-stress-responses-in-plants-current-knowledge-and-future-prospects",totalDownloads:167,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6776",title:"Global Wheat Production",subtitle:null,isOpenForSubmission:!1,hash:"a4a538078961a10a051b00f639173d52",slug:"global-wheat-production",bookSignature:"Shah Fahad, Abdul Basir and Muhammad Adnan",coverURL:"https://cdn.intechopen.com/books/images_new/6776.jpg",editedByType:"Edited by",editors:[{id:"194771",title:"Dr.",name:"Shah",surname:"Fahad",slug:"shah-fahad",fullName:"Shah Fahad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62411",title:"Shot Peening of Austempered Ductile Iron",doi:"10.5772/intechopen.79316",slug:"shot-peening-of-austempered-ductile-iron",body:'\nCompared to other ferrous materials, austempered ductile iron (ADI) has marked economic advantages such as low melting temperature, low shrinkage, excellent castability, good machinability and high damping capacity. Its versatility and wide range of properties make it widely used in the transportation industries, defence, heavy machinery, agricultural machinery and for general engineering applications. ADI can compete with steel on considerations of strength, for a given level of ductility. However, some alloyed and hardened steels exhibit better properties than ADI, and the use of ADI is limited when extreme tensile strength is required. As a raw material, ADI is cheaper than steel. It also has a lower manufacturing cost due to the possibility of casting the components to near-net shape. The cost and weight of ADI per unit of yield strength can compete with cast and forged aluminium, and forged steel. ADI exhibits higher damping characteristics than steel, leading to lower noise emission and less vibrations. The presence of graphite in ADI dampens vibrations 40% faster than in steel gears, and it also results in a 10% reduction in density compared to steel.
\nADI is a type of cast iron, more commonly referred to as ductile iron, having an austempering heat treatment process applied to it. It is made up of graphite nodules in a matrix of acicular ferrite and retained austenite frequently referred to as ausferrite (Figure 1). Optimum properties are obtained when the chemical alloy composition, solidification micro-structure and heat treatment parameters are carefully controlled. The austempering heat treatment cycle (Figure 2) consists of first austenitising the ductile iron to temperatures between 850 and 1000°C, followed by quenching in a salt or oil bath. The bath is maintained between 230 and 450°C, a temperature above the martensite start temperature
Typical micro-structure of ADI (austenitised at 900°C for 2 hours, austempered at 360°C for 1 hour) [
(a) Temperature-time plot for a typical austempering treatment and (b) austempering treatment superimposed on an isothermal transformation diagram [
The mechanical properties of ADI depend on the parameters of the austempering process, which determine the morphology of the ferrite, the volume fraction of retained austenite, the carbon content in the retained austenite, and the presence or absence of martensite and iron carbides in the austenite or ferrite. In general, the tensile strength of ADI varies from around 1500 MPa with a corresponding 1% elongation, to lower tensile strengths (900–1200 MPa) and higher corresponding elongations of up to 12%. The former group of ADIs is produced at lower austempering temperatures of 230–330°C and exhibits high hardness (~50–54 HRC), but limited ductility. These are used for applications requiring high resistance to contact stress. ADIs having lower tensile strength, which are produced at higher austempering temperatures of 350–400°C, have lower hardness ranging from around 23 to 34 HRC, but have high toughness and ductility [3]. This range of ADIs consist of structures with greater amounts of austenite (
When ADI engineering components require high toughness and ductility at the core of the component coupled with high bending fatigue strength and good tribological characteristics at the surface, the ADI can be first austempered in the higher temperature range of 350–400°C to obtain upper ausferrite. It is subsequently engineered to improve the surface properties and obtain the fatigue and tribological characteristics required by the intended application, using processes such as shot peening.
\nShot peening (SP) is a conventional mechanical surface treatment during which the surface of a material is bombarded by spherical media (called
The essential parameters of the SP process can be classified into three groups: shot (shape, hardness and size), workpiece (hardness, chemical composition, crystal structure, geometry) and flow parameters (shot velocity, impact angle, mass flow rate, peening time, coverage). These parameters need to be carefully controlled in order to achieve a uniform distribution of compressive stresses on the surface of a component.
\nThe induced compressive layer and work hardening increase the resistance to crack initiation and propagation, which in turn prolongs components’ lifetime. In fact, SP has been used for years to extend the bending fatigue life of various engineering components in the transport industry, mainly for automobile and aircraft parts. Such components include gears, axles, springs, connecting rods, crankshafts, I-beams in heavy duty applications, compressors, turbine rotors and shafts. SP can be applied to the whole component, or just confined to parts of the component that are expected to be highly stressed. For example, in gears, one can SP the entire gear tooth or alternatively focus the SP only at the tooth root fillets, which are exposed to the highest stress.
\nAlthough SP is not a new process, it is still very popular and has evolved considerably in the late twentieth and early twenty-first centuries. A great deal of research has been carried out to study the effects of SP on the materials being treated, including metallurgical, mechanical, and geometrical effects and also the effects of SP on the mechanical properties, tribological characteristics and corrosion resistance of a wide range of metals and alloys [11]. Recently, advanced surface modification technologies show the use of variants of the traditional SP process, four of which are shown in this issue, namely ultrasonic SP, severe SP (SSP), surface mechanical attrition treatment (SMAT) and duplex SP. Other variants of SP can be found in literature, including laser shock peening (LSP), micro-peening, cavitation shotless peening and ball or roller burnishing.
\nThe high strains applied by the high-pressure impact of the shots on the surface of ADI are higher than the yield strength of the material, and both the ferrite and the austenite undergo plastic deformation. The ferrite work hardens with an increase in the dislocation density, while the austenite has the ability to cold work and to locally transform into martensite at high plastic deformation. The transformation induced plasticity (TRIP) phenomenon has been studied by various researchers [12, 13] and shown to depend on the carbon content in the austenite, its size and morphology and distribution within the structure.
\nAs a result of work hardening and phase transformation, the hardness at the surface following SP of ADI increases by approximately 40–60% [11, 14, 15, 16, 17, 18, 19]. Apart from an increase in the surface hardness, SP also results in the creation of compressive residual stresses of around 700–1000 MPa [15, 16, 17, 18, 19]. The residual compressive stresses caused by SP increases the dislocation density hindering dislocation motion. The stress-induced austenite to martensite transformation also results in volume expansion further creating local compressive stresses.
\nShot peening is known to improve the bending fatigue properties of ADI [14, 15, 20, 21]. The improvement of bending fatigue resistance following SP is due to the formation of a compressed layer beneath the surface of the SP component. Cracks tend not to initiate or propagate in surfaces upon which a compressive force is acting. The induced compressive stresses shift crack nucleation to the sub-surface and hinders fatigue crack propagation at the surface. Apart from hardening the surface, SP also eliminates microscopic defects, machining marks and grinding defects. This also increases the bending fatigue strength. However, Uematsu et al. [22] showed that SP cast iron containing spheroidal vanadium carbides (VCs), dispersed in a martensitic matrix, did not eliminate large casting voids. These voids and clusters of VCs served as sources of crack initiation, and hence SP did not improve the bending fatigue strength in this particular case.
\nWear of materials is a complex phenomenon, and depends on the running conditions and the properties of the tribopair materials. SP should be beneficial in reducing wear rates because of the high hardness due to work hardening, stress-induced austenite to martensite transformation, and residual compressive stresses at the surface [10, 23, 24]. Compressive stresses prevent micro-cracks from forming, thus inhibiting pitting or spalling. Kobayashi and Hasegawa [25] showed this to be true for carburised steel gears. This was attributed to the compressive stress suppressing cracking and delaying crack growth. Champaigne [10] and Townsend and Zaretsky [26] reported an improvement in the contact fatigue life of SP steel gears of around 1.5 times. In another study, Townsend [27] reported that a higher peening intensity (0.38–0.43 mmA) resulted in higher compressive stresses, and hence lead to a 10% rolling contact fatigue life (
The effect of the rough SP surfaces on the tribological behaviour has been reported in a number of articles. The dimpled surface is sometimes considered to be favourable in lubricated contact, which acts as reservoirs that aid in the retention of the lubricant and maintaining a full film thickness between meshing teeth. Better lubrication reduces fretting, noise, spalling, scuffing and the operating temperature by reducing friction. That said, Vaxevanidis et al. [29] still reported improved sliding wear resistance of SP tool steel tested under dry conditions. A higher coefficient of friction was reported at the beginning of the test, but as the test progressed, this decreased to a lower value than that of specimens, which were not SP. This can be attributed to flattening of the rough surfaces during the wear test.
\nIn contrast, studies by other researchers show no improvement in the tribological characteristics of surfaces after SP [30, 31, 32]. The reason given is that surface roughening counterbalances the positive effects of compressive stresses and hardening caused by SP.
\nVery few works have been conducted to study the tribological behaviour of SP ADI [30, 31]. Work by Sharma [31] showed that at a given load, the contact fatigue life of SP Mo-Ni ADI austempered at 230°C is 35–45% lower than that of carburised steel. The author attributed this to the rougher surface and a lower hardness of the SP ADI when compared to carburised steel. Lubricated rolling contact fatigue tests carried out by Ohba et al. [30] showed that SP Cu-alloyed ADI exhibited similar wear rates to corresponding as-austempered specimens. This was attributed to surface roughening, which counterbalances the positive effects of compressive stresses and hardening caused by SP.
\nThis section is related to a study, which was conducted to address the inconsistencies related to the tribological characteristics of SP ADI. A Cu-Ni-alloyed ADI having the composition shown in Table 1 was used for this study [16, 17, 18, 19]. Ductile iron samples were first austenitised at a temperature of 900°C for 2 hours and subsequently austempered at 360°C for 1 hour. Following the austempering process, this material had an upper ausferrite matrix with an yield strength of 737 MPa, a tensile strength of 1012 MPa and an elongation of 7%. SP was done up to full coverage with S330 steel shots and with an Almen intensity of 0.38 mmA. The stand-off distance was 90 mm, while the angle of impingement was set at 90°. The surface roughness
Element | \nC | \nSi | \nCu | \nNi | \nMn | \nP | \nMg | \nAl | \nS | \nFe | \n
---|---|---|---|---|---|---|---|---|---|---|
Wt.% | \n3.26 | \n2.36 | \n1.63 | \n1.58 | \n0.24 | \n0.011 | \n0.057 | \n0.024 | \n0.006 | \nBal. | \n
Chemical composition of the Cu-Ni-alloyed ductile iron.
As indicated in Section 2, SP of austempered ductile iron results in strain-induced phase transformation from the face-centred cubic (FCC) austenite to body centred tetragonal (BCT) martensite. This can be observed in the X-ray diffraction pattern presented in Figure 3. The top pattern, which is for the SP specimen, does not show any of the austenite peaks present in the as-austempered ductile iron (bottom pattern in Figure 3), suggesting that only ferrite and martensite peaks are present and that the strain induced during SP has transformed the austenite to martensite. Similar findings are commonly reported in ferrous alloys having retained austenite present in the initial micro-structure before SP [14, 15, 23, 33].
\nX-ray diffraction patterns of polished as-treated and shot-peened ADI (S330, intensity = 0.38 mmA) [
The SP-induced work hardening and phase transformation result in an increase of the surface hardness of 43% from 370 to 535 HV (Figure 4(a)) and decreases steadily towards the interior of the specimen. This is in agreement with results reported in literature, where the typical hardness increase following SP of ADI is in the range of 40–60% [14, 15]. The depth of the SP layer was measured from the hardness-depth profile (Figure 4(a)) and is approximately 400 μm. The maximum compressive stress occurring at the SP surface has a value of 975 MPa (Figure 4(b)), which is 67% greater than the yield strength of the material. Similar values of compressive stress for the Cu-Mn ductile iron austempered at 380°C were reported by Ebenau et al. [15].
\n(a) Micro-hardness-depth profile of shot-peened ADI (S330, intensity = 0.38 mmA) and (b) residual stress-depth profile of shot-peened ADI (S330, intensity = 0.38 mmA) [
As a result of SP, both the mean bending fatigue strength and the fatigue life of the Cu-Ni ADI were increased [18]. Figure 5 shows the S-N curve for both the as-austempered and SP condition. It can be noted that the fatigue strength increased by approximately 60%, that is from 250 to 390 MPa. The improvement in fatigue life of around 35% was noted at all stress levels. On the one hand, the results obtained for SP ADI (390 MPa) are similar to those obtained in other studies conducted by Mhaede et al. [34] and Ochi et al. [35] for unalloyed ADI, and by Benam et al. [14] for Cu-Ni-alloyed ADI. On the other hand, however, Ebenau et al. [15] reported values of 560 MPa when carrying out bending fatigue tests on SP Cu-Mn ADI austempered at 380°C. Surprisingly, these high values were obtained using the same S330 shots used in the present investigation: similar peening pressure of 3 bar and with recorded maximum residual compressive stress of 700 MPa. These results could potentially be explained in terms of differences in chemical compositions or heterogeneity in micro-structures.
\nS-N curves for polished as-austempered ductile iron and SP ADI specimens [
The fatigue ratio, which is the ratio of the fatigue limit to the tensile strength, is 0.31 and 0.39 for the polished and SP specimens, respectively. This ratio is in agreement with British Cast Iron Research Association (BCIRA) reports that quote a fatigue ratio of 0.37 for austempered irons with tensile strengths in the range of 900–1000 N/mm2 [36]. Johansson et al. [37] obtained higher endurance ratios of around 0.44, which were obtained in irons with tensile strengths in the range of 1000–1200 N/mm2 produced by austempering between 350 and 375°C.
\nWhen comparing the bending fatigue strength obtained for the ADI in the present study to that for the carburised steel, it can be noted that the performance of carburised steel is far superior. Bending fatigue strengths of between 850 and 1500 MPa have been reported in a number of studies. This can be attributed to the harder surfaces (approximately 700 HV) and the deeper carburised layers (approximately 1.2 mm).
\nThe crack propagation deflected along the graphite-matrix interface is shown in a cross section of a fractured specimen in Figure 6, which indicates a relatively weak interface between graphite nodules and the matrix. Figure 7 also shows nodule debonding from one of the fractured surfaces. When traversing between graphite nodules, cracks were seen to pass through the lath of austenite and ferrite or through the austenite/ferrite interface, these being paths of least resistance. Similar results were also reported by Voigt [38] and Tayanç et al. [39]. Therefore, if nodules are sometimes considered as defects, the high toughness of stable austenite makes up for this negative effect. Crack propagation is also affected by the high toughness and ductility of the ausferritic micro-structure, making it a strong crack arrester. This structure absorbs the energy of the advancing crack during fracture, arresting the crack or deflecting it. In addition, ausferrite can strain harden during cyclic loading, providing high plastic deformation, which further hinders crack growth. Tanaka et al. [40] measured the hardness of upper ausferritic matrix after being subjected to different number of cycles during bending fatigue tests. The hardness of the matrix increased with longer number of cycles. Apart from strengthening by plastic deformation, unstable austenite can transform to martensite as the crack advances. The accompanying volume change, resulting in a compressed zone ahead of the crack tip, may retard crack growth, if not arrest it completely.
\nCrack propagation along graphite-matrix interface for a shot-peened ADI specimen [
Graphite nodules attached to one of the fractured surfaces of an as-austempered DI specimen [
The extent to which the nodules can affect the fatigue behaviour of ADI depends on the nodularity where a high nodularity provides a better continuity of the matrix with less stress raisers. Furthermore, the nodule size, count and distribution are of equal importance. A high count, a smaller diameter and evenly distributed nodules decrease intercellular micro-segregation of elements. This results in an increase in the fracture toughness and fatigue resistance of ADI.
\nDry sliding wear tests were carried out on the Cu-Ni ADI using a conventional pin-on-disk tribometer using two different applied pressures, 2.5 and 10 MPa [16]. Figure 8 shows the wear factor
Wear factors of as-austempered ductile iron (A) and shot-peened ADI (SP) samples [
The micro-hardness-depth profiles taken on cross sections of the worn specimens are shown in Figure 9(a), while Figure 9(b) compares the surface hardness at both applied pressures of specimens before and after the wear tests. At a low applied pressure of 2.5 MPa, the micro-hardness of the worn surface of as-austempered specimens was measured to be around 19% higher than that of the bulk. The thickness of this hardened layer is around 100 μm and is due to strain hardening of the ausferritic matrix at the surface region, which predominates over any frictional heating effect. As a result of this plastic deformation, the material is stronger and causes surface flow and the micro-structure to distort, as shown in Figure 10(a).
\n(a) Micro-hardness-depth profiles of cross sections of worn specimens and (b) surface hardness before and after dry sliding wear tests [
Micro-structure just below the worn surface of a specimen tested at an applied pressure of (a) 2.5 and (b) 10 MPa [
It can be noted that the hardness of SP specimens decreases from 535 to 450 HV (Figure 9) after testing at the lower applied pressure of 2.5 MPa. This is probably due to the removal of part of the SP layer during the wear test, or tempering of the martensite, which was formed during the SP process.
\nOn the other hand, the surface micro-hardness of specimens tested at the higher load is over 600 HV (Figure 9). This indicates a phase transformation to a high hardness phase. Micro-graphs show that a white non-etchable phase is present at the surface of the specimens tested with the higher load (Figure 10(b)). When the two surfaces slide over each other, most of the work done against friction is converted into heat, causing a general rise in temperature, as well as localised temperature spikes where an asperity makes contact with the mating surface. The resulting rise in temperature may modify the mechanical and metallurgical properties of the sliding surfaces, causing them to oxidise, or possibly melt. This high temperature transforms the ausferrite to austenite and can result in carbon diffusion from the nodules into the austenite and hence increasing the hardenability of the pin. Consequently, the critical cooling rate is lowered, resulting in the formation of untempered martensite at a slow cooling rate upon cooling of the pin and disk after the test is stopped. It is also possible that the austenite being produced due to the high temperatures reached at the asperities is rapidly cooled as heat is conducted into the underlying bulk material when the tip of the asperity breaks during sliding. As a result, the austenite transforms to martensite during testing.
\nFordyce et al. [41] also observed this white non-etchable layer during the unlubricated sliding wear of austempered spheroidal cast iron but not of as-cast spheroidal iron. Straffelini et al. [42] explained how the wear rate of ADI at high sliding speeds of 1.5–2.6 m/s was dominated by the formation and cracking of this white layer formed on the sliding surface. Sharma [31] has also shown that high loads applied during wear testing may transform the metastable austenite to martensite.
\nThe presence of graphite nodules has a major influence on the wear rate of ADI as superficial graphite is smeared over the surface and aids in lubricating the surfaces in sliding contact. Graphite naturally has an inherent lubricating ability, being able to smear over the contacting surfaces. This lowers the friction coefficient and prevents metallic contact, hence reducing the adhesive bonding between the surfaces and material loss due to wear. Due to this, ADI components, for example railcar wheels, are sometimes run dry without the need of lubrication. Cracks have a tendency of passing through the graphite-matrix interface, this being the path of least resistance. On the other hand, a nodule may arrest crack propagation. Whether or not a crack is arrested or assisted to propagate as it reaches a graphite nodule would depend on the angle of approach. It follows that graphite nodules influence the propagation path.
\nFigure 11(a) shows that during starved lubricated sliding wear tests, the SP Cu-Ni ADI (SP) specimens exhibited a higher scuffing wear resistance than corresponding as-austempered (A) specimens [43]. SP specimens survived 21 × 103 cycles, while the as-austempered specimens endured 2.3 × 103 cycles before failure. The improved scuffing performance due to SP might seem anomalous, since rough surfaces generally create low values of the specific film thickness λ and induce scuffing. However, the superposition of indentations arising from the SP process can be considered as an advantage in starved lubricated moving parts. These act as oil reservoirs by dragging the oil into them and generating a load-carrying hydrodynamic pressure. This decreases the pressure from the sliding surfaces, leading to longer lives for the SP specimens. On the other hand, the larger number of smaller asperities for the ground as-austempered specimens leads to a larger real area of contact upon application of the normal force and the presence of a very thin oil film. As a result, the number of sliding cycles to failure decreases due to plastic flow of the softer ADI specimens and micro-fracture of the asperities. This highlights the importance of the surface topography in asperity-asperity contact during sliding of components.
\n(a) Number of sliding cycles to scuffing failure for as-austempered (A) ADI and shot-peened (SP) ADI specimens and (b) friction coefficient evolution for lubricated sliding wear tests involving the as-austempered ADI and shot-peened ADI specimens [
The higher scuffing resistance of the SP specimens could also be attributed to the high compressive stresses present in these specimens. It has been explained in previous sections that compressive stresses create a resistance to crack propagation and flaking of the surface. This was also attested by Adamović et al. [28], who reported a 30% improvement in the wear resistance of steels after SP.
\nAdditionally, the SP specimens exhibit a lower value of coefficient friction at 0.08, when compared to that measured for their counterpart as-austempered specimens. This can be seen from the friction coefficient data of the lubricated sliding wear tests presented in Figure 11(b). The coefficient of friction for the as-austempered specimens is seen to increase progressively as the test progresses. This is attributable to the larger number of small asperities of the as-austempered pin in contact with the disk. In contrast, the local traction at asperity contacts is reduced in the dimpled SP specimens, again as a result of the oil pockets on the surface. It is known that at lower levels of friction, the surface traction forces and sub-surface shear forces between two interacting bodies might not be sufficient to initiate crack growth and delamination. Hence, the lower friction for the SP specimens leads to longer number of cycles before the onset of failure. A lower coefficient of friction than that produced by ground surfaces was also reported for SP steel specimens [28] and for dented steel surfaces [44] under starved lubrication conditions.
\nThe higher hardness of the SP specimens (~535 HV) should have also contributed to the improved scuffing resistance. The benefit of a high hardness in wear tests carried out under starved lubrication conditions was also mentioned by Adamović et al. [28]. In fact, the hardness of mating surfaces is a crucial factor in avoiding scuffing.
\nIt was also noted that the graphite nodules play a part in determining the scuffing resistance. In fact, as seen in Figure 12 cracks emanate or stop at the nodules. This observation is similar to that mentioned earlier during bending fatigue [18] and dry sliding wear of ADI [16].
\nMicro-graph showing the influence of graphite nodules on crack initiation and/or propagation [
As-austempered and SP Cu-Ni ADI specimens were tested up to pitting failure using a cone-three ball tribosystem at an applied stress of 2.56 GPa [19]. Figure 13 presents the Weibull probability plot for the tests, showing the percentage of specimens that will fail up to a specific number of cycles. The cumulative distribution function (CDF) is shown on the y-axis, while the number of rolling cycles to contact fatigue is shown on the x-axis. In this plot, the data points represent the number of cycles to failure of the ADI specimens.
\n(a) Weibull probability plot for data obtained from rolling contact fatigue tests and (b) L10, L50, characteristic (η) fatigue lives for as-austempered and shot-peened ADI specimens [
Figure 13(b) shows the average contact fatigue lives for the as-austempered DI and SP specimens. Results show that the average contact fatigue life of SP specimens decreased by 72% when compared to the performance of the as-austempered specimens. Similarly, Sharma et al. [31] reported that SP lowered the contact fatigue life of ADI by 60%. Also, Vrbka et al. [46] report an 82% decrease in life of steel specimens following rolling contact fatigue tests. In the current study, austempering at 360°C resulted in a hardness of 370 HV, while SP increased the surface hardness to approximately 530 HV. Based only on hardness, one would expect an improvement in the contact fatigue resistance. Also, the residual compressive stresses present in SP layers (Figure 4(b)) should effectively reduce the maximum shear stress inside the Hertzian contact field, delaying crack nucleation and propagation.
\nHowever, the surfaces of the SP specimens have a higher surface roughness (
This might seem anomalous after having shown that under starved lubricated sliding wear, the dimples forming the rough surface of the SP specimens act as lubricant reservoirs, aiding in keeping the lubricant between the surfaces and serving to delay failure. One may have expected this positive attribute to apply also for the rolling tests. However, with the application of larger quantity of lubricant, smoother surfaces of the as-austempered samples proved to be more beneficial as it resulted in the formation of a full lubricating film. One should note that in contrast, all the specimens in the starved lubricated sliding wear tests were tested under boundary lubricated conditions. These results are in agreement with Zhai et al. [44] who report that the effect of surface dents is favourable under poorly lubricated conditions, but adverse under a well-lubricated environment. This means that the influence of dimpled surfaces on the tribological characteristics of the material depends on the lubrication regime.
\nFor rough SP surfaces to operate in a fully lubricated condition, the minimum film thickness should be thicker than the combined surface roughness of the two interacting components. A thicker film is obtained by increasing the operating speed, the oil viscosity or the relative radius of curvature of the surfaces in contact. The elastic properties of the gear teeth and the applied load have relatively small influences on the lubricant film thickness. Increasing the load will only increase the elastic flattening (the width of the Hertzian contact band) and the contact area, without changing the geometry of the inlet region. Apart from the benefits of a thicker film, improving the performance of SP surfaces might be due to lower surface roughness. This can be achieved by either using shots having a smaller diameter, or by grinding/polishing the surface after SP. In fact, rolling contact fatigue tests carried out by Ohba et al. [30] showed nearly equal fatigue lives for ground as-austempered DI and SP ADI using shots with a diameter of 0.1 mm. On the other hand, Vrbka et al. [46] report a deterioration in the rolling contact fatigue resistance of steel despite the use of shots having smaller diameters of 0.07 and 0.11 mm. One notes that shots used in the present study had diameters in the range of 0.85–1.2 mm. Results in this study [46] were improved when testing specimens, which were polished after SP, thus creating relatively smoother surfaces, in which the asperities did not protrude the lubricant film. However, grinding or polishing of SP surfaces might be challenging since extra care must be taken so as not to remove the SP layer and hence eliminate the beneficial effects, which result from SP (high hardness and compressive stresses at the surface).
\nThe work presented in this chapter has hopefully contributed to a better understanding of the mechanical behaviour and tribological characteristics of both as-austempered ductile iron (ADI) and shot-peened (SP) ADI. A case study was presented in which bending fatigue tests and three different tribological tests were carried out on Cu-Ni-alloyed ADI. The major conclusions of can be summarised as follows:
After SP, a good balance between surface roughness, high surface hardness and hardened depth was obtained. Austenite transformed to martensite by the TRansformation Induced Plasticity (TRIP) phenomenon and the surface hardness increased by about 43% to a value of approximately 535 HV; the depth of the SP layer was approximately 400 μm, residual compressive stresses had a maximum value of 975 MPa and the surface roughness increased from 0.4 to 3.1 μm.
Rotating bending fatigue tests revealed that SP improved the bending fatigue strength of the Cu-Ni ADI by around 60% from 250 to 390 MPa. This was attributed to the induced compressive stresses that shift crack nucleation to the sub-surface and hinders fatigue crack propagation.
Dry lubricated sliding wear tests showed that SP did not result in an improvement in the dry sliding wear resistance of Cu-Ni ADI. The potential advantages resulting from the higher hardness at the surface, stress-induced austenite to martensite transformation and the residual compressive stresses of the SP specimens are counteracted by the induced surface roughness.
Starved lubricated sliding wear tests showed that SP resulted in an 800% improvement in the scuffing wear resistance of the ADI. The lower resistance to scuffing attested by the as-austempered specimens was attributed to plastic flow and micro-fracture of asperities. On the other hand, the superposition of indentations arising from the SP process acted as oil reservoirs and hence reduced surface traction forces. The higher scuffing resistance of the SP specimens was also partly attributed to the high hardness and high compressive stresses present in the surface of these specimens.
Lubricated rolling contact fatigue tests revealed that SP resulted in a 72% decrease in the average contact fatigue life when compared to the resulting fatigue life obtained by the as-austempered specimens. This was attributed to the rough surfaces of SP specimens, which in turn caused a low specific film thickness, leading to rolling in the boundary lubrication regime. In contrast, rolling of the polished as-austempered specimens was conducted in the presence of a full lubricant film, which is the ideal lubrication regime of components under rolling contact.
The SP process is constantly maturing, and many questions still remain open as the industry is continuously on the search for process improvements that improve and extent the service lifetime of components. For example, the improvement in surface roughness has improved the tribological characteristics, the ability to create textured nanostructured surface layers and also new equipment and techniques to characterise the treated surfaces [11].
\nThe authors would like to acknowledge the positive impact of ERDF funding and the purchase of the testing equipment through the project: Developing an Interdisciplinary Material Testing and Rapid Prototyping R&D Facility (Ref. no. 012).
\nInteractive media are means of communication in which the output values depend on inputs. This means that the user is actively involved in the communication. The media still has the same purpose, but entries or inputs made by user create the interaction and some interesting options when it comes to the output of the system. Interactive media is referred to conceptual design of interaction, new media, interactivity, interaction between people and computers, graphical user interface, digital culture, interactive design, and virtual reality. One of the most important characteristics of interactivity is the interaction between user and machine, where each of them has an active role.
\nInteractive multimedia allows the user to control, combine, and manipulate a variety of media types, such as text, computer graphics, audio and video materials, as well as animation. Interactive multimedia integrates computer, storage, data, phone, TV, and other information technologies. The most common interactive multimedia applications include education and training programs, video games, electronic encyclopedias, and travel guides. The user or participant in an interactive multimedia application changes their role—for the viewer becomes an active participant. It is expected that interactive multimedia systems become the next generation of electronic information systems. It should be mentioned that another name for interactive multimedia is hybrid technology, because it is able to combine the possibilities for storage capacities of computers and a digital database with an advanced tool for viewing and manipulating these materials.
\nNowadays, the fastest-changing area is dedicated to the development of teaching materials based on usage of computers, particularly interactive multimedia programs that run on personal computers. These new computer and information technologies offer students and teachers access to materials like never before. Through the storage capacity of the computer, multimedia can “deliver” enormous amounts of data to users in more useful and accessible ways [1, 2].
\nThe interaction itself involves at least two parties—the user and the system. The previously mentioned participants are complex and completely different in the way of communication and perception of task. The interface must be a link between them in order to have successful interaction. This transcription can fail in a great number of cases for several reasons. The usage of interaction models can help better understand what is happening in the interaction and to identify possible problems. Models allow, together with developing environment, to compare the different styles of interaction and to discuss issues of interaction as well [3].
\nTraditionally, the purpose of an interactive system is to assist the user in achieving the goals from the application domain.
Task analysis includes the identification of problems in terms of domains, objectives, intentions, and tasks. It can use human knowledge about tasks and objectives, in order to assess an interactive system that is designed to support them. The terms (concepts) which are used in the design of a system and a customer description are separated, so that they can be treated as separate components—the system and the user, respectively [3, 4, 5].
\nThe term
Besides cognitive aspects of design, physical aspects are also important. Sets of controls and display components should be grouped logically, in order to allow faster access to the user. This is not so important when only one user is active. But, when we take controls in power plants, aircrafts, and air traffic into consideration, it becomes vital. In each of these cases, users are under pressure, and they are faced with a huge range of displays and controls, so their appropriate physical appearance is significant.
\nThe importance of a logical grouping of controls has already been mentioned, as well as the fact that the controls should not be separated. The exact manner of organization (which will be presented) will depend on the domain of application itself. Possible ways of organizations can include the following things:
Apart from setting up the controls and displays, the whole interface system should be properly distributed according to the position of the user himself. Thus, for example, a user should be able to reach all necessary controls and to see all the displays without excessive body movement. The most important displays should be at eye level, and controls should be adjusted for space maneuvering. Display reflections should be avoided as well [3, 6].
\nErgonomics deals with solving physical problems in the interface schedule and arrangement and takes into account the design of work environment as well. Where will the system be used? Who will use it? Will people sit, stand, or move around? Again, this will depend on the domain in a great extent, and it will be critical when it comes to specific controls and operational settings. However, the physical environment in which the system is used can affect the health and safety of its users. This should be taken into account in any design [2].
\nWork on computer should not be considered as a dangerous activity, but one should bear in mind the possible implications of design on the health and safety of users. Factors in the physical environment directly affect the quality of interaction and user’s performances:
The interaction can be observed as a dialog between the user and the computer. The choice of interface style can have a profound effect on the nature of a dialog. There is a great number of common interface styles including:
\nSome of the interactions between humans and computers (or machines or technology) focus on understanding, which means that the attention is paid to the way how people interact with technology. However, a great deal of interaction between man and computer refers to how things work and how they are created. The credits for these features go to
In this part, attention will be paid to the
When someone is asked what design is, simple definition might be that the design is related to the achievement of objectives within the constraints. This definition does not say everything about the design, but it helps users to focus on the following elements:
It is impossible to accomplish all of the user’s objectives within constraints, but in life, everything is a matter of compromise, even in such cases. The best designs are created in areas where the designer understands the compromises and the factors affecting them.
\nThe most important part of interaction design or interactivity is user. It is necessary to set up a user in the first place and to keep the user in the central place [3, 6, 8].
\nHere is a brief overview of the simplified view of the four major phases focused on interaction design and interactivity, as well as supporting iteration loop:
One man cannot read and look at all the required techniques. Time is limited and there is no link between the period of design and quality of the final design. This means that a design should be accepted as final, even if it is not perfect; it is often better to have a product which is acceptable, is done on time, and costs less than to have one that has perfect interaction but was not done on time and was over a budget. For example, if a user encounters a system that appears to be perfect, one can be pretty sure that it is a poorly designed system; the system is poorly designed, not because the design is bad but because a lot of effort has been spent for the design process and designing [7, 8].
\nIntechOpen books are available online by accessing all published content on a chapter level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2021-02-26
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2021-02-26
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5818},{group:"region",caption:"Middle and South America",value:2,count:5287},{group:"region",caption:"Africa",value:3,count:1757},{group:"region",caption:"Asia",value:4,count:10539},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15929}],offset:12,limit:12,total:119317},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"9"},books:[{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10695",title:"Computational Fluid Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"1f8fd29e4b72dbfe632f47840b369b11",slug:null,bookSignature:"Dr. Suvanjan Bhattacharyya",coverURL:"https://cdn.intechopen.com/books/images_new/10695.jpg",editedByType:null,editors:[{id:"233630",title:"Dr.",name:"Suvanjan",surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10651",title:"Machine Learning - Algorithms, Models and Applications",subtitle:null,isOpenForSubmission:!0,hash:"6208156401c496e0a4ca5ff4265324cc",slug:null,bookSignature:"Prof. Jaydip Sen",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",editedByType:null,editors:[{id:"4519",title:"Prof.",name:"Jaydip",surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10692",title:"Critical Systems - Towards Antifragility",subtitle:null,isOpenForSubmission:!0,hash:"78d284ad921e9677830ef0335b1f1276",slug:null,bookSignature:"Prof. Darrell Mann",coverURL:"https://cdn.intechopen.com/books/images_new/10692.jpg",editedByType:null,editors:[{id:"297423",title:"Prof.",name:"Darrell",surname:"Mann",slug:"darrell-mann",fullName:"Darrell Mann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10691",title:"Intelligent and Futuristic Computer Animation",subtitle:null,isOpenForSubmission:!0,hash:"5496e567e838f1eaeafba5f9a776b13a",slug:null,bookSignature:"Prof. Ahmad Hoirul Basori and Dr. Andi Besse Firdausiah Mansur",coverURL:"https://cdn.intechopen.com/books/images_new/10691.jpg",editedByType:null,editors:[{id:"13394",title:"Prof.",name:"Ahmad Hoirul",surname:"Basori",slug:"ahmad-hoirul-basori",fullName:"Ahmad Hoirul Basori"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10859",title:"Data Mining",subtitle:null,isOpenForSubmission:!0,hash:"63a4e514e537d3962cf53ef1c6b9d5eb",slug:null,bookSignature:"Prof. Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",editedByType:null,editors:[{id:"43680",title:"Prof.",name:"Ciza",surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10857",title:"Augmented Reality",subtitle:null,isOpenForSubmission:!0,hash:"5d66e2c09cddac7cc377ffb103aa7ef9",slug:null,bookSignature:"Dr. Dragan Mladen Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10857.jpg",editedByType:null,editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"3cf7194a8c120e74db9dd632b9affb83",slug:null,bookSignature:"Prof. Nodari Vakhania",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:[{id:"202585",title:"Prof.",name:"Nodari",surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!0,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:null,bookSignature:"Dr. Dragan Mladen Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:null,editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:47},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1073",title:"Bone & Musculoskeletal Oncology",slug:"bone-and-musculoskeletal-oncology",parent:{title:"Oncology",slug:"medicine-oncology"},numberOfBooks:2,numberOfAuthorsAndEditors:77,numberOfWosCitations:21,numberOfCrossrefCitations:12,numberOfDimensionsCitations:33,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"bone-and-musculoskeletal-oncology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"759",title:"Osteosarcoma",subtitle:null,isOpenForSubmission:!1,hash:"2f4f2676183c2de632e44e5d72bcc778",slug:"osteosarcoma",bookSignature:"Manish Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/759.jpg",editedByType:"Edited by",editors:[{id:"58420",title:"Dr.",name:"Manish",middleName:"G",surname:"Agarwal",slug:"manish-agarwal",fullName:"Manish Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"647",title:"Chronic Lymphocytic Leukemia",subtitle:null,isOpenForSubmission:!1,hash:"6ed7cea1e96993e2edc66548c29bb436",slug:"chronic-lymphocytic-leukemia",bookSignature:"Pablo Oppezzo",coverURL:"https://cdn.intechopen.com/books/images_new/647.jpg",editedByType:"Edited by",editors:[{id:"68891",title:"Dr.",name:"Pablo",middleName:null,surname:"Oppezzo",slug:"pablo-oppezzo",fullName:"Pablo Oppezzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"35171",doi:"10.5772/31431",title:"Histopathology and Molecular Pathology of Bone and Extraskeletal Osteosarcomas",slug:"histopathology-and-molecular-pathology-of-bone-and-extraskeletal-osteosarcomas",totalDownloads:7612,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"osteosarcoma",title:"Osteosarcoma",fullTitle:"Osteosarcoma"},signatures:"Helen Trihia and Christos Valavanis",authors:[{id:"87082",title:"Dr.",name:"Helen",middleName:null,surname:"Trihia",slug:"helen-trihia",fullName:"Helen Trihia"},{id:"89731",title:"Dr.",name:"Christos",middleName:null,surname:"Valavanis",slug:"christos-valavanis",fullName:"Christos Valavanis"}]},{id:"35177",doi:"10.5772/32559",title:"The Retinoblastoma Protein in Osteosarcomagenesis",slug:"the-retinoblastoma-protein-in-osteosarcomagenesis",totalDownloads:1387,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"osteosarcoma",title:"Osteosarcoma",fullTitle:"Osteosarcoma"},signatures:"Elizabeth Kong and Philip W. Hinds",authors:[{id:"91925",title:"Prof.",name:"Phil",middleName:null,surname:"Hinds",slug:"phil-hinds",fullName:"Phil Hinds"}]},{id:"35175",doi:"10.5772/45627",title:"Limb Salvage for Osteosarcoma: Current Status with a Review of Literature",slug:"limb-salvage-in-osteosarcoma",totalDownloads:6779,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"osteosarcoma",title:"Osteosarcoma",fullTitle:"Osteosarcoma"},signatures:"Manish G. Agarwal and Prakash Nayak",authors:[{id:"58420",title:"Dr.",name:"Manish",middleName:"G",surname:"Agarwal",slug:"manish-agarwal",fullName:"Manish Agarwal"},{id:"152571",title:"Dr.",name:"Prakash",middleName:null,surname:"Nayak",slug:"prakash-nayak",fullName:"Prakash Nayak"}]}],mostDownloadedChaptersLast30Days:[{id:"35177",title:"The Retinoblastoma Protein in Osteosarcomagenesis",slug:"the-retinoblastoma-protein-in-osteosarcomagenesis",totalDownloads:1387,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"osteosarcoma",title:"Osteosarcoma",fullTitle:"Osteosarcoma"},signatures:"Elizabeth Kong and Philip W. Hinds",authors:[{id:"91925",title:"Prof.",name:"Phil",middleName:null,surname:"Hinds",slug:"phil-hinds",fullName:"Phil Hinds"}]},{id:"27990",title:"Mouse Models of Chronic Lymphocytic Leukemia",slug:"mouse-models-of-chronic-lymphocytic-leukemia",totalDownloads:3902,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"chronic-lymphocytic-leukemia",title:"Chronic Lymphocytic Leukemia",fullTitle:"Chronic Lymphocytic Leukemia"},signatures:"Gema Pérez-Chacón and Juan M. Zapata",authors:[{id:"68808",title:"Dr.",name:"Juan M",middleName:null,surname:"Zapata",slug:"juan-m-zapata",fullName:"Juan M Zapata"},{id:"122262",title:"Dr.",name:"Gema",middleName:null,surname:"Perez-Chacon",slug:"gema-perez-chacon",fullName:"Gema Perez-Chacon"}]},{id:"28000",title:"Present and Future Application of Nanoparticle Based Therapies in B-Chronic Lymphocytic Leukemia (B-CLL)",slug:"present-and-future-application-of-nanoparticle-based-therapies-in-b-chronic-lymphocytic-leukemia-b-c",totalDownloads:2116,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"chronic-lymphocytic-leukemia",title:"Chronic Lymphocytic Leukemia",fullTitle:"Chronic Lymphocytic Leukemia"},signatures:"Eduardo Mansilla, Gustavo H. Marin, Luis Núñez, Gustavo Larsen, Nelly Mezzaroba and Paolo Macor",authors:[{id:"80040",title:"Dr.",name:"Gustavo H.",middleName:null,surname:"Marin",slug:"gustavo-h.-marin",fullName:"Gustavo H. Marin"},{id:"80052",title:"Dr.",name:"Eduardo",middleName:null,surname:"Mansilla",slug:"eduardo-mansilla",fullName:"Eduardo Mansilla"}]},{id:"35172",title:"Imaging Osteosarcoma",slug:"imaging-of-osteosarcoma-review",totalDownloads:6916,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"osteosarcoma",title:"Osteosarcoma",fullTitle:"Osteosarcoma"},signatures:"Ali Nawaz Khan, Durr-e-Sabih, Klaus L. Irion, Hamdan AL-Jahdali and Koteyar Shyam Sunder Radha Krishna",authors:[{id:"98597",title:"Prof.",name:"Ali Nawaz",middleName:null,surname:"Khan",slug:"ali-nawaz-khan",fullName:"Ali Nawaz Khan"}]},{id:"27996",title:"Interactions of the Platinum(II) Complexes with Nitrogen- and Sulfur-Bonding Bio-Molecules in Chronic Lymphocytic Leukemia",slug:"interactions-of-the-platinum-ii-complexes-with-nitrogen-and-sulfur-bonding-bio-molecules-in-chronic-",totalDownloads:4172,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"chronic-lymphocytic-leukemia",title:"Chronic Lymphocytic Leukemia",fullTitle:"Chronic Lymphocytic Leukemia"},signatures:"Jovana Bogojeski, Biljana Petrović and Živadin D. Bugarčić",authors:[{id:"74550",title:"Prof.",name:"Zivadin",middleName:null,surname:"Bugarcic",slug:"zivadin-bugarcic",fullName:"Zivadin Bugarcic"},{id:"80279",title:"Prof.",name:"Biljana",middleName:null,surname:"Petrovic",slug:"biljana-petrovic",fullName:"Biljana Petrovic"},{id:"80281",title:"MSc.",name:"Jovana",middleName:null,surname:"Bogojeski",slug:"jovana-bogojeski",fullName:"Jovana Bogojeski"}]},{id:"27997",title:"Infectious Diseases and Clinical Complications During Treatment in CLL",slug:"infectious-diseases-and-clinical-complications-during-treatment-in-cll",totalDownloads:2598,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"chronic-lymphocytic-leukemia",title:"Chronic Lymphocytic Leukemia",fullTitle:"Chronic Lymphocytic Leukemia"},signatures:"Farhad Abbasi",authors:[{id:"76934",title:"Dr.",name:"Farhad",middleName:null,surname:"Abbasi",slug:"farhad-abbasi",fullName:"Farhad Abbasi"}]},{id:"35171",title:"Histopathology and Molecular Pathology of Bone and Extraskeletal Osteosarcomas",slug:"histopathology-and-molecular-pathology-of-bone-and-extraskeletal-osteosarcomas",totalDownloads:7612,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"osteosarcoma",title:"Osteosarcoma",fullTitle:"Osteosarcoma"},signatures:"Helen Trihia and Christos Valavanis",authors:[{id:"87082",title:"Dr.",name:"Helen",middleName:null,surname:"Trihia",slug:"helen-trihia",fullName:"Helen Trihia"},{id:"89731",title:"Dr.",name:"Christos",middleName:null,surname:"Valavanis",slug:"christos-valavanis",fullName:"Christos Valavanis"}]},{id:"35173",title:"Misdiagnosis and Mistreatment for Osteosarcoma: Analysis of Cause and Its Strategy",slug:"misdiagnosis-and-mistreatment-of-osteosarcoma-analysis-of-the-causes-and-the-solutions-",totalDownloads:2438,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"osteosarcoma",title:"Osteosarcoma",fullTitle:"Osteosarcoma"},signatures:"Yao Yang and Lin Feng",authors:[{id:"89820",title:"Prof.",name:"Yang",middleName:null,surname:"Yao",slug:"yang-yao",fullName:"Yang Yao"}]},{id:"27981",title:"Selected Topics in Chronic Lymphocytic Leukemia Pathogenesis",slug:"selected-topics-in-chronic-lymphocytic-leukemia-pathogenesis",totalDownloads:1832,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"chronic-lymphocytic-leukemia",title:"Chronic Lymphocytic Leukemia",fullTitle:"Chronic Lymphocytic Leukemia"},signatures:"Sergio Bianchi, Guillermo Dighiero and Otto Pritsch",authors:[{id:"116671",title:"Dr.",name:"Guillermo",middleName:null,surname:"Dighiero",slug:"guillermo-dighiero",fullName:"Guillermo Dighiero"}]},{id:"27983",title:"Dysregulation of Apoptosis and Proliferation in CLL Cells",slug:"dysregulation-of-apoptosis-and-proliferation-in-cll-cells",totalDownloads:1599,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"chronic-lymphocytic-leukemia",title:"Chronic Lymphocytic Leukemia",fullTitle:"Chronic Lymphocytic Leukemia"},signatures:"Marcin Wójtowicz and Dariusz Wołowiec",authors:[{id:"68906",title:"Dr.",name:"Marcin",middleName:null,surname:"Wojtowicz",slug:"marcin-wojtowicz",fullName:"Marcin Wojtowicz"},{id:"79983",title:"Prof.",name:"Dariusz",middleName:null,surname:"Wolowiec",slug:"dariusz-wolowiec",fullName:"Dariusz Wolowiec"}]}],onlineFirstChaptersFilter:{topicSlug:"bone-and-musculoskeletal-oncology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"bookSubject",path:"/books/subject/bone-and-musculoskeletal-oncology",hash:"",query:{},params:{slug:"bone-and-musculoskeletal-oncology"},fullPath:"/books/subject/bone-and-musculoskeletal-oncology",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()