Part of the book: Trends in Cell Signaling Pathways in Neuronal Fate Decision
Part of the book: Pluripotent Stem Cells
Intense research using vertebrate model organisms has gained considerable knowledge regarding the origin of peripheral neurons, such as neural crest and cranial placodes induction and diversification. However, early development in human embryos has remained largely uncharacterized, despite the roles the neural crest, cranial placodes and their derivatives play in several pathologies. The in vitro systems based on the differentiation of human pluripotent stem cells (hPSCs) strikingly recapitulate embryonic development in a dish. Extensively proved for the neurogenesis in the central nervous system (CNS) in the last 15 years, novel in vitro differentiation strategies were recently designed for the generation of peripheral nervous system (PNS)-related populations. It is the case of human neural crest, cranial placodes, cranial sensory and autonomic neurons, and enteric neurons. These novel models are equally important for enlightening the human early development and for developing new tools for the modern medicine. Better understanding of the programs for specification and maturation of the multitude of peripheral neurons is a major challenge confronting developmental and stem cell researchers in years to come.
Part of the book: Pluripotent Stem Cells