The logic of phase selection.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5720",leadTitle:null,fullTitle:"Failure Analysis and Prevention",title:"Failure Analysis and Prevention",subtitle:null,reviewType:"peer-reviewed",abstract:"This book covers recent advancement methods used in analysing the root cause of engineering failures and the proactive suggestion for future failure prevention. The techniques used especially non-destructive testing such X-ray are well described. The failure analysis covers materials for metal and composites for various applications in mechanical, civil and electrical applications. The modes of failures that are well explained include fracture, fatigue, corrosion and high-temperature failure mechanisms. The administrative part of failures is also presented in the chapter of failure rate analysis. The book will bring you on a tour on how to apply mechanical, electrical and civil engineering fundamental concepts and to understand the prediction of root cause of failures. The topics explained comprehensively the reliable test that one should perform in order to investigate the cause of machines, component or material failures at the macroscopic and microscopic level. I hope the material is not too theoretical and you find the case study, the analysis will assist you in tackling your own failure investigation case.",isbn:"978-953-51-3714-6",printIsbn:"978-953-51-3713-9",pdfIsbn:"978-953-51-3972-0",doi:"10.5772/65149",price:119,priceEur:129,priceUsd:155,slug:"failure-analysis-and-prevention",numberOfPages:216,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"f79dd2c5b85e97fc2d94924ff4931bb1",bookSignature:"Aidy Ali",publishedDate:"December 20th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5720.jpg",numberOfDownloads:22612,numberOfWosCitations:17,numberOfCrossrefCitations:14,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:25,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:56,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 5th 2016",dateEndSecondStepPublish:"November 9th 2016",dateEndThirdStepPublish:"September 15th 2017",dateEndFourthStepPublish:"October 15th 2017",dateEndFifthStepPublish:"December 15th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"13626",title:"Prof.",name:"Aidy",middleName:null,surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali",profilePictureURL:"https://mts.intechopen.com/storage/users/13626/images/5273_n.jpg",biography:"Dr. Aidy Ali is a professor of Mechanical Engineering at the National Defence University of Malaysia (NDUM) or known as the Universiti Pertahanan Nasional Malaysia (UPNM). He received his first degree in Mechanical Engineering from the Universiti Putra Malaysia in 1999. He pursued his PhD degree in the year 2003 with his research on 'Improving the Fatigue Life of Aircraft Components by Using Surface Engineering” at Sheffield University. He was then appointed as a lecturer at the Universiti Putra Malaysia in 2006, was rapidly promoted to senior lecturer in 2008 and to associate professor in 2010 and was rapidly appointed as a professor in 2012, all within a 6-year period of time. Professor Aidy has more than 17 years of experience in research and teaching in the field of mechanical engineering, especially in mechanical fatigue and fracture of materials. He has published more than 140 journals in Scopus and ISI and 19 books and secured more than 24 research grants. He supervised 16 PhD degree students, 36 master’s students and 30 bachelor’s degree students. His expertise is related to mechanical materials for defence applications, fatigue, fracture of materials, failure assessment, failure prevention analysis, reliability engineering prediction and crash analysis.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"National Defence University of Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"828",title:"Reliability Engineering",slug:"reliability-engineering"}],chapters:[{id:"56973",title:"Fatigue Failure Analysis of a Centrifugal Pump Shaft",doi:"10.5772/intechopen.70672",slug:"fatigue-failure-analysis-of-a-centrifugal-pump-shaft",totalDownloads:2717,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:"This chapter deliberates on the systematic processes in failure investigation of engineering components and structures. The procedures are demonstrated in performing failure analysis of a centrifugal pump shaft. The chemical, microstructural, and fractographic analyses provide information on the material science aspects of the failure. The mechanical design analyses establish the cause of failure based on the stress calculations using the strength-of-materials approach. Fatigue analysis using the modified Goodman criterion is employed with consideration of yielding, under the fluctuating load. It is concluded that fatigue crack nucleated in the localized plastic zone at the threaded root region and propagated to cause the premature fatigue failure of the rotor shaft.",signatures:"Mohd Nasir Tamin and Mohammad Arif Hamzah",downloadPdfUrl:"/chapter/pdf-download/56973",previewPdfUrl:"/chapter/pdf-preview/56973",authors:[{id:"196884",title:"Prof.",name:"Mohd Nasir",surname:"Tamin",slug:"mohd-nasir-tamin",fullName:"Mohd Nasir Tamin"}],corrections:null},{id:"57634",title:"Slope Failure Analysis Using Chromaticity Variables",doi:"10.5772/intechopen.71248",slug:"slope-failure-analysis-using-chromaticity-variables",totalDownloads:1488,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources, as well as tourism activities. Thus, this study aims to characterise the relationship between chromaticity variables to be manipulated as indicators to forecast slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along North South Highway and East West Highway. Indicators that could be used to predict shallow slope failure were high value of variable L*(62), low values of variables c* (20) and h* (66). Furthermore, the hues that indicate stable slope based on Munsell Soil Colour Chart are between 2.5YR and 5YR while the hues that indicate unstable slope are between 5YR and 10YR. The overall analysis leads to the conclusion that the reactions and distinctive changes of chromaticity variables between stable and unstable slopes were emphasised as results of significant differences between soil properties, the locations, slope stability and combinations of all interactions.",signatures:"Rashidi Othman and Mohd Shah Irani Hasni",downloadPdfUrl:"/chapter/pdf-download/57634",previewPdfUrl:"/chapter/pdf-preview/57634",authors:[{id:"196634",title:"Mr.",name:"R",surname:"O",slug:"r-o",fullName:"R O"},{id:"221825",title:"Dr.",name:"Mohd Shah Irani",surname:"Hasni",slug:"mohd-shah-irani-hasni",fullName:"Mohd Shah Irani Hasni"}],corrections:null},{id:"56115",title:"Mixed-Mode Delamination Failures of Quasi-Isotropic Quasi- Homogeneous Carbon/Epoxy Laminated Composite",doi:"10.5772/intechopen.69440",slug:"mixed-mode-delamination-failures-of-quasi-isotropic-quasi-homogeneous-carbon-epoxy-laminated-composi",totalDownloads:1335,totalCrossrefCites:5,totalDimensionsCites:5,hasAltmetrics:0,abstract:"This chapter characterised the delamination behaviour of a quasi-isotropic quasi-homogeneous (QIQH) multidirectional carbon/epoxy-laminated composite. The delaminated surface constituted of 45°//0 layers. Specimens were tested using mode I double cantilever beam (DCB), mode II end-notched flexure (ENF) and mixed-mode I+II mixed-mode flexure (MMF) tests at constant crosshead speed of 1 mm/min. Results showed that the fracture toughness increased with the mode II component. Specifically, the mode I, mode II and mixed-mode I+II fracture toughness were 508.17, 1676.26 and 927.52 N/m, respectively. When the fracture toughness values were fitted using the Benzeggagh-Kenane (BK) criterion, it was found that the best-fit material parameter, η, was attained at 1.21. Furthermore, fibre bridging was observed in DCB specimens, where the steady-state fracture toughness was approximately 80% higher compared to the mode I fracture toughness. Finally, through scanning electron micrographs, it was found that there was resin-rich region at the crack tip of the specimens. In addition, fibre debonding of the 45°layer was found to be dominant in the DCB specimens. Significant shear cusps were noticed in the ENF specimens. As for the MMF specimens, matrix cracking and fibre debonding of the 0°layer were observed to be the major failure mechanisms.",signatures:"Mahzan Johar, King Jye Wong and Mohd Nasir Tamin",downloadPdfUrl:"/chapter/pdf-download/56115",previewPdfUrl:"/chapter/pdf-preview/56115",authors:[{id:"196884",title:"Prof.",name:"Mohd Nasir",surname:"Tamin",slug:"mohd-nasir-tamin",fullName:"Mohd Nasir Tamin"},{id:"197028",title:"Dr.",name:"King Jye",surname:"Wong",slug:"king-jye-wong",fullName:"King Jye Wong"},{id:"203971",title:"Dr.",name:"Mahzan",surname:"Johar",slug:"mahzan-johar",fullName:"Mahzan Johar"}],corrections:null},{id:"58170",title:"Failure Analysis of High Pressure High Temperature Super- Heater Outlet Header Tube in Heat Recovery Steam Generator",doi:"10.5772/intechopen.72116",slug:"failure-analysis-of-high-pressure-high-temperature-super-heater-outlet-header-tube-in-heat-recovery-",totalDownloads:1800,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Heat Recovery Seam Generator (HRSG) tube failure is one of the most frequent causes of power plant forced outage. In one of the local power plants, one of the boilers has experienced several defects and failures after running approximately 85,000 hours. 17 tube failures were found at the High Pressure High Temperature Superheater (HPHTSH) outlet header. The aim of this study is to find the root cause of the tube failures and to suggest the remedial action to prevent repetitive failure event. Several analysis methods were conducted to ascertain the potential cause(s) of failure. The results showed that the tubes failed due to long-term creep and thermal fatigue based on the cracking behaviour. Furthermore, the power plant has been operating as a peaking plant which concluded that the tubes have undergone the thermal stress due to frequent temperature change in the tubes. Flow correcting device (FCD) was also found damaged, causing flow imbalance in the tubes. Flow imbalance accelerated the creep degradation on the tubes. It was recommended that the FCD has to be repaired and improved to balance the flow. Furthermore, the extensive life assessment was recommended to be done on all the tubes to avoid future tube failures.",signatures:"Ainul Akmar Mokhtar and Muhammad Kamil Kamarul Bahrin",downloadPdfUrl:"/chapter/pdf-download/58170",previewPdfUrl:"/chapter/pdf-preview/58170",authors:[{id:"219461",title:"Associate Prof.",name:"Ainul Akmar",surname:"Mokhtar",slug:"ainul-akmar-mokhtar",fullName:"Ainul Akmar Mokhtar"},{id:"219472",title:"Mr.",name:"Muhammad Kamil",surname:"Kamarul Bahrin",slug:"muhammad-kamil-kamarul-bahrin",fullName:"Muhammad Kamil Kamarul Bahrin"}],corrections:null},{id:"55876",title:"Thick‐Film Resistor Failure Analysis Based on Low‐Frequency Noise Measurements",doi:"10.5772/intechopen.69442",slug:"thick-film-resistor-failure-analysis-based-on-low-frequency-noise-measurements",totalDownloads:1476,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The chapter aims to present research results in the field of thick‐film resistor failure analysis based on standard resistance and low‐frequency noise measurements. Noise spectroscopy–based analysis establishes correlation between noise parameters and parameters of noise sources in these heterogeneous nanostructures. Validity of the presented model is verified experimentally for resistors operating under extreme working conditions. For the experimental purposes, thick‐film resistors of different sheet resistances and geometries, realized using commercially available thick‐film resistor compositions, were subjected to high‐voltage pulse (HVP) stressing. The obtained experimental results are qualitatively analysed from microstructure, charge transport mechanism and low‐frequency noise aspects. Correlation between resistance and low‐frequency noise changes with resistor degradation and failure due to high‐voltage pulse stressing is observed.",signatures:"Ivanka Stanimirović",downloadPdfUrl:"/chapter/pdf-download/55876",previewPdfUrl:"/chapter/pdf-preview/55876",authors:[{id:"3420",title:"Dr.",name:"Ivanka",surname:"Stanimirović",slug:"ivanka-stanimirovic",fullName:"Ivanka Stanimirović"},{id:"3421",title:"Dr.",name:"Zdravko",surname:"Stanimirović",slug:"zdravko-stanimirovic",fullName:"Zdravko Stanimirović"}],corrections:null},{id:"57842",title:"Failure Concepts in Fiber Reinforced Plastics",doi:"10.5772/intechopen.71822",slug:"failure-concepts-in-fiber-reinforced-plastics",totalDownloads:1592,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The anisotropic nature of composite materials, specifically fiber reinforced plastics (FRPs), constitutes them a material category with adaptable mechanical properties, appropriate for the application they are being designed for. The stacking sequence choice of FRP laminates allows for the optimization of their strength, stiffness, and weight to the desired design requirements. The anisotropic nature of composites is also responsible for the different failure modes that they experience, which are based on the accumulation of damage, rather than crack initiation and propagation as the majority of homogeneous isotropic materials. This chapter discusses the background theory for determining the stress distribution in a laminated FRP, the possible failure modes occurring in composites, the failure criteria predicting the onset of failure, as well as cumulative damage models predicting the fatigue life of laminates.",signatures:"Roselita Fragoudakis",downloadPdfUrl:"/chapter/pdf-download/57842",previewPdfUrl:"/chapter/pdf-preview/57842",authors:[{id:"220155",title:"Dr.",name:"Roselita",surname:"Fragoudakis",slug:"roselita-fragoudakis",fullName:"Roselita Fragoudakis"}],corrections:null},{id:"58187",title:"Failure Rate Analysis",doi:"10.5772/intechopen.71849",slug:"failure-rate-analysis",totalDownloads:3295,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Failure prediction is one of the key challenges that have to be mastered for a new arena of fault tolerance techniques: the proactive handling of faults. As a definition, prediction is a statement about what will happen or might happen in the future. A failure is defined as “an event that occurs when the delivered service deviates from correct service.” The main point here is that a failure refers to misbehavior that can be observed by the user, which can either be a human or another computer system. Things may go wrong inside the system, but as long as it does not result in incorrect output (including the case that there is no output at all) there is no failure. Failure prediction is about assessing the risk of failure for some time in the future. In my approach, failures are predicted by analysis of error events that have occurred in the system. As, of course, not all events that have occurred ever since can be processed, only events of a time interval called embedding time are used. Failure probabilities are computed not only for one point of time in the future, but for a time interval called prediction interval.",signatures:"Fatemeh Afsharnia",downloadPdfUrl:"/chapter/pdf-download/58187",previewPdfUrl:"/chapter/pdf-preview/58187",authors:[{id:"219079",title:"Dr.",name:"Fatemeh",surname:"Afsharnia",slug:"fatemeh-afsharnia",fullName:"Fatemeh Afsharnia"}],corrections:null},{id:"55734",title:"General Perspectives on Seismic Retrofitting of Historical Masonry Structures",doi:"10.5772/intechopen.69439",slug:"general-perspectives-on-seismic-retrofitting-of-historical-masonry-structures",totalDownloads:1698,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter focuses on retrofitting of historical masonry structures from the point of seismic resistance based on failure analysis. In historical structures, restoration applications have become necessary because their life cycle of structural and nonstructural members is completed due to natural result of material structure, environmental conditions, and/or user errors. One of the most important intervention decisions in restoration stages carried out in historical buildings is known as retrofitted of the structure. The choice techniques of retrofitting of the structural members are becoming a very important issue in the scope of restoration of historical masonry structures belonging to the cultural heritage. Additionally, it should be decided to optimally preserve such buildings’ original forms and to make interventions to increase the building’s service life; in this regard, it is important to preserve the structures’ historical identity and constructional value. Therefore, retrofitting applications have become essential to prevent the damage level and to have adequate level of structural strength in order to resist dynamic effects such as earthquakes. In this chapter, it is aimed to determine the main principles by using conventional and modern techniques within the scope of laboratory tests and numerical approaches in recovering the historical structures.",signatures:"Baris Sayin, Baris Yildizlar, Cemil Akcay and Tarik Serhat Bozkurt",downloadPdfUrl:"/chapter/pdf-download/55734",previewPdfUrl:"/chapter/pdf-preview/55734",authors:[{id:"200271",title:"Dr.",name:"Baris",surname:"Sayin",slug:"baris-sayin",fullName:"Baris Sayin"},{id:"200273",title:"Dr.",name:"Cemil",surname:"Akcay",slug:"cemil-akcay",fullName:"Cemil Akcay"},{id:"200275",title:"Dr.",name:"Baris",surname:"Yildizlar",slug:"baris-yildizlar",fullName:"Baris Yildizlar"},{id:"200276",title:"MSc.",name:"Tarik Serhat",surname:"Bozkurt",slug:"tarik-serhat-bozkurt",fullName:"Tarik Serhat Bozkurt"}],corrections:null},{id:"58137",title:"Common Case Studies of Marine Structural Failures",doi:"10.5772/intechopen.72789",slug:"common-case-studies-of-marine-structural-failures",totalDownloads:2190,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Marine structures are designed with a requirement to have reasonably long and safe operational life with a risk of catastrophic failures reduced to the minimum. Still, in a constant wish for reduced weight structures that can withstand increased loads, failures occur due to one or several following causes: excessive force and/or temperature induced elastic deformation, yielding, fatigue, corrosion, creep, etc. Therefore, it is important to identify threats affecting the integrity of marine structures. In order to understand the causes of failures, structure’s load response, failure process, possible consequences and methods to cope with and prevent failures, probably the most suitable way would be reviewing case studies of common failures. Roughly, marine structural failures can be divided into structural failures of ships, propulsion system failures, offshore structural failure, and marine equipment failures. This book chapter will provide an overview of such failures taking into account failure mechanisms, tools used for failure analysis and critical review of possible improvements in failure analysis techniques.",signatures:"Goran Vukelić and Goran Vizentin",downloadPdfUrl:"/chapter/pdf-download/58137",previewPdfUrl:"/chapter/pdf-preview/58137",authors:[{id:"228423",title:"Associate Prof.",name:"Goran",surname:"Vukelić",slug:"goran-vukelic",fullName:"Goran Vukelić"},{id:"228426",title:"MSc.",name:"Goran",surname:"Vizentin",slug:"goran-vizentin",fullName:"Goran Vizentin"}],corrections:null},{id:"58172",title:"X-Ray Techniques",doi:"10.5772/intechopen.72447",slug:"x-ray-techniques",totalDownloads:2414,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"This chapter reviewed existing X-ray techniques that can be used for the analysis of materials, inclusive of those used as engineering and structural components. These techniques are X-ray fluorescence (XRF) spectrometry, proton-induced X-ray emission (PIXE) spectrometry, and X-ray diffraction (XRD). These analytical techniques provide qualitative and quantitative information on the composition and structure of materials with precision. XRD gives information on the crystalline forms and amorphous content of materials, which could be quite useful in failure analysis if the type of failure brings about morphological changes in the material under investigation. PIXE and XRF provide information on the types of elements present in a sample material and their concentrations. PIXE is however preferable to XRF due to its higher sensitivity to trace elements and lower atomic number elements as well as its faster analysis. XRF and XRD are more commonly used than PIXE which is a powerful, high-tech method that is relatively new in the field of chemical research. In this chapter, the theory and principles of these analytical techniques are explained, and diagrams showing the components of spectrometers and diffractometers are provided with descriptions of how they function.",signatures:"Clementina Dilim Igwebike-Ossi",downloadPdfUrl:"/chapter/pdf-download/58172",previewPdfUrl:"/chapter/pdf-preview/58172",authors:[{id:"219931",title:"Dr.",name:"Clementina",surname:"Igwebike-Ossi",slug:"clementina-igwebike-ossi",fullName:"Clementina Igwebike-Ossi"}],corrections:null},{id:"57433",title:"Damage Detection and Critical Failure Prevention of Composites",doi:"10.5772/intechopen.71245",slug:"damage-detection-and-critical-failure-prevention-of-composites",totalDownloads:1367,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"In this chapter, critical failure prevention mechanism for composite material systems is investigated. This chapter introduces both non-destructive failure detection methods and live structural tests and its applications. The investigation begins by presenting a brief review and analysis of current non-destructive failure detection methods. The work proceeds to investigate novel live structural tests, tomography and applications of the proposed techniques.",signatures:"Mark Bowkett and Kary Thanapalan",downloadPdfUrl:"/chapter/pdf-download/57433",previewPdfUrl:"/chapter/pdf-preview/57433",authors:[{id:"219186",title:"Dr.",name:"Kary",surname:"Thanapalan",slug:"kary-thanapalan",fullName:"Kary Thanapalan"},{id:"219188",title:"Mr.",name:"Mark",surname:"Bowkett",slug:"mark-bowkett",fullName:"Mark Bowkett"}],corrections:null},{id:"57210",title:"Fracture Variation of Welded Joints at Various Temperatures in Liquid-Phase-Pulse-Impact Diffusion Welding of Particle Reinforcement Aluminum Matrix Composites",doi:"10.5772/intechopen.71249",slug:"fracture-variation-of-welded-joints-at-various-temperatures-in-liquid-phase-pulse-impact-diffusion-w",totalDownloads:1241,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The fracture variation of liquid-phase-pulse-impact diffusion welding (LPPIDW) welded joints of aluminum matrix composites (ACMs: SiCp/A356, SiCp/6061Al, and Al2O3p/6061Al) was investigated. Results show that under the effect of pulse-impact (i) initial pernicious contact state of reinforcement particles changes from reinforcement (SiC, Al2O3)/reinforcement (SiC, Al2O3) to reinforcement (SiC, Al2O3)/matrix/reinforcement (SiC, Al2O3) and (ii) the fracture of welded joints with optimal processing parameters is the dimple fracture. Meanwhile, scanning electron microscope (SEM) of the fracture surface shows some reinforcement particles (SiC, Al2O3) in the dimples. Moreover, the slight reaction occurs at the interfaces of SiCp/6061Al, which is propitious to improve the property of welded joints because of the release of internal stress caused by the hetero-matches between the reinforcements and matrix. Consequently, aluminum matrix composites (SiCp/A356, SiCp/6061Al, and Al2O3p/6061Al) were welded successfully.",signatures:"Kelvii Wei Guo",downloadPdfUrl:"/chapter/pdf-download/57210",previewPdfUrl:"/chapter/pdf-preview/57210",authors:[{id:"174473",title:"Dr.",name:"Kelvii Wei",surname:"Guo",slug:"kelvii-wei-guo",fullName:"Kelvii Wei Guo"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"7231",title:"Advanced Engineering Testing",subtitle:null,isOpenForSubmission:!1,hash:"9283b3b88964a6fe002fa37431414ac7",slug:"advanced-engineering-testing",bookSignature:"Aidy Ali",coverURL:"https://cdn.intechopen.com/books/images_new/7231.jpg",editedByType:"Edited by",editors:[{id:"13626",title:"Prof.",name:"Aidy",surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6024",title:"System Reliability",subtitle:null,isOpenForSubmission:!1,hash:"5cf0113f60979705f5b0b0ea0bac3028",slug:"system-reliability",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/6024.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5317",title:"Concise Reliability for Engineers",subtitle:null,isOpenForSubmission:!1,hash:"8dd29c0cfec89eb0c272c374e903b3da",slug:"concise-reliability-for-engineers",bookSignature:"Jaroslav Mencik",coverURL:"https://cdn.intechopen.com/books/images_new/5317.jpg",editedByType:"Authored by",editors:[{id:"142710",title:"Prof.",name:"Jaroslav",surname:"Menčík",slug:"jaroslav-mencik",fullName:"Jaroslav Menčík"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"6197",title:"System of System Failures",subtitle:null,isOpenForSubmission:!1,hash:"4ff73e8bf2376a39046fe3b26e18da0e",slug:"system-of-system-failures",bookSignature:"Takafumi Nakamura",coverURL:"https://cdn.intechopen.com/books/images_new/6197.jpg",editedByType:"Edited by",editors:[{id:"206988",title:"Dr.",name:"Takafumi",surname:"Nakamura",slug:"takafumi-nakamura",fullName:"Takafumi Nakamura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10384",title:"Practical Applications in Reliability Engineering",subtitle:null,isOpenForSubmission:!1,hash:"377d3c041a06cfcfc99bd906fdbbbf46",slug:"practical-applications-in-reliability-engineering",bookSignature:"Muhammad Zubair",coverURL:"https://cdn.intechopen.com/books/images_new/10384.jpg",editedByType:"Edited by",editors:[{id:"320007",title:"Associate Prof.",name:"Muhammad",surname:"Zubair",slug:"muhammad-zubair",fullName:"Muhammad Zubair"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7687",title:"Reliability and Maintenance",subtitle:"An Overview of Cases",isOpenForSubmission:!1,hash:"14790fdcb395faea44e1351e45cb20a5",slug:"reliability-and-maintenance-an-overview-of-cases",bookSignature:"Leo Kounis",coverURL:"https://cdn.intechopen.com/books/images_new/7687.jpg",editedByType:"Edited by",editors:[{id:"111582",title:"Dr.",name:"Leo",surname:"Kounis",slug:"leo-kounis",fullName:"Leo Kounis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9373",title:"Engineering Failure Analysis",subtitle:null,isOpenForSubmission:!1,hash:"c9ba52779a6412cacf546d387eb932f3",slug:"engineering-failure-analysis",bookSignature:"Kary Thanapalan",coverURL:"https://cdn.intechopen.com/books/images_new/9373.jpg",editedByType:"Edited by",editors:[{id:"219186",title:"Dr.",name:"Kary",surname:"Thanapalan",slug:"kary-thanapalan",fullName:"Kary Thanapalan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10104",leadTitle:null,title:"Architectural Design – Progress Towards Sustainable Construction",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tCurrently, the construction sector contributes to high environmental degradation due to the impact of buildings during their construction and use. On the one hand, constructions generate an environmental impact through the necessary resources and the greenhouse gas emissions generated during the construction process. On the other hand, buildings could produce high energy consumption during the use phase. For this reason, it is necessary to have efficient designs to mitigate the environmental impact of buildings during their different phases, with the goal of achieving a low-carbon building stock by 2050. The main objective of this book is to provide a vision about the most appropriate architectural design strategies that guarantee the adequate environmental performance of buildings, both during its design and construction phase and during its use phase.
\r\n\r\n\tThis book will, therefore, be focused on relevant issues related to the production of construction materials, life cycle assessment, sustainable constructions, efficient designs, nearly zero energy buildings, and the socio-cultural integration aspects of new architectural designs in urban settings.
\r\n\t
At present, at European level, distribution networks have a high degree of automation of distribution, using industrial standards, so transition from the current situation to the active distribution networks is technically feasible. The concepts of active distribution networks (ADN) defined both in the industrial and academic environments take different forms by focusing attention on several particular issues of concern: active consumers, distributed generation, active participation in the electricity market, etc. Each of these development directions is designed to respond to a part of issues regarding the ADN, similar to the pieces of a puzzle game. It is obvious that the ultimate success of any initiative, which refers at the transition to the ADN, is determined by the presence of the smart entity that consistently places the pieces of the game in a consistent and consistent manner [1]. It is important to address the general architecture of a control system to implement and integrate new solutions in the ADN (Figure 1
The general architecture of a control system in active distribution networks [
To facilitate the transmission of information between new smart systems and actual distribution management systems, an integrative middleware system should be devised. The flexibility of the ADN and smart monitoring and control components is still a very important issue to be addressed. By using open standards, the ADN is designed to be expanded with virtually any future functionality [1]. Data provided by the smart meters allows detailed analyses on the operation of networks, giving a strategic advantage to distribution system operators (DSOs) in identifying the network zones or distributions which have a performance below acceptable quality, maximizing the impact of profitable investments (such as maintenance works, investments in new equipment and innovative technologies, replacing sub-or over-sized distribution transformers from the MV/LV electric substations). Also, it should be noted that these smart meters can allowed the protection of electric installations from the consumers at overvoltages, reducing the problems in case of possible incidents in the electricity grid. A meter that actively communicates with a central system can provide the important information about the position, type and magnitude of possible incidents from the network, reducing the time for intervention staff and discomfort for customers as some interventions can be made remotely [2]. The smart meters are integrated into a computerized application (smart metering system) so they can be managed centrally and remotely (Figure 2). In the ADN the benefits are win-win between the actors (DSO, consumers and energy producers from the renewable sources integrated into the network).
The communication between the smart metering and management systems.
The issues such as the real-time update of consumer data on smart grids, or the integration of energy storage solutions (a critical issue in the case of discontinuous renewable energy) could be addressed by DSOs. It is estimated that ADN, summing up and extrapolating the individualized flexibility of smart meters, will be more versatile in monitoring power flows and adapting dynamically to energy consumption, helping the load balancing on the phases. The bidirectional communication is possible between central system from the DSO and smart meters. Also, the growing ability to integrate “green” generating unit into the network could be complemented with meteorological forecasting functions, and estimations regarding the variation in photovoltaic and wind energies could be correlated, at central level, with the daily forecasting of consumption or distributed energy (correlating with market trends through day-ahead market indicators) [3].
The current shift from fossil/nuclear to large-scale renewable energy sources (RES) brings new challenges in grid operation. The unpredictability of wind farm generation must be alleviated by DSOs with a higher flexibility of traditional generation sources and improved congestion management algorithms [4]. Also, with the increasing penetration of small distributed energy generation sources in the residential sector, the traditional consumers become prosumers, entities who generate electricity locally for their own use, and want to sell the excess power on the market [5]. For enabling the access of prosumers in the market, regulators, DSOs need to work together to create the technical infrastructure, trading regulations and management procedures for Distributed Generation (DG) sources and Demand Side Management (DSM) [6]. Inside the DSM paradigm, Demand Response (DR) is a tool that can be used by DSOs for improving system security and supply quality when operating at peak load or under restrictions imposed by the presence of RES. DR focuses on load reduction for short time intervals (e.g., hours) at consumer sites, by voluntary or automated disconnection of significant loads. To engage in DR programs, consumers or prosumers need to be equipped with Smart Metering infrastructures and Energy Management Systems (EMS), capable of automatically managing the demand and generation at household or microgrid level.
DR initiatives are currently applied for industrial consumers, which can reschedule their technological processes by shifting the operation of high-demand loads away from peak load hours. In the residential sector, DR implementation is in an incipient stage, due to consumer unawareness or lack of interest, high cost of infrastructure at the consumer side or lack of regulations or market framework [7]. One key factor for enabling the development of residential DR is the emergence of aggregators, local DSOs or independent players, which can cumulate the load reduction from several small consumers or prosumers and manage entire LV/MV network areas for DR as single entities [8]. For this purpose, aggregators can use optimization algorithms which distribute the load disconnected because of DR in a way that the technical parameters of the distribution network, such as active power losses, phase loading or bus voltage level, are kept in acceptable intervals or improved.
Voltage level control is an essential process in secure and efficient active distribution network (ADN) operation [9]. The ADN were built one century ago and they have been renewed for decades to respond to changes of end-user needs. The electricity is produced in classical grids by the central power plants, transmitted and delivered through ADN to the end-user in a one-way direction [10]. LV ADN s supply a large number of one-phase consumers, connected in a three-phase grid. Because the number of consumers and their load behavior presents a continuously dynamic, the load pattern of the three phases of the grid is different. One of the cheapest measures that a DSO can take is to optimize the steady state through voltage control and power losses and voltage drop minimization. Thereby, the real operation state of an ADN is unbalanced, and in this type of grid, the voltage control represents a relevant index, especially for LV grids, which are frequently built using OHLs mounted on poles, with supply paths extending more than 1–2 km in length. The remainder of this chapter is organized as follows. Section 2 treats the phase load balancing problem in ADN. Section 3 presents a new approach for Demand Response in ADN, and Section 4 proposes a simple method for voltage control in the real AND. For all proposed approaches, their implementation and the obtained results are discussed.
In the active distribution networks to operate in balancing symmetric regime, the currents on the three phases should have equal values. But, due to the unequal distribution of the consumers amongst the three phases along with variations in their individual demand appear the unequal loading of phases the so-called “current unbalance” [9]. In this context, the DSOs should take the measures by installing, besides the smart meter, a device that allows switching from phase to phase in order to balance the phases. This measure should lead at the minimization of active power losses, which represents the cheapest resource of DSOs in order to improve the energy efficiency of distribution networks [10]. In [11] is presented a constructive variant for a digital microprocessor-based device. The principle is easy, namely, for this device, a trigger module based on the minimum and maximum voltage thresholds is set so that the load to switch from the service phase to other if these thresholds are violated. The principle structure is presented in Figure 3.
The structure of digital balancing system.
The device is connected to the four-wire three-phase network (see Figure 3) through inputs 1–4 at the phases
The structure of smart phase microprocessor-based device.
Another structure of a smart device to connect a consumer at the distribution network is presented in [13], see Figure 5. According to the proposed structure, the smart meter is provided with a phase selector by means of which the outputs can be switched from one phase to another. In this way, when there are many 1-phase consumers connected to the distribution network, the DSO can remotely control the phase selectors in order to allocate the load over the different phases such that the unbalance degree to be minimum. In this way, a more even spreading of the load on the three phases of the distribution network can be achieved, see Table 1 where is presented the logic of phase selection. 3-phases the output is connected to O1 and O2, respectively in the case 4-phases the output is connected to O2 and O2 The device send at the central system information about the power consumption and state (ON/OFF), which can send back the parameters for establishing the phase switching operations, after the scheme presented in Figure 5. Depending on the type of devices and the choice communication support, the DSOs can obtain a reliable structure, which can make the transition toward the active distribution networks.
The smart structure with the phase selector, [
Relays | R1 | R2 | Outputs | 230 V output | ||||
---|---|---|---|---|---|---|---|---|
Position | d | u | d | u | O1 | O2 | 3-phase | 4-phase |
1 | X | X | a | b | a-b | b-N | ||
2 | X | X | a | c | a-c | c-N | ||
3 | X | X | b | c | b-c | c-N | ||
4 | X | X | b | a | b-a | a-N |
The logic of phase selection.
In this paragraph, an algorithm to solve the phase load balancing (PLB) problem using a heuristic approach is proposed. This is applied to find the optimal connection phase of the 1-phase consumers such that the unbalance degree at the level of each pole to be minimum. The algorithm is based on knowing the topology of active distribution network when it will be implemented. The input data are referred at the number of poles (connection points), connected phase of each consumer, the pole when is connected the consumer, the type of consumer (1-phase or 3-phases) and load profiles provided by the smart meters. If the smart meter cannot communicate with the central unit then the algorithm will typical profiles associated to consumers without smart meters, based on the energy consumption categories and day type (weekend and working), knowing the daily energy indexes. The objective is finding the optimal phase connection for all consumers using the expression of current unbalance factor (CUF). Ideally, the value of this factor should be 1.00. But these values are very difficult to be obtained from the technical reasons and by the dynamic of loads. Thus, in most cases the obtained values will close to 1.00. The CUF factor could be evaluated using the following equation [9, 10], and the value should be under 1.10 p.u:
where:
The proposed algorithm has as start point the final poles and tries to balance the load on each phase at all poles until at the LV bus of the supply electric substation. The dynamics of unbalance process is represented by the switching from a phase on one from the other two phases (for example, from phase
Starting from the last pole
The minimization of the deviation between phase currents, at the level of each connection pole
The problem is solved with the combinatorial optimization. Generally, a combinatorial problem is solved by total or partial enumeration of the set of its solutions (noted with
Phases | Initial allocation | Final allocation |
---|---|---|
3-phases | [ | [ |
1-phase | [ | [○ ǀ |
[ | [○ ǀ | |
[ | [○ ǀ |
Phase switching combinations for CUF minimization.
Otherwise,
The flow-chart of proposed algorithm.
To be implemented in the active distribution networks, a system with the structure presented in Figure 4 should be used. The system contains the smart equipment installed at the consumers consisting two components and the data concentrator with an attached software infrastructure which integrate the proposed algorithm. The communication between smart equipment and data concentrator could be ensured by Power Line Carriers (PLC). From the consumers the transferred data refer at the absorbed load (current or active/reactive powers) and the connection phase. The data concentrator will transmit to each consumer the new connection phase.
The proposed method has been tested on a real distribution network from a rural area, see Figure 7. The main characteristics of network (poles, total length, cable type, cable section, sections length, number, type (single/three phase) and connection are indicated in Table 3. The connection phase of each consumer reflects the situation real identified through visual inspection. The load profiles for each consumer integrated into the Smart Metering system were imported for the analysis period (27December 2017–2 January 2018). The loadings on each phase at the pole level, starting with the last pole and reaching at LV side of the electric substation, were calculated. The power flows on the three phases over the 24 h time interval on the first section are shown in Figure 8. It can be observed a high current unbalance degree. This degree was evaluated using the CUF factor calculated with Eq. (1).
The topology of test LV active distribution network.
Number of poles | Total length [m] | Data about consumers | Data about conductors | |||||
---|---|---|---|---|---|---|---|---|
R | S | T | Three-phases | Type | Section [mm2] | Length [m] | ||
67 | 2560 | 33 | 28 | 17 | 6 | Classical | 3×35 + 35 | 720 |
84 | 3×50 + 50 | 1840 |
The main characteristic for the analyzed feeder.
The phase loading—section 0-1 [A] (initial situation—unbalanced case).
The average value of CUF in the unbalancing case is 1.12, above the maximum admissible value (1.10). Using the proposed method, the obtained currents had the very close values were obtained on the three phases, as can be seen in Figure 9, and the CUF factor was reduced to the value by 1.007. The variation of the CUF factor in the analyzed period for both situations is presented in Figure 10. Because the phase current unbalancing leads to voltage unbalancing, Figures 11 and 12 show the phase voltage variation at the pole level in the study period. These values were obtained from the steady state calculation for each hour, in both situations (unbalanced and balanced) (Figure 13).
The phase loading—section 0-1 [A] (final situation—unbalanced case).
Variation of CUF factor, pole no. 1.
Voltage variation in the nodes [V] (initial situation—unbalanced case).
Voltage variation in the nodes [V] (final situation—balanced case).
Total energy losses [kWh] (unbalanced case vs. unbalanced case).
It can be observed that in the unbalanced case the minimum value of voltage is recorded at the pole no. 41, identified by the red color in the scheme, on the phase b (
Day | Unbalanced case | Balanced case | δΔWT [kWh] |
---|---|---|---|
ΔWT [kWh] | ΔWT [kWh] | ||
MI | 10.10 | 7.18 | 2.92 |
JO | 12.93 | 9.71 | 3.22 |
VI | 11.29 | 8.49 | 2.8 |
SA | 15.27 | 11.19 | 4.08 |
DU | 16.57 | 11.88 | 4.69 |
LU | 14.56 | 10.32 | 4.24 |
MA | 11.99 | 9.59 | 2.4 |
Energy losses during the analyzed period.
While all Demand response programs encourage consumer demand flexibility by shifting or reducing load in critical time intervals, for lowering market prices and improving operation conditions in electricity transmission and distribution networks, there are several ways to achieve this goal. The literature distinguishes two main types of DR: controllable (incentive-based) and price-based [14].
The former are most restrictive DR approaches and they frequently involve direct or indirect load control, according to the curtailment level required by the coordinating entity of the program (usually, the DSO or an aggregator). Direct Load Control (DLC) is remotely enforced by the coordinating entity, a task that requires bidirectional real-time communication with the consumer site. On the other hand, price-based DR relies on consumer response to electricity price variations.
The involvement of residential consumers in DR programs is currently in its incipient stage. Several problems contribute to this situation. The first are the demand level of individual consumers and the need for aggregators. Residential consumers have much lower demand, compared to other consumer categories, such as industry. In rural underdeveloped areas, most consumers achieve less than 1 kW power draw. Because electricity markets require minimum demand reduction biddings of 100 kW and more [8], the participation of residential consumers to DR programs is feasible only to households with higher demand, managed by aggregators who can achieve the minimum DR levels required by the market.
Another key factor is the user comfort. As a general rule, residential consumers are not willing to sacrifice to a great extent their personal comfort in order to better contribute to DR. As such, a household will try to set and accomplish a DR target with minimum effort, while maintaining its comfort requirements (i.e., room air temperature). The process of dynamically optimizing appliance schedule while accounting for pre-set comfort levels, market price variation and DR signals, requires automated algorithms, known as Smart Home Energy Management Systems (SHEMS) [15]. While the effect of the rebound load on operating frequency is negligible [16], it can be higher regarding network losses and quality of supply.
As described in [17], artificial intelligence algorithms are widely used for managing DR at LV network level. This paragraph describes a DR Management Algorithm for aggregators based on the Particle Swarm Optimization (DRMA), which investigates the effect of rebound load in a LV distribution network, taking into account consumer demand levels, comfort and privacy preferences. The algorithm requires as input the following information:
network data (topology, length of feeder sections, wire type, consumer phase and pole connection) and load data, given as consumer active and reactive power load profiles with a known (e.g., hourly) sampling:
the
the DR signal magnitude for the entire network,
the maximum percent reduction from each consumer load
the load rebound rate
Based on the consumer load and rebound data, the DRMA determines which consumers are eligible for DR load curtailment, according to their hourly demand. Only consumers exceeding a given load threshold (
Solution encoding for the PSO algorithm.
The fitness function based on which the solutions are evaluated has two factors: minimum active power losses in the LV network, and minimum difference between the expected and obtained load reduction by DR, computed for the hour
By this approach, it is expected that the algorithm will search for solutions where
The bus active power loads are converted into bus current injections, using the nominal voltage of the network and the power factor:
The branch current flows on each feeder section (branch)
The power losses in kW on each section
The
In Eqs. (6)–(11),
On the other hand, he difference between the expected and obtained load reduction by
In Eqs. (7)–(13), the hourly index
The block diagram of the DRMA.
The DRMA was tested on a real Romanian distribution network from a rural area, namely network T2, from Figure 16. The main characteristics of the network (number of poles or buses; cable type and cross-section; feeder section lengths; number; type (single phase/three phase) and connection phase of consumers) are indicated in Table 5. The load profiles for all the consumers are provided by a Smart Metering system. The hourly load profile of the entire network, on each of the three phases, is given in Figure 17.
The topology of the test network T2.
Number of poles | Total length [m] | Connection phase | Wire data | |||||
---|---|---|---|---|---|---|---|---|
a | b | c | abc | Type | Section [mm2] | Length [m] | ||
86 | 3440 | 20 | 21 | 19 | 0 | OHL Ol-Al | 3 × 50 + 35 | 3440 |
60 |
Input data for test network T2.
Phase load in the network, on the three phases.
Analyzing the load profile of the network from Figure 17, the
Ref—the reference case, where no
DR00—
DR50—
h | Pa [kW] | Pb [kW] | Pc [kW] | ΔPabc [kW] | ΔPa kW] | ΔPb [kW] | ΔPc [kW] | ΔPabc [%] | ΔPa [%] | ΔPb [%] | ΔPc [%] |
---|---|---|---|---|---|---|---|---|---|---|---|
18 | 11.596 | 28.215 | 13.028 | 0.820 | 1.869 | 0.797 | 6.60 | 6.21 | 5.76 | ||
19 | 10.981 | 29.093 | 14.132 | 0.810 | 2.366 | 0.902 | 6.87 | 7.52 | 6.00 | ||
20 | 10.087 | 26.366 | 10.229 | 0.761 | 2.735 | 0.533 | 7.01 | 9.40 | 4.96 | ||
21 | 10.285 | 30.877 | 8.494 | 1.043 | 5.695 | 0.474 | 9.21 | 15.57 | 5.28 | ||
22 | 9.050 | 19.016 | 6.806 | 0.789 | 1.704 | 0.216 | 8.02 | 8.22 | 3.08 |
Results for the reference case without DR (scenario ref).
h | Pa [kW] | Pb [kW] | Pc [kW] | ΔPabc kW] | ΔPa [kW] | ΔPb [kW] | ΔPc [kW] | ΔPabc [%] | ΔPa [%] | ΔPb [%] | ΔPc [%] |
---|---|---|---|---|---|---|---|---|---|---|---|
18 | 9.256 | 24.791 | 10.860 | 0.446 | 1.313 | 0.490 | 4.59 | 5.03 | 4.32 | ||
19 | 9.529 | 23.739 | 12.821 | 0.528 | 1.211 | 0.636 | 5.25 | 4.85 | 4.73 | ||
20 | 9.339 | 20.598 | 9.750 | 0.496 | 1.167 | 0.403 | 5.04 | 5.36 | 3.97 | ||
21 | 9.639 | 24.074 | 8.494 | 0.697 | 2.287 | 0.371 | 6.74 | 8.68 | 4.18 | ||
22 | 7.451 | 15.382 | 6.806 | 0.412 | 0.838 | 0.191 | 5.24 | 5.17 | 2.73 |
Results for the case DR with no rebound (scenario DR00).
h | Pa [kW] | Pb [kW] | Pc [kW] | ΔPabc [kW] | ΔPa [kW] | ΔPb [kW] | ΔPc [kW] | ΔPabc [%] | ΔPa [%] | ΔPb [%] | ΔPc [%] |
---|---|---|---|---|---|---|---|---|---|---|---|
18 | 9.499 | 24.791 | 10.620 | 0.467 | 1.309 | 0.457 | 4.69 | 5.02 | 4.12 | ||
19 | 10.326 | 24.781 | 13.436 | 0.601 | 1.372 | 0.726 | 5.50 | 5.24 | 5.13 | ||
20 | 9.585 | 21.456 | 10.430 | 0.588 | 1.296 | 0.490 | 5.78 | 5.70 | 4.48 | ||
21 | 10.241 | 25.070 | 8.425 | 0.853 | 2.607 | 0.370 | 7.69 | 9.42 | 4.21 | ||
22 | 8.255 | 16.265 | 6.835 | 0.543 | 1.029 | 0.202 | 6.17 | 5.95 | 2.87 |
Results for the case DR with 20–50% rebound (scenario DR50).
The minimum hourly load for DR-eligible consumers was set at 0.8 kW. This setting resulted in 13–23 consumers affected by the
The results show that the active power losses decrease in the
Phase active power losses in scenario Ref (left), DR00 (right).
The voltage control strategies are sometimes a key performance indicator in ADN. In the literature, this problem is solved using pseudo-measurements. Due to the intermittent and unpredictable behavior of consumptions and distributed energy sources, the generation excess could lead to a reversed power flow, from the consumers to the supply external point [18, 19]. This drawback requires a real-time effective voltage control strategy [20], particularly under islanded operation modes, to obtain the best solutions, with reliable effects on the minimization of energy losses, and energy efficiency improvement [21, 22]. Our proposed approach uses Smart Metering information (active and reactive daily load curves).
The objective of the optimization procedure is to assess the influence of renewable sources (i.e., wind turbines) into an ADN in order to improve the voltage at the end-users and to minimize the active power losses, considering the technical constraints. The proposed approach was formulated as:
where:
[
[Ψ]—the transformers tap changing matrix;
The equality constraints coincide with the bus power balance in the ADN. For a given bus
where the active and reactive power are a sum of the three phases of the ADN:
The mathematical model has the following inequality constraints:
Voltage allowable limits:
Thermal limits of the branch loadings:
The allowable reactive power of DG sources must be constrained as:
The constraints for the transformer tap changer must be in accordance with the proposed strategy, and are the following:
where
The voltage control approach proposed above was tested on a real ADN with 163 residential consumers, presented in Figure 19. It must be highlighted that the tested ADN already includes two connected small-scale renewable sources.
Single-line diagram of the LV distribution network.
In order to demonstrate the capabilities of the proposed voltage control strategy, three scenarios for simulation using MATLAB environment were considered:
First, the base case (Case I) without small-scale sources and AVR control (with the initial tap position).
The second case (Case II) considers the two real wind generators (2 × 5 kW) connected into the AND.
The last case (Case III) uses the voltage control strategy (14)–(20).
Case II is proposed for assessing the influence of the DG sources on the voltage and power losses magnitude in a real ADN. In addition, Case III follows the improvement of voltage magnitude based on a coordination between the generation of the distributed sources and the automation distribution devices.
The results regarding the voltage magnitude in the three considered cases, are given in Table 9, only for representative connected points of DGs: pole no. 88 and the last ADN bus, pole no. 110. The daily energy losses are presented in Table 10, where Wload is the total energy required by the consumers.
Hour/cases | Pole no. 88 | Pole no. 110 | ||||
---|---|---|---|---|---|---|
I | II | III | I | II | III | |
1 | 0.3684 | 0.3924 | 0.3925 | 0.3673 | 0.3913 | 0.3915 |
2 | 0.3701 | 0.3928 | 0.3929 | 0.3691 | 0.3919 | 0.3919 |
3 | 0.3721 | 0.3933 | 0.3933 | 0.3712 | 0.3924 | 0.3925 |
4 | 0.3718 | 0.3932 | 0.3932 | 0.3708 | 0.3923 | 0.3923 |
5 | 0.3719 | 0.3933 | 0.3933 | 0.3710 | 0.3924 | 0.3924 |
6 | 0.3764 | 0.3947 | 0.3947 | 0.3755 | 0.3939 | 0.3939 |
7 | 0.3715 | 0.3936 | 0.3935 | 0.3705 | 0.3926 | 0.3925 |
8 | 0.3681 | 0.3927 | 0.3927 | 0.3670 | 0.3916 | 0.3916 |
9 | 0.3653 | 0.3918 | 0.3920 | 0.3641 | 0.3907 | 0.3909 |
10 | 0.3640 | 0.3913 | 0.3916 | 0.3628 | 0.3901 | 0.3905 |
11 | 0.3584 | 0.3896 | 0.3897 | 0.3571 | 0.3883 | 0.3884 |
12 | 0.3617 | 0.3902 | 0.3907 | 0.3605 | 0.3890 | 0.3896 |
13 | 0.3591 | 0.3894 | 0.3902 | 0.3579 | 0.3882 | 0.3891 |
14 | 0.3600 | 0.3900 | 0.3907 | 0.3587 | 0.3887 | 0.3895 |
15 | 0.3593 | 0.3897 | 0.3905 | 0.3580 | 0.3884 | 0.3893 |
16 | 0.3646 | 0.3914 | 0.3917 | 0.3634 | 0.3902 | 0.3906 |
17 | 0.3591 | 0.3897 | 0.3905 | 0.3578 | 0.3884 | 0.3892 |
18 | 0.3534 | 0.3883 | 0.3885 | 0.3519 | 0.3868 | 0.3869 |
19 | 0.3583 | 0.3900 | 0.3901 | 0.3568 | 0.3886 | 0.3887 |
20 | 0.3628 | 0.3914 | 0.3917 | 0.3615 | 0.3901 | 0.3904 |
21 | 0.3561 | 0.3906 | 0.3898 | 0.3545 | 0.3892 | 0.3882 |
22 | 0.3482 | 0.3895 | 0.3880 | 0.3462 | 0.3879 | 0.3861 |
23 | 0.3493 | 0.3880 | 0.3882 | 0.3474 | 0.3861 | 0.3863 |
24 | 0.3642 | 0.3917 | 0.3920 | 0.3629 | 0.3905 | 0.3908 |
Voltage magnitude for the two representative busses [kV].
Case | Wload [kWh] | ΔWloss [kWh] | ΔWloss [%] | Energy savings [kWh] |
---|---|---|---|---|
Case I (base) | 442.47 | 78.95 | 15.14 | 521.42 |
Case II (DG connected) | 442.47 | 62.36 | 12.35 | 504.83 |
Case III (DG + AVR) | 442.47 | 61.13 | 12.13 | 503.60 |
Comparison between the simulation cases.
It can be observed in Table 10 a reduction of energy losses, with over 3%, from 15.14 to 12.13% with energy savings of about 17.82 kWh for the entire ADN.
The active distribution networks will be developed based on the improved actual infrastructure with the main advantage regarding the bidirectional communication between supplier and consumers. This makes possible a supervising and control at an advanced level of the smart systems which will be integrated inside their.
The chapter aimed to highlight the advantages of introducing the smart systems in the active distribution networks that lead to an optimal operation regarding the phase load balancing, voltage control and demand response with benefits for both DSO and consumers. The offered solutions are based on the information provided by the smart meters, these being an important link between the consumers, dispatch centers of DSOs, renewable sources, and the smart systems integrated in the networks. The case studies based on the pilot active distribution networks belonging to a DSO from Romania, emphasized the importance of integrating the smart devices so that the control to make easy and the transition to self-control networks to be smooth. The obtained results allow us to expect that in a short time the expression “active” will be used for all distribution networks.
Nanocomposites are known as materials mixing two or more different materials, where at least one of these having a nanodimensional phase, for example, conjugate polymers embedded with metallic, semiconducting, and dielectric nanoparticles. In comparison with devices made from standard materials, the nanocomposites based devices usually possess enhanced efficiency and service life [1, 2, 3, 4]. This is because inorganic nanoparticles embedded in conducting polymers can improve the mechanical, electrical, and optical properties such as nonlinear optical behavior, photoluminescence, electroluminescence, and photoconductivity [5, 6, 7]. Nanostructured composites or nanohybrid layers containing numerous heterojunctions can be utilized for optoelectronics, organic light emitting diodes (OLEDs), organic solar flexible cells (OSC) [8, 9], etc. Among conducting polymers, polyethylenedioxythiophene:poly(4-styrenesulfonate) (abbreviated to PEDOT:PSS) as a p-type organic semiconductor is well used for the hole transport layer in OLED [10] and OSC [4] as well as for the matrix materials in various sensors [11]. Various nanocomposite films consisting of conducting polymers mixed with carbon nanotubes (CNT) as an active material have been prepared for application in gas thin-film sensors. Recently, Olenych et al. [12] used hybrid composites based on PEDOT:PSS-porous silicon-CNT for preparation and characterization of humidity sensors. The value of the resistance of the hybrid films was as large as 10 MΩ that may have caused a reduced accuracy in monitoring the resistance change versus humidity.
\nIt is known that graphene possesses many excellent electrical properties, since it is an allotrope of carbon with a structure of a single two-dimensional (2D) layer of sp2 hybridized carbon atoms. Graphene quantum dots (GQDs), as seen in [13, 14], are a kind of 0D material made from small pieces of graphene. GQDs exhibit new phenomena due to quantum confinement and edge effects, which are similar to semiconducting QDs [15]. Graphene and related materials like graphene oxide (GO) or reduced graphene oxide (rGO) as materials used for chemical sensing have significant application potential. This is due to the two-dimensional structure that results in a high sensing area per unit volume and a low noise compared to other solid-state sensors. There were many works reporting on the use of graphene or graphene-related materials for monitoring gases and vapors [16, 17]. Especially, some of the works attempted to connect the advantages of nanoscale metals with that of graphene for the improvement of gas sensor applications [18, 19]. GQDs were mainly used in a single-electron transistor (SET). Besides detecting charge in SETs, GQDs have also been recruited to build electronic sensors for the detection of humidity and pressure [20].
\nAmmonia is a compound of nitrogen and hydrogen with the formula NH3; it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizer. With the development of the chemical industry, more and more generation of ammonia gas is brought into the environment. It is known that ammonia gas is a toxic compound; consequently, it is harmful to human health when a large enough concentration of this compound is attained [21]. Thus, production of devices (or sensors) to detect ammonia gas with a large sensitivity and selective property is very important. Many scientific groups have researched and developed gas ammonia sensors for applications. Sensors based on nanostructured inorganic structures like SnO2, WO3, TiO2, etc., have large sensitivity and response time, but the technology for producing both the materials and devices for gas sensors usually requests vacuum and high temperature that results in considerably large expenses [22]. With the aim to reduce these costs, many scientific groups have developed gas sensors based on conducting polymers [23, 24, 25]. The advantage of the polymer-based sensors consists of easy fabrication, low power consumption, room temperature operation, etc. [26]. Among the conducting polymers, polyethylenedioxythiophene + poly(4-styrenesulfonate) (PEDOT:PSS) is the most utilized in organic light-emitting diode (OLED) and in organic solar cells (OSCs). PEDOT:PSS is also used for producing gas like CO [27], NH3 [17], and vapors of organic solvents or water [18, 19]. We recently reported that PEDOT:PSS-based sensors can detect both ammonia gas [28] and humidity [29]. We have in particular observed that PEDOT:PSS + rGO + AgNWs-based sensors are sensitive to relative humidity (RH%) at a value as low as 30% [29]. This ability for detecting humidity is however a disadvantage when monitoring ammonia or other gases in a humid environment is considered. For practical applications, we need a sensor that is not only sensitive to the gas to be measured, but also selectively detecting toward the gas. During our study of OSCs using poly(3-hexylthiophene) (P3HT) as a photoactive layer [4], we recognized that P3HT films synthetized in air with a humidity larger than RH%60 exhibited a quality as good as when it was synthetized in a dried nitrogen glove-box. This would show that the P3HT structure was not affected by the absorption of water vapor. This observation prompted us to investigate the preparation and characterization of potential P3HT-based sensors for selectively detecting ammonia gas, even in a humid environment.
\nIn this work, we report results of our investigation on the fabrication of graphene-quantum dots and nanocomposites of PEDOT:PSS + GQDs+CNT and P3HT + rGO + CNT. The humidity- and NH3-sensing properties, respectively, of the first and the second composite films are also presented. Comparison of gas-sensing properties between P3HT- and PEDOT:PSS-based composite films is also made.
\nFirstly, GQDs were prepared; for this, a solution of graphite flake (GF), KMnO4, and HNO3 with a weight ratio of 0.2 g:0.2 g:0.4 ml was prepared and put in a Pt crucible. This solution was then put in a microwave heaven for heating in 1 min to separate GF into laminar form (EG). The second solution was made from 0.2 g NaNO3 + 9.6 ml H2SO4 (98%) + 1.2 g KMnO4 (called as NKH). EG was mixed with NKH solution and carefully stirred by use of a magnetic device for 2 h to have a GO solution. Adding to the GO solution 30 ml distilled water, and then 10 ml H2O2 allowed us to get a dark-yellow solution. By spinning with a rate of 7000 rpm for 5 min, a GO powder was obtained and it was diluted in deionized water. In the next step, NH3 was added in the solution and stirred at 100°C for 5 h until a solution with a uniform dispersion of GQDs was reached. Finally, the GQDs dispersed solution was filtrated by using the “Dialysis” funnel to collect GQD powder with a volume of 0.2 g. This powder then was dissolved in 20 ml of twice-distilled water to get GQD-dispersion solution of 10 wt.% GQDs (abbreviated to GQD10).
\nNext, GQD + PEDOT:PSS + CNT composite solutions were prepared. Firstly, a powder of multiple wall carbonate tubes (shortly abbreviated to CNT) with an average size of 30 nm in diameter and 2 μm in length was embedded in 10 ml of the GQD10 solution without CNT and with three contents of CNT, respectively, 0.5, 1.0, and 1.5 mg. All of the solutions obtained are called GQC solutions. These solutions were treated by plasma in a microwave oven. Then, 2 ml of polyethylene-dioxythiophene + PEDOT:PSS (1.25 wt.% in H2O) was poured into each GQC solution. The solutions of GQDs-PEDOT:PSS without and with CNT of the three abovementioned volumes of CNT were stirred by ultrasonic wave for 1 h. From all the volumes of chemicals such as GQDs, PEDOT:PSS, and CNT used for the film preparation, the CNT weight contents (wt.%) in the GQDs-PEDOT:PSS matrix have been calculated. It is seen that the samples embedded with the CNT volume of 0.5, 1.0, and 1.5 mg consist of 0.4, 0.8, and 1.2 wt.%, respectively.
\nSynthesis of Ag nanowires (AgNW) was carried out as follows. Firstly, 20 ml of ethylene glycol was heated within stirring in a 250ml Corning-0215 glass at 70°C for 15 min; then, 17 mg of NaCl was added. Raising temperature up to 100°C, 20 mg of AgNO3 was filled into the glass. The reaction between NaCl and AgNO3 occurred, resulting in formation of opaque AgCl solution. Ethylene glycol was decomposed in aldehyde that played a role of a catalyst for creating Ag nuclei. The next step, 5 mg of KBr was added to the glass and heated up to 140°C for 10 min, following 300 mg of PVP was filled and raising temperature to 160°C. The solution temperature was maintained for 15 min. Finally, 250mg of AgNO3 was added into the solution. The last solution was kept at 160°C for 30 min for growing silver nanowires. In the duration of this time, one can observe the change of the solution color from opaque to bright-gray, proving the formation of AgNWs in the solution. After the solution was cooled automatically to room temperature (in ~90 min), the solution was diluted by 80 ml of ethanol and kept for 10 h to deposit an AgNWs paste. This paste was put into a glass with 350 ml of distilled water for spinning with 6000 rpm for 30 min to get silver nanowires adhering to the glass walls. This AgNWs paste was removed from the glass and put into other glass with 200 ml of ethanol. By ultrasonic stirring, the AgNWs paste was dispersed completely in 2 h. Finally, 100 ml of distilled water was added into the AgNWs + ethanol solution; totally, 300 ml of the AgNWs solution was prepared for further studies.
\nNext, to prepare PEDOT-PSS + GQD + AgNW solutions, we used GQDs+PEDOT:PSS mixture with a volume ratio 2/1 of 10 wt.% GQDs solution/PEDOT:PSS, further this solution is called as GPA. Next step, to the GPA solution, a small amount of the AgNWs paste was added. The AgNWs pastes were dispersed in the GPA solutions by ultrasonic wave for at 65°C 1 h.
\nUsing spin coating, GQC and GPA solutions were deposited onto glass substrates which were coated by two silver planar electrode arrays with a length (L) of 10 mm and separated each one from the other by a distance (l) of 5 mm, as shown in Figure 1. In the spin-coating technique used for preparing composite films, the following parameters were chosen: a delay time of 100 s, a rest time of 45 s, a spin speed of 1500–1800 rpm, an acceleration of 500 rpm, and finally, a drying time of 3 min. To dry the composite films, a flow of dried gaseous nitrogen was used for 10 h. For a solidification avoiding the use of solvents, the film samples were annealed at 120°C for 8 h in a “SPT-200” vacuum drier.
\nImage of a humidity sensor made from a single layer of composite films (a) and the schematic drawing of the device with the two planar electrodes (b). Humidity change is detected by the change in the current with a constant Dc-bias applied to the two electrodes.
For simplicity in further analysis, the GPC sensor samples without and with CNT of 0.4, 0.8, and 1.2 wt.% were abbreviated to GPC-0, GPC-1, GPC-2, and GPC-3, respectively, whereas GPA sensors with AgNW of 0.2, 0.4, and 0.6 wt.% are called GPA1, GPA2, and GPA3, respectively.
\nAll chemicals like PEDOT:PSS, P3HT, and multiple wall CNTs, with purity of ≥ 99.9% were purchased from Sigma-Aldrich Corporation. To prepare reduced graphene oxide (rGO), graphite flakes (GF) were taken off from graphite pieces with fewer layers by microwave heating solution of graphite filled in KMnO4 and HNO3. Mixtures of 0.2 g GF, 0.2 g NaNO3, and 9.6 ml H2SO4 were put in a 200 mL volume Corning-247 glass beaker, then 1.2 g KMnO4 and 28 ml of distilled water were poured into the glass beaker to get a liquid solution. Next, 10 ml H2O2 was added to this solution and ultrasonically stirred at room temperature for 8 h to separate MnO4− and MnO2 into Mn+ ions, yielding a solution with a bright-yellow color. The obtained solution was unmoved for 24 h, and at the glass beaker bottom, a paste-like layer with dark-yellow color was deposited, constituting the rGO paste. By slowly sucking, the solution above the rGO paste was completely taken from the glass beaker. Finally, 0.2 g of rGO paste was diluted in 40 ml of N,N-dimethylformamide (DMF) solvent in 50 ml-volume glass beaker and ultrasonically stirred for 900 s to get completely dispersive rGO in DMF (rGO-DMF). After 24 h waiting for the solution stabilization, 30 ml of rGO-DMF solution from the glass beaker top was taken and kept in another glass beaker for further use.
\nP3HT powder with a volume of 6 mg was mixed in 0.6 ml of rGO-DMF solution. This solution was ultrasonically stirred for 2 h at room temperature. At the same time, 1 mg of multiwalled carbon nanotubes (shortly called CNTs) was embedded in 0.5 ml of DMF (CNT-DMF) and also stirred by ultrasonic machine for 1 h. Finally, mixtures of the rGO-DMF and CNT-DMF solutions were put in a small glass beaker and carefully stirred for 5 h at 80°C by using a magnetic stirrer. For all the volumes of chemicals of P3HT, rGO, and CNTs used for further solid film preparation, the weight ratio of P3HT:rGO:CNTs was 100:20:10 (namely, the volume content of rGO and CNTs embedded in P3HT matrix was chosen to be, respectively, 20 and 10 wt.%. For simplicity in further analysis, the composite samples with such contents of P3HT, rGO, and CNTs were abbreviated to P3GC.
\nUsing spin coating, P3GC solutions were deposited onto glass substrates which were coated by two silver planar electrode arrays with a length of 4 mm and separated from each other by a distance of 2 mm, which is similar to the image in Figure 1. The following parameters were used for spin coating: a delay time of 100 s, a rest time of 45 s, a spin speed of 1500–1800 rpm, an acceleration of 500 rpm, and finally a drying time of 300 s. To dry the composite films, a flow of dried gaseous nitrogen was used for 10 h. For a solidification avoiding the use of solvents, the film samples were annealed at 120°C for 2 h in a “SPT-200” vacuum drier. To compare the performance efficiency of P3HT + rGO + CNT with the one for PEDOT:PSS + rGO + CNT-based sensors, PEDOT:PSS + rGO + CNT composites (shortly called PEGC) were prepared by the abovementioned procedure with replacement of P3HT by PEDOT:PSS polymer.
\nThe thickness of the films was measured on a “Veeco Dektak 6M” stylus profilometer. The size of GQDs and the surface morphology of the films were characterized by using “Hitachi” Transmission Electron Microscopy (TEM), Emission Scanning Electron Microscopy (FE-SEM), and NT-MDT atomic force microscope operating in a tunnel current mode. Crystalline structures were investigated by X-ray diffraction (XRD) with a Philips D-5005 diffractometer using filtered Cu-Kα radiation (λ = 0.15406 nm). The ultraviolet–visible absorption spectra were carried out on a Jasco UV–VIS–NIR V570.
\nFor humidity sensing measurements, the samples were put in a 10 dm3-volume chamber; a humidity value could be fixed in a range from 20 to 80% by the use of an “EPA-2TH” moisture profilometer (USA). The adsorption process is controlled by insertion of water vapor, while desorption process was done by extraction of the vapor followed by insertion of dry gaseous Ar. The measurement system that was described in [30] consisting of an Ar gas tank, gas/vapor hoses and solenoids system, two flow meters, a bubbler with vapor solution, and an airtight test chamber connected with collect-store data DAQ component. The Ar gas played a role as carrier gas, dilution gas, and purge gas.
\nFor each sample, the number of measuring cycles was chosen to be at least 10 cycles. The humidity flow taken for measurements was of ~60 sccm ml/min. The sheet resistance of the samples were measured on a “KEITHLEY 2602” system source meter. To characterize humidity sensitivity of the composite samples, the devices were placed in a test chamber and device electrodes were connected to electrical feedthroughs.
\nFor monitoring gases, the prepared sensing samples were put in a testing chamber of 10 dm3 in volume. The gases value can be fixed in a rage from 10 to 1000 ppm by use of an “EPA-2TH” profilometer (USA). To characterize the gas sensitivity of the samples, the devices were placed in a test chamber at the room temperature (namely 300 K) and the Ar gas pressure of 101.325 kPa (or 1 Atm); the device electrodes were connected to electrical feedthroughs. The measurements that were carried out included two processes: adsorption and desorption. In the adsorption process, the gas (or vapor) flow consisting of Ar carrier and measuring vapor from a bubbler was introduced into the test chamber for an interval of time, following which the change in resistance of the sensors was recorded. In the desorption process, a dried Ar gas flow was inserted in the chamber in order to recover the initial resistance of the sensors. Through the recovering time dependence of the resistance, one can obtain information on the desorption ability of the sensor in the desorption process.
\nThe P3GC film sensors were exposed to NH3 gas with concentration (
From a TEM micrograph of a GQDs sample (Figure 2a), it is seen that the size distribution of the dots is considerably homogenous, as evaluated in this micrograph, the dots size ranged from 10 to 15 nm. Figure 2b is an FE-SEM micrograph of the GPC-3 sample where the CNT and GQDs clearly appeared while the conjugate polymer PEDOT:PSS exhibited a transparent matrix. This SEM micrograph also shows that in the GPC composite film, there are mainly heterojunctions of the GQD/PEDOT-PSS and CNT/PEDOT:PSS, whereas CNT/GQD junctions are rarely formed.
\nA TEM micrograph of GQDs sample (a) and FE-SEM of GPC-3 composite film (b) [
From the thickness measurements, it can be seen that embedding CNT made the GPC samples considerably thicker. However, for the CNT-embedded GPC films, the CNT concentration was not much affected by the film thickness, so that the change in the thickness versus CNT concentration could be neglected. Indeed, for GPC-0 samples (i.e., the samples without CNT) the value of the film thickness was found to be ~5% smaller than that of the GPC + CNT samples (Table 1). This can be explained by the lower viscosity of GPC solution in comparison with the viscosity of GPC composite solutions. The results of measurements of the sheet resistance (R) of the samples are listed in Table 1.
\nSamples | \nCNT content (wt.%) | \nThickness, d (nm) | \nRs (kΩ) | \nConductivity, σ (S/cm) | \n
---|---|---|---|---|
GPC-0 | \n0 | \n460 | \n2.180 | \n4.98 | \n
GPC-1 | \n0.4 | \n485 | \n2.160 | \n4.76 | \n
GPC-2 | \n0.8 | \n487 | \n0.814 | \n7.93 | \n
GPC-3 | \n1.2 | \n490 | \n0.356 | \n27.52 | \n
Thickness and resistance at room temperature of graphene quantum dots/CNT composite films [29].
The conductivity of the GPC-3 film is the largest and can be compatible to the conductivity of a pure PEDOT-PSS film as reported in [31]. Embedding GQDs and CNT into PEDOT-PSS has made the conductivity of PEDOT-PSS to decrease, leading to the expectation that the sensitivity of the GPC composite films would be enhanced. The temperature dependence of the conductivity of GPC samples is shown in Figure 3. For GPC-1 sample, σ versus T curves exhibit a typical property of the inorganic semiconductors: with increase in temperature, the conductivity increases. With increases in the CNT content, the composite exhibited a clearer semiconductor behavior; and when it reached a value as large as 1.2 wt.% (namely in GPC-3 sample), the conductivity of the films maintained an almost unchanged value of 37.2 S/cm under elevated operating temperatures. This thermal stability property is a desired factor for materials that are used in sensing applications.
\nTemperature dependence of the conductivity of GPC-1, GPC-2 and GPC-3 films [
The data of the samples including the AgNWs content, thickness, initial resistance, and conductivity are listed in Table 2. The value of the conductivity of the pure PEDOT:PSS film is ~80 S/cm as reported in [17] that is much larger than the one of the GPA composite films. This proves that the composite films possess a poor concentration of charge carriers. However, for materials used in gas sensing monitoring, this fact is an advantage in detecting a small amount of charge carries generated from adsorbed molecules, for instance, H2O vapor.
\nSamples abbreviation | \nAgNW content (wt.%) | \nFilm thickness, d (nm) | \nResistance at 50°C (MΩ) | \nConductivity (S/m) | \n
---|---|---|---|---|
GPA1 | \n0.2 | \n450 | \n4.56 | \n0.024 | \n
GPA2 | \n0.4 | \n460 | \n4.24 | \n0.026 | \n
GPA3 | \n0.6 | \n480 | \n3.88 | \n0.027 | \n
The data of the AgNWs-doped GQDs+PEDOT:PSS composite films used for humidity sensors [28].
FE-SEM image of AgNWs solution (Figure 4a) shows clearly the shape and dimension of the stick-like Ag wires, as evaluated in this image, the wire size is of 70 nm. Figure 4b is an FE-SEM image of the GPA3 film where the AgNWs and GQDs clearly appeared while the conjugate polymer PEDOT:PSS exhibited a transparent matrix. This SEM micrograph also shows that in the composite film, there are mainly heterojunctions of the GQD/PEDOT-PSS and AgNW/PEDOT:PSS, whereas AgNW/GQD junctions are rarely formed.
\nFE-SEM micrograph of an AgNWs containing solution (a) and surface of GPA3 film [
From our experiments, the temperature dependences of the resistance of AgNWs-doped GQDs+PEDOT:PSS composite films were found to be similar to those reported for CNTs-doped GQDs+PEDOT:PSS films [14]. With the increase of temperature, the AgNWs-doped composite exhibited the behavior of a heavily doped semiconductor: the resistance decreased one order in magnitude from the initial values. Indeed, with the AgNWs content of 0.6 wt.% (GPA3), the resistance of the sensor lowered from 3.88 to 400 kΩ with increase of temperature from room temperature to 80°C and maintained a unchanged value of 350 kΩ under elevated (100–140°C) operating temperatures. This thermal stability is a desired factor for materials used in sensing applications.
\nFigure 5 demonstrates the adsorption and desorption processes of the GQDs-PEDOT:PSS and CNT-PEDOT:PSS sensors. Figure 5 shows that in the first 60 s, Ar gaseous flow eliminated the contamination agents from the GQDs-PEDOT:PSS surface, consequently the surface resistance increased. After the cleaning of the sensor surface during 30 s, the introduced humidity vapor was adsorbed onto the sensor surface, resulting in the decrease of the resistance. In the subsequent cycles, the humidity desorption/adsorption process led respectively to increase and decrease of the resistance of sensors, with results similar to those reported in [11]. However, through each cycle, the resistance of the GQDs-PEDOT:PSS film did not recover/restore to its initial value, but increased in 1–2 kΩ, to a final value of 235 kΩ after 1000 s from 220 kΩ. The increase in the initial resistance of the GQDs-PEDOT:PSS mainly related to the decrease of the major charge carriers in PEDOT:PSS. This is due to the elimination of holes (as the major carriers in PEDOT:PSS) by electrons that were generated from the H2O adsorption. The more desorption/adsorption cycles, the more holes were eliminated in the deeper distances in the composite films. The similar feature in the sheet resistance change versus humidity was observed for the CNT-PEDOT:PSS, but the sensitivity of the last was much less than the one of the GQDs-PEDOT:PSS sensor. This proves the advantage of GQDs embedded in PEDOT:PSS polymer for the humidity sensing.
\nSheet resistance change vs. humidity of GQDs-PEDOT:PSS and CNT-PEDOT:PSS composite films during adsorption/desorption processes [
To evaluate sensing performance, a sensitivity (η) of the devices was introduced. It is determined by following equation:
The absolute magnitude of the sensitivity of the GPC-0 calculated by formula (3) is of ca. 2.5%.
\nPlots of time dependence of the sensitivity of the CNT-doped GPC composite films are shown in Figure 6. From Figure 6, one can see that for the GPC samples, vice versa to the GQDs-PEDOT:PSS, the humidity (i.e., H2O vapor) adsorption process led to increase in the resistance of the films. Moreover, the resistance increased at a much faster rate than when it decreased.
\nComparison of the humidity sensing of the GPC composite-based sensors vs. CNT content; (a) GPC-1 (0.4 wt%), (b) GPC-2 (0.8 wt %) and (c) GPC-3 (1.2 wt.%) [
Looking at the humidity sensing curves in Figure 6, one can distinguish two phenomena: the “rapid” (steep slope) and “slow” (shallow slope) response. The rapid response arises from H2O molecular adsorption onto low-energy binding sites, such as sp2-bonded carbon, and the slow response arises from molecular interactions with higher energy binding sites, such as vacancies, structural defects, and other functional groups [32, 33]. For the next step, the sensitivity ability of GPC composite was studied and the whole experiment process as described above was repeated. The data in Figure 6 show that the presence of CNT can improve the sensing properties of GPC sheets. With increase in the CNT content, the resistivity increased, from 4.5% (for GPC-1) to 9.0% (for GPC-2) and 11.0% (for GPC-3).
\nThe response time (i.e., the duration for Ro raising up to Rmax in the adsorption process) for all three GPC sheets is almost the same value of 20 s, whereas the recovery time (the duration for Ro lowering to Rmax in the desorption process) decreased from 70 s (GPC-1, Figure 6a) to 60 s (GPC-2, Figure 6b) and 40 s (GPC-3, Figure 6c). In addition, the complete H2O molecular desorption on the surface of GPC composites took place at room temperature and atmospheric pressure. One can guess that connecting together, individual GPC sheets by CNTs caused the increase of the mobility of carriers in GPC composite films, consequently leading to higher H2O vapor sensing ability of the CNT-doped GQDs-PEDOT:PSS composites. Indeed, due to the appearance of CNTs bridges, the number of the sites with high binding energies in GPC sheets decreases, while the number of those with low binding energies increases. Since the H2O molecules was mainly adsorbed at the sites with low binding energies, the appearance of CNTs bridges led to the complete desorption ability of GPC composites.
\nFrom experimental measurements, we have found that the electrical characteristics of our thin-film sensor elements are strongly dependent on the surrounding atmosphere, on humidity in particular. The increase in relative humidity results in significant decrease of the electrical resistance of the GPA composite films, namely GPA1, GPA2, and GPA3 (see Figure 7). At the RH lower 30%, the resistance of the sensors intensively decreased and reached an almost the same value of 400 kΩ from RH larger 50%. This demonstrates that AgNWs-doped GQDs+PEDOT:PSS composite films can be used well for humidity sensing in a range from RH10% to RH40%. Moreover, in this RH range, GRA3 sensor is the most sensitive to humidity, comparing to GRA1 and GRA2.
\nRH% dependence of the surface resistance of AgNWs-doped GQDs+PEDOT:PSS for three composite films with 0.2 wt.% (curve “1”), 0.4 wt.% (curve “2”) and 0.6 wt.% of AgNWs (curve “3”) [
The humidity dependence of the resistance of the hybrid (or composite) films can be explained by the interaction of water molecules with the surface of the composite, which leads to changing electric parameters of the GQDs. On the other hand, water impurities might induce additional or so called “secondary” doping of the conjugated polymer PEDOT:PSS. This manifests itself in change of the chain shape to an “unfolded spiral” and, therefore, stimulates increase in the conductivity [8].
\nMore detailed measurements of the time response of the sensors were carried out in the conditions of H2O vapor insertion and extraction, respectively, to the adsorption and desorption processes. Figure 8 demonstrates the results of the measurements for AgNWs-doped GQDs+PEDOT:PSS sensors, i.e., for GPA1, GPA2, and GPA3. From Figure 4, one can see that the best humidity sensitivity was obtained in the sensor made from GPA3 film where the AgNWs content is of 0.6 wt.%. The samples with larger AgNWs contents (namely 0.8–1.2 wt.%) in the composites were also made; however, the sensing to humidity of these composite decreased rapidly. Indeed, in Figure 8, the adsorption and desorption processes of the 0.8 wt.% AgNWs-doped GQDs+PEDOT:PSS sensor (called as GPA4) were revealed worse than that of the GPA3 sensor (0.6 wt.% AgNWs). Figure 8 shows that the humidity desorption/adsorption process led, respectively, to increase/decrease of the resistance of sensors, with results similar to those reported in [18].
\nResponses of resistance of the sensors based on AgNWs-doped GQD/PEDOT:PSS films to the pulse of relative humidity (RH 30%) at room temperature for samples GPA1 (curve “1”), GPA2 (curve “2”), GPA3 (curve “3”) and GPA1 (curve “4”) [
Figure 9 shows the sensitivity determined by Formula (1) for the GPA3 sensor during 5 cycles of the adsorption and desorption of H2O vapor. The absolute magnitude of the sensitivity of the GPA3 calculated by formula (3) reached a value as large as 15.2%. The plots for GPA1 and GPA2 sensors have a shape similar to the one of GPA3 (here they are not presented); however, the sensitivity was smaller, namely 5.5 and 6.5%, respectively, for GPA1 and GPA2. Comparing with the CNT-doped GQDs+PEDOT:PSS film sensor (η ~11%) as reported in [14], the humidity sensing of 0.6 wt.% AgNWs-doped composite is much larger.
\nResponses of the sensitivity of the GPA3 sensor to the pulse of relative air humidity (RH30%) at room temperature [
In addition, the complete H2O molecular desorption on the surface of GPA composites took place at room temperature and atmospheric pressure. One can guess that connecting together individual GPA sheets by AgNWs caused the increase of the mobility of carriers in composite films, consequently leading to higher H2O vapor sensing ability of the AgNWs-doped GQDs+PEDOT:PSS composites. Similar to CNT-doped GQDs+PEDOT:PSS composites, due to the appearance of AgNWs bridges, the number of the sites with high binding energies in GPA sheets decreases, while the number of those with low binding energies increases. Since the H2O molecules were mainly adsorbed at the sites with low binding energies, the appearance of AgNWs bridges led to the complete desorption ability of GPA composites.
\nFigure 10 shows AFM images of a pure P3HT and annealed P3GC composite films. The thickness of the film is 550 nm, the annealing temperature is 120°C and the annealing time is 2 h. Figure 10a shows that the pure P3HT film exhibited a smooth surface, whereas the roughness of the P3GC film surface was estimated as about 1.50 nm (Figure 10b). Thus, the roughness of the P3GC film can be attributed to the presence of both rGO and CNTs nanoparticles. The roughness and porosity of the composite sample were also observed by FE-SEM micrograph (Figure 11) where P3HT polymer matrix is not revealed in the FE-SEM. Figure 11 clearly shows the presence of the multiwalled carbon nanotubes in the P3GC sample.
\nAFMs of a pure P3HT (a) and P3GC (b) film annealed at 120°C for 2 h.
FE-SEM of a P3GC composite film.
The results for the measurements of 5 cycles according to the ammonia concentration from 50, 40, 30, 20, and 10 ppm are shown in Figure 12. The cyclic behavior of the sensor performance shows that the P3GC sensors exhibited a good reversible sensing property toward ammonia gas. With exposition of ammonia gas in chamber, the sensor resistance increased rapidly, reaching the saturation value in about 20 s; and recovering its initial value in about 30 s after the extraction of ammonia gas from the chamber. The increase in resistance of the P3GC sensor is closely related to a lowering of major charge carriers (namely holes) in P3HT polymer that is considered as a p-type organic semiconductor [34]. Whereas NH3 is a highly active and electron-donating free radical [24], electrons generated by the absorption of ammonia gas on the surface of P3GC film eliminated a part of holes by coupling with each other, resulting in an increase of the P3HT resistance. When the P3GC film was slightly heated, NH3 molecules in P3HT rapidly evaporated from the film surface, leaving holes along the backbone of the polymer. In such fashion, the concentration of major charge carriers rapidly increases while the resistance of the sensor decreases.
\nTime dependence of resistance of P3GC film on repeated exposure and removal of NH3 gas.
Embedding rGO in P3HT has enabled to enhance sensing properties of the P3GC films. This is similar to the results reported in [35] for polypyrrole (Py)-rGO-based sensors. Wang et al. explained the excellent sensing properties of Py-rGO-based sensors due to the parts of oxygen-based moieties and structure defects after chemical reduction process, resulting to the p-type semiconducting behavior of the resultant rGO. NH3, as a reducing agent, has a lone electron pair that can be easily donated to the p-type rGO sheets, leading to the increase of the resistance of the rGO devices, whereas multiwalled CNTs have contributed to improve the adsorption efficiency of gas molecules (included NH3) due to larger effective surface areas with many sites, as suggested by Varghese et al. [36]. Moreover, the addition of rGO and CNTs together in P3GC composite films created not only numerous nanoheterojunctions of P3HT/rGO and P3HT/CNT, but also nanotube “bridges” for electron transferring. These “bridges” are clearly revealed by the SEM micrograph, as shown in Figure 11.
\nIn [4], we also demonstrated that inorganic nanoparticles embedded in polymers filled up most of the cracked spots in polymers that were often created during postannealing. By this way, the cracked spots served as charge traps were eliminated in nanocomposite films. With the presence of nanoheterojunctions of P3HT/rGO and P3HT/CNT that together reduced the charge traps, one can enhance the performance of the sensors made from P3GC films.
\nFrom the sensitivity (η) of the P3GC sensor determined by Formula (1), the
Sensitivity of P3GC sensor vs. ammonia concentration.
Figures 12 and 13 show that the detection limit for NH3 gas can attain a value is lower than 10 ppm. However, using the EPA-2TH gas profilometer, we could not introduce NH3 gas with an accurate concentration in the range from 0 to 10 ppm. From Figure 13, one can see that the response of the sensor linearly decreases with decreases in ammonia gas concentration; and the slope of the linear plot reflects the relative sensitivity of the sensor. Thus, for the P3GC composite film sensor, the relative sensitivity was found to be of 0.05%/ppm. This value is still rather low, but it is about two times larger than the sensitivity of the ammonia gas sensor made from PEDOT: PSS [37].
\nConcerning the capacity for detecting ammonia gas in an environment that often has a relatively large humidity, we found that the P3HT-based sensor does not respond to humidity, whereas the PEDOT: PSS-based sensor is highly sensitive to this factor [29]. Indeed, this was confirmed by our results of the investigation on humidity (RH%) sensing of the two types of sensors, as a function of both the measurement time (Figure 14) and the relative humidity in the range from RH%20 to RH%65 (Figure 15).
\nComparison of the RH% sensitivity of PEGC (a) and P3GC sensors (b).
Humidity dependence of resistance of the PEGC (a) and P3GC films (b).
Although the ammonia gas response of P3GC sensors at 50 ppm (
\n
Using spin-coating technique, PEDOT: PSS + GQD + CNT (GPC), PEDOT: PSS + GQD + AgNW (GPA) films used for humidity sensors and P3HT + rGO + CNT (P3GC) films used for NH3 gas sensors were prepared at room temperature and atmospheric pressure, all the sensing devices have extremely simple structure and they respond well to the humidity change (for GPC and GPA) and NH3 gas (for P3GC).
With the CNT content increase, from 0% (GPC-0) to 0.4 wt.% (GPC-1), 0.8 wt.% (GPC-2), and 1.2 wt.% (GPC-3), the sensitivity of the humidity sensing devices based on CNT-doped graphene quantum dot-PEDOT: PSS composites improved from 2.5% (GPC-0) to 4.5% (GPC-1), 9.0% (GPC-1), and 11.0% (GPC-2), respectively The response time of the GPC sensors was as fast as 20 s; and the recovery time of the sensors lowered from 70 s (0.4 wt.% CNT) to 60 s (0.8 wt.% CNT) and 40 s (1.2 wt.% CNT). With the AgNWs content increase, from 0.2 wt.% (GPA1) to 0.4 wt.% (GPA2) and 0.6 wt.% (GPA3), the sensitivity of the humidity sensing devices based on AgNWs-doped graphene quantum dot-PEDOT: PSS composites improved from 5.5% (GPA1), 6.5% (GPA2) and 15.2% (GPA3), respectively The best response time (~30 s) was obtained for sensors made from 0.6 wt.% AgNWs-doped GQDs+PEDOT: PSS composite films.
P3GC (namely P3HT embedded with a content of 20 wt.% of rGO and 10% of CNTs) film sensors possessed a responding time of ca. 30 s, a sensing response of 0.8% at ammonia gas concentration of 10 ppm and a relative sensitivity of 0.05%/ppm. Investigation of humidity sensing of both the PEDOT: PSS + rGO + CNT and P3HT + rGO + CNT film sensors has demonstrated that P3HT + rGO + CNT film does not respond to humidity as it is the case for PEDOT: PSS + rGO + CNT. Useful applications in gas thin-film sensors for selectively sensing ammonia gas in a humid environment can thus be envisaged.
This research was funded by the Vietnam National Foundation for Science and Technology (NAFOSTED). The authors express sincere thanks to Prof. Dr. Vo-Van Truong (Concordia University, Canada) for useful discussions.
\n"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"39"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"668",title:"Sedimentary Basin",slug:"sedimentary-basin",parent:{id:"107",title:"Sedimentology",slug:"sedimentology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:18,numberOfWosCitations:38,numberOfCrossrefCitations:73,numberOfDimensionsCitations:144,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"668",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5690",title:"Dynamics of Arc Migration and Amalgamation",subtitle:"Architectural Examples from the NW Pacific Margin",isOpenForSubmission:!1,hash:"fd5d7ea19c6bceff9299bb14d167d3a8",slug:"dynamics-of-arc-migration-and-amalgamation-architectural-examples-from-the-nw-pacific-margin",bookSignature:"Yasuto Itoh, Osamu Takano, Reishi Takashima, Hiroshi Nishi and Takeyoshi Yoshida",coverURL:"https://cdn.intechopen.com/books/images_new/5690.jpg",editedByType:"Authored by",editors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"3500",title:"Mechanism of Sedimentary Basin Formation",subtitle:"Multidisciplinary Approach on Active Plate Margins",isOpenForSubmission:!1,hash:"2fd3f21dd336e27a0dd0eb68d6165921",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",bookSignature:"Yasuto Itoh",coverURL:"https://cdn.intechopen.com/books/images_new/3500.jpg",editedByType:"Edited by",editors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"45477",doi:"10.5772/56751",title:"Variation in Forearc Basin Configuration and Basin-filling Depositional Systems as a Function of Trench Slope Break Development and Strike-Slip Movement: Examples from the Cenozoic Ishikari–Sanriku-Oki and Tokai-Oki–Kumano-Nada Forearc Basins, Japan",slug:"variation-in-forearc-basin-configuration-and-basin-filling-depositional-systems-as-a-function-of-tre",totalDownloads:5773,totalCrossrefCites:12,totalDimensionsCites:35,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Osamu Takano, Yasuto Itoh and Shigekazu Kusumoto",authors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"},{id:"51974",title:"Dr.",name:"Shigekazu",middleName:null,surname:"Kusumoto",slug:"shigekazu-kusumoto",fullName:"Shigekazu Kusumoto"},{id:"161720",title:"Dr.",name:"Osamu",middleName:null,surname:"Takano",slug:"osamu-takano",fullName:"Osamu Takano"}]},{id:"45342",doi:"10.5772/56593",title:"Strike-Slip Basin – Its Configuration and Sedimentary Facies",slug:"strike-slip-basin-its-configuration-and-sedimentary-facies",totalDownloads:7286,totalCrossrefCites:10,totalDimensionsCites:22,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Atsushi Noda",authors:[{id:"161716",title:"Dr.",name:"Atsushi",middleName:null,surname:"Noda",slug:"atsushi-noda",fullName:"Atsushi Noda"}]},{id:"45449",doi:"10.5772/56706",title:"Late Cenozoic Tectonic Events and Intra-Arc Basin Development in Northeast Japan",slug:"late-cenozoic-tectonic-events-and-intra-arc-basin-development-in-northeast-japan",totalDownloads:2972,totalCrossrefCites:16,totalDimensionsCites:22,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Takeshi Nakajima",authors:[{id:"161971",title:"Dr.",name:"Takeshi",middleName:null,surname:"Nakajima",slug:"takeshi-nakajima",fullName:"Takeshi Nakajima"}]},{id:"45500",doi:"10.5772/56804",title:"Early Continental Rift Basin Stratigraphy, Depositional Facies and Tectonics in Volcaniclastic System: Examples from the Miocene Successions Along the Japan Sea and in the East African Rift Valley (Kenya)",slug:"early-continental-rift-basin-stratigraphy-depositional-facies-and-tectonics-in-volcaniclastic-system",totalDownloads:3928,totalCrossrefCites:7,totalDimensionsCites:11,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Tetsuya Sakai, Mototaka Saneyoshi, Yoshihiro Sawada, Masato\nNakatsukasa, Yutaka Kunimtatsu and Emma Mbua",authors:[{id:"167627",title:"Dr.",name:"Tetsuya",middleName:null,surname:"Sakai",slug:"tetsuya-sakai",fullName:"Tetsuya Sakai"},{id:"168875",title:"Prof.",name:"Mototaka",middleName:null,surname:"Saneyoshi",slug:"mototaka-saneyoshi",fullName:"Mototaka Saneyoshi"},{id:"168876",title:"Prof.",name:"Yoshihiro",middleName:null,surname:"Sawada",slug:"yoshihiro-sawada",fullName:"Yoshihiro Sawada"},{id:"168877",title:"Prof.",name:"Masato",middleName:null,surname:"Nakatsukasa",slug:"masato-nakatsukasa",fullName:"Masato Nakatsukasa"},{id:"168878",title:"Prof.",name:"Yutaka",middleName:null,surname:"Kunimatsu",slug:"yutaka-kunimatsu",fullName:"Yutaka Kunimatsu"},{id:"168879",title:"Dr.",name:"Emma",middleName:null,surname:"Mbua",slug:"emma-mbua",fullName:"Emma Mbua"}]},{id:"45498",doi:"10.5772/56770",title:"East Asia-Wide Flat Slab Subduction and Jurassic Synorogenic Basin Evolution in West Korea",slug:"east-asia-wide-flat-slab-subduction-and-jurassic-synorogenic-basin-evolution-in-west-korea",totalDownloads:3593,totalCrossrefCites:3,totalDimensionsCites:9,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Kosuke Egawa",authors:[{id:"162584",title:"Dr.",name:"Kosuke",middleName:null,surname:"Egawa",slug:"kosuke-egawa",fullName:"Kosuke Egawa"}]}],mostDownloadedChaptersLast30Days:[{id:"54964",title:"Intermittent Formation, Sedimentation and Deformation History of Cenozoic Forearc Basins along the Northwestern Pacific Margins as an Indicator of Tectonic Scenarios",slug:"intermittent-formation-sedimentation-and-deformation-history-of-cenozoic-forearc-basins-along-the-no",totalDownloads:3059,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"This chapter examines the basin-filling stratigraphy and major unconformity events of the Cenozoic forearc basins in the NE Japan, SW Japan, Ryukyu and Izu-Bonin forearc territories along the northwestern Pacific margins to obtain information on the background tectonic scenarios along the plate subduction zones. The forearc basin type and tectonic history are characteristic for each forearc territory, reflecting the differences in plate tectonic processes. Several major unconformity events seem to be synchronous for a forearc territory or whole forearc territories around Japan, suggesting that these events originated from more or less wider scale plate tectonic events. In the NE Japan forearc territory, the Oligocene unconformity can be the largest events, which transformed the forearc basin styles from the trench slope break-uplifted, fluvial system-dominated type to the tensional, deeper marine sloped type. In the SW Japan and Ryukyu forearc territories, the latest Oligocene to Middle Miocene gap was the transformation phase from the Palaeogene Shimanto-type forearc and accretionary complex, to the Neogene compressive, sloped to ridged forearc basins, developments of which have been interrupted by several unconformity events possibly related to changes in plate tectonic condition. These transformations of the forearc basin styles may reflect the changes in plate tectonic conditions in the northwestern Pacific region.",book:{id:"5690",slug:"dynamics-of-arc-migration-and-amalgamation-architectural-examples-from-the-nw-pacific-margin",title:"Dynamics of Arc Migration and Amalgamation",fullTitle:"Dynamics of Arc Migration and Amalgamation - Architectural Examples from the NW Pacific Margin"},signatures:"Osamu Takano",authors:[{id:"161720",title:"Dr.",name:"Osamu",middleName:null,surname:"Takano",slug:"osamu-takano",fullName:"Osamu Takano"}]},{id:"45477",title:"Variation in Forearc Basin Configuration and Basin-filling Depositional Systems as a Function of Trench Slope Break Development and Strike-Slip Movement: Examples from the Cenozoic Ishikari–Sanriku-Oki and Tokai-Oki–Kumano-Nada Forearc Basins, Japan",slug:"variation-in-forearc-basin-configuration-and-basin-filling-depositional-systems-as-a-function-of-tre",totalDownloads:5763,totalCrossrefCites:12,totalDimensionsCites:35,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Osamu Takano, Yasuto Itoh and Shigekazu Kusumoto",authors:[{id:"161720",title:"Dr.",name:"Osamu",middleName:null,surname:"Takano",slug:"osamu-takano",fullName:"Osamu Takano"},{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"},{id:"51974",title:"Dr.",name:"Shigekazu",middleName:null,surname:"Kusumoto",slug:"shigekazu-kusumoto",fullName:"Shigekazu Kusumoto"}]},{id:"45342",title:"Strike-Slip Basin – Its Configuration and Sedimentary Facies",slug:"strike-slip-basin-its-configuration-and-sedimentary-facies",totalDownloads:7280,totalCrossrefCites:10,totalDimensionsCites:22,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Atsushi Noda",authors:[{id:"161716",title:"Dr.",name:"Atsushi",middleName:null,surname:"Noda",slug:"atsushi-noda",fullName:"Atsushi Noda"}]},{id:"45500",title:"Early Continental Rift Basin Stratigraphy, Depositional Facies and Tectonics in Volcaniclastic System: Examples from the Miocene Successions Along the Japan Sea and in the East African Rift Valley (Kenya)",slug:"early-continental-rift-basin-stratigraphy-depositional-facies-and-tectonics-in-volcaniclastic-system",totalDownloads:3923,totalCrossrefCites:7,totalDimensionsCites:11,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Tetsuya Sakai, Mototaka Saneyoshi, Yoshihiro Sawada, Masato\nNakatsukasa, Yutaka Kunimtatsu and Emma Mbua",authors:[{id:"167627",title:"Dr.",name:"Tetsuya",middleName:null,surname:"Sakai",slug:"tetsuya-sakai",fullName:"Tetsuya Sakai"},{id:"168875",title:"Prof.",name:"Mototaka",middleName:null,surname:"Saneyoshi",slug:"mototaka-saneyoshi",fullName:"Mototaka Saneyoshi"},{id:"168876",title:"Prof.",name:"Yoshihiro",middleName:null,surname:"Sawada",slug:"yoshihiro-sawada",fullName:"Yoshihiro Sawada"},{id:"168877",title:"Prof.",name:"Masato",middleName:null,surname:"Nakatsukasa",slug:"masato-nakatsukasa",fullName:"Masato Nakatsukasa"},{id:"168878",title:"Prof.",name:"Yutaka",middleName:null,surname:"Kunimatsu",slug:"yutaka-kunimatsu",fullName:"Yutaka Kunimatsu"},{id:"168879",title:"Dr.",name:"Emma",middleName:null,surname:"Mbua",slug:"emma-mbua",fullName:"Emma Mbua"}]},{id:"45402",title:"Foreland Basins at the Miocene Arc-Arc Junction, Central Hokkaido, Northern Japan",slug:"foreland-basins-at-the-miocene-arc-arc-junction-central-hokkaido-northern-japan",totalDownloads:2823,totalCrossrefCites:2,totalDimensionsCites:4,abstract:null,book:{id:"3500",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Gentaro Kawakami",authors:[{id:"162858",title:"Dr.",name:"Gentaro",middleName:null,surname:"Kawakami",slug:"gentaro-kawakami",fullName:"Gentaro Kawakami"}]}],onlineFirstChaptersFilter:{topicId:"668",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X",scope:"
\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:'Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the "new normal". Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.',institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:11,paginationItems:[{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81297",title:"Legumes Cropping and Nitrogen Fixation under Mediterranean Climate",doi:"10.5772/intechopen.104473",signatures:"Fernando Teixeira",slug:"legumes-cropping-and-nitrogen-fixation-under-mediterranean-climate",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:40,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:41,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/420536",hash:"",query:{},params:{id:"420536"},fullPath:"/profiles/420536",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()