List of coefficients as introduced in the constitutive relations of SKT (standard kinetic theory).
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6331",leadTitle:null,fullTitle:"Hypothalamus in Health and Diseases",title:"Hypothalamus in Health and Diseases",subtitle:null,reviewType:"peer-reviewed",abstract:"The human hypothalamus, a small structure at the base of the brain, has strategic importance for the harmonic function of the human body. It controls the autonomic nervous system, neuroendocrine function, circadian and circannual rhythms, somatic activities, and behavior, and is situated at the borders between the brain and the body and the brain and the soul, meeting points for mind and body. The hypothalamus is involved in a wide range of higher mental functions, including attention, learning and reinforcement of mnemonic processes, emotional control, mood stability, and cognitive-emotional interactions. It also has a role to play in behavioral disorders, panic reactions, cluster headache, gelastic epilepsy, mental deficiency, periodic disorders, depression, autism, and schizophrenia, and in a substantial number of neurodegenerative diseases. It enlarges greatly the dimensions of the hypothalamic contribution in controlling psychosomatic equilibrium and retaining internal unity of the human existence.",isbn:"978-1-78984-445-0",printIsbn:"978-1-78984-444-3",pdfIsbn:"978-1-83881-407-6",doi:"10.5772/intechopen.69694",price:119,priceEur:129,priceUsd:155,slug:"hypothalamus-in-health-and-diseases",numberOfPages:142,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"d8943dda86e7f5eea7bb5afc1ff70cfe",bookSignature:"Stavros J. Baloyannis and Jan Oxholm Gordeladze",publishedDate:"December 5th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6331.jpg",numberOfDownloads:10483,numberOfWosCitations:2,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:19,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:31,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 20th 2017",dateEndSecondStepPublish:"July 11th 2017",dateEndThirdStepPublish:"November 20th 2017",dateEndFourthStepPublish:"January 5th 2018",dateEndFifthStepPublish:"March 6th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis",profilePictureURL:"https://mts.intechopen.com/storage/users/156098/images/system/156098.jpg",biography:"Stavros J. Baloyannis is Professor Emeritus of Neurology at Aristotelian University, Thessaloniki, Greece. He graduated from the School of Medicine, Aristotelian University. He trained in Neurology at the same university and at the Institute of Neurology, Queen Square, London. He also trained in Neuropathology and Electron Microscopy at the Institute of Neurology, London; Catholic University of Louvain, Belgium; University of Pennsylvania; and Yale University. He trained in Acoustic Neuropathology at Harvard University, and in Neuroimmunology at Yale University. Dr. Baloyannis has conducted research on the blood-brain barrier, mitochondria in Alzheimer’s disease, synaptogenesis, neurodegeneration, dendritic and synaptic pathology, and Golgi apparatus in dementias. His special interests include neuroethics, neurolinguistics, neurophilosophy, history of neurosciences, neurology and art, and the brain and music. He is a member of sixty-two scientific societies and an honorary member of the Academy of Hellenic Air Forces. He is also the president of the Society for the amelioration of the quality of life in neurological diseases and former president of the Orthodox Association for the medical mission. He is a visiting professor at Tufts University, Democritus University, School of Theology, School of Philosophy. Dr. Baloyannis is the author of 29 textbooks, 760 papers on neurology and neurosciences, and 3 books of poems. From 1992 to 2011, he was the head of the Department of Neurology and director of the Research Institute for Alzheimer’s disease.",institutionString:"Aristotle University of Thessaloniki",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"36345",title:"Prof.",name:"Jan",middleName:"Oxholm",surname:"Gordeladze",slug:"jan-gordeladze",fullName:"Jan Gordeladze",profilePictureURL:"https://mts.intechopen.com/storage/users/36345/images/3823_n.jpg",biography:"Dr. Jan O. Gordeladze, Ph.D. (born 25th of April, 1950), holds a triple professor competence (Medical Biochemistry, Physiology, and Pharmacology), and is presently working as a Professor Emeritus at the Department of Biochemistry, Institute of Basic Medical Science, University of Oslo, Norway. He has previously been employed as the Medical Director of MSD, Norway, serving two years as a Fulbright scholar at the NIH, Bethesda, Maryland, USA. From 2006-2009 he was employed as Associate Professor at the University of Montpellier, France. He is a member of the Norwegian Stem Cell Center, and his research has over the past 7-10 years been devoted to differentiation of osteochondral cells from stem cells focusing on the impact of transcription factors and microRNA species constituting regulatory loop interactions with functional target genes. He has published more than 120 scientific articles, reviews/book chapters and presented more than 250 abstracts/posters/talks at conferences worldwide. Dr. Gordeladze has served as a Fulbright Scholar at The National Institute of Health, Bethesda, Washington DC during the years 1990-91.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"3",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"215",title:"Neurophysiology",slug:"neurophysiology"}],chapters:[{id:"63258",title:"Anatomy and Function of the Hypothalamus",doi:"10.5772/intechopen.80728",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4597,totalCrossrefCites:6,totalDimensionsCites:12,hasAltmetrics:1,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",downloadPdfUrl:"/chapter/pdf-download/63258",previewPdfUrl:"/chapter/pdf-preview/63258",authors:[null],corrections:null},{id:"58773",title:"Studies on the Character of Hypothalamic GnRH Neurons and Kisspeptin Neurons Using Hypothalamic Cell Models",doi:"10.5772/intechopen.73128",slug:"studies-on-the-character-of-hypothalamic-gnrh-neurons-and-kisspeptin-neurons-using-hypothalamic-cell",totalDownloads:1161,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The hypothalamic-pituitary-gonadal (HPG) axis controls the hormonal network responsible for reproductive functions. In the past, hypothalamic gonadotropin-releasing hormone (GnRH) neurons have been positioned at the highest level in the HPG axis. After the discovery of the indispensable roles of hypothalamic kisspeptin in GnRH neurons, our understanding of the neuroendocrine regulation of the HPG axis was reconfirmed, and it is now recognized that hypothalamic kisspeptin neurons are positioned at the summit of the HPG axis. Accumulating evidence shows that kisspeptin neurons are responsible for the onset of puberty and sex steroid feedback mechanisms by modulating the activity of GnRH neurons. Furthermore, the identification of kisspeptin in the hypophyseal portal circulation suggests that this peptide has some direct roles in the pituitary gland. The detailed mechanisms underlying the regulation of GnRH by kisspeptin and the regulatory control of kisspeptin neurons are still largely unknown because of the limitations of the experimental models. The establishment of GnRH-expressing and kisspeptin-expressing cell models has enabled us to examine the character of these neuronal cells. In this chapter, we describe our in vivo studies examining the character of GnRH neurons and kisspeptin neurons in the hypothalamus using hypothalamic GnRH- and/or kisspeptin-expressing cell models.",signatures:"Haruhiko Kanasaki, Aki Oride, Tuvshintugs Tumurbaatar and Satoru\nKyo",downloadPdfUrl:"/chapter/pdf-download/58773",previewPdfUrl:"/chapter/pdf-preview/58773",authors:[null],corrections:null},{id:"63141",title:"Hypothalamic Control of Sleep-Wake Circadian Cycle",doi:"10.5772/intechopen.79899",slug:"hypothalamic-control-of-sleep-wake-circadian-cycle",totalDownloads:1090,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Sleep-wake cycle is probably the most truthful signature of life. These unavoidable interchangeable states are together the matrix for all that occurs in physiology, and its rhythms are regulated by homeostatic and circadian processes involving different neuronal structures and distinct neural substrates. Hypothalamic regulation of sleep-wake cycle becomes of relevance as several neuropeptide-producing neurons involved in sleep and wakefulness regulation are located there. In this chapter, we provide a review of the hypothalamic regulation of sleep-wake cycle, focusing on the hypocretin system and melanin-concentrating hormone (MCH)-producing neurons located in the lateral hypothalamic area (LHA).",signatures:"Miguel Meira e Cruz, Sérgio Matoso Laranjo and Isabel Rocha",downloadPdfUrl:"/chapter/pdf-download/63141",previewPdfUrl:"/chapter/pdf-preview/63141",authors:[null],corrections:null},{id:"58252",title:"Role of the Dorso- and Ventrolateral Pons in Cardiorespiratory Hypothalamic Defense Responses",doi:"10.5772/intechopen.72625",slug:"role-of-the-dorso-and-ventrolateral-pons-in-cardiorespiratory-hypothalamic-defense-responses",totalDownloads:1073,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Stimulation of discrete sites throughout the hypothalamus elicits autonomic and somatic responses. This chapter will stand out the cardiorespiratory changes evoked from stimulation of specific areas within the caudal hypothalamus: the perifornical area and the dorsomedial nucleus. The stimulation of these regions, known as the hypothalamic defense area (HDA), produces a pattern of visceral and somatic changes characteristic of the defense reaction, which includes tachypnea, tachycardia and a pressor response. A close review of the literature demonstrates that the changes observed during this defensive behavioral response are partially mediated by the interactions with pontine regions. These include the parabrachial complex, located in the dorsolateral pons, and the A5 region, located in the ventrolateral pons. Specific glutamatergic stimulation of cell bodies located within the parabrachial complex and A5 region evokes cardiorespiratory responses similar to those observed during stimulation of the HDA. This functional interaction suggests a possible role of glutamate pontine receptors in the modulation of the HDA response. This chapter describes the most important evidences confirming the implication of the dorso- and ventrolateral pons in the control of cardiorespiratory autonomic responses evoked from the perifornical and dorsomedial hypothalamus and the role of glutamate in this interaction.",signatures:"Amelia Díaz-Casares, Manuel Víctor López-González and Marc\nStefan Dawid-Milner",downloadPdfUrl:"/chapter/pdf-download/58252",previewPdfUrl:"/chapter/pdf-preview/58252",authors:[{id:"213305",title:"Prof.",name:"Marc Stefan",surname:"Dawid Milner",slug:"marc-stefan-dawid-milner",fullName:"Marc Stefan Dawid Milner"},{id:"213307",title:"Dr.",name:"Amelia",surname:"Díaz-Casares",slug:"amelia-diaz-casares",fullName:"Amelia Díaz-Casares"},{id:"213308",title:"Associate Prof.",name:"Manuel Víctor",surname:"López-González",slug:"manuel-victor-lopez-gonzalez",fullName:"Manuel Víctor López-González"}],corrections:null},{id:"64431",title:"The Hypothalamus in Alzheimer’s Disease",doi:"10.5772/intechopen.81475",slug:"the-hypothalamus-in-alzheimer-s-disease",totalDownloads:1491,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Alzheimer’s disease is a progressive, irreversible neurodegenerative disorder, characterized by gradual decline of mental faculties, including learning capacity, emotional and behavioral alterations, serious decline of motor skills, and dysfunction of the autonomic nervous system with disruption of circadian rhythms. Among the potential modifiable risk factors, diabetes and obesity may play a considerable role in the pathogenetic background of the disease. We describe some of the morphological alterations of the hypothalamic nuclei in early cases of Alzheimer’s disease, using silver impregnation techniques and electron microscopy. The morphological and morphometric study revealed substantial decrease of the neuronal population, which was particularly marked in the suprachiasmatic, the supraoptic, and the paraventricular nuclei of the hypothalamus. The silver staining demonstrated an obvious shortage of the dendritic arborization of neurons, associated with marked spinal pathology and axonal dystrophy. It must be underlined that Alzheimer’s pathology, such as neuritic plaques and neurofibrillary degeneration, was minimal in the hypothalamus in comparison with other cortical and subcortical areas of the brain. Mitochondrial alterations and fragmentation of Golgi complex were observed by electron microscopy in a substantial number of neurons and astrocytes in the hypothalamic nuclei. The hypothalamic pathology may be related to instability of autonomic regulation which occurs gradually in Alzheimer’s disease.",signatures:"Stavros J. Baloyannis, Ioannis Mavroudis, Demetrios Mitilineos,\nIoannis S. Baloyannis and Vassiliki G. Costa",downloadPdfUrl:"/chapter/pdf-download/64431",previewPdfUrl:"/chapter/pdf-preview/64431",authors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],corrections:null},{id:"58705",title:"The Apoptosis Regulation Mechanisms in Hypothalamic Neurons in Physiological and Pathological (Overexpression of Oncogene HER-2/Neu) Aging",doi:"10.5772/intechopen.72694",slug:"the-apoptosis-regulation-mechanisms-in-hypothalamic-neurons-in-physiological-and-pathological-overex",totalDownloads:1073,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"This study reveals the molecular regulation mechanisms of neurosecretory cell apoptosis in physiological and pathological (oncogene human epidermal growth factor receptor (HER)-2/Neu overexpression) aging. As we have shown previously, apoptosis level in hypothalamic neurosecretory centers increases in aging, and a low level of apoptosis in aged HER-2/Neu transgenic mice is associated with p53-dependent cascade suppression. In this chapter, we consider the participation of p53-regulating genes and p53 target genes in activation of this cascade during physiological aging, as well as suppression under HER-2/Neu overexpression. However, cell resistance to apoptosis may also be due to the activity of cytokine-dependent STAT-signaling pathway, including the high expression of survivin belonging to the family of inhibitors of apoptosis proteins (IAP). Also, another cytokine-dependent signaling, an extrinsic apoptosis pathway associated with the family of tumor necrosis factor (TNF) receptors, has been investigated. Thus, in the present work, three signaling cascades are considered: p53-dependent (the expression and interaction of apoptosis-associated proteins p53, WRN, pin1, p21, and caspase-3), STAT-mediated (STAT1, 3, 5, 6, and survivin), and TNF-dependent (CD95 (FAS), Fas-associated death domain (FADD), TNF receptor–associated death domain (TRADD), and caspase-8). These cascades are involved in both the activation of apoptosis and its suppression. This will reveal the general trends of regulation of neurosecretory cell apoptosis during aging.",signatures:"Elena D. Bazhanova and David L. Teply",downloadPdfUrl:"/chapter/pdf-download/58705",previewPdfUrl:"/chapter/pdf-preview/58705",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"9638",title:"Cerebral and Cerebellar Cortex",subtitle:"Interaction and Dynamics in Health and Disease",isOpenForSubmission:!1,hash:"3770f481b045cb47025fe4f409c3e6c1",slug:"cerebral-and-cerebellar-cortex-interaction-and-dynamics-in-health-and-disease",bookSignature:"Stavros J. Baloyannis",coverURL:"https://cdn.intechopen.com/books/images_new/9638.jpg",editedByType:"Edited by",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7850",title:"Mitochondria and Brain Disorders",subtitle:null,isOpenForSubmission:!1,hash:"e4cb9b34e45c6177ede9cf78fbda4b82",slug:"mitochondria-and-brain-disorders",bookSignature:"Stavros Baloyannis",coverURL:"https://cdn.intechopen.com/books/images_new/7850.jpg",editedByType:"Edited by",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8296",title:"Multiple Sclerosis",subtitle:null,isOpenForSubmission:!1,hash:"ec14c3341208a441acbc52bc4b632c0c",slug:"multiple-sclerosis",bookSignature:"Stavros J. Baloyannis",coverURL:"https://cdn.intechopen.com/books/images_new/8296.jpg",editedByType:"Edited by",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6271",title:"Astrocyte",subtitle:"Physiology and Pathology",isOpenForSubmission:!1,hash:"46949616660cfdfa0f4e04e2ca8333e2",slug:"astrocyte-physiology-and-pathology",bookSignature:"Maria Teresa Gentile and Luca Colucci D’Amato",coverURL:"https://cdn.intechopen.com/books/images_new/6271.jpg",editedByType:"Edited by",editors:[{id:"160180",title:"Dr.",name:"Maria Teresa",surname:"Gentile",slug:"maria-teresa-gentile",fullName:"Maria Teresa Gentile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"81442",slug:"corrigendum-to-chronic-venous-ulcer",title:"Corrigendum to: Chronic Venous Ulcer",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81442.pdf",downloadPdfUrl:"/chapter/pdf-download/81442",previewPdfUrl:"/chapter/pdf-preview/81442",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81442",risUrl:"/chapter/ris/81442",chapter:{id:"76688",slug:"chronic-venous-ulcer",signatures:"Walid A.M. Ganod",dateSubmitted:"February 14th 2021",dateReviewed:null,datePrePublished:"May 23rd 2021",datePublished:"March 2nd 2021",book:{id:"9076",title:"Recent Advances in Wound Healing",subtitle:null,fullTitle:"Recent Advances in Wound Healing",slug:"recent-advances-in-wound-healing",publishedDate:"March 2nd 2022",bookSignature:"Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/9076.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",middleName:null,surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"311824",title:"M.Sc.",name:"Walid A.M.",middleName:null,surname:"Ganod",fullName:"Walid A.M. Ganod",slug:"walid-a.m.-ganod",email:"walid.ganod@gmail.com",position:null,institution:null}]}},chapter:{id:"76688",slug:"chronic-venous-ulcer",signatures:"Walid A.M. Ganod",dateSubmitted:"February 14th 2021",dateReviewed:null,datePrePublished:"May 23rd 2021",datePublished:"March 2nd 2021",book:{id:"9076",title:"Recent Advances in Wound Healing",subtitle:null,fullTitle:"Recent Advances in Wound Healing",slug:"recent-advances-in-wound-healing",publishedDate:"March 2nd 2022",bookSignature:"Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/9076.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",middleName:null,surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"311824",title:"M.Sc.",name:"Walid A.M.",middleName:null,surname:"Ganod",fullName:"Walid A.M. Ganod",slug:"walid-a.m.-ganod",email:"walid.ganod@gmail.com",position:null,institution:null}]},book:{id:"9076",title:"Recent Advances in Wound Healing",subtitle:null,fullTitle:"Recent Advances in Wound Healing",slug:"recent-advances-in-wound-healing",publishedDate:"March 2nd 2022",bookSignature:"Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/9076.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",middleName:null,surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12066",leadTitle:null,title:"Multimedia Development",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"493947b89a44a902192caeff10031982",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12066.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 28th 2022",dateEndSecondStepPublish:"March 21st 2022",dateEndThirdStepPublish:"May 20th 2022",dateEndFourthStepPublish:"August 8th 2022",dateEndFifthStepPublish:"October 7th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel A.",surname:"Marinho",slug:"daniel-a.-marinho",fullName:"Daniel A. Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8878",title:"Advances in Microfluidic Technologies for Energy and Environmental Applications",subtitle:null,isOpenForSubmission:!1,hash:"7026c645fea790b8d1ad5b555ded994d",slug:"advances-in-microfluidic-technologies-for-energy-and-environmental-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8878.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10151",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume II",isOpenForSubmission:!1,hash:"1a9e7327c929421c873317ccfad2b799",slug:"technology-science-and-culture-a-global-vision-volume-ii",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10151.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"2",chapterContentType:"conference paper",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"2",chapterContentType:"conference paper",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"54946",title:"Granular Flow: From Dilute to Jammed States",doi:"10.5772/intechopen.68465",slug:"granular-flow-from-dilute-to-jammed-states",body:'\nDune migration, landslides, avalanches, and silo instability are a few examples of systems where granular materials play an important role. Furthermore, handling and transport of these materials are central to many industries such as pharmaceutical, agricultural, mining, and construction and pose many open questions to the researchers. In spite of their ubiquity, understanding and predicting the flow behavior of granular materials is still a major challenge for science and industry. Even in a seemingly simple system such as dry sand, the presence of large numbers of internal degrees of freedom leads to highly nonlinear effects making it difficult to relate the microscopic grain‐level properties to the macroscopic bulk behavior.
\nGranular systems can show properties commonly associated with either solid or liquid. They can behave like a fluid, that is, yielding under an applied shear stress. On the other hand, they can also behave like solids, being able to resist applied stresses without deforming, showing also interesting anisotropic structure (contact‐and force‐networks) [1, 2]. Lucretius (ca. 98–55 B.C.) was among the first ones to recognize this interesting behavior of soil‐like materials, when he wrote “
Due to their microscopic, discrete nature and their interesting macroscopic, bulk behavior response, granular materials are studied using both discrete and continuum mechanics frameworks. In the realm of the discrete approach, several numerical techniques that are able to reproduce the single particle motions with the given micromechanical properties of the grains have been developed. In such an approach, the dynamic behavior is studied by integrating the Newton’s equations of motion for each grain using micromechanical properties and specific interaction law. Following the pioneer work by Goldhirsch [5, 6], several numerical techniques have been developed to obtain continuum fields from discrete particle data.
\nUsing these numerical methods, one can study the flow behavior of the idealized grains, characterized by some specific micromechanical properties, which might not exist in the nature, but is helpful in understanding the underlying physics of their global behavior. In spite of their versatile applicability and benefits, these numerical methods have limitations such as excessive computational requirements, round off or truncation errors, and an intrinsic dynamic that is sometimes not reflecting the experimental reality. On the other hand, continuum models give a macroscopic view to investigate granular material behaviors. Continuum mechanics theories solve the conservation equations for the whole medium, that is, the balance of mass, momentum, and when necessary, energy. Although the balance laws are easily deducible, defining the constitutive relations poses the bigger challenge. The latter relate stresses and strains taking into account the physics of the grain‐grain interaction.
\nThe goal of the present book chapter is to study the constitutive behavior of granular systems using particle, numerical simulations, and micro‐macro transition. In particular, we focus on the different mechanical responses of a granular material in dense and dilute conditions, corresponding to the fluid and solid behaviors, respectively. In order to systematically analyze the influence of some crucial material parameters, which affect the flow behavior, we focus on an idealized material composed of frictionless, spherical particles, in the absence of any interstitial fluids. Moreover, in order to concentrate on the rheology of particulate systems, disregarding boundary effects, we have considered two system setups which allow simulating steady and homogeneous flows.
\nThis chapter is organized as follows. Section 2 introduces the general rheological framework to describe the flow behavior of granular materials. In the same section, we also briefly review some existing granular rheological models. The particle simulations along with micro‐macro transition are introduced in Section 3, where different system setups that are used to study the steady and homogeneous granular flows are shown. Finally, in Section 4, we present a comprehensive comparison of the existing simulation data with frictionless particles in dilute and dense regimes. In the same section, we highlight the effect of various micromechanical properties (coefficient of restitution, polydispersity, and particle stiffness) on the macroscopic fields (stresses and volume fraction). We present a comparison of these results with the theoretical models in two regimes: the kinetic theory in the dilute regime, and a recently proposed generalized rheological model in the dense regime.
\nDespite the fact that granular materials are discontinuous media, their behavior is commonly described by a continuum approach. Continuum mechanics theories solve the conservation equations of the whole medium, that is, the balance of mass, momentum, and when necessary, energy. Although the balance laws are easily deducible, the big challenge is the definition of the constitutive relations, that is, the rheology. The latter captures the macroscopic behavior of the system, incorporating the microscale grain‐grain interaction dynamics.
\nA granular flow can undergo different behaviors depending on both properties at the particle level and the macroscopic characteristic of the flow (i.e., velocity and concentration). At the microscopic level, each particle is characterized by its shape, dimension, material, and contact properties. For the sake of simplicity, in this chapter an assembly of identical spheres, of diameter
In the framework of continuum mechanics, dimensionless numbers are often introduced in order to describe the material behavior. These dimensionless numbers are defined as the ratio of different time scales or forces, thus signifying the relative dominance of one phenomenon over another.
\nIn the case of granular flows, the macroscopic time scale associated with the shear rate parallel to the flow plays an important role. Then, it is convenient to scale all the quantities using the particle diameter, particle density, and shear rate \n
In the early modeling attempts, granular flow is envisaged as existing in either dense solid‐like or loose gas‐like regimes. Early works using shear cell experiments observed these regimes by varying the shear rate and allowing the bed to dilate or compact. Granular materials exhibit solid‐like behavior if the particles are packed densely enough and a network of persistent contacts develops within the medium, resulting in a jammed mechanically stable structure of the particles. On the other hand, when the grains are widely spaced and free to move in any direction, interacting only through collisions, the medium is unjammed and behaves like a fluid [7].
\nIn the fluid‐like limit, the system is very dilute and the grains interact mainly through binary, instantaneous, uncorrelated collisions. One of the first rheological models for granular flows in this regime was proposed in 1954 by Bagnold [8]. This empirical model, derived from experiments in two‐dimensional plane shear flows, basically states that the stresses are proportional to the square of the strain rate. This simple law, now known as “Bagnold scaling,” has been the first to understand the physics of granular dynamics at large deformations and has been verified for dry grains in a number of experimental and numerical studies [9–12]. In the fluid‐like regime, the generalization of kinetic theory of granular gases provides a meaningful hydrodynamic description.
\nOn the other hand, when the system is very dense, its response is governed by the enduring contacts among grains, which are involved in force chains; the deformations are extremely slow because the entire network of contacts has to be continuously rearranged (jammed structure). In these conditions, the granular material behaves like a solid, showing an elastic response in which stresses are rate independent. The corresponding flow regime is usually referred to as quasi‐static. Slowly deforming quasi‐static dense granular material has been mainly investigated in the framework of geo‐mechanics. There, the majority of the constitutive models are based on the theories of elasto‐plasticity and visco‐plasticity [13–16], and many of them have been conceived by starting from the well‐known critical state theory [17, 18].
\nIn the transition phase, the grains interact via both force chains and collisions. None of the models cited above is able to deal with this phase‐transition of granular materials from a solid‐like to a fluid‐like state and vice‐versa. Intensive studies of the granular rheology at the phase transition have been conducted in the last decades, for example, by Campbell [19], Ji and Shen [20, 21], and Chialvo et al. [22] using 3D simulations of soft frictional spheres at imposed volume fractions. In these works, the authors derived a flow‐map of the various flow regimes and analyzed the transition areas. In particular, they found that, for a collection of particles, the solid‐fluid transition occurs in the limit of zero confining pressure at the critical volume fraction
More recently, new theories have been developed to model the phase transition. The French research group GDR‐MiDi [23] has suggested that dense granular materials obey a local, phenomenological rheology, known as μ(I)‐rheology, that can be expressed in terms of relations between three nondimensional quantities: volume fraction, shear to normal stress ratio, usually called
Below we present a summary of the two continuum theories that well describe the flow behavior in the limits and their extension to the intermediate regime. Kinetic theory in its standard form (SKT) provides a meaningful hydrodynamic description for frictionless particles in the very dilute regime, while μ(I)‐rheology holds for both frictionless and frictional particles for dense flows. It is important to mention that both theories work only for ideal systems, made of rigid, perfectly elastic, monodisperse particles. Finally, the extension of μ(I)‐rheology to deal with soft and deformable particles is also introduced.
\nThis section is largely based on the notable works of Brilliantov et al. [33], Garzo et al. [34, 35], Goldhirsch [6, 36], and Pöschel et al. [37].
\nThe term “granular gas” is used in analogy with a (classical) molecular gas, where the molecules are widely separated and are free to move in all directions, interacting only through instantaneous, uncorrelated collisions. The main differences between molecular and granular gases are that in the latter case part of the energy is irreversibly lost whenever particles interact and the absence of strong scale separation. These facts have numerous consequences on the rheology of granular gases, one of which being the sizeable normal stress differences [38].
\nAnalogous to the molecular gases (or liquids), the macroscopic fields velocity and mass density are defined for granular systems [6]. An additional variable of the system, the granular temperature,
Following the statistical mechanics approach, the kinetic theory of granular gases rigorously derives the set of partial differential equations given by the conservation laws of mass, momentum, and energy (the latter describing the time development of the granular temperature) for the dilute gas of inelastically colliding particles.
\nIn this section, we summarize the standard kinetic theory (SKT) for the case of steady and homogeneous flows for a collection of ideal particles, that is, they are rigid, monodisperse, frictionless with diameter,
where
where,
\n\n | \n
List of coefficients as introduced in the constitutive relations of SKT (standard kinetic theory).
Further, by substituting the constitutive relations for
SKT was rigorously derived under very restrictive assumptions. In particular, the granular system is assumed to be monodisperse and composed of spherical, frictionless, and rigid particles, interacting only through binary and uncorrelated collisions [7, 40, 41]. Several modifications to the SKT have been introduced in the literature accounting for different effects: interparticle friction [4, 7, 42–44], nonsphericity [45], or polydispersity [46]. As one example, Jenkins [47, 48] extended the kinetic theory to account for the existence of correlated motion among particles at high concentration.
\nA convincing, yet simple phenomenological model that predicts the flow behavior in moderate‐to‐dense regime is the µ(I) rheology. Once again, this rheological law is based on the assumption of homogeneous flow of idealized rigid, monodisperse particles, though the extra constraint of frictionless particles can be dropped. According to this empirical model, only three dimensionless variables are relevant for steady shear flows of granular materials: the volume fraction
with
To account for the polydispersity of particles, the generalized inertial number taking into account the average diameters of the particles was introduced by [50]. Traditional µ(I) rheology had been successful in describing the flow behavior of homogeneous flows (both dense and fast). But it has failed to capture the slow and nonhomogeneous flow, where a shear rate gradient is present. Researchers have made significant efforts into developing nonlocal models for granular flows [51].
\nWhen particles are not perfectly rigid, instead they have a finite stiffness (or softness), the binary collision time is nonzero and hence presents an additional timescale, which is ignored in the standard inertial number phenomenology. A dimensionless number signifying the finite softness of the particles is the dimensionless pressure \n
with the dimensionless pressure
The other dimensionless number needed for the full flow characterization is the volume fraction
where
Since a few decades, dynamic particle simulations have been a strong tool to tackle many challenging issues related to understanding the flow behavior of particulate systems.
\nThe molecular dynamics or discrete element methods (DEM) is the term given to the numerical procedure, which is used to simulate assemblies of discrete particles. Molecular dynamics (MD) was originally introduced to simulate the motion of molecules [53–55]. It is essentially the simultaneous numerical solution of Newton’s equation for the motion of individual particles, for which the position, velocity, and acceleration are computed at each time step. Through averaging of positions, velocities, and forces of the particles, the macroscopic fields of the whole system, such as the density, mean velocity, and stresses can be obtained in terms of the micromechanical properties. This helps in revealing insights of the behavior of granular materials, which cannot be captured by experiments. In particular, with MD methods, the role of micromechanical properties of the grains on the macroscopic collective behavior of the system can be analyzed.
\nParticle simulation methods include three different techniques: The discrete element method (DEM), the event‐driven (ED), and the contact dynamics method (CD). All these methods simulate the inelastic and frictional nature of the contacts among grains through microscopic coefficients (i.e., the coefficients of restitutions and the interparticle friction coefficient). In DEM, deformations of particles during contacts are modeled allowing a finite overlap between grains, whereas in the other two methods, the particles are assumed to be infinitely rigid. Since the results presented in this chapter are obtained by using DEM simulations, below we briefly present an overview of DEM. Readers interested in the latter two methods are referred to Refs. [56–58].
\nThe discrete element method (DEM) is a family of numerical methods for simulating the motion of large numbers of particles. In DEM, the material is modeled as consisting of finite number of discrete particles, with given micromechanical properties. The interactions between particles are treated as dynamic processes with states of equilibrium developing when the internal forces balance. As previously stated, the granular material is considered as a collection of discrete particles interacting through contact forces. Since the realistic modeling of the deformations of the particles is extremely complicated, the grains are assumed to be nondeformable spheres which are allowed to overlap [58]. The general DEM approach involves three stages: (i) detecting the contacts between elements; (ii) calculating the interaction forces among grains; and (iii) computing the acceleration of each particle by numerical integrating the Newton’s equations of motion while combining all interaction forces. This three‐stage process is repeated until the entire simulation is complete. Based on the fundamental simulation flow, a large variety of modified codes exist and often differ only in terms of the contact model and some techniques used in the interaction force calculations or the contact detection.
\nIn this chapter, we focus on the standard linear spring‐dashpot (LSD) model. Considering two particles,
where \n
Collisions may be described using the coefficients of normal and tangential restitution,
A research goal in the granular community is to derive macroscopic continuum models based on relevant micromechanical properties. This means to bridge the gap between the microscopic properties and the macroscopic mechanical behavior. The methods and tools for this so‐called micro‐macro transition are often applied to small so‐called representative volume elements (RVEs), where all particles can be assumed to behave similarly. Note that both time‐ and space‐averaging are required to obtain reasonable statistics, the latter being appropriate in the case of steady states.
\nAs previously introduced in Section 2.1, the average velocity of
being
The stress tensor is of particular interest for the description of any continuum medium. In the case of granular assemblies, previous studies have proposed stress‐force relationships for idealized granular systems that relate average stress in the assembly to fundamental parameters that are explicitly related to statistical averages of inter‐particle load transmission and geometrical arrangement. When referring to a homogeneous volume element
where
where \n
There are two popular ways to extract continuum quantities relevant for flow description such as stress, density, and shear rate from the discrete particle data. The traditional one is ensemble averaging of “microscopic” simulations of homogeneous small samples, a set of independent RVEs. A recently developed alternative is to simulate a nonhomogeneous geometry where dynamic, flowing zones and static, high‐density zones coexist. By using adequate local averaging over equivalent volume (inside which all particles can be assumed to behave similarly), continuum descriptions in a certain parameter range can be obtained from a single simulation.
\nIn Section 4 we will combine results from (a) simple shear RVE and (b) split‐bottom shear cell. The setups are briefly introduced and shown in Figure 1 (see Refs. [30, 49] for more details) and relevant numerical parameters are reported in Table 1. When dimensionless quantities (see Section 2.1) are matched and averaging zones are properly selected, the behaviors from different setups are comparable and a wide flow range can be explored.
\nThe collection of spheres of mean diameter
Variables governing the problem are the volume fraction
Constant‐volume steady simple shear samples are placed in a cuboid box (Figure 1a). The height of the computational domain as
In the case of RVE under constant normal stress condition (Figure 1b), granular systems with polydispersity
A common feature of natural slow granular flow is the localization of strain in shear bands, which are typically of few particle diameters width. A specialized geometry proposed recently which allows one to impose an external deformation at constant rate is so‐called split‐bottom geometry (Figure 1c). In this geometry, stable shear bands of arbitrary width can be achieved allowing for a detailed study of microstructure associated with the flow of granular materials in the steady state. Unlike the previous setups, in the split‐bottom geometry, the granular material is not sheared directly from the walls, but from the bottom. The bottom of the setup that supports the weight of material above it is split in two parts, the two parts move relative to each other and creates a wide shear band away from sidewalls. The resulting shear band is robust, as its location exhibits simple and mostly grain independent properties.
\nIn this geometry, due to inhomogeneous flow, granular packings with contrasting properties and behavior coexist, that is, high‐density static to quasi‐static areas and dilated dynamic flowing zones are found in the same system. A superimposed grid meshes the granular bed and averaging is performed within each grid volume. Inside a grid volume all particles are assumed to behave similarly and information for a wide parameter range can be obtained using a single numerical experiment, for example, at increasing pressure levels along the depth of the cell. In the following sections, when presenting data from split‐bottom cell simulations, only grid‐points in the center of the shear band will be considered, where the shear rate
Parameter/Setup | \nSymbol | \nConstant Volume | \nConstant Pressure | \nSplit‐Bottom Shear Cell | \n
---|---|---|---|---|
Simple Shear | \nSimple Shear | \n|||
Geometry | \n\n | \n|||
Boundary conditions | \n\n | \nPeriodic | \nPeriodic | \nPeriodic in azimuthal direction | \n
Number of particles | \n2000 | \n4096 | \n37,000 | \n|
Polydispersity | \n1 | \n2 and 3 | \n2 | \n|
Coeff. of restitution | \n0.7 | \n0.8 | \n0.8 | \n|
Volume fraction | \n0.2–0.68 | \n\n | \n\n | \n|
Dimensionless stress | \n\n | \n10−3–10−1 | \n10−8–10−2 | \n|
Dimensionless shear rate | \n3 | \n10−5–100 | \n10−2–10−5 | \n
Numerical parameters for the three simulation setups.
Simulation setups: (a) RVE of monodisperse spheres subjected to constant volume simple shear. The particles have highest kinetic energy near the top and bottom boundaries and lowest near the center in height direction; (b) RVE of polydispersed particles subjected to constant normal stress simple shear; and (c) split-bottom shear cell consisting of a fixed inner part (dark) and a rotating outer part (white).
In this section, we compare the results from various flow setups discussed above for low‐to‐high volume fractions. We vary various particle and contact properties to understand how the particle micromechanical properties influence the macroscopic flow behavior. We have compared different datasets from different setups and/or authors, and numbered as follows: [A] Peyneau et al. [64]; [B] Chialvo and Sundaresan [65]; [C] Shi et al. (unpublished); [D] Singh et al. [30, 63], and [E] Vescovi and Luding [49]. Unless specified, we will only use the data labels in the following discussion for the sake of brevity.
\nFigure 2 presents a data collection from two different setups and plots the dimensionless pressure against volume fraction. It shows data with constant pressure simulations from data [A] together with the constant volume simulation results of data [B], for frictionless monodisperse rigid particles. As expected, the data from the two setups are in good agreement. We observe that the restitution coefficient
Steady state dimensionless pressure as a function of volume fraction for a simple shear flow of frictionless monodisperse rigid particles. Stars and circles represent simple shear simulations at constant pressure simulations for
For the dilute case, a granular gas with high restitution coefficient, for example,
Figure 3 shows the variation of the nondimensional pressure with volume fraction for different polydispersity for constant pressure (data [A] and [C]), constant volume (data [B]) homogeneous shear flow simulations, together with the local shear band data from nonhomogeneous shear flows (data [D]). We observe that for low‐to‐moderate volume fractions, pressure is weakly increasing with volume fraction. The data from different shear setups and different polydispersity collapse and agree with the predictions of SKT. However, for higher volume fractions (
In Figure 4, we show the dimensionless pressure as a function of volume fraction for various values of dimensionless particle stiffness, ranging from 103 to 107. The vertical dashed line shows the monodispersed critical volume fraction as in Figure 3. For the sake of comparison, rigid cases (data [A] and [B]) are also plotted. As expected, for the rigid case, pressure diverges close to the critical volume fraction. For soft particles, the deviation from the rigid case is a function of particle stiffness and depending on the system volume fractions (even for the softest particles the deviation from the rigid limit is small for volume fractions smaller than 0.55). When decreasing the volume fraction below 0.5, all different stiffness data tend to collapse. The solid line is the same standard kinetic theory as in Figure 3 where the assumption of rigid particle breaks down for volume fractions
Steady state dimensionless pressure as a function of volume fraction for shear flow simulations of frictionless rigid particles with the same coefficient of restitution (
Figure 5 displays dimensionless pressure plotted against volume fraction for both constant volume (data [E]) and normal stress (data [C]) setups with three polydispersities and dimensionless contact stiffnesses, in the moderate to dense volume fraction regime. Diamonds represent constant volume simulation for monodisperse particles while stars and triangles refer to the constant pressure simulation data for polydispersity 2 and 3, respectively, and different color represent different particle stiffness. For
Steady state dimensionless pressure as a function of volume fraction in moderate to dense regime for simulations with different polydispersity and different particle stiffness as given in the legend. The lines are the same as in
Steady state dimensionless pressure as a function of volume fraction for different values of dimensionless particle stiffness, using monodisperse particles, with restitution coefficient
Figure 6 shows the pressure nondimensionalized in two possible ways (a) using shear rate and (b) using particle stiffness (as introduce in Section 2.1) plotted against the distance from the critical volume fraction for the data from different simulations using frictionless particles. Figure 6a shows a good data collapse for the volume fractions below the critical volume fraction (unjammed regime), or the so‐called fluid regime. In the special case of nearly rigid particles or small confining stress, the scaled pressure diverges at the critical volume fraction, which indicates that the granular fluid composed of rigid particles under shear cannot reach a denser shear jammed state. For the data with softer particles, flow is possible even above the critical volume fraction. For low to moderate volume fractions, the agreement of our data with the rigid case is excellent, while for high volume fractions (especially close to the critical volume fraction) deviations are considerable. The data collapse in the low volume fraction regime shows that the Bagnold scaling relationship between pressure and volume fraction is not strongly affected by particle stiffness, polydispersity, and shear setups, but was influenced by the restitution coefficient (see Figure 2). The “fluid” experiences the energy loss more prominent due to collisions.
\nFor larger volume fractions, the scaling does not collapse the data. Note the deviation between constant volume (data [E]) and constant pressure (data [C]) due to the small difference in the dimensionless stiffness as shown in the legend.
\nFigure 6b shows the same data but only the soft particle simulations ([C] and [E]) with pressure nondimensionalized by the particle stiffness. In this way, we observe a data collapse for high volume fractions,
While up to now, the focus was on understanding the relation between pressure and volume fraction, a granular rheology also must consider the shear stress.
\nFigure 7 shows the steady state shear stress ratio,
Steady state stress ratio (shear stress divided by pressure) versus inertial number,
Steady state pressure, as nondimensionalized by (a) shear rate and (b) particle stiffness plotted as a function of distance from the critical volume fraction,
This chapter gives an overview of recent progress in understanding and theoretically describing the collective mechanical behavior of dissipative, deformable particles in different states, both fluid‐like and solid‐like. Particulate systems and granular matter display collisional, dilute and solid, mechanically stable states, either switching forth and back, or both at the same time. In which state the system resides depends not only on material properties like, for example, their discrete nature (elastic stiffness), the dissipation (restitution coefficient) or the size distribution (polydispersity) of the particles, but also on the density of the system and balance between the energy input by (shear) stress or strain‐rate and the energy dissipation by collisions or plastic deformations. Realistic material properties like friction and cohesion as well as nonsphericals particles go beyond the scope of this chapter.
\nOne extreme case of low and moderate density collisional flows (for weak to moderate dissipation and arbitrary polydispersity) is well described by standard kinetic theory (SKT) up to system volume fractions about 0.5, beyond which the elastic behavior of longer‐lasting contacts becomes dominant. Open challenges involve very soft particles for which basic theoretical assumptions of kinetic theory fail, for example, due to multiple contacting particles.
\nThe other extreme case of quasi‐static flow of elastic, mechanically stable solid‐like structures are approximately described by the classical μ(I)‐rheology in the limit of rigid particles, but require a softness correction for comparatively large confining stresses. Remarkably, dissipation, as quantified by the coefficient of restitution, dominates the collisional flows in the dilute regime, while the particle stiffness, the polydispersity, and the friction (data not shown here) are the controlling microparameters for denser quasi‐static and jammed flows.
\nThe mystery of bridging the gap between the collisional, dilute, and the denser quasi‐static, elastic solid‐like regimes is not completely solved yet. The particulate, microscopic states are well understood by particle simulations that via so‐called micro‐macro transition can guide the development of macroscopic, continuum constitutive relations that allow to predict the state and characteristics where a granular system resides in. A unified description that ranges from dilute to dense, from rapid to slow, from soft to rigid, etc., is still one of the great challenges of today’s research.
\nThis chapter provided a few methods and some phenomenology, as well as an overview of recent literature in this field, with theories that can describe the extremes. Various recent works attempted to combine those limit‐cases and provide first combined, generalized theories that go beyond the classical states. However, due to dissipation, friction, cohesion, and nonsphericity of realistic materials, this poses still plenty of challenges for today’s research. Our own ongoing research focuses on providing simple unified/generalized theories, also for systems with attractive forces and with anisotropic microstructures, which were not addressed in this chapter.
\nIn the civil aviation scenario, the pandemic affected the economic circumstances (…) showing the need to reevaluate the demand projections of passengers, aircraft, and load [1]. The efforts of the civil aviation sector are to seek safety guidelines, to intensify the sanitation of surfaces, the use of masks and alcohol gel, frequent hand cleaning with soap/water, the practice respiratory etiquette, and proper ventilation, to keep the environment decontaminated and the ventilation controlled in order to reduce the contagion in airports and planes. Since environmental quality in civil aviation is facing COVID-19 it is necessary to seek comfortable resources in the ventilation itself in an attempt to solve or soften the discomfort during the cruise. The incipient individualization of passengers’ thermal comfort is one of the biggest problems faced by companies in the aviation sector. Exposed, multiple times, to considerable variation of thermal sources and different temperatures of asymmetric airspeed fields, passengers suffer the consequences of neglect with solutions that seek the individual space optimization without compromising the comfort provided in aircraft’s cabins. To evaluate the thermal comfort, one must know the environmental comfort criteria to the relevant thermal environment parameters, along with the methods to its prediction (project phase) or measurement (commissioning and operation phase). From this basic premise, we need to: (a) define which are the main internal climatic parameters of temperature and asymmetric airspeed due to the cabin geometry projected with pitch,1 and what is the restricted average width between the armchairs reducing the space between the passengers; (b) quantify its influence on the passengers, and (c) discern the plane and HVAC system in these parameters.
A large number of researches about thermal comfort was written and published. This extensive research literature was written in international standards [2, 3, 4, 5, 6, 7, 8], with the intent to guide the aeronautical project professionals to project and maintain the internal thermal environment comfortable, being internationally known as indoor climate or indoor air.
In this chapter, we research the thermal comfort and the adaptive comfort standard (ACS) based on variable climatic expectations that shift the locus of thermal regulatory responsibility to the environment of commercial and passengers transport aircraft, and back again to the airplane cabin occupants. The occupants are obligated to become way more active or interactive with the airplane internal cabin to implement the adaptation opportunities offered by the plane to create an acceptable indoor climate for passengers. After elaborating the methodological differences between these two perspectives about the person-environment relationship, the chapter examines the implications of standards and practices of thermal comfort using the computational simulation tool CFD, which allows describing the project guidelines to decision-making during the air distribution planning, considering the aircraft cabin’s geometry. Confident that the obstacles to thermal comfort in the concerned aircraft can be solved with what is observed in simulations made in computational fluid dynamics – capable not only of making predictions about the thermal field and its speed but also of indicating the particle concentration of ventilated environments. The chapter finishes with a discussion about the increase of passengers’ thermal comfort, adapting to variations and adjustments in the thermal environment. Such variations allow the creation and distribution of personalized ventilation that is formed around the passengers, and the best way to control this environment is through insufflation, temperature, and flow rate. Personalized ventilation, through air diffusers, highlights the Indoor Air Quality (IAQ), and the thermal comfort research gives a better understanding of the relationship between the human body and surrounding environments. In this regard, passengers play a central role in the aircraft cabins’ internal environments. It is noted that, although experimental researches using mannequins provided valuable information about airflow, speed, temperature, and pollutants concentration, some other detailed information such as the airflow field around a person and the relation between the amount of heat transfer by radiation and the transfer of convective heat between the human body and its surroundings cannot be obtained in experiments. The innovation happened in the past years with the introduction of CFD technology, which developed and made it possible to analyze the microclimate around a human being. It can simulate the passengers’ transient inhalation and exhalation in the processes, having the geometrical representation of the Computational Thermal Manikin (CTMs) which represents the human body, being a significant factor for the ventilation personal study, representing the turbulence, grid generation, and boundary conditions model selection. The researchers conducted in Denmark (Aalborg University and the Technical University of Denmark), Japan (The University of Tokyo), and Germany (Hamburg University of Technology) use computational thermal manikins (CTMs) with the intention of determining indexes that are either unable or at least very hard to be acquired through experiments.
Because the topic is clearly within the jurisdiction, to present some of the results obtained in our investigation, we first bring a brief literature review about the subject. At this point we highlight the work in which we based the present chapter and, which yet not recognized by scientists due to lack of information about the subject, we also present observations taken sometimes from the visits we made to the airlines and theirs web portals from 2014 to 2020, sometimes from the interviews granted by old employees, whose reports mainly focused on the aircraft’s internal environment development in Brazil. In short, being useful to thermal comfort practitioners.
This will allow the identification of the airport, plane, and passengers with contagion control purposes by airborne contamination, we hope that the professionals who work directly in airplanes and airports’ organization and maintenance consider more actively the elements that involve environmental quality and human thermal comfort.
The first identification of SARS-CoV-2 in human beings happened in Wuhan, China (2019). In that period there was paralyzation of air traffic in China. Right after the COVID-19 virus had spread to South Korea, caused the cancellation of flights, then to Iran and Italy. In that period, there were already cases of COVID-19 around the world. In March 2020, the United Nations (UN) declared a pandemic caused by the new SARS-CoV-2 virus, impacting the health system in biomedical and epidemiological order on a global scale. This fact imposed social isolation, among other measures, to protect health. At that time airports, ports, and land borders were closed except essential flights (Figure 1).
The impact of the COVID-19 pandemic in international airports.
In earlier times the aviation sector had already suffered before, in 1976 there was the Ebola virus contamination, affecting human beings and other mammals. There was a union of forces between the civil aviation secretary and the World Health Organization (WHO) to avoid the transmission of the Ebola virus, especially improving the internal environment quality of passenger airplanes.
In 2009, emerged the Flu A H1N1 pandemic and later on with a new sub-type of influenza A (H1N1). In response to the outbreak, on April 25 the World Health Organization declared a Public Health Emergency of International Concern. Then, on April 27, the WHO announced phase 4 (human-to-human transmission) and phase 5 (sustained transmission) pandemic [9], and phase 6 (global spread) on June 11th, 2009. On this date, there were already 30 thousand cases reported in 74 countries.
The World Health Organization (WHO) declared the pandemic in March 2020, which was a decisive moment to air traffic that came with a change of attitude for the aerospace industry. However, aviation impacts also occurred in 2001, 2008, and 2010.
On September 11th, 2001 many flights were canceled, both in the United States and in other countries, due to terrorist attacks. In this period the discussions about airport security had begun, nowadays every airport security forms are the result of the standards established at that time.
In 2008 because of the US economic recession tourist and business travel decreased. Generally speaking, the business class customers are loyal company customers. In this same period, there was an increase in oil prices, which was reflected in aviation till 2011.
In 2010, the volcanic eruption in Iceland Eyjafjllajökull disrupted European air transport, especially passengers flights between the US and Europe.
According to Faury, Guillaume (CEO of Airbus), 2020 “We are now in the midst of the gravest crisis the aerospace industry has ever known”. The planes used to conduct many cruises were forced to stand still, which requires maintenance before returning to operation. The airplane’s maintenance, in general, follows the “Parking Mode” (1) easy to get back to service; (2) maintenance (more frequent: engine and main systems); and the “short term” (a) preserve engines; (b) remove fluids; (c) cover all entries (sensors, cracks, engines, mechanical ventilation, etc.); (d) disconnect batteries, and (e) lower the shutters of the windows. The airplanes with outdated technology (with old models and large airplanes) or for sale are stored in deserts such as Victorville, California, and Pinal County, Arizona in the United States (Figure 2).
American aircraft boneyard. Commercial aircrafts in Southern California Logistics Airport (former United States Air Force base), Victorville, California, USA. Source:
It is noted that the coronavirus side effect is the use of better technologies, especially when it comes to air quality. The cargo companies besides cargo-specific planes also have passenger planes that transport a portion of cargo. The Belly Cargo (Long haul Flights) is a cargo plane with passengers that carries out 23% of all the world’s cargo. An important aspect of freight transport is hospital equipment products, this happens because, due to the pandemic, it was necessary to protect the whole hospital teams with suitable materials to assists patients with COVID (such as masks, aprons, hospital equipment products, etc.) which no country had in stock. Most of these products are manufactured in Asia, especially in China. In this regard, air transport is being requested to save lives (Figure 3).
Dissemination of COVID-19.
The Brazilian National Civil Aviation Agency (ANAC) acted to soften the pandemic impacts, reducing the contamination risks to the users and employees through the gradual resumption of operations of the internal and external market, with ANAC Ordinance No. 1126 of 23/4/2020 to combat an infectious agent in the standards for fighting COVID-19 published according to the International Health Regulations, in the Collegiate Board Resolutions, (Resolution—RDC No 02, 2003, Resolution—RDC No 21, 2008 and Resolution—RDC No 56, 2008 and in the guidelines of the Ministry of Health. It follows the international protocol to fight COVID and establishes (1) the central systems in operation as long as the air renewal is open at its maximum capacity, and (2) compliance with the Maintenance, Operation, and Control Plan—PMOC of the installed air conditioning systems, especially the filter, in the airport. In airplanes cleaning occurs in the supervision of the cleaning teams with cleaning and disinfection procedure in each scale, before the boarding of new passengers. With the closing of the doors, whenever possible, the airplanes air conditioning system turned on and the mode without air recirculation selected.
The air conditioning and pressurization systems are responsible for ensuring good health and comfort conditions for aircraft’s occupants since they are the components of environment control.
While in buildings we have homogeneous environments, aircraft are considered non-homogeneous once they present different temperature and velocity gradients [10]. The difference between aircraft and building air conditioning system design is due to the aircraft’s weight and the pressure difference between the outside and inside of the aircraft in high altitudes. When it comes to aircraft air conditioning special equipment capable of handling temperature asymmetries or radiant temperature is necessary.
In a good air conditioning system, the airflow must occur at a high speed at the top part of the airplane. In the bottom part, the recirculation is characterized by the mixed air present in the cabin (MV, mixing ventilation). Afterward, the engine must direct the outside air to the inner parts of the cabin, where, under very high temperature and pressure, it will be breathed in. Therefore, besides promoting air conditioning, the pressurization system avoids any discomfort or damage, because of the altitude changes that the cabin undergoes, for the occupants (the fast air change in the cabin eliminates odor and removes any traces of stale air).
Usually, the command cabin controls the pressurization systems that are incorporated in a sealed unit with the luggage compartment. The pressurization system is capable of containing air under higher pressure than the outside atmospheric pressure. Although in high altitudes the aircraft’s external environment does not present viable conditions to the survival of human beings. The air is dry with extremely low temperatures and pressure: according to Lombardo [11, 12], the atmosphere consists of 21% oxygen, 78% nitrogen, and 1% other gases in its volume; however, the increase in altitude implies air rarefaction and a decrease of pressure lowering the amount of oxygen necessary for human functions. That is why aircrafts that do not have air conditioning and pressurization system are usually limited to low altitudes.
The pressurization is directly related to the quality of the partial pressure of oxygen available in the breathing air inside the fuselage compartments of the airplane, occupied by the flight crew. Its purpose is to maintain the indoor pressure equal to or greater than the value of the atmospheric pressure at 8000 feet altitude. Because when the airplane flies at higher altitudes, there will be a reduction in fuel consumption.2
The ventilation, one of the functions for which the air conditioning system is designed, consists of a dynamic intake of pressurized air. This function is done with the aid of an airflow fan, a heating operation on the ground, or a compressor when the aircraft has pressurized air ducts installed in the front, the top, or the bottom. The air goes into the main air entrance of the heater and is heated when passing over the radiator surfaces from where it is then distributed.
The refrigeration system, which is located next to the ventilation methods, are installed to ensure comfortable atmospheric conditions to the aircraft regardless of the altitude where the plane is situated. It also works to maintain the appropriate volume of air circulating at the correct temperature and humidity inside the aircraft. The capacity of the refrigeration system depends on the fuselage cavity proportions so that the circulation of air and vapors occurs. In both cases, the treated air is pumped only in the overhead bins region at a high speed and the outlet is made by side air vents in the bottom. Meanwhile, the cabin air conditioning is made by the central air conditioning and heating system, which provides outflows of up to 700 m3/h (412 cfm) and controls the indoor air temperature from 14 to 35°C.
Before being recycled, the recirculated air is filtered by high-performance filters such as HEPA (High-Efficiency Particulate air filter), which is capable of retaining 99.97% of the cabin’s airborne particles.
The cabin air circulation and ventilation inside an airplane are carefully designed to disperse and redirect contaminants, changing the entire cabin air volume from 20 to 30 times per hour in airplanes with the E-Jet model [13]. Higher is the frequency of air change, lower is the risk of viral dissemination, however, this air change occurs only when the plane is free-flying. The Airbus Chief Engineer Jean-Brice Dumont highlights the importance of air quality design being extremely clean with air renewal every two or three minutes, about 20 to 30 times per hour.
The distance between countries as well as the time to travel these distances, have decreased with the development of the aeronautic engineering industry applied to air transport. Due to factors such as international scientific conferences, work, sport or artistic events, celebrations, etc. culture and habits dissemination happens more frequently.
In that sense, air quality becomes a priority to avoid infectious pathologies and maintain public health by preserving health safety in airplanes and airports.
According to WHO director-general, Tedros Adhanom Ghebreyesus, in a press conference on Wednesday (11/03) “If the countries work to detect and track the disease, isolate the cases and mobilize human resources to respond to COVID-19, it is possible to prevent those places with few cases from becoming centers of virus dissemination and consequently from sustained community transmission.” The director-general also pointed out the WHO guidelines to the countries which follow them: activate and expand the emergency response mechanisms, communicate with the population about the risks and how to protect themselves, find, isolate, test, and treat every case of COVID-19 apart from tracking all the infected.
In this context, keeping strict control on air transport before, during, and after the trip, it is possible to prevent the virus dissemination and its corresponding strains. The precautions before the flight, such as proper face mask usage, packing the luggage with plastic at the airport and/or using alcohol gel before the luggage is placed in the baggage compartment of the plane. As the International Air Transport Association states simple measures, such as the usage of masks by passengers and crewmates, as well as the guidance to use elbows to intercept coughs and sneezes, minimize the risks almost completely.
As the COVID virus could transmit among passengers on touching the infected surfaces and carelessness in using disinfecting substances, the main air companies of the world adopted new cleaning procedures to ensure that the aircraft is scrubbed after each flight, as well as ensuring passengers follow the required health and safety measures.
The air circulation in the cabin of the aircraft is done by a tube that captures external air and heats it during the flight by the engines, or by the auxiliary power unit when the airplane is on the ground. By a process of environmental control, the air is pressurized and cooled down to appropriate temperature for passengers and then it joins the recirculated air.
The air in the airplane’s cabin comes from the ceiling, flows to the ground, and drains below the luggage compartment. As the air flows from top to bottom, the risk of dissemination of infectious agents diminishes regarding the front-to-back direction, the longitudinal orientation of the cabin.
The air conditioning and pressurization systems are responsible for ensuring good health and comfort conditions to the aircraft’s occupants since they are the components of environment control.
While in buildings we have homogeneous environments, the aircraft is considered non-homogeneous once they present different temperature and velocity gradients. The difference between aircraft and building air conditioning system projects is due to the aircraft weight and the pressure difference between the outside and inside of aircraft in high altitudes. When it comes to aircraft air conditioning, special equipment, capable of handling temperature asymmetries or radiant temperatures, is necessary.
In a good conditioning system, the airflow must occurs at a high speed at the top part of the airplane. In the bottom part, the recirculation is characterized by the mixed air present in the cabin (MV, mixing ventilation). Afterward, the engine must direct the outside air to the inner parts of the cabin, where, under very high temperature and pressure it will be breathed in. Therefore, besides promoting air conditioning, the pressurization system avoids any discomfort or damage for the occupants because of the fast air change in the cabin due to the altitude changes that the cabin undergoes, which eliminates odors and removes any traces of stale air.
The pressurization is directly related to the quality of partial pressure of oxygen available in the breathing air inside the fuselage compartments of the airplane, occupied by the flight crew. Its purpose is to maintain the indoor pressure equal to or greater than the value of the atmospheric pressure at 8000 feet altitude. Because, if the airplane flies at higher altitudes, there will be a reduction in fuel consumption.
One of the functions for which the air conditioning system is designed, the ventilation, is performed by a blower to help air circulation and by a heater operation on the ground. From a dynamic compressed air valve or a compressor in aircraft which has ducts of pressurized air installed in its front, bottom, or top surfaces. The air goes into the main entrance of the heater and is heated when passing over the radiator surfaces of the heater from which it is then distributed.
The refrigeration system, which is located next to the ventilation methods, is installed to ensure comfortable atmospheric conditions for the aircraft regardless of the altitude the plane is located. They also work to maintain the appropriate volume of air circulating in the correct temperature and humidity inside the aircraft. The capacity of the refrigeration system depends on the fuselage cavity proportions in which the air cycle3 and the vapor cycle4 occur. In both cases, the treated air is pumped only in the overhead bins at a high speed and the outlet is made by inferior exit ducts. In the meanwhile, the cabin air conditioning is given through the air conditioning and heating central system, which provides outflows of up to 700 m3/h (412 cfm) and controls the indoor air temperature from 14°C to 35°C.
According to Conceição [14], the cabin must also have a humidifying system, responsible for maintaining the relative air humidity between 20 and 70% inside the cabin. It also must control the temperature of the walls once again from 14°C to 35°C, by an additional climatization and temperature control system, as shown in Figure 4.
Cross-section of thermal mock-up. Source: Conceição [
Control valves, sensors, and electrical cables regulate the indoor air temperature when activated by air conditioning system valves, located in the cockpit panel (Figure 5). If there is an automatic control malfunction, there must be manual controls available.
Typical air conditioning and pressurization system. Source: ANAC [
It can be seen that the cabin’s air distributor includes air ducts (with rectangular or circular sections when used in air distribution systems (Figure 6), or with other shapes when allocated in the passengers’ individuals air exits and the window defroster), filters and heater exchangers, silencers, unidirectional valves, humidifiers, sensors of mass flux control and meters. The cabin’s pressure sources cover positive displacement compressors (superchargers), centrifugal compressors, and supercharger controls. Supercharger tools working as airflow meters, pressurization valves, pressurization controls, cabin pressure regulator, and also air pressure safety valve.
Typical air distribution system. Source: ANAC [
According to Lombardo [11], the refrigeration machines which operate with air cycle are the predominant systems in aeronautical applications, especially when it comes to passenger transport aircrafts. The option is justified because of the availability of the working fluid (compressed air from the plane’s propulsion system) and also by the fact that the air cycle (air cycle machine or ACM) do not demand the transport of new working fluid, which would require weight and occupied space restrictions. So, the air is partially treated in high-quality filters, similar to those used in hospitals surgery rooms, and thereafter is mixed with the same proportion of external air. The renovation of conditioned air is necessary for long distance flights and with a large number of crew members in the airplane cabin in a closed environment. The airflow must therefore meet thermal comfort requirements through an air conditioning operating system and be compliant with external environmental atmospheric conditions.
Researches related to air conditioner maintenance of airlines such as TAM and Embraer (2014) show that the air distribution is operated by a container that works at 35% of its capacity, meanwhile, the other 65% of the air volume stands still on the floor, without returning to circulate through the cabin. In other words, the clean air is not used in the internal environment of the aircraft and likewise, the same air used before circulates yet again causing many airborne viral pathologies to be transmitted. Besides, in these situations, health problems caused by engine oil particles that were found in the air filters have become common.
Given the possible damages to passengers’ health, there were established flow standards for air conditioning systems. Maintaining the internal air quality demands that the renewal tax of the external air be high. In the same way, it is fundamental that the supply of external and recirculated air occurs in the appropriate temperature and relative humidity conditions. The temperature control of the cabin’s interior avoids areas with stagnated air, as well as enables the dissipation of contaminants and odors.
Efforts to maintain the good air quality inside the cabins turn out to be especially important as Quinyan Chen and her partners’ researches in the Purdue University College of Engineering (USA) pointed out that ventilation causes the dispersion of contaminants from expiratory activities (for example sneezing, coughing, talking or breathing). Presenting their studies about the main characteristics of particles dissemination in airplane cabins, researchers demonstrated how they can be involved in contamination events. Nevertheless, they suggested the relevance of paying attention to the subject, since there is little research about personalized ventilation systems that can be used along with a mixed ventilation system. It is known that before being supplied to the cabin, the recirculated air is filtered through equipment with high-efficiency particles. Those air filters also known as HEPA filters must be capable of reducing the risks of a cross and longitudinal infection of the airflow supply [15]. Next, Computational Fluid Dynamics (CFD) analysis of the airflow will be used to determine air conditioning coefficients in commercial passenger airplanes.
The aircraft cabin e-170 uses the normal ventilation system with a longitudinal direction. In this chapter, it will be applied and validated, in a testing phase, in mock-ups, with digital thermal manikins controlled by the Autodesk software with a Computational Fluids Dynamic (CFD) tool in order to determinate the temperature and speed coefficients and their corresponding thermal loads.
The tests include three steps: construction of the aircraft prototype; model construction of the empty cabin, with passengers standing and with the digital manikins seated; analyzing the actual air conditioning system to define the cabins’ thermal environment characteristics inside a commercial aircraft for passengers transport.
Prototype construction of the aircraft e-170 with the internal layout of armchair, luggage rack. A digital mock-up will be used for the tests to reproduce the cabin section of a commercial airplane with the dimensions of 3 × 3 × 2.5 m in height Figure 7.
Prototype construction of the aircraft e-170.
The construction of the passengers digital model is made from the use of the digital thermal manikin, built using the software “Solid Works”, it helps in the anthropometric analysis of the armchair to evaluate the equivalent temperatures. The thermal manikin has 1.70 m in height, which allows a more representative temperature modeling of the surface of the body, to verify the passengers’ comfort and discomfort. The thermal manikin, for now described to the passenger as a digital-physical model controlled by three control modes: constant temperature (air temperature and speed), constant power, and Fanger’s comfort equation.
Fanger’s method will be used to verify the thermal exchanges and the thermal balance of the human body, in other words, the “CLO-FANGER-MET” method with the influence of atmospheric pressure. The air temperature and speed are measured in the cabins’ thermal environment Figure 8.
Digital model construction of the passenger.
The air quality and its impact on humans during the cruise are determined by the aeronautical comfort design and have strong influences on the thermal conditions of the passenger. The air recirculation used before the airborne pathologies by various types of viruses. For example, according to researches presented during the Roomvent Congress, 2014, ventilation is related to the circulation of contaminants in airplanes cabins which from expiratory activities, cause cross-contamination events. Belonging to the list of studies about environmental comfort this research therefore, evaluates the actual thermal behavior of the airplane commercial user. In the face of the need to investigate air diffusers, responsible for the crew discomfort and for the transmission of diseases such as the so-called SARS (Severe Acute Respiratory Syndrome), and the challenges that are imposed on the intentions to design a healthy and comfortable environment in the cabins, we analyze the air distribution in the interior project of such cabins. The research focuses around the armchair and duct shapes with the use of the Computational Fluid Dynamic (CFD) tool.
The results of this chapter present a model based on computation that can predict the temperature and airflow as well as the parameters of environmental air distribution in commercial airplanes cabins, in empty cabins, and with passengers seated or standing. The model is known as CFD (Computational Fluid-Dynamic Model). The purpose of this item is to present to the reader some of the main fundamentals that are necessary for the applications of CFD related to internal environmental technology in commercial aircrafts.
This item presents the information used in the data entry for the CFD commercial airplane e-170 cabin simulation: Figure 9.
Mesh refinement.
The results of this chapter present a model based on computation parameters that the air distribution and environment temperature in the commercial aircraft cabin are the passengers breathing, empty cabin, and with the passenger seated or standing. The purpose of this item is to present to the reader some of the main fundamentals that are necessary for the applications of CFD related to the internal environmental technology for commercial aircrafts.
The passangers breathing inside the plane’s cabin is presented in Figure 10.
Shows the air breathed by passengers.
The representation of the empty cabin with the representation of the air supply diffuser going from the top part to the bottom one with the cabin height of 0–1.70 m and 0–1.50 m length is presented in Figure 11. Figure 12 identifies the magnitude velocity from 0 to 0.9 m/min noticing that the maximum airspeed is concentrated close to the gasper outlet, decreasing its speed throughout the path to the air outlet at the bottom of the cabin. The air temperature in degree Celsius is presented in Figure 13, ranging from 22°C to 28°C, notice that this temperature is used for tropical climate inhabitants, different from the countries located in Scandinavia, where temperature above 18°C is the upper limit in summer. The air supply diffuser using a computational mesh through the cabin is shown in Figure 14. Figures 15 and 16 demonstrate, as an example, the points of a constant air temperature value and speed for an empty cabin.
Air supply diffuser representation using a computational mesh to demonstrate a Fluid Domain mesh.
Airspeed in the empty cabin.
Air temperature in the empty cabin.
Air supply diffuser representation using a computational mesh.
Iso surface are surfaces that represent points of a constant number. For example, temperature and airspeed.
Iso surface are surfaces that represent points of a constant number. For example, temperature and airspeed.
The airspeed with the passenger standing is represented in Figure 17 with a variation of magnitude velocity from 0 to 0.11 m/s. Figure 18 presents the air surface and Figure 19 identifies the air temperature between 24.88 and 27.04°C. Demonstrated in Figure 20 is the image from the perspective of the cabin. The cabin refining mesh is presented in Figure 21.
Airspeed with passenger standing.
Iso surface of the cabin with passenger standing.
Cabins temperature exhibition with passenger standing.
Iso surface of the airflow line with passenger standing.
Cabins mesh refinement with passenger standing.
A seated passenger in the cabin has an isometric view with Magnitude Velocity from 0 to 0.007 m/s in Figure 22. In Figure 23 the airspeed with the passenger seated (0.35–0.49 m/s) with the airflow going from the top part to the bottom part of the cabin. The air temperature with front view is shown in Figure 24 with a variation of 23.4–27.4°C and the airspeed with a variation of 0–0.37 m/s in Figure 25 and with airspeed ranging from 0 to 0.89 m/s in Figure 26. Seated passenger mesh refinement is presented in Figure 27.
Isometric view of passenger seated airspeed.
Airspeed with a seated passenger (0.35–0.49 m/s).
Air temperature with a seated passenger (23.4–27.4°C).
seated passenger airspeed (0–0.37 m/s).
Seated passenger airspeed (0–0.89 m/s).
Seated passenger refinement mesh.
The air quality and its impact on humans during the cruise are determined by the aeronautical comfort design and have strong influences on the thermal conditions of the passengers. The air recirculation used before the cause of airborne pathologies by various types of viruses. For example, according to researches presented during the Roomvent Congress, 2014, ventilation is related to the circulation of contaminants in airplanes cabins that from expiratory activities, cause cross-contamination events. Belonging to the list of studies about environmental comfort this research therefore, evaluates the actual thermal behavior of the airplane commercial user. In the face of the need to investigate air diffusers, responsible for the crew discomfort and for the transmission of diseases such as the so-called SARS (Severe Acute Respiratory Syndrome), and the challenges that are imposed on the intentions to design a healthy and comfortable environment in the cabins, we analyze the air distribution in the interior project of such cabins. The research focuses on the armchair and duct shapes with the use of the Computational Fluid Dynamic (CFD) tool. The CFD simulation used the software Autodesk Geometry/Mesh/Solver/Post processing.
Through CFD simulations it was found that the air exits run from the top part to the bottom part of the plane.
Figure 28 shows the effect of the air current circulation and dispersion of particles throughout the aircraft cabin. This demonstrates that it is important to use personalized ventilation during the covid-19 pandemic period. According to Anvisa [16], the airflow of the gasper must be directed straight between passengers to avoid that they inhale the air from one another, avoiding disease dissemination.
Mask usage during flight.
The aeronautical project quality is essential for providing passengers with acceptable environmental conditions in order to achieve their thermal comfort. The research demonstrates the utmost importance of the aeronautical community (industries, research labs, and universities) in the fluids modeling field and the practical applications in the industry’s daily job.
This research results present models based on Computational Fluid Dynamics (CFD) with parameters analysis of temperature and airspeed distributed in a real environment with a cabin sometimes empty, sometimes with passengers standing and/or seated.
It was verified that the temperature and airspeed are influenced by passengers’ behavior, whether they are seated or standing in the plane’s cabin. Breathing influences the airflow, being able to cause contamination in its environment. So, ventilation from the roof of the cabin promotes more particle dispersion throughout its area.
Another significant aspect to highlight is the importance of achieving the plane’s thermal comfort in a cruise. Having an adequate air conditioning system that contributes to the well-being, health, and the aircraft’s users’ health, as well as the other aspects that influence the passengers’ environmental comfort, when based on the cabins’ geometry, the armchairs positioning and ergonomics will also contribute positively in the aircraft’s mechanic system. We suggest the use of the air insufflation systems to avoid contamination through the air in the interior of the cabin.
As this research’s results demonstrate, simulations in CFD showed that there are three variables, and they must be considered to better evaluate the thermal comfort and indoor air quality in an aircraft cabin, which are- the profile of different temperatures, the airspeed, and human breathing. Therefore, the airflow circulation from the upper (ceiling) to the lower air supply duct (floor) promotes a wider dispersion of particles throughout the cabin that is associated with the characteristics of the mixing of this ventilation through passengers and the airplane’s seats. However, it is also important to investigate the airspeed and temperature associated with air humidity.
The use of personalized ventilation is important during the pandemic period of COVID-19, for instance, when the gasper is opened, the airflow must pass between passengers, the air circulation must be oriented directed to the floor’s lower duct. Another precaution that helps to protect the passengers is the use of masks and facial protectors during the flights, which must have non-ventilation and be approved by government agencies. Another security measure adopted to protect the people is to remain at a distance from others and always use alcohol gel.
The concern with passenger air transport relates to public health and safety aspects which must be analyzed in order to have a faster response for such risks. This is fundamental so that measures, such as prevention and vaccine development, in addition to efforts to mitigate COVID-19 transmission and dissemination, can be effective. Technical and scientific researches, as well as public policies to aid and enforce these measures must be constant and applied to the aeronautics industry everywhere in the world, with decisions made according to international health regulations. An additional investigation must be carried on about contamination of material carried in the aircraft.
English version by: Samantha A.L. Takatui, Mayor Edson da Silva and Eng. Nilson Carneiro, Prefeitura Municipal de Araraquara, São Paulo, Universidade Federal de São Carlos, PPGEU, Instituto de Pesquisa Tecnológica do Estado de São Paulo, IPT e Universidade de São Paulo, São Carlos.
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. We uphold a flexible Copyright Policy, guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Monograph",metaDescription:"IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.",metaKeywords:null,canonicalURL:"/page/publication-agreement-monograph",contentRaw:'[{"type":"htmlEditorComponent","content":"When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\\n\\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\\n\\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\\n\\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\\n\\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\\n\\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\\n\\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\\n\\nAUTHOR'S DUTIES
\\n\\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\\n\\nThe Author agrees to:
\\n\\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\\n\\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\\n\\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\\n\\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\\n\\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\nAUTHOR'S WARRANTY
\\n\\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\\n\\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\\n\\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\\n\\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\nTERMINATION
\\n\\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\\n\\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\\n\\nIntechOpen’s DUTIES AND RIGHTS
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\\n\\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\\n\\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\nMISCELLANEOUS
\\n\\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\\n\\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\\n\\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\\n\\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\\n\\nPolicy last updated: 2018-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\n\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\n\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\n\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\n\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\n\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\n\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\n\nAUTHOR'S DUTIES
\n\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\n\nThe Author agrees to:
\n\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\n\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\n\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\n\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\n\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\nAUTHOR'S WARRANTY
\n\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\n\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\n\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\n\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\nTERMINATION
\n\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\n\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\n\nIntechOpen’s DUTIES AND RIGHTS
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\n\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\n\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\n\nMISCELLANEOUS
\n\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\n\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\n\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\n\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\n\nPolicy last updated: 2018-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11770",title:"Feminism",subtitle:null,isOpenForSubmission:!0,hash:"008be465c708a6fde48c8468757a40af",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11770.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:14},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:9},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:83},{group:"topic",caption:"Neuroscience",value:18,count:5},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:25},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:253},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"391",title:"Molecular Genetics",slug:"conservation-genetics-molecular-genetics",parent:{id:"48",title:"Conservation Genetics",slug:"conservation-genetics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:40,numberOfWosCitations:55,numberOfCrossrefCitations:24,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"391",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1610",title:"Analysis of Genetic Variation in Animals",subtitle:null,isOpenForSubmission:!1,hash:"2dbc70699ec1ca38dc2175c6aeebe710",slug:"analysis-of-genetic-variation-in-animals",bookSignature:"Mahmut Caliskan",coverURL:"https://cdn.intechopen.com/books/images_new/1610.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",middleName:null,surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"29252",doi:"10.5772/34554",title:"Genetic Characterization of Albanian Sheep Breeds by Microsatellite Markers",slug:"genetic-characterization-of-albanian-sheep-breeds-by-microsatellite-markers",totalDownloads:3935,totalCrossrefCites:6,totalDimensionsCites:11,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Anila Hoda and Paolo Ajmone Marsan",authors:[{id:"100682",title:"Prof.",name:"Anila",middleName:null,surname:"Hoda",slug:"anila-hoda",fullName:"Anila Hoda"},{id:"130583",title:"Prof.",name:"Paolo",middleName:null,surname:"Ajmone Marsan",slug:"paolo-ajmone-marsan",fullName:"Paolo Ajmone Marsan"}]},{id:"29259",doi:"10.5772/35024",title:"Genetic Diversity and Genetic Heterogeneity of Bigfin Reef Squid “Sepioteuthis lessoniana” Species Complex in Northwestern Pacific Ocean",slug:"genetic-diversity-and-genetic-heterogeneity-of-bigfin-reef-squid-sepioteuthis-lessoniana-species-com",totalDownloads:2390,totalCrossrefCites:4,totalDimensionsCites:11,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Hideyuki Imai and Misuzu Aoki",authors:[{id:"102652",title:"Dr.",name:"Hideyuki",middleName:null,surname:"Imai",slug:"hideyuki-imai",fullName:"Hideyuki Imai"}]},{id:"29265",doi:"10.5772/35455",title:"Shark DNA Forensics: Applications and Impacts on Genetic Diversity",slug:"shark-dna-forensics-applications-and-impacts-on-genetic-diversity",totalDownloads:4077,totalCrossrefCites:1,totalDimensionsCites:9,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Luis Fernando Rodrigues-Filho, Danillo Pinhal, Davidson Sodré and Marcelo Vallinoto",authors:[{id:"104502",title:"Prof.",name:"Marcelo",middleName:null,surname:"Vallinoto",slug:"marcelo-vallinoto",fullName:"Marcelo Vallinoto"},{id:"104511",title:"Dr.",name:"Danillo",middleName:null,surname:"Pinhal",slug:"danillo-pinhal",fullName:"Danillo Pinhal"},{id:"104512",title:"Dr.",name:"Luis Fernando",middleName:null,surname:"Rodrigues-Filho",slug:"luis-fernando-rodrigues-filho",fullName:"Luis Fernando Rodrigues-Filho"},{id:"104514",title:"MSc.",name:"Davidson Clayton",middleName:null,surname:"Azevedo Sodré",slug:"davidson-clayton-azevedo-sodre",fullName:"Davidson Clayton Azevedo Sodré"}]},{id:"29267",doi:"10.5772/34089",title:"Aquatic Introductions and Genetic Founder Effects: How do Parasites Compare to Hosts?",slug:"security-limitations-of-spectral-amplitude-coding-based-on-modified-quadratic-congruence-code-system",totalDownloads:2450,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"April M. H. Blakeslee and Amy E. Fowler",authors:[{id:"98632",title:"Dr.",name:"April",middleName:null,surname:"Blakeslee",slug:"april-blakeslee",fullName:"April Blakeslee"},{id:"103338",title:"Dr.",name:"Amy",middleName:null,surname:"Fowler",slug:"amy-fowler",fullName:"Amy Fowler"}]},{id:"29255",doi:"10.5772/33542",title:"Interspecific and Intraspecific Genetic Diversity of Thunnus Species",slug:"interspecific-and-intraspecific-genetic-diversity-of-thunnus-species",totalDownloads:3839,totalCrossrefCites:3,totalDimensionsCites:4,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Mei-Chen Tseng, Chuen-Tan Jean, Peter J. Smith and Yin-Huei Hung",authors:[{id:"96064",title:"Prof.",name:"Mei-Chen",middleName:null,surname:"Tseng",slug:"mei-chen-tseng",fullName:"Mei-Chen Tseng"}]}],mostDownloadedChaptersLast30Days:[{id:"29265",title:"Shark DNA Forensics: Applications and Impacts on Genetic Diversity",slug:"shark-dna-forensics-applications-and-impacts-on-genetic-diversity",totalDownloads:4077,totalCrossrefCites:1,totalDimensionsCites:9,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Luis Fernando Rodrigues-Filho, Danillo Pinhal, Davidson Sodré and Marcelo Vallinoto",authors:[{id:"104502",title:"Prof.",name:"Marcelo",middleName:null,surname:"Vallinoto",slug:"marcelo-vallinoto",fullName:"Marcelo Vallinoto"},{id:"104511",title:"Dr.",name:"Danillo",middleName:null,surname:"Pinhal",slug:"danillo-pinhal",fullName:"Danillo Pinhal"},{id:"104512",title:"Dr.",name:"Luis Fernando",middleName:null,surname:"Rodrigues-Filho",slug:"luis-fernando-rodrigues-filho",fullName:"Luis Fernando Rodrigues-Filho"},{id:"104514",title:"MSc.",name:"Davidson Clayton",middleName:null,surname:"Azevedo Sodré",slug:"davidson-clayton-azevedo-sodre",fullName:"Davidson Clayton Azevedo Sodré"}]},{id:"29266",title:"Molecular Biodiversity Inventory of the Ichthyofauna of the Czech Republic",slug:"molecular-biodiversity-inventory-of-the-ichthyofauna-of-the-czech-republic",totalDownloads:2087,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Jan Mendel, Eva Marešová, Ivo Papoušek, Karel Halačka, Lukáš Vetešník, Radek Šanda, Milena Koníčková and Soňa Urbánková",authors:[{id:"100205",title:"MSc.",name:"Eva",middleName:null,surname:"Maresova",slug:"eva-maresova",fullName:"Eva Maresova"}]},{id:"29263",title:"Loss of Genetic Diversity in Wild Populations",slug:"loss-of-genetic-diversity-in-wild-populations",totalDownloads:5497,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Shawn Larson",authors:[{id:"96539",title:"Dr.",name:"Shawn",middleName:null,surname:"Larson",slug:"shawn-larson",fullName:"Shawn Larson"}]},{id:"29258",title:"Genetic Diversity and Evolution of Marine Animals Isolated in Marine Lakes",slug:"genetic-diversity-and-evolution-of-marine-animals-isolated-in-marine-lakes",totalDownloads:2919,totalCrossrefCites:3,totalDimensionsCites:4,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Naoto Hanzawa, Ryo O. Gotoh, Hidekatsu Sekimoto, Tadasuke V. Goto, Satoru N. Chiba, Kaoru Kuriiwa and Hidetoshi B. Tamate",authors:[{id:"100088",title:"Prof.",name:"Naoto",middleName:null,surname:"Hanzawa",slug:"naoto-hanzawa",fullName:"Naoto Hanzawa"},{id:"104133",title:"PhD.",name:"Ryo",middleName:"O",surname:"Gotoh",slug:"ryo-gotoh",fullName:"Ryo Gotoh"},{id:"104134",title:"Dr.",name:"Tadasuke V.",middleName:null,surname:"Goto",slug:"tadasuke-v.-goto",fullName:"Tadasuke V. Goto"},{id:"104137",title:"MSc.",name:"Hidekatsu",middleName:null,surname:"Sekimoto",slug:"hidekatsu-sekimoto",fullName:"Hidekatsu Sekimoto"},{id:"104139",title:"Prof.",name:"Hidetoshi B.",middleName:null,surname:"Tamate",slug:"hidetoshi-b.-tamate",fullName:"Hidetoshi B. Tamate"},{id:"130516",title:"Dr.",name:"Satoru",middleName:"N",surname:"Chiba",slug:"satoru-chiba",fullName:"Satoru Chiba"},{id:"130517",title:"Dr.",name:"Kaoru",middleName:null,surname:"Kuriiwa",slug:"kaoru-kuriiwa",fullName:"Kaoru Kuriiwa"}]},{id:"29268",title:"Estimating the Worth of Traits of Indigenous Breeds of Cattle in Ethiopia",slug:"estimating-the-worth-of-traits-of-indigenous-breeds-of-cattle-in-ethiopia",totalDownloads:3487,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Girma T. Kassie, Awudu Abdulai and Clemens Wollny",authors:[{id:"93081",title:"Dr.",name:"Girma",middleName:null,surname:"Kassie",slug:"girma-kassie",fullName:"Girma Kassie"},{id:"99469",title:"Prof.",name:"Awudu",middleName:null,surname:"Abdulai",slug:"awudu-abdulai",fullName:"Awudu Abdulai"},{id:"99470",title:"Prof.",name:"Clemens",middleName:null,surname:"Wollny",slug:"clemens-wollny",fullName:"Clemens Wollny"}]}],onlineFirstChaptersFilter:{topicId:"391",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11967,editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",slug:"elke-jurandy-bran-nogueira-cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",slug:"sandra-ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:196,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"74615",title:"Diet-Epigenome Interactions: Epi-Drugs Modulating the Epigenetic Machinery During Cancer Prevention",doi:"10.5772/intechopen.95374",signatures:"Fadime Eryılmaz Pehlivan",slug:"diet-epigenome-interactions-epi-drugs-modulating-the-epigenetic-machinery-during-cancer-prevention",totalDownloads:376,totalCrossrefCites:0,totalDimensionsCites:1,authors:[{name:"Fadime",surname:"Eryılmaz Pehlivan"}],book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"