Epitaxial growth of Ge on Si has received considerable attention for its compatibility with Si process flow and the scarcity of Ge compared with Si. Applications that drive the efforts for integrating Ge with Si include high mobility channel in metal-oxide-semiconductor field-effect transistors, infrared photodetector in Si-based optical devices, and template for III-V growth to fabricate high-efficiency solar cells. Epitaxy Ge on Si can be used as a virtual Ge substrate for fabrication of III-V solar cells, which has advantages of superior mechanical properties and low cost over Ge wafers. This work investigates the epitaxial growth of Ge on Si using magnetron sputtering, which is an environment-friendly, inexpensive, high throughput, and simple deposition technique. The effects of substrate temperature on the properties of Ge are analyzed. A novel method to epitaxially grow Ge on Si by magnetron sputtering at low temperature is developed using one-step aluminum-assisted crystallization. By applying an in-situ low temperature (50–150°C) heat treatment in between Al and Ge sputter depositions, the epitaxial growth of Ge on Si is achieved. This method significantly lowers the required temperature for and therefore the cost of epitaxial growth of Ge on Si.
Part of the book: Epitaxy