Characteristics of the four types of pharmacoeconomic evaluations [11].
\r\n\tAnimal food additives are products used in animal nutrition for purposes of improving the quality of feed or to improve the animal’s performance and health. Other additives can be used to enhance digestibility or even flavour of feed materials. In addition, feed additives are known which improve the quality of compound feed production; consequently e.g. they improve the quality of the granulated mixed diet.
\r\n\r\n\tGenerally feed additives could be divided into five groups:
\r\n\t1.Technological additives which influence the technological aspects of the diet to improve its handling or hygiene characteristics.
\r\n\t2. Sensory additives which improve the palatability of a diet by stimulating appetite, usually through the effect these products have on the flavour or colour.
\r\n\t3. Nutritional additives, such additives are specific nutrient(s) required by the animal for optimal production.
\r\n\t4.Zootechnical additives which improve the nutrient status of the animal, not by providing specific nutrients, but by enabling more efficient use of the nutrients present in the diet, in other words, it increases the efficiency of production.
\r\n\t5. In poultry nutrition: Coccidiostats and Histomonostats which widely used to control intestinal health of poultry through direct effects on the parasitic organism concerned.
\r\n\tThe aim of the book is to present the impact of the most important feed additives on the animal production, to demonstrate their mode of action, to show their effect on intermediate metabolism and heath status of livestock and to suggest how to use the different feed additives in animal nutrition to produce high quality and safety animal origin foodstuffs for human consumer.
",isbn:"978-1-83969-404-2",printIsbn:"978-1-83969-403-5",pdfIsbn:"978-1-83969-405-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8ffe43a82ac48b309abc3632bbf3efd0",bookSignature:"Prof. László Babinszky",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",keywords:"Technological Feed Additives, Feed Industry, Quality of Compound Feed, Non-Antibiotic Growth Promoter, Product Quality, Additive Enzymes, Digestibility of Nutrients, NSP Enzymes, Farm Animals, Livestock, Immunity, Microbiome",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 24th 2020",dateEndSecondStepPublish:"December 22nd 2020",dateEndThirdStepPublish:"February 20th 2021",dateEndFourthStepPublish:"May 11th 2021",dateEndFifthStepPublish:"July 10th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Professor Emeritus from the University of Debrecen, Hungary who authored 297 publications (papers, book chapters) and edited 3 books. Member of various committees and chairman of the World Conference of Innovative Animal Nutrition and Feeding (WIANF).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.jpg",biography:"László Babinszky is Professor Emeritus of animal nutrition at the University of Debrecen, Hungary. From 1984 to 1985 he worked at the Agricultural University in Wageningen and in the Institute for Livestock Feeding and Nutrition in Lelystad (the Netherlands). He also worked at the Agricultural University of Vienna in the Institute for Animal Breeding and Nutrition (Austria) and in the Oscar Kellner Research Institute in Rostock (Germany). From 1988 to 1992, he worked in the Department of Animal Nutrition (Agricultural University in Wageningen). In 1992 he obtained a PhD degree in animal nutrition from the University of Wageningen.He has authored 297 publications (papers, book chapters). He edited 3 books and 14 international conference proceedings. His total number of citation is 407. \r\nHe is member of various committees e.g.: American Society of Animal Science (ASAS, USA); the editorial board of the Acta Agriculturae Scandinavica, Section A- Animal Science (Norway); KRMIVA, Journal of Animal Nutrition (Croatia), Austin Food Sciences (NJ, USA), E-Cronicon Nutrition (UK), SciTz Nutrition and Food Science (DE, USA), Journal of Medical Chemistry and Toxicology (NJ, USA), Current Research in Food Technology and Nutritional Sciences (USA). From 2015 he has been appointed chairman of World Conference of Innovative Animal Nutrition and Feeding (WIANF).\r\nHis main research areas are related to pig and poultry nutrition: elimination of harmful effects of heat stress by nutrition tools, energy- amino acid metabolism in livestock, relationship between animal nutrition and quality of animal food products (meat).",institutionString:"University of Debrecen",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"71198",title:"Foaming + Impregnation One-Step Process Using Supercritical CO2",doi:"10.5772/intechopen.91304",slug:"foaming-impregnation-one-step-process-using-supercritical-co-sub-2-sub-",body:'For decades, drug delivery systems are the focus of many investigations [1, 2, 3, 4] because it increases the effectiveness of formulations, avoiding the first-pass effect, and reduces the drug dosage of patients, producing delayed drug delivery to increase the patient comfort. Polymers are the coating agent frequently used in pharmaceutical technology due to their properties as toughness, viscoelasticity, and the possibility to form glasses and semicrystalline and porous structures.
Microencapsulation of active substance with polymers allows to produce drug delivery systems where the release phenomena is controlled by the diffusion of the active substance through the polymer and/or the erosion and degradation of the polymer at acid or basic media. Many authors have carried out investigations to prepare controlled drug delivery systems using supercritical technology [5, 6, 7, 8]. In most of the cases, supercritical antisolvent process (SAS) has been the chosen technology because most of the active substances are insoluble in supercritical fluids. In this process an organic solution that contains the polymer and active substance is sprayed into a chamber filled with bulk supercritical fluid. The generated microdroplets improve the mass transfer between the supercritical fluid and the solution producing the dissolution into the solvent and the consequent solvent expansion and precipitation of particles of polymer and active substance by antisolvent effect. The result could be a coprecipitation of both compounds separately, the inclusion of particles into a matrix of polymer called composites, or the production of microcapsules with polymer coating as the active substance. In general, to avoid the separated precipitation, the ratio of polymer/active substance should be high. Moreover, operating conditions as pressure, temperature, concentration, flow rate ratios, and nozzle device have a relative influence on the final product characteristic.
However, some formulations require a long time drug delivery system as transdermal drug delivery where, for instance, hormone treatment could be carried out. Synthetic polymers, for example, polycaprolactone (PCL), polyvinyl alcohol (PVA), or polyvinylpyrrolidone (PVP), are good candidates to prepare for this kind of systems. An excellent alternative is the use of biopolymers, such as chitosan, alginate, starch, or hyaluronic acid [9].
Extended or long delay drug delivery systems are not often achieved in supercritical microencapsulation. If the active substance was placed into the pores of a polymeric porous structure, the drug release would be delayed most of the time. Thus supercritical impregnation into the pores of a polymer is an excellent alternative to prepare delay drug delivery systems.
In supercritical impregnation two processes could happen, the impregnation into the polymer pores and the foaming of polymer with the subsequent impregnated scaffold production. This fact will happen if the polymer structure is able to grow up in the depressurization step. For that many authors have carried out the foaming + impregnation one-step process and the other ones only the impregnation process. CO2 is widely used as blowing agent because it presents properties that are nontoxic, inexpensive, and reusable and have a high dissolution in polymers.
When a polymer is put in contact with supercritical CO2, in a first step the polymer is saturated with the gas above supercritical conditions. In a second step, the system is driven to a supersaturated state, usually decreasing the pressure or increasing temperature. This causes nucleation and relative growth of the porous cells within the polymeric matrix [10]. The fact that the polymer is under supercritical conditions alter physical properties as melting point and heat, glass transition and crystallization temperatures, crystallization rate, and swelling or foaming processes, among others, could be occasioned [11, 12, 13].
In general, as a solvent penetrated the polymer, it induced swelling and consequently facilitated the mobility of the chains, allowing reorientation of the chains to form the more thermodynamically favorable crystalline state and reducing the crystallization and melting temperatures [14].
Moreover, other authors conclude that crystallization rate of polymer-CO2 depends only on the local degree of swelling inside the amorphous regions and the degrees of crystallinity itself [15].
Campardelli et al. [9] investigated the pore formation of PCL under CO2 at 100–200 MPa of pressure and 35–40°C of temperature; due to a higher temperature, the polymer was melted. Process time was varied between 4 and 8 h. They concluded that formation of pores and thus the foaming of the polymer were only favored at 8 h when 100 MPa was used, but at higher pressures the foaming is produced independent of processing time. As pressure increases a regular pore structure was obtained with lower average pore diameter. However, as the temperature increases, the polymer swells more, forming a single structure, sticking polymer granules.
Thus polymer foaming could be achieved in some operating conditions producing scaffolds. The inclusion of active substance in these scaffolds is the focus of many new investigations. So when a polymer is going to be impregnated, it should be taken into account if the foaming process will carry out to produce scaffolds or the impregnation of the active substance happens mostly on the polymer surface.
A supercritical fluid is a substance above its critical temperature and pressure. A typical pressure-temperature phase diagram is shown in Figure 1. At this condition the fluid has unique properties as diffusivities that are two orders of magnitude larger than those of typical liquids, resulting in higher mass transfer rates. Moreover this state presents many exceptional characteristics, such as singularities in compressibility and viscosity and diminishing difference in liquid and vapor phases, among others. It is a good candidate to do extraction or impregnation processes because density can be adjusted continuously by altering the experimental conditions of temperature and pressure so solvent power and selectivity can be tuned.
Pressure-temperature phase diagram.
The requirement that should fulfill the supercritical fluid is on the one hand low danger and on the other hand the relative low cost. In this sense CO2 is GRAS solvent, noninflammable, nontoxic, and gaseous at room temperature which makes the separation process easy. Besides it does not present a high cost and presents relative mild conditions of its critical point (31.1°C and 71.8 bar), allowing the thermolabile solute processing.
During the past two decades, biomedical research has advanced extensively to develop potentially applicable scaffolds. Several methods are used decades ago to manufacture these porous structures.
The solvent-casting particulate leaching (SCPL) technique is a standard method to produce polymer-based scaffolds. A polymer is dissolved in an organic solvent that contains mainly salts, with specific dimensions. Then, the mixture is shaped into a three-dimensional mold to produce a scaffold. Thus, when the solvent is removed by simple evaporation, it creates a structure of composite material consisting of the particles together with the polymer. At the end, particles are dissolved in a bath leaving behind a porous structure. In this way, Sola et al. fabricated innovative 3D porous structures to mimic the bone marrow niche in vitro using polymethyl methacrylate (PMMA) and a flexible polyurethane (PU) and NaCl, as an efficient porogen [16].
The preparation of porous structures from a thermoplastic polymer melt is a convenient route because of the production of scaffolds of many shapes and sizes reproducibly with the use of molds and without involving any solvents. These techniques typically include compression molding, extrusion, and injection molding. Scaffolds of any desired shape could be created by simply changing the mold to use for clinical applications. Moreover, various solid fillers as bioactive molecules could be employed as additives. However, the use of high molding temperatures could degrade and inactivate the biodegradable polymer or the impregnated bioactive molecules [17].
In freeze-gelation method, the porous structure is generated during the freeze of a polymer solution, and then the solvent is extracted by a non-solvent, or the polymer is gelled under the freezing condition. Thus, the porous structure destruction would be avoided during the subsequent drying stage. Porous PLLA, PLGA, chitosan, and alginate scaffolds were successfully fabricated with this method [18].
Various porous biodegradable scaffolds with these polymers have been also fabricated by thermally induced phase separation (TIPS) technique to be used in tissue engineering and drug delivery [19, 20]. This technique is based on changes in Gibbs free energy to induce the demixing of a homogeneous polymer solution to obtain a multiphase system [21]. Highly porous scaffolds of biodegradable PCL have been fabricated by this method [22]. Even PLLA scaffolds with hydroxyapatite as filler were successfully fabricated by Ghersi et al. [23].
Three-dimensional printing (3DP) is another method to produce scaffolds for tissue engineering. In 3DP method the solid is created by the reaction of a liquid selectively sprayed onto a powder bed. This is a versatile method to produce scaffolds for tissue engineering [24].
In robocasting process the object is built by printing the required shape layer by layer. For that, a filament of a paste-like material is extruded from a small nozzle while the nozzle is moved across a platform. Many authors have combined this method with sol–gel synthesis, mixing precursors in an aqueous medium. The resulting gels are used to print scaffolds by robocasting. Houmard et al. fabricated in this way highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering using calcium nitrate tetrahydrate and triethyl phosphite precursors [25].
Besides, several reports on the fabrication of porous scaffolds using sol-gel technique are found in the literature [26, 27, 28, 29, 30, 31, 32].
Scaffold could be fabricated using supercritical CO2 as blowing agent, avoiding the use of organic solvent, and thus the presence of solvent residue in the final product due to tradition processes tested until now does not allow the complete removal of the organic solvents involved in the starting solutions, avoiding high temperatures and long processing time (12–48 h) that can imply the stratification of the drug inside the scaffolds due to the separation of the loaded materials from the polymeric solutions. In this way, the efficiency of the generated devices sensibly decreases due to the inhomogeneous distribution of the drug [33].
In supercritical CO2 foaming, the polymer is exposed to carbon dioxide, which plasticizes the polymer by reducing the glass transition temperature. Then in the depressurization step, thermodynamic instability causes supersaturation of the carbon dioxide dissolved in the polymer matrix, and hence, nucleation of cells occurs. Anyway gas foaming could not be used in polymers which have a very low affinity for CO2 because the main requirement of process is that CO2 can be dissolved in a sufficient amount in the polymer. So this technique is more commonly applied to amorphous polymers excluding polymers with high crystallinity or high glass transition temperatures [34].
In this way, for instance, the PCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Consequently, these results indicated that the PCL scaffolds made by supercritical fluid processing offer well-interconnected and nontoxic substrates for cell growth, avoiding problems associated with a solvent residue. This suggests that these elastic PCL scaffolds formed by supercritical fluid processing could be used for cartilage tissue engineering [35].
Other authors used supercritical CO2 in the foaming process for the formation of polyvinylidene fluoride copolymerized with hexafluoropropylene loaded scaffolds which is a material that is semicrystalline and biocompatible with a good resistance to acid environments. They concluded that a higher pressure, a lower temperature, and a longer saturation time were more favorable for obtaining uniform foam. Moreover, the average pore cell diameter in low depressurization is larger than that in rapid depressurization. Lower crystallinity and higher melting temperature were induced in the formed scaffolds [36].
Supercritical CO2 is used sometimes as dryer to prepare scaffolds. In this way polymer solution is prepared, and then this solution is put in contact with scCO2. In that moment CO2 solubilizes the organic solvent and the scaffold is formed.
In this sense a chitosan-based scaffold for tissue engineering applications has been prepared using supercritical CO2 as dryer. The hydrogel fabricated was subsequently processed with supercritical CO2. The highest porosity (87.03%) was achieved at 250 bar, 45°C, and 2 h of processing at 5 g/min CO2 flow rate [37].
However other authors investigated about a new supercritical fluid-assisted technique for the formation of 3D scaffolds to overcome the main difficulty to obtain the coexistence of the macro- and microstructural characteristics necessary for a successful application. The process consists of the formation of a polymeric gel loaded with a solid porogen, then the drying of the gel using supercritical CO2, and the washing with water to eliminate the porogen. In this way Reverchon et al. fabricated (PLLA) scaffolds with elevated porosity (>90%) and interconnectivity and with good mechanical properties [38]. Moreover they produced scaffolds with predetermined shape and size in a relatively short time (<30 h) and without an appreciable solvent residue (<5 ppm).
Tang et al. produced porous PCL scaffolds with open and interconnected architectures based on supercritical fluid-assisted hybrid processes of phase inversion and foaming. They achieved the encapsulation growth factor in these porous scaffolds, promoting the osteogenic differentiation and thus having also a significant potential in bone tissue engineering [39].
A scaffold where a bioactive substance can be incorporated that, for instance, can control proliferation and differentiation of cells is an excellent alternative to be used in tissue engineering. In this way the function of a scaffold is not limited only as a physical support but also as a bioactive element to control cell proliferation and differentiation. Anyway, scaffold impregnation process has been mostly studied for the preparation of long time drug delivery systems, with more or less delay depending on the final purpose of the delivery.
The conventional impregnation of scaffolds uses organic solvents that dissolve the drug which is going to be incorporated into the scaffolds, but this organic solution should swell and stretch the polymer to allow the diffusion of the drug at adequate depressurization rate. Posteriorly the organic solvent should be removed, leaving the impregnated scaffold. This method has several drawbacks, for example, residues of organic solvent in the final product need a last step to dry the scaffold, and the distribution of drug into scaffold is heterogeneous.
SCF impregnation removes all these drawbacks due to its properties as high diffusivity, low surface tension, and the ease of solvent recovery. Nevertheless, this methodology is limited by the solubility of the drug in the SCF, and the polymer can be swollen by the SCF. If these last requirements are fulfilled, a high-quality product free of residual solvents can be obtained, since no organic solvents are involved in process [40, 41]. In this process SCF is put in contact with the active substance that is going to be incorporated into the scaffolds. Then the SCF solubilizes this substance till saturation during the impregnation time. Later, in the depressurization step, the gas rapidly diffuses out of the polymer, deplasticizing it and avoiding the polymers and active substance exposition to high temperatures, which may degrade them.
CO2 is the frequently used SCF because it is not dangerous, not toxic, not flammable, relatively cheap, and classified as a safe solvent. Anyway due to polarity limitations, it is often used as a cosolvent to increase the polarity and selectivity.
Duarte et al. prepared loaded chitosan scaffold able to sustain the release of dexamethasone using supercritical impregnation [42]. Sproule et al. [43] achieved the successful impregnation of a protein in PMMA scaffolds for biomedical applications holding unaltered the protein activity.
Campardelli et al. [9] prepared polycaprolactone/nimesulide patches using supercritical impregnation. In this work the authors achieved the foaming of the polymer in certain conditions at the same time that nimesulide is incorporated into its structure. Thus impregnated scaffolds are prepared in a one-step process for determined conditions. However in other operating conditions, foaming of the polymer is not favored, and scaffolds were not achieved.
Biodegradable PLA/PLGA foams impregnated with indomethacin in scCO2 were studied by Cabezas et al. [44]. Authors observed that drug loading of foams was favored by high values of stirring rate. Moreover little pore sizes were obtained at slow depressurization rates. As it was expected, composition influenced the mechanical resistance, the PLA foams being more fragile.
Fanovich et al. studied the functionalized PCL scaffolds impregnated with natural compounds extracted from Patagonian Usnea lichen for tissue engineering [45]. An integrated process at high pressure for extraction/impregnation/foaming of PCL was developed. Authors concluded that the process is successful at 35°C and 15–17 MPa of CO2 by foaming. The same researchers incorporated in a posterior work hydroxyapatite to these scaffolds, concluding that the scaffold obtained from PCL-HA with 20% of the HA shows the highest impregnation yield at 17 MPa and 35°C and subsequently also the best bactericidal effect on the tested Staphylococcus aureus strains [46].
The impregnation of chitosan with lactulose using supercritical fluids under various operating conditions, in order to improve the solubility of this natural polymer at neutral or basic pH, was carried out by Diaz et al. The highest impregnation yield was obtained using continuous process, 60-min contact time, 14% (v/v) of cosolvent ethanol/water (95:5), depressurization rate equal to 3.3 bar/min, 100 bar of pressure, and 100°C [47].
The impregnation of 5-fluorouracil, a chemotherapy agent, into a polymer based on D,L-lactide and glycolide was carried out at the same time to the foaming process in a one-step procedure. The possibility of regulating the rate of the scaffold degradation and the kinetics of drug release makes the usage of the copolymer more attractive for a further medical application. Venting rate is revealed to be the most important factor affecting the probes’ pore size and their morphology. Thus, slow venting rates should be used to promote small pores in order to retard the drug release from the polymeric matrix. As it was expected, vigorous stirring rates favor the contact between supercritical CO2 and the swelled polymer, improving the impregnation process. On the other hand, the presence of glycolide enhanced the mechanical strength of the foam preventing pore collapse [48].
In the same way, Salerno et al. prepared porous PCL scaffolds containing three different drugs: 5-fluorouracil, nicotinamide, and triflusal, in order to obtain systems with controlled drug delivery capabilities. ScCO2 saturation and foaming conditions were optimized to create the porosity within the samples and demonstrated that the composition of the starting PCL/drug/solvent mixtures influenced polymer crystallization, scaffold morphology, and pore structure features. Moreover, it was found that drug loading depended on both initial solution composition and drug solubility in scCO2. So, in the case of triflusal that is a highly scCO2-soluble drug, loading efficiency was improved by adding a higher amount of free drug inside of the impregnation vessel. The drug delivery study, as it was expected, indicated that release profiles depended mainly on pore structure and scaffold composition [49].
However, the authors observed that the control on the pore interconnectivity and pore size with this technique still needs to be improved. They proposed the use of natural plasticizers as eugenol to overcome these limitations. Thus, eugenol-containing PCL scaffolds were prepared by supercritical foaming followed by a one- or a two-step depressurization profile. Moreover these scaffolds presented antimicrobial activity preventing the attachment of Gram-positive (S. aureus, S. epidermidis) bacteria and showed good tissue integration [50].
A hybrid porous scaffold of PLGA hydroxyapatite and collagen was prepared using a supercritical CO2 saturation technique by Zhang et al. The results showed that the pore size and porosity of the scaffold could be controlled by manipulating these process conditions. The pore size and porosity can be regulated by supercritical CO2 saturation temperature, saturation time, and saturation pressure [51].
In our facilities PCL scaffolds impregnated with quercetin were prepared using supercritical CO2. PCL is a semicrystalline polyester with a melting point (Tm) of 329–334 K and a glass transition temperature (Tg) of 213 K [52]. Quercetin (Q) is a flavonoid present in many fruits and vegetables [53]. This flavonoid highlights its antioxidant action, but it has different benefits as antibacterial, cardiovascular health, anti-inflammatory, and anticancer effects [54, 55]. The study was supported by an experimental design to elucidate the influence of pressure (15–30 MPa), temperature (308–333 K), and depressurization rate (0.1–20) on foaming, melting temperature, melting heat, and amount of released quercetin.
The experiments were carried out in a plant RESS250 developed by Thar Technologies [56]. PCL and quercetin were mixed physically into an aluminum foil support (ratio 50:1 PCL/Q), and it was introduced into a stainless steel vessel. Then, CO2 was pumped to the vessel till the desired operating pressure at the same time that the temperature was adjusted is reached. A determined impregnation time was awaited, and once finished, the output valve was opened to vent the CO2 in a range of depressurization rate of 0.1–20 MPa min−1. In the SEM image in Figure 2, it can be seen that PCL/quercetin foamed in our facilities [56].
SEM image of PCL/quercetin scaffold.
The generated PCL/quercetin scaffold with higher pore density and smaller pore size was achieved for higher pressure and depressurization rate and lower temperatures (300 bar, 308 K, and 20 MPa min−1). In general according to our results, the high level of temperature is recommended to obtain a pronounced effect of foaming to produce scaffold.
It was also observed that experiments done at lower pressure and temperature together with a higher depressurization rate led to a higher melting temperature. An increase of pressure and temperature leads to composite which released a higher amount of quercetin. However, depressurization rate has the opposite trend, so an increase of depressurization rate leads to a lower amount of released quercetin. These facts can be observed in the contour surface plots (Figures 3 and 4).
Contour plot of melting temperature of PCL/quercetin scaffold.
Contour plot of release quercetin of PCL/quercetin scaffold.
Release profiles showed that quercetin took five times longer to dissolve the same amount of quercetin into the first 8 h, demonstrating the efficacy of using PCL to control quercetin release and its possible use with other medical or pharmaceutical compounds (Figure 5).
Release profile from raw quercetin and PCL/quercetin scaffold.
Impregnated scaffolds are an interesting alternative to be used in pharmacology and biomedicine because scaffolds act not only as a physical support but also as a carrier of a bioactive substance with a controllable release. The possibility of regulating the rate of the scaffold degradation and the kinetics of drug release make it easy to fabricate particular drug release systems. Bone regeneration, implants, hormonal treatment, and tissue engineering applications are fields where scaffolds could be used. The way to create the porosity in the polymer originated a multiple scaffold fabrication methods based most of them in molding and removing the used organic solvent in a posterior step. Supercritical CO2 has been used as dryer in many conventional methods as sol-gel where the solvent must be evaporated. However, in these methods supercritical CO2 is able to remove almost the totality of used organic solvent, which requires several process steps. Another way to use supercritical CO2 is in the gas foaming process. In this sense the porosity is created at the same time that the bioactive substance is incorporated, avoiding the use of organic solvent. Moreover these processes do not use high temperature, so the activity of the bioactive molecule would hold unaltered. Foaming process changes not only the polymer porosity but also other properties as melting, crystallization or glass transition temperature, melting heat, and so on and thus could produce more fragile or harder polymer depending on the foaming conditions. Particularly in our facilities, polycaprolactone/quercetin scaffolds were prepared using supercritical CO2 foaming + impregnation one-step process in an efficient way. Release profiles showed that quercetin took five times longer to dissolve the same amount of quercetin into the first 8 h where it was placed into scaffold.
We gratefully acknowledge the Spanish Ministry of Science and Technology (Project CTQ2017-86661-R) and European Regional Development Funds (UNCA10-1E-1125 and 18INIA1103. 2011) for the financial support and the Central Services of Science and Technology of University of Cádiz for the analyses.
The authors declare no conflict of interest.
Chronic diseases such as diabetes, stroke, arthritis, and heart diseases are the main cause of disability and death throughout the world. More than 40% of the people suffer in their adult life from a chronic disease, and approximately 20% are hospitalized because of it. Another perspective is that they are costly, but in many cases preventable. The main cause is usually lifestyle choices that are hard to change; eating foods that are low in fats, becoming more physically active, and avoiding tobacco can help from developing high-risk conditions and diseases.
\nPatients with multiple chronic diseases struggle with great challenges on their daily lives; also, they experience poor health outcomes and will tend to use health national services more than patients with single chronic disease. Not respecting treatment prescriptions have both personal health impact and health economics consequences. These people are regarded as the highest cost patient populations in the healthcare system [1], with a poor adherence to treatment and medical advices. Worldwide, experts are examining the situation in which health care can be better organized to meet the needs of every patient. It was demonstrated that every dollar spent for improving adherence saves seven dollars in total healthcare costs [2, 3].
\nThe absence of appropriate clinical practice guidelines for patients with multiple chronic diseases is a huge problem, which healthcare providers contend. Furthermore, patient-centered care needs to be supported through the transition of a more oriented approach to help patients prioritize their condition.
\nMoreover, not taking the required medication prescribed can have both personal health impact and health economics consequences. Recently, patients have shown increased interest in their own healthcare possibilities, raising the overall rate of adherence to treatment. However, the cost-effectiveness is still a parameter that is often ignored when a medical expert chooses to treat different kinds of conditions. Adherence is defined as “persistence in a practice,” so this definition emphasizes the routine that people with chronic disease ideally engage in when taking prescription medication [4].
\nThe term first used was “compliance.” Charavel et al. [5] described this concept like physician alone makes the treatment decision, while the passive and dependent patient is obliged to comply with it. But the patient is not so silent and the term “adherence” is more used, the patient is more engaged in taking prescription medication.
\nAdherence cannot be defined as an “all or nothing” response in which the patient either follows the prescriber’s instruction to the letter (adherence) or deviates from it in some way (nonadherence) [6]. A patient is considered adherent if he/she takes 80% of his/her prescribed medicine(s). In the current era of free and easy access to information, with a higher educational level across the population, the concept of “concordance” seems to win for some diseases, when the patient want to defer decisions entirely to their health professionals or family members. Some patients prefer a collaborative role, whereas others prefer a passive role.
\nThe most common chronic diseases that have a low adherence rate to treatment are asthma, diabetes, heart disease, obesity, rheumatic diseases, eating disorders, chronic obstructive pulmonary disease (COPD), and psychotic disorders.
\nThe estimated rate of adherence is only half of the percentage of the patients with chronic diseases. Ten days after a new prescription has been filled [7], another quarter of the patients have missed one dose of the medication (intentionally or unintentionally). This kind of behavior causes concern among the medical experts, so they have to make strong decisions in order to make the treatment more functional for every patient.
\nThe top three therapy classes used for chronic diseases are inflammatory conditions, multiple sclerosis, and cancer. These three account more than a half of the total spend for all specialty medications. The new trend is that patients often shift from using brand medications to lower cost generics; as they do this, the copayments decline and also the adherence drops significantly.
\nThe medications used to treat diabetes, high blood cholesterol and high blood pressure, ulcer, and asthma were the most expensive traditional therapy class. Also these classes had the minimum nonadherence rate (between 20 and 35%). In the case of ulcer disease, it is more likely for aged people to be more adherent to the treatment. Asthma is another case of strong nonadherence cases for the pediatric patients.
\nCorrect understanding of barriers for adherence and strategies used can help physicians educate their patients more appropriately, reducing the risk of nonadherence and achieving an improvement of the healthcare system [8].
\nA lot of studies were done to estimate the costs related to nonadherence to drug therapy in developed countries, making distinctions between primary nonadherence (prescriptions not being filled by the patient) and secondary nonadherence (medication not being taken as prescribed). World Health Organization (WHO) published in 2003 a report of poor adherence to treatment of chronic diseases in which developing countries were found to have a higher rate of nonadherence than the 50% average of nonadherence to long-term therapy for chronic diseases in developed countries [9].
\nMills et al. [10] examined both developed and developing nations in a systematic review of adherence and reported the same important barriers (fear of disclosure, substance abuse, forgetfulness, suspicions of treatment, too complicated regimens, too many pills, and decreased quality of life), with some facilitators reported by patients in developed nation (having a sense of self-worth, accepting their disease, understanding the need for strict adherence, making use of reminder tools, and having a simple regimen).
\nAn economic evaluation of adherence consists in assessing the outcomes and costs of intervention designed to improve health. It is like we evaluate a new intervention when the new one is not compared with usual health care, for example the standard intervention, but with no intervention at all. The incremental cost-effectiveness ratio (ICR) is the difference in costs (C) between the drug and no drug divided by the difference in effects (E) between the drug and no drug.
\nThere are four form of economic evaluation of interventions:
Cost-effectiveness analysis
Cost-utility analysis
Cost-benefit analysis
Cost-minimization analysis
A summary of the characteristics of these types of economic evaluation is described in \nTable 1\n.
\nMethods | \nCosts | \nEffects | \nEvaluation question | \n
---|---|---|---|
Cost-effectiveness analysis (CEA) | \nMonetary units | \nNatural units (life-years gained, burns prevented, etc.) | \nComparisons of interventions with same objective | \n
Cost-utility analysis (CUA) | \nMonetary units | \nUtility and QALY (quality-adjusted life-year) or DALY (disability-adjusted life-year) | \nComparison of interventions with different objectives | \n
Cost-benefits analysis (CBA) | \nMonetary units | \nMonetary units | \nAre the benefits worth the costs? | \n
Cost-minimization analysis (CMA) | \nMonetary units | \nThe effects are not measured, since they are considered to be equal | \nLeast-cost comparisons of programs with the same outcome | \n
Characteristics of the four types of pharmacoeconomic evaluations [11].
The most used techniques are cost-effectiveness analysis (CEA) and cost-utility analysis (CUA). A budget impact analysis (BIA) might be added to the economic evaluation.
\nA cost-effectiveness analysis of adherence shows effects in naturally occurring units, such as death, illnesses or burns prevented, and the costs in monetary units (Euros, Dollars, etc.). We can use this type of analysis because it provides information about the relative efficiency of alternative interventions that serve the same goal, what happened if the adherence is smaller comparative with a higher value. A cost-effective analysis must contain effect outcomes and the costs for the different values of adherence and should compare them. Cost-effectiveness analysis is the simplest type of economic evaluation to explain the differences in outcomes.
\nMeasuring benefits in natural units is the main advantage and focusing on a single outcome—adherence—could be considered a disadvantage.
\nCost-utility analysis evaluates the difference in costs relative to the difference in quality adjusted life years (QALYs). Both types of effects—on the life expectancy and on quality of life—are used to justify the costs. QALYs are represented by the number of gained life years corrected for quality of life. The QALY is the standard outcome measure existed in health economic evaluations, but there are some countries (Germany, Spain, and USA) that decided to ban the use of QALY in Health Technologies Assessment (HTA), after considering that QALY is methodologically and ethically not robust for health decision making. It is based on the use of subjective parameters, which are less robust than the chemical and biochemical parameters.
\nQALYs are determined with the aid of generic measurement instruments like EQ-5D [12], SF-6D (Short Form 6D), DCE (discrete-choice experiment), or MCDA (multi-criteria decision analysis). Another examples of generic instruments are Nottingham Health Profile (NHP), quality of well-being scale (QWB), sickness impact profile (SIP), and Health Utilities Index (HUI) Mark III.
\nEQ-5D is one of the most commonly used questionnaires to measure health-related quality of life (HRQOL). It consists of a questionnaire about five directions of current health (mobility, self-care, usual activities, pain/discomfort, and anxiety/depression) and a visual analogue scale (EQ-VAS). It was developed for adults, but a new version has been recently developed for children aged 8–18 years old (EQ-5D-Y) and the five dimensions are: walking about, look-after myself, doing usual activities, having pain or discomfort, feeling worried, sad or unhappy.
\nNottingham Health Profile (NHP) [13] includes two parts: Part I about distress within the following domains: emotions, sleep, social isolation, energy, pain, and mobility and Part II about health-related problems within the domains: occupation, housework, social life, home life, sex life, hobbies, and holidays.
\nQuality of Well-Being Scale (QWB) [14] includes questions about symptoms/problems, mobility, physical activity, and social activity.
\nSickness impact profile (SIP) [15] includes questions about sleep/rest, eating, work, ambulation, mobility, communication, home management, recreation and pastimes, body care and movement, alertness behavior, emotional behavior, and social interaction.
\nHealth Utilities Index (HUI) Mark III [16] includes questions about vision, hearing, speech, ambulation, dexterity, cognition, pain and discomfort, and emotion\n(Figure 1\n).
\nEQ-5D health questionnaire.
The complexity of assessing outcomes in cost-utility analysis is a disadvantage, even if this analysis can decide the best way of spending a given treatment budget or the healthcare budget as a whole.
\nCost-benefit analysis evaluates the difference in costs relative to the difference in benefits, with the benefits expressed in monetary units. This is the only pharmacoeconomic analysis that could determine how much more or less of society’s resources could be allocated to pursuing increasing patient adherence.
\nMeasuring benefits in monetary units is a disadvantage because it is a problem to valuate benefits, including death and disease, in money units.
\nThis analysis is performed when two health alternatives are equal, but few interventions are actually equally effective. Some evidence must support the assertion that outcomes are the same.
\nCost-minimization analysis is not an appropriate method of analysis adherence costs.
\nIn order to estimate costs, studies must include costs for hospitalization, outpatient services, hospital stays, emergency care, clinical visits, laboratory tests, professional services, pharmaceuticals, and medical devices. Patients’ copayments and deductibles must not be included in costs assessment. Indirect costs (cost to society due to illness) and direct nonmedical costs (costs to the patient such as travel) could have a significant impact on total costs.
\nThe concept of adherence or compliance can be measured in many different ways, including multi-item questionnaire scales, individual questionnaire, independent observations from patients and physicians, electronic monitoring devices, etc.
\nMany methods have been utilized to collect data for measuring medication adherence. Some data collection techniques include directly observing patients consuming medications, monitoring through electronic pill dispensers, and measuring clinical outcomes, such as, serum drug concentration levels. Other methods include clinical data from clinical trials, administrative claims data, electronic pharmacy databases, registries, patient and provider surveys, and paper medical records. There are several methods for measuring medication adherence using data obtained from these techniques that measure the time a patient has access to medication, including the medication possession ratio (MPR = number of days of medication supplied within the refill interval/number of days in refill interval), proportion of days covered (PDC=total days all drugs available/days in follow-up period), missing days, time to discontinuation, persistence rate, medication gaps, or self-reported questionnaires like Composite Adherence Score (CAS), Morisky Medication Adherence Scale (MMAS) with 4/8/9 questions, and Compliance Questionnaire for Rheumatology (CQR) with 5/19 questions.
\nIn rheumatology clinics, Berry et al. [17] found nonadherence patients who were answering ‘no’ to the question “Have you taken medicine regularly as prescribed or directed?”, more common among new (28%) than follow-up patients (1%). Overall, the patients were more on nonsteroidal anti-inflammatory drug (NSAIDs) than on disease-modifying antirheumatic drug (DMARDs), also the adherence was better for them, according to the symptoms and directed dose. Another difference measured in adherence is the cultural one, especially because of the economic impact of the treatment, that can lead to big cost problems. The follow-up adherence among patients with lupus depends on the medications prescribed. McElhone et al. [18] discussed that the perfect adherence rate is between 100% for treatment with azathioprine, 94% for oral steroids, and 68% for NSAIDs.
\nIn the case of rheumatoid arthritis (RA), adherence is estimated at similar values. Researchers such as Neame and Hammond [19] found that 90% of the patients with RA are in fact taking their medication according to doctors’ recommendations. Adherence rate is also correlated with the type of medication that is prescribed. The overall adherence is approximately 70% for NSAIDs, 50% for sulfasalazine and 80% for methotrexate, according to Klerk et al. [20]. Viewing the results, the weekly treatment with methotrexate may facilitate the enhanced adherence rate. In addition, patients’ result are not as dependent on NSAIDs as it is thought, and this can be a good thing for the recent concerns about the cardiovascular risk associated with continuous usage of the high-dose drug.
\nThe healthcare costs and the nonadherence to treatment for diabetes are both problems that need to be resolved. The information that is available at this moment regarding patient’s adherence in diabetes is very poor. Studies have shown that adherence in diabetes is related more often to insulin (from 19 to 46%) [21], than to oral agents. The complications and the cost-effectiveness of antidiabetic drugs are a serious problem, according to the American Diabetes Association [22]. Inadequate use or poor adherence to insulin results in ketoacidosis that often requires hospitalization and more costs.
\nFor people with diabetes, all-cause medical costs decrease as hypoglycemic drugs’ adherence increases.
\nSokol et al. [2] demonstrated that costs and hospitalization risk for people with diabetes monotonically decreased as adherence to drug treatment increased (\nTable 2\n).
\nAdherence level | \nMedical cost ($) | \nDrug cost ($) | \nTotal cost ($) | \nHospitalization risk (%) | \n
---|---|---|---|---|
1–19 | \n8812 | \n55 | \n8867 | \n30 | \n
20–39 | \n6959 | \n165 | \n7124 | \n26 | \n
40–59 | \n6237 | \n285 | \n6522 | \n25 | \n
60–79 | \n5887 | \n404 | \n6291 | \n20 | \n
80–100 | \n3808 | \n763 | \n4570 | \n13 | \n
Costs for people with diabetes.
Even if drug cost is bigger and medical cost is smaller in the case of adherent patients (adherence level>80), the total cost is the smallest. These savings probably reflect the effects of improved glycemic level on related diseases like microvascular disease or neuropathy, reducing the need for medical services.
\nBalkrishnan et al. [23] found that a 10% increase in medication possession ratios (MPRs) for an antidiabetic medication was associated with an 8.6% reduction in total annual healthcare costs.
\nCobden et al. [36] used MPR to assess diabetic patients and found that MPR of 80% or greater was associated with significant reduction in all-cause healthcare costs. MPR of 68% was associated with total mean costs of $8056, whereas an MPR of 59% had total mean costs of $8699.
\nGilmer et al. [24] estimated that medical care costs increased significantly for each 1% increase in HbA1c (glycosylated hemoglobin) above 7%. For a person with an HbA1c value of 6%, successive 1% increases in HbA1c resulted in cumulative increases in charges of almost 4, 10, 20, and 30%. For adults with diabetes and other diseases the costs are also increased. The most substantial cost increments occurred in individuals who had diabetes in combination with heart disease and hypertension: a 1% improvement in HbA1c level from 10 to 9% was associated with increasing in costs of $4116. The differences in costs are lower if the HbA1c value is smaller. If the patient isn’t adherent to the antidiabetic medicines, the increased HbA1c will rise the costs for healthcare system (\nTable 3\n).
\n\n | Changes in HbA1c levels | \n|||
---|---|---|---|---|
10–9% | \n9–8% | \n8–7% | \n7–6% | \n|
Patients with diabetes, heart disease, and hypertension | \n$4116 | \n$3090 | \n$2237 | \n$1504 | \n
Patients with diabetes and heart disease | \n$2796 | \n$2088 | \n$1503 | \n$1002 | \n
Patients with diabetes and hypertension | \n$1703 | \n$1260 | \n$897 | \n$588 | \n
Patients with diabetes | \n$1205 | \n$869 | \n$601 | \n$378 | \n
Costs for patients with diabetes and other diseases.
Nonadherence to oral hypoglycemic medications may partly explain why only 43% of patients with diabetes mellitus have HbA1c below 7% level [21].
\nChronic obstructive pulmonary disease (COPD) is a chronic limitation hat is usually progressive and not reversible. The main treatment for this condition aims to reduce symptoms, prevent exacerbations and delay the progression of the disease. Although medication has not been shown to modify the long-term of lung disease, various medications are available to prevent and control patients’ symptoms, and improve health. Patient adherence to medication for COPD is very poor compared with rates for medicines and other long-terms conditions. Nonadherence to medication is a risk factor for morbidity, hospital admission and increased mortality.
\nZaniolo et al. [27] made a budget impact study to demonstrate the implications of the adherence to patients with chronic obstructive pulmonary diseases. The target population that they examined corresponds to the entire sick population. They simulated that the same target population is managed under the same strategies of medical purpose. The current strategy is defined in order to reproduce the actual pattern of healthcare resource consumption and related costs for COPD management.
\nToy et al. [28] had examined in their study the adherence level among patients with inhaled COPD medications. They used the data from real-world clinical practice, as well as the national healthcare database. As a conclusion, it was emphasized that a correct management of COPD can be aided by the frequency which the patient is using the drug. Drugs with fewer daily doses are associated with improved adherence, and as well with lower healthcare resource use and cost. For 1000 COPD patients, a 5% increase in proportion of days covered (PDC) reduced the annual number of inpatient visits with 2.5% and emergency room visits with 1.8%, with a slightly increased outpatient visits (+0.2%) and a net reduction in annual cost of approximately $300,000. This study suggests that dosing frequency should be an important method in increasing adherence of COPD patients because patients with once-daily dosing frequency had highest adherence levels relative to patients with twice-daily, three times daily and four times daily dosing frequency.
\nSimoni-Wastila et al. [25] used administrative data with COPD patients, medication continuity and proportion of days covered (PDC) for assessing adherence. COPD patients with higher adherence to prescribed treatments experienced fewer hospitalizations and lower medicare costs than those who presented lower adherence behaviors. Both lack of interruption in drug dispensing and higher adherence were associated with better clinical outcomes.
\nThe costs for heart diseases are creating a burden on the patients’ finances. Most commonly they experience acute myocardial infarction, known as heart attack. The costs include ambulance rides, diagnostic test, hospital stays, and also surgery if needed. Employees suffering from heart disease require additional days off, so they are less productive at work, so it is not cost-effective for the economy. Additionally, the premature deaths caused by heart diseases are growing in the United States. In 2010, according to George and Hong [26], $41.7 billion was lost in potential productivity due to cardiovascular diseases.
\nTo lower the high costs of this condition, patients must make small changes in their lifestyle. These preventive changes include weight lost, exercising, avoiding smoking, eating healthy, also they can monitor their blood pressure and cholesterol levels every month, for lowering the rate of mortality.
\nSokol et al. [2] demonstrated that hospitalization risk for people with hypertension monotonically decreased as adherence to drug treatment increased. Differences were significantly higher than the outcome for adherence >80% in the case of low adherence (<60%). We observe higher costs only for adherence in the interval [20].
\nIn the case of congenitive heart failure, the differences in costs were not so obvious like in the case of hypertension. The total costs are the highest in the case of adherent patients (adherence level >80%). Hospitalization risk is significant higher than the outcome for adherent patients with congenitive heart failure in the case of patients with adherence in the interval (\nTables 4\n and \n5\n) [20].
\nAdherence level | \nMedical cost ($) | \nDrug cost ($) | \nTotal cost ($) | \nHospitalization risk (%) | \n
---|---|---|---|---|
1–19 | \n4847 | \n31 | \n4878 | \n28 | \n
20–39 | \n5973 | \n89 | \n6062 | \n24 | \n
40–59 | \n5113 | \n184 | \n5297 | \n24 | \n
60–79 | \n4977 | \n285 | \n5262 | \n20 | \n
80–100 | \n4383 | \n489 | \n4871 | \n19 | \n
Healthcare costs and hospitalization risk at different levels of adherence for patients with hypertension.
Adherence level | \nMedical cost ($) | \nDrug cost ($) | \nTotal cost ($) | \nHospitalization risk (%) | \n
---|---|---|---|---|
1–19 | \n9826 | \n15 | \n9841 | \n58 | \n
20–39 | \n7643 | \n90 | \n7733 | \n63 | \n
40–59 | \n11244 | \n134 | \n11378 | \n65 | \n
60–79 | \n13766 | \n158 | \n13924 | \n64 | \n
80–100 | \n12261 | \n437 | \n12698 | \n57 | \n
Healthcare costs and hospitalization risk at different levels of adherence for patients with congenitive heart failure.
Similarly, for hypertensive patients, the total costs are the smallest even if the drug cost is higher. These values reflect the impact of related conditions like, for example, renal disease.
\nLevine et al. [29] estimated for cardiology patients in USA that 125,000 deaths per year lead to a societal cost of 20 million lost work days and $1.5 billion lost earnings.
\nMcCombs et al. [30] used individual patient inpatient and outpatient claims data to identify increased health service costs associated with interruptions in therapy. The medicines costs were lower with $281, but the healthcare costs were higher with $873 ($637 due to increased hospitalization).
\nMorbidity from nonadherence to medications is a major public health problem in many therapeutic areas [31]. About one in four people do not adhere well to prescribe drug therapy. Poor adherence is considered a critical barrier to treatment success and remains one of the challenges to healthcare professionals [32]. Combining adherence to drug therapy with adherence to other interventions limits the ability to examine the relation between adherence to drug therapy and health outcomes. The effect of adherence should be measured on an objective health outcome, such as mortality. Individual studies have reported that good adherence was associated with a lower risk of mortality. The association between adherence to harmful therapy and mortality is a very important subject in the light of recent issues of the safety of patients and postmarket drug surveillance.
\nThe correlations between the mortality/morbidity rates for most chronic diseases are shown in \nTable 6\n.
\nChronic noncommunicable diseases | \nPercentage mortality | \nPercentage morbidity | \n
---|---|---|
\nCardiovascular disease\n | \n||
Rheumatic heart disease, hypertensive heart disease, ischemic heart disease, cerebrovascular disease, inflammatory heart disease | \n49.90 | \n21.23 | \n
\nMalignant neoplasms\n | \n||
Mouth and oropharynx cancers; esophagus cancer; stomach cancer; colon and rectum cancers; liver cancer; pancreas cancer; trachea, bronchus, lung cancers; melanoma and other skin cancers; breast cancer, cervix uteri cancer; corpus uteri cancer; ovary cancer; prostate cancer; bladder cancer; lymphomas; multiple myeloma; leukemia | \n21.23 | \n10.83 | \n
\nRespiratory diseases\n | \n||
Chronic obstructive pulmonary disease, asthma | \n11.04 | \n7.90 | \n
\nDigestive diseases\n | \n||
Peptic ulcer disease, cirrhosis of the liver, appendicitis | \n5.87 | \n6.66 | \n
\nNeuropsychiatric conditions\n | \n||
Unipolar depressive disorders, bipolar disorder, schizophrenia, epilepsy, alcohol use disorders, Alzheimer’s and other dementias, Parkinson disease, multiple sclerosis, drug use disorders, post-traumatic stress disorder, obsessive-compulsive disorder, panic disorder, insomnia, migraine, lead-caused mental retardation | \n3.32 | \n27.70 | \n
\nDiabetes mellitus\n | \n2.95 | \n2.32 | \n
\nGenitourinary diseases\n | \n||
Nephritis and nephrosis, benign prostatic hypertrophy | \n2.53 | \n2.18 | \n
\nEndocrine disorders\n | \n0.72 | \n1.14 | \n
\nOther neoplasms\n | \n0.44 | \n0.25 | \n
\nMusculoskeletal diseases\n | \n||
Rheumatoid arthritis, osteoarthritis, gout, low back pain | \n0.32 | \n4.32 | \n
\nSkin diseases\n | \n0.21 | \n0.54 | \n
\nCongenital anomalies\n | \n||
Abdominal wall defect, anencephaly, anorectal atresia, cleft lip, cleft palate, esophageal atresia, renal agenesis, Down syndrome, congenital heart anomalies, spina bifida | \n0.15 | \n3.92 | \n
\nSense organ diseases\n | \n||
Glaucoma, cataracts, age-related vision disorders, adult-onset hearing loss | \n0.01 | \n9.94 | \n
\nOral conditions\n | \n||
Dental caries, periodontal disease, edentulism | \n0.01 | \n1.06 | \n
Morbidity and mortality rates for chronic diseases [33].
Most nonadherence is intentional. Patients make the decision to not take their medicines based on some reasons:
Fear: Patients may be scared of potential side effects or side effects they had previously with the same or similar medication.
Cost: The prices of medicine can be a barrier to adherence.
Misunderstanding: Patients do not understand the need for medicine, the side effects or the expected time it will take to see some results.
Too many medications: The greater the number of different medicines prescribed and the higher the dosing frequency, the more likely a patient is nonadherent.
Lack of symptoms: Patients who do not feel any differences when they start or stop to take their medicines may see no reason to take it.
Worry: Concerns about becoming dependent on a medicine leads to nonadherence.
Depression: Patients who are depressed are less likely to take their medications as prescribed.
Mistrust: Patients may be suspicious of their doctor’s motives for prescribing certain medications, for example because of the marketing efforts of pharmaceutical companies to influence some prescribing patterns.
The costs of new drugs often exceed the costs of existing drugs. Such increased costs can be compensated by savings in other areas of health system (costs-offsets). For example, a new drug has fewer side effects and fewer costs to cure them. But, the first step is the patient to be adherent and to respect the prescription.
\nWe cannot say that nonadherence always leads to financial losses. Nonadherence is not always bad for the patient. Nonadherence is protective if the prescription is inappropriate or has adverse reactions. It is not useful to pay for an inefficient drug. New undesired costs will appear if side effects occur. Savings associated with undercompliance with overprescribed medications are positive economic effects. We must highlight the fact that the doctor, the pharmacist and the patient carry mutual responsibility for the outcome of the treatment. Further work is needed to develop optimal adherence patterns for individual patients and treatments. Important policy decisions need to be made about increasing nonadherence.
\nPhysicians play a key role in medication adherence. Trust and communication are two elements critical in optimizing adherence. Various studies have shown that physicians trust is more important than treatment satisfaction in predicting adherence to prescribed therapy. In consequence, physicians trust correlates positively with the acceptance of new medication, and improves the self-reported health status. A recent meta-analysis of physician communication and patient adherence to treatment found that there is a 19% higher risk of nonadherence among patients whose physician communicates poorly than among patients whose physician communicates well [34].
\nHealthcare providers play an unique role in assisting patients to carry out healthy behaviors and also to change patient’s beliefs about the risks and benefits of new medication. Another factor is concordance, in which patients and their providers (and physicians) agree whether and how a medication should be taken. Adherence requires the patient to believe there is a benefit to the medicine being prescribed and agree with the instructions on how to take it. Building trust and developing skills for successful communication between the patients and their provider, demands time, effort, knowledge, and practice.
\nEven those patients who fill and refill their prescriptions appropriately may have lapses in the continuity of their doses. One in five patients who receives a prescription medication cannot read the label.
\nElliot et al. [35] concluded there is not possible to make definitive conclusions about the cost-effectiveness of Adherence-Enhancing Interventions (AEIs) due to the heterogeneity of the reported studies: unclear reported adherence and outcomes, poorer quality of costs data, and omitted some cost elements.
\nThe assessment of pharmaceutical drugs and healthcare programs has been in recent years expanded beyond efficacy and safety to cover economic implications and other consequences. The incorporation of an economic perspective into the decision making process as to which therapies will be reimbursed by the national healthcare system and not only that, has made the subject of debate and discussion. National programs combining patient education with behavioral intervention strategies could decrease the financial losses due to poor adherence. The intention of this chapter was to highlight a very important problem of adherence in direct symbiosis with the economic situation. To ascertain the true extent of financial losses due to low adherence in emerging countries, more studies are urgently required. The absence of national policies grows the financial losses due to poor adherence. The answer, in our opinion, is not to spend more money on drugs and expensive treatment costs, but to work towards the patient in general. As individuals we are constantly making choices as to how we use our time and money, but we do not always think about our well-being regarding the health.
\nIntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"10"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10754",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"8994a915a306910a01cbe2027aa2139b",slug:null,bookSignature:"Dr. Stuart Arthur Harris",coverURL:"https://cdn.intechopen.com/books/images_new/10754.jpg",editedByType:null,editors:[{id:"12539",title:"Dr.",name:"Stuart",surname:"Harris",slug:"stuart-harris",fullName:"Stuart Harris"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10756",title:"Urban Agglomeration",subtitle:null,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",slug:null,bookSignature:"Dr. Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",editedByType:null,editors:[{id:"108118",title:"Dr.",name:"Luis",surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10761",title:"Glaciology",subtitle:null,isOpenForSubmission:!0,hash:"bd112c839a9b8037f1302ca6c0d55a2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10761.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10762",title:"Cosmology",subtitle:null,isOpenForSubmission:!0,hash:"f28a2213571fb878839bcbacb9827a1d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10762.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Volcanology",subtitle:null,isOpenForSubmission:!0,hash:"6cfc09f959efecf9ba95654b1bb4b987",slug:null,bookSignature:"Prof. Angelo Paone and Prof. Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:null,editors:[{id:"182871",title:"Prof.",name:"Angelo",surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10949",title:"Clay and Clay Minerals",subtitle:null,isOpenForSubmission:!0,hash:"44d08b9e490617fcbf7786c381c85fbc",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/10949.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10950",title:"Landslides",subtitle:null,isOpenForSubmission:!0,hash:"8fcc0f63c22c087239f07a8e06ec2549",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10950.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10952",title:"Soil Science - Emerging Technologies, Global Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3dbedd2099c57a24eaab114be4ba2b48",slug:null,bookSignature:"Dr. Michael Thomas Aide and Dr. Indi Braden",coverURL:"https://cdn.intechopen.com/books/images_new/10952.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",subtitle:null,isOpenForSubmission:!0,hash:"b0fbd6ee0096e4c16e9513bf01273ab3",slug:null,bookSignature:"Dr. Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg",editedByType:null,editors:[{id:"59479",title:"Dr.",name:"Michael L.",surname:"Smith",slug:"michael-l.-smith",fullName:"Michael L. Smith"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics",parent:{title:"Mathematics",slug:"mathematics"},numberOfBooks:34,numberOfAuthorsAndEditors:669,numberOfWosCitations:440,numberOfCrossrefCitations:248,numberOfDimensionsCitations:499,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"applied-mathematics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9325",title:"Mathematical Theorems",subtitle:"Boundary Value Problems and Approximations",isOpenForSubmission:!1,hash:"38c88a4ec0ff6c0184a6694c21ddedc5",slug:"mathematical-theorems-boundary-value-problems-and-approximations",bookSignature:"Lyudmila Alexeyeva",coverURL:"https://cdn.intechopen.com/books/images_new/9325.jpg",editedByType:"Edited by",editors:[{id:"232525",title:"Prof.",name:"Lyudmila",middleName:"Alexeyevna",surname:"Alexeyeva",slug:"lyudmila-alexeyeva",fullName:"Lyudmila Alexeyeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8521",title:"Multicriteria Optimization",subtitle:"Pareto-Optimality and Threshold-Optimality",isOpenForSubmission:!1,hash:"05baea741edde509bab2259dad7f6384",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",bookSignature:"Nodari Vakhania and Frank Werner",coverURL:"https://cdn.intechopen.com/books/images_new/8521.jpg",editedByType:"Edited by",editors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7428",title:"Advances on Tensor Analysis and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"2339ac5eb978557d01451489e961b102",slug:"advances-on-tensor-analysis-and-their-applications",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/7428.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7662",title:"Nonlinear Systems",subtitle:"Theoretical Aspects and Recent Applications",isOpenForSubmission:!1,hash:"fdcb3bf6de1d84506ffc6aa9e5b691b3",slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",bookSignature:"Walter Legnani and Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/7662.jpg",editedByType:"Edited by",editors:[{id:"199059",title:"Dr.",name:"Walter",middleName:"Edgardo",surname:"Legnani",slug:"walter-legnani",fullName:"Walter Legnani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8656",title:"Probability, Combinatorics and Control",subtitle:null,isOpenForSubmission:!1,hash:"9993ec9b59bcb38d206f2e31125028b7",slug:"probability-combinatorics-and-control",bookSignature:"Andrey Kostogryzov and Victor Korolev",coverURL:"https://cdn.intechopen.com/books/images_new/8656.jpg",editedByType:"Edited by",editors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9324",title:"Dynamical Systems Theory",subtitle:null,isOpenForSubmission:!1,hash:"413cbcf9c048bb251eca1b5e32bbc640",slug:"dynamical-systems-theory",bookSignature:"Jan Awrejcewicz and Dariusz Grzelczyk",coverURL:"https://cdn.intechopen.com/books/images_new/9324.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",middleName:null,surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7776",title:"Research Advances in Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"e9646ec4b2bff873ce958ed4d5ad7248",slug:"research-advances-in-chaos-theory",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7776.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7751",title:"Fault Detection, Diagnosis and Prognosis",subtitle:null,isOpenForSubmission:!1,hash:"d54796f7da58f58fa679b94a2b83af00",slug:"fault-detection-diagnosis-and-prognosis",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/7751.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8345",title:"Boundary Layer Flows",subtitle:"Theory, Applications and Numerical Methods",isOpenForSubmission:!1,hash:"14d9725e87983a03938f073f6c5ee815",slug:"boundary-layer-flows-theory-applications-and-numerical-methods",bookSignature:"Vallampati Ramachandra Prasad",coverURL:"https://cdn.intechopen.com/books/images_new/8345.jpg",editedByType:"Edited by",editors:[{id:"146601",title:"Dr.",name:"Vallampati",middleName:null,surname:"Ramachandra Prasad",slug:"vallampati-ramachandra-prasad",fullName:"Vallampati Ramachandra Prasad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7653",title:"Wavelet Transform and Complexity",subtitle:null,isOpenForSubmission:!1,hash:"74bd7559ad44e50940d35974905e98ee",slug:"wavelet-transform-and-complexity",bookSignature:"Dumitru Baleanu",coverURL:"https://cdn.intechopen.com/books/images_new/7653.jpg",editedByType:"Edited by",editors:[{id:"105623",title:"Dr.",name:"Dumitru",middleName:null,surname:"Baleanu",slug:"dumitru-baleanu",fullName:"Dumitru Baleanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8181",title:"Applied Mathematics",subtitle:null,isOpenForSubmission:!1,hash:"85b873324d4e1af230fea39738ba9be5",slug:"applied-mathematics",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/8181.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:34,mostCitedChapters:[{id:"14634",doi:"10.5772/15998",title:"The Application of FT-IR Spectroscopy in Waste Management",slug:"the-application-of-ft-ir-spectroscopy-in-waste-management",totalDownloads:6072,totalCrossrefCites:16,totalDimensionsCites:27,book:{slug:"fourier-transforms-new-analytical-approaches-and-ftir-strategies",title:"Fourier Transforms",fullTitle:"Fourier Transforms - New Analytical Approaches and FTIR Strategies"},signatures:"Ena Smidt, Katharina Böhm and Manfred Schwanninger",authors:[{id:"20376",title:"Dr.",name:"Katharina",middleName:null,surname:"Böhm",slug:"katharina-bohm",fullName:"Katharina Böhm"},{id:"22840",title:"Dr.",name:"Ena",middleName:null,surname:"Smidt",slug:"ena-smidt",fullName:"Ena Smidt"},{id:"22915",title:"Dr.",name:"Manfred",middleName:null,surname:"Schwanninger",slug:"manfred-schwanninger",fullName:"Manfred Schwanninger"}]},{id:"15157",doi:"10.5772/15959",title:"Fourier Transform Mass Spectrometry for the Molecular Level Characterization of Natural Organic Matter: Instrument Capabilities, Applications, and Limitations",slug:"fourier-transform-mass-spectrometry-for-the-molecular-level-characterization-of-natural-organic-matt",totalDownloads:3802,totalCrossrefCites:5,totalDimensionsCites:21,book:{slug:"fourier-transforms-approach-to-scientific-principles",title:"Fourier Transforms",fullTitle:"Fourier Transforms - Approach to Scientific Principles"},signatures:"Rachel L. Sleighter and Patrick G. Hatcher",authors:[{id:"22676",title:"Dr.",name:"Rachel L.",middleName:null,surname:"Sleighter",slug:"rachel-l.-sleighter",fullName:"Rachel L. Sleighter"},{id:"23168",title:"Dr.",name:"Patrick G.",middleName:null,surname:"Hatcher",slug:"patrick-g.-hatcher",fullName:"Patrick G. Hatcher"}]},{id:"40430",doi:"10.5772/50403",title:"Mathematical Modelling and Numerical Investigations on the Coanda Effect",slug:"mathematical-modelling-and-numerical-investigations-on-the-coanda-effect",totalDownloads:4630,totalCrossrefCites:12,totalDimensionsCites:18,book:{slug:"nonlinearity-bifurcation-and-chaos-theory-and-applications",title:"Nonlinearity, Bifurcation and Chaos",fullTitle:"Nonlinearity, Bifurcation and Chaos - Theory and Applications"},signatures:"A. Dumitrache, F. Frunzulica and T.C. Ionescu",authors:[{id:"151443",title:"Dr.",name:"Dumitrache",middleName:null,surname:"Alexandru",slug:"dumitrache-alexandru",fullName:"Dumitrache Alexandru"},{id:"151449",title:"Dr.",name:"Frunzulica",middleName:null,surname:"Florin",slug:"frunzulica-florin",fullName:"Frunzulica Florin"},{id:"151451",title:"Dr.",name:"Ionescu",middleName:null,surname:"Tudor",slug:"ionescu-tudor",fullName:"Ionescu Tudor"}]}],mostDownloadedChaptersLast30Days:[{id:"54366",title:"Solution of Differential Equations with Applications to Engineering Problems",slug:"solution-of-differential-equations-with-applications-to-engineering-problems",totalDownloads:5397,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Cheng Yung Ming",authors:[{id:"191017",title:"Dr.",name:"Cheng",middleName:null,surname:"Y.M.",slug:"cheng-y.m.",fullName:"Cheng Y.M."}]},{id:"53524",title:"Fourier Analysis for Harmonic Signals in Electrical Power Systems",slug:"fourier-analysis-for-harmonic-signals-in-electrical-power-systems",totalDownloads:3360,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"fourier-transforms-high-tech-application-and-current-trends",title:"Fourier Transforms",fullTitle:"Fourier Transforms - High-tech Application and Current Trends"},signatures:"Emmanuel Hernández Mayoral, Miguel Angel Hernández López,\nEdwin Román Hernández, Hugo Jorge Cortina Marrero, José\nRafael Dorrego Portela and Victor Ivan Moreno Oliva",authors:[{id:"187793",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Hernández",slug:"emmanuel-hernandez",fullName:"Emmanuel Hernández"},{id:"202757",title:"Dr.",name:"Miguel Angel",middleName:null,surname:"Hernández López",slug:"miguel-angel-hernandez-lopez",fullName:"Miguel Angel Hernández López"},{id:"202758",title:"Dr.",name:"Hugo Jorge",middleName:null,surname:"Cortina Marrero",slug:"hugo-jorge-cortina-marrero",fullName:"Hugo Jorge Cortina Marrero"},{id:"202759",title:"Dr.",name:"Edwin Román",middleName:null,surname:"Hernández",slug:"edwin-roman-hernandez",fullName:"Edwin Román Hernández"},{id:"202760",title:"Dr.",name:"Victor Iván Moreno",middleName:null,surname:"Oliva",slug:"victor-ivan-moreno-oliva",fullName:"Victor Iván Moreno Oliva"},{id:"202761",title:"Dr.",name:"José Rafael Dorrego",middleName:null,surname:"Portela",slug:"jose-rafael-dorrego-portela",fullName:"José Rafael Dorrego Portela"}]},{id:"70067",title:"Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines and the Complex Probability Paradigm",slug:"analytic-prognostic-in-the-linear-damage-case-applied-to-buried-petrochemical-pipelines-and-the-comp",totalDownloads:1390,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Abdo Abou Jaoude",authors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}]},{id:"64463",title:"Fractal Analysis of Time-Series Data Sets: Methods and Challenges",slug:"fractal-analysis-of-time-series-data-sets-methods-and-challenges",totalDownloads:1794,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fractal-analysis",title:"Fractal Analysis",fullTitle:"Fractal Analysis"},signatures:"Ian Pilgrim and Richard P. Taylor",authors:[{id:"262574",title:"Ph.D.",name:"Ian",middleName:null,surname:"Pilgrim",slug:"ian-pilgrim",fullName:"Ian Pilgrim"},{id:"262816",title:"Prof.",name:"Richard",middleName:null,surname:"Taylor",slug:"richard-taylor",fullName:"Richard Taylor"}]},{id:"57673",title:"Kalman Filter for Moving Object Tracking: Performance Analysis and Filter Design",slug:"kalman-filter-for-moving-object-tracking-performance-analysis-and-filter-design",totalDownloads:2250,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"kalman-filters-theory-for-advanced-applications",title:"Kalman Filters",fullTitle:"Kalman Filters - Theory for Advanced Applications"},signatures:"Kenshi Saho",authors:[{id:"209334",title:"Associate Prof.",name:"Kenshi",middleName:null,surname:"Saho",slug:"kenshi-saho",fullName:"Kenshi Saho"}]},{id:"60097",title:"Robust Optimization: Concepts and Applications",slug:"robust-optimization-concepts-and-applications",totalDownloads:1849,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"José García and Alvaro Peña",authors:[{id:"227809",title:"Ph.D.",name:"Jose",middleName:null,surname:"Garcia",slug:"jose-garcia",fullName:"Jose Garcia"},{id:"240407",title:"Dr.",name:"Alvaro",middleName:null,surname:"Peña",slug:"alvaro-pena",fullName:"Alvaro Peña"}]},{id:"51209",title:"A Review and Comparative Study of Firefly Algorithm and its Modified Versions",slug:"a-review-and-comparative-study-of-firefly-algorithm-and-its-modified-versions",totalDownloads:2168,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Waqar A. Khan, Nawaf N. Hamadneh, Surafel L. Tilahun and Jean\nM. T. Ngnotchouye",authors:[{id:"180330",title:"Dr.",name:"Surafel",middleName:null,surname:"Tilahun",slug:"surafel-tilahun",fullName:"Surafel Tilahun"},{id:"180784",title:"Dr.",name:"Waqar Ahmed",middleName:null,surname:"Khan",slug:"waqar-ahmed-khan",fullName:"Waqar Ahmed Khan"},{id:"185148",title:"Dr.",name:"Nawaf",middleName:null,surname:"Hamadneh",slug:"nawaf-hamadneh",fullName:"Nawaf Hamadneh"},{id:"185149",title:"Dr.",name:"Jean M. T.",middleName:null,surname:"Ngnotchouye",slug:"jean-m.-t.-ngnotchouye",fullName:"Jean M. T. Ngnotchouye"}]},{id:"69020",title:"Partial Entropy and Bundle-Like Entropy for Topological Dynamical Systems",slug:"partial-entropy-and-bundle-like-entropy-for-topological-dynamical-systems",totalDownloads:267,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"dynamical-systems-theory",title:"Dynamical Systems Theory",fullTitle:"Dynamical Systems Theory"},signatures:"Kesong Yan and Fanping Zeng",authors:null},{id:"57977",title:"Unscented Kalman Filter for State and Parameter Estimation in Vehicle Dynamics",slug:"unscented-kalman-filter-for-state-and-parameter-estimation-in-vehicle-dynamics",totalDownloads:1359,totalCrossrefCites:7,totalDimensionsCites:7,book:{slug:"kalman-filters-theory-for-advanced-applications",title:"Kalman Filters",fullTitle:"Kalman Filters - Theory for Advanced Applications"},signatures:"Mark Wielitzka, Alexander Busch, Matthias Dagen and Tobias\nOrtmaier",authors:[{id:"122290",title:"Dr.",name:"Tobias",middleName:null,surname:"Ortmaier",slug:"tobias-ortmaier",fullName:"Tobias Ortmaier"},{id:"201140",title:"M.Sc.",name:"Mark",middleName:null,surname:"Wielitzka",slug:"mark-wielitzka",fullName:"Mark Wielitzka"},{id:"202801",title:"M.Sc.",name:"Matthias",middleName:null,surname:"Dagen",slug:"matthias-dagen",fullName:"Matthias Dagen"},{id:"222868",title:"MSc.",name:"Alexander",middleName:null,surname:"Busch",slug:"alexander-busch",fullName:"Alexander Busch"}]},{id:"51089",title:"Sliding Mode Speed and Position Control of Induction Motor Drive in Cascade Connection",slug:"sliding-mode-speed-and-position-control-of-induction-motor-drive-in-cascade-connection",totalDownloads:1421,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Grzegorz Tarchała and Teresa Orłowska-Kowalska",authors:[{id:"182057",title:"Dr.",name:"Grzegorz",middleName:null,surname:"Tarchała",slug:"grzegorz-tarchala",fullName:"Grzegorz Tarchała"},{id:"185730",title:"Prof.",name:"Teresa",middleName:null,surname:"Orłowska-Kowalska",slug:"teresa-orlowska-kowalska",fullName:"Teresa Orłowska-Kowalska"}]}],onlineFirstChaptersFilter:{topicSlug:"applied-mathematics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/162169/marianlea-capitani",hash:"",query:{},params:{id:"162169",slug:"marianlea-capitani"},fullPath:"/profiles/162169/marianlea-capitani",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()