Properties of the SMA wires [15].
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"1674",leadTitle:null,fullTitle:"Application of Geographic Information Systems",title:"Application of Geographic Information Systems",subtitle:null,reviewType:"peer-reviewed",abstract:"The importance of Geographic Information Systems (GIS) can hardly be overemphasized in today’s academic and professional arena. More professionals and academics have been using GIS than ever – urban & regional planners, civil engineers, geographers, spatial economists, sociologists, environmental scientists, criminal justice professionals, political scientists, and alike. As such, it is extremely important to understand the theories and applications of GIS in our teaching, professional work, and research. “The Application of Geographic Information Systems” presents research findings that explain GIS’s applications in different subfields of social sciences. With several case studies conducted in different parts of the world, the book blends together the theories of GIS and their practical implementations in different conditions. It deals with GIS’s application in the broad spectrum of geospatial analysis and modeling, water resources analysis, land use analysis, infrastructure network analysis like transportation and water distribution network, and such. The book is expected to be a useful source of knowledge to the users of GIS who envision its applications in their teaching and research. This easy-to-understand book is surely not the end in itself but a little contribution to toward our understanding of the rich and wonderful subject of GIS.",isbn:null,printIsbn:"978-953-51-0824-5",pdfIsbn:"978-953-51-5014-5",doi:"10.5772/1944",price:139,priceEur:155,priceUsd:179,slug:"application-of-geographic-information-systems",numberOfPages:386,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"64025602056a0bbbf592650987da0df5",bookSignature:"Bhuiyan Monwar Alam",publishedDate:"October 31st 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1674.jpg",numberOfDownloads:77595,numberOfWosCitations:51,numberOfCrossrefCitations:28,numberOfCrossrefCitationsByBook:7,numberOfDimensionsCitations:51,numberOfDimensionsCitationsByBook:8,hasAltmetrics:1,numberOfTotalCitations:130,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2011",dateEndSecondStepPublish:"May 11th 2011",dateEndThirdStepPublish:"September 15th 2011",dateEndFourthStepPublish:"October 15th 2011",dateEndFifthStepPublish:"February 14th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"100231",title:"Dr.",name:"Bhuiyan Monwar",middleName:null,surname:"Alam",slug:"bhuiyan-monwar-alam",fullName:"Bhuiyan Monwar Alam",profilePictureURL:"https://mts.intechopen.com/storage/users/100231/images/3347_n.jpg",biography:"Bhuiyan Monwar Alam (Ph.D., Florida State University) is an Associate Professor of Urban and Regional Planning in the Department of Geography and Planning at the University of Toledo, Ohio, USA. He works on transportation planning, modeling and policy analysis, traffic safety, Geographic Information Systems (GIS), geospatial analysis and modeling, water resources management, environmental planning, and history of urbanization and planning in South Asia. His recent research focuses on the relationships between urban form, active transportation and health, and effective and efficient applications of GIS in this field of study. He has also been investigating the demand change for public transit in the United Stated in last two decades: 1900-2000 and 2000-2010, and whether recent economic downturn have had any impacts on such demand. He is an urban planner and a civil engineer.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"646",title:"Geoinformatics",slug:"geoinformatics"}],chapters:[{id:"40521",title:"Multi-Scale GIS Data-Driven Method for Early Assessment of Wetlands Impacted by Transportation Corridors",doi:"10.5772/50349",slug:"multi-scale-gis-data-driven-method-for-early-assessment-of-wetlands-impacted-by-transportation-corri",totalDownloads:3983,totalCrossrefCites:1,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Rodrigo Nobrega, Colin Brooks, Charles O’Hara and Bethany Stich",downloadPdfUrl:"/chapter/pdf-download/40521",previewPdfUrl:"/chapter/pdf-preview/40521",authors:[{id:"119194",title:"Prof.",name:"Rodrigo",surname:"Nobrega",slug:"rodrigo-nobrega",fullName:"Rodrigo Nobrega"}],corrections:null},{id:"40526",title:"Raster and Vector Integration for Fuzzy Vector Information Representation Within GIS",doi:"10.5772/51413",slug:"raster-and-vector-integration-for-fuzzy-vector-information-representation-within-gis",totalDownloads:4092,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Enguerran Grandchamp",downloadPdfUrl:"/chapter/pdf-download/40526",previewPdfUrl:"/chapter/pdf-preview/40526",authors:[{id:"119198",title:"Dr.",name:"Enguerran",surname:"Grandchamp",slug:"enguerran-grandchamp",fullName:"Enguerran Grandchamp"}],corrections:null},{id:"40537",title:"Map Updates in a Dynamic Voronoi Data Structure",doi:"10.5772/50279",slug:"map-updates-in-a-dynamic-voronoi-data-structure",totalDownloads:2624,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Darka Mioc, François Anton, Christopher M. Gold and Bernard Moulin",downloadPdfUrl:"/chapter/pdf-download/40537",previewPdfUrl:"/chapter/pdf-preview/40537",authors:[{id:"75314",title:"Dr.",name:"Darka",surname:"Mioc",slug:"darka-mioc",fullName:"Darka Mioc"}],corrections:null},{id:"40504",title:"Feng-Shui Theory and Practice Investigated by Spatial Regression Modeling",doi:"10.5772/47925",slug:"feng-shui-theory-and-practice-investigated-by-spatial-regression-modeling",totalDownloads:6916,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jung-Sup Um",downloadPdfUrl:"/chapter/pdf-download/40504",previewPdfUrl:"/chapter/pdf-preview/40504",authors:[{id:"92874",title:"Prof.",name:"Jung-Sup",surname:"Um",slug:"jung-sup-um",fullName:"Jung-Sup Um"}],corrections:null},{id:"40532",title:"Do Geographic Information Systems (GIS) Move High School Geography Education Forward in Turkey? A Teacher's Perspective",doi:"10.5772/32851",slug:"do-geographic-information-systems-gis-move-high-school-geography-education-forward-in-turkey-a-teach",totalDownloads:3657,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Süleyman İncekara",downloadPdfUrl:"/chapter/pdf-download/40532",previewPdfUrl:"/chapter/pdf-preview/40532",authors:[{id:"92939",title:"Dr.",name:"Suleyman",surname:"Incekara",slug:"suleyman-incekara",fullName:"Suleyman Incekara"}],corrections:null},{id:"40533",title:"Probabilistic Evaluation of the Extent of the Aquifer – Case Study",doi:"10.5772/32904",slug:"probabilistic-evaluation-of-the-extent-of-the-aquifer-case-study",totalDownloads:2924,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Marek Kachnic",downloadPdfUrl:"/chapter/pdf-download/40533",previewPdfUrl:"/chapter/pdf-preview/40533",authors:[{id:"93136",title:"Dr.",name:"Marek",surname:"Kachnic",slug:"marek-kachnic",fullName:"Marek Kachnic"}],corrections:null},{id:"40505",title:"Behavioural Maps and GIS in Place Evaluation and Design",doi:"10.5772/47940",slug:"behavioural-maps-and-gis-in-place-evaluation-and-design",totalDownloads:4684,totalCrossrefCites:6,totalDimensionsCites:0,hasAltmetrics:1,abstract:null,signatures:"Barbara Goličnik Marušić and Damjan Marušic",downloadPdfUrl:"/chapter/pdf-download/40505",previewPdfUrl:"/chapter/pdf-preview/40505",authors:[{id:"96156",title:"Dr.",name:"Barbara",surname:"Goličnik Marušić",slug:"barbara-golicnik-marusic",fullName:"Barbara Goličnik Marušić"},{id:"104025",title:"Dr.",name:"Damjan",surname:"Marušić",slug:"damjan-marusic",fullName:"Damjan Marušić"}],corrections:null},{id:"40503",title:"Assessing Agricultural Potential in South Sudan – A Spatial Analysis Method",doi:"10.5772/47938",slug:"assessing-agricultural-potential-in-south-sudan-a-spatial-analysis-method",totalDownloads:6882,totalCrossrefCites:1,totalDimensionsCites:0,hasAltmetrics:1,abstract:null,signatures:"Xinshen Diao, Liangzhi You, Vida Alpuerto and Renato Folledo",downloadPdfUrl:"/chapter/pdf-download/40503",previewPdfUrl:"/chapter/pdf-preview/40503",authors:[{id:"95952",title:"Dr.",name:"Xinshen",surname:"Diao",slug:"xinshen-diao",fullName:"Xinshen Diao"}],corrections:null},{id:"40525",title:"GIS and ex situ Plant Conservation",doi:"10.5772/50525",slug:"gis-and-ex-situ-plant-conservation",totalDownloads:3913,totalCrossrefCites:5,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"Nikos Krigas, Kimon Papadimitriou and Antonios D. Mazaris",downloadPdfUrl:"/chapter/pdf-download/40525",previewPdfUrl:"/chapter/pdf-preview/40525",authors:[{id:"107298",title:"Dr.",name:"Nikos",surname:"Krigas",slug:"nikos-krigas",fullName:"Nikos Krigas"},{id:"162823",title:"Dr.",name:"Kimon",surname:"Papadimitriou",slug:"kimon-papadimitriou",fullName:"Kimon Papadimitriou"},{id:"162824",title:"Dr.",name:"Antonios",surname:"Mazaris",slug:"antonios-mazaris",fullName:"Antonios Mazaris"}],corrections:null},{id:"40508",title:"Use of GIS to Estimate Productivity of Eucalyptus Plantations: A Case in the Biobio Chile’s Region",doi:"10.5772/47949",slug:"use-of-gis-to-estimate-productivity-of-eucalyptus-plantations-a-case-in-the-biobio-chile-s-region",totalDownloads:3665,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Rolando Rodríguez and Pedro Real",downloadPdfUrl:"/chapter/pdf-download/40508",previewPdfUrl:"/chapter/pdf-preview/40508",authors:[{id:"97930",title:"Dr.",name:"Rolando",surname:"Rodríguez",slug:"rolando-rodriguez",fullName:"Rolando Rodríguez"},{id:"104519",title:"Dr.",name:"Pedro L",surname:"Real",slug:"pedro-l-real",fullName:"Pedro L Real"}],corrections:null},{id:"40518",title:"GIS Applied to the Hydrogeologic Characterization – Examples for Mancha Oriental Aquifer (SE Spain)",doi:"10.5772/47967",slug:"gis-applied-to-the-hydrogeologic-characterization-examples-for-mancha-oriental-aquifer-se-spain-",totalDownloads:3779,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"David Sanz, Santiago Castaño and Juan José Gómez-Alday",downloadPdfUrl:"/chapter/pdf-download/40518",previewPdfUrl:"/chapter/pdf-preview/40518",authors:[{id:"103560",title:"Dr.",name:"David",surname:"Sanz",slug:"david-sanz",fullName:"David Sanz"},{id:"103570",title:"Prof.",name:"Santiago",surname:"Castaño",slug:"santiago-castano",fullName:"Santiago Castaño"},{id:"103571",title:"Prof.",name:"Juan José",surname:"Gómez-Alday",slug:"juan-jose-gomez-alday",fullName:"Juan José Gómez-Alday"}],corrections:null},{id:"40524",title:"GIS Applied to Integrated Coastal Zone and Ocean Management: Mapping, Change Detection and Spatial Modeling for Coastal Management in Southern Brazil",doi:"10.5772/47840",slug:"gis-applied-to-integrated-coastal-zone-and-ocean-management-mapping-change-detection-and-spatial-mod",totalDownloads:4197,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Tatiana S. da Silva, Maria Luiza Rosa and Flávia Farina",downloadPdfUrl:"/chapter/pdf-download/40524",previewPdfUrl:"/chapter/pdf-preview/40524",authors:[{id:"99062",title:"MSc",name:"Maria Luiza",surname:"Rosa",slug:"maria-luiza-rosa",fullName:"Maria Luiza Rosa"},{id:"104478",title:"Dr.",name:"Tatiana S. Da",surname:"Silva",slug:"tatiana-s.-da-silva",fullName:"Tatiana S. Da Silva"},{id:"104494",title:"Dr.",name:"Flávia",surname:"Farina",slug:"flavia-farina",fullName:"Flávia Farina"}],corrections:null},{id:"40531",title:"Monitoring Land Suitability for Mixed Livestock Grazing Using Geographic Information System (GIS)",doi:"10.5772/47939",slug:"monitoring-land-suitability-for-mixed-livestock-grazing-using-geographic-information-system-gis-",totalDownloads:4672,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Fazel Amiri, Abdul Rashid B. Mohamed Shariff and Taybeh Tabatabaie",downloadPdfUrl:"/chapter/pdf-download/40531",previewPdfUrl:"/chapter/pdf-preview/40531",authors:[{id:"96140",title:"Associate Prof.",name:"Fazel",surname:"Amiri",slug:"fazel-amiri",fullName:"Fazel Amiri"},{id:"123904",title:"Prof.",name:"Abdul Rashid",surname:"B. Mohamed Shariff",slug:"abdul-rashid-b.-mohamed-shariff",fullName:"Abdul Rashid B. Mohamed Shariff"},{id:"154709",title:"Dr.",name:"Taybeh",surname:"Tabatabaie",slug:"taybeh-tabatabaie",fullName:"Taybeh Tabatabaie"}],corrections:null},{id:"40507",title:"Effects of Population Density and Land Management on the Intensity of Urban Heat Islands: A Case Study on the City of Kuala Lumpur, Malaysia",doi:"10.5772/47943",slug:"effects-of-population-density-and-land-management-on-the-intensity-of-urban-heat-islands-a-case-stud",totalDownloads:5444,totalCrossrefCites:3,totalDimensionsCites:16,hasAltmetrics:0,abstract:null,signatures:"Ilham S. M. Elsayed",downloadPdfUrl:"/chapter/pdf-download/40507",previewPdfUrl:"/chapter/pdf-preview/40507",authors:[{id:"97024",title:"Dr.",name:"Ilham",surname:"Elsayed",slug:"ilham-elsayed",fullName:"Ilham Elsayed"}],corrections:null},{id:"40534",title:"Demand Allocation in Water Distribution Network Modelling – A GIS-Based Approach Using Voronoi Diagrams with Constraints",doi:"10.5772/50014",slug:"demand-allocation-in-water-distribution-network-modelling-a-gis-based-approach-using-voronoi-diagram",totalDownloads:5710,totalCrossrefCites:3,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Nicolai Guth and Philipp Klingel",downloadPdfUrl:"/chapter/pdf-download/40534",previewPdfUrl:"/chapter/pdf-preview/40534",authors:[{id:"102963",title:"Dr.",name:"Philipp",surname:"Klingel",slug:"philipp-klingel",fullName:"Philipp Klingel"},{id:"102993",title:"M.Sc.",name:"Nicolai",surname:"Guth",slug:"nicolai-guth",fullName:"Nicolai Guth"}],corrections:null},{id:"40506",title:"Using Geographic Information Systems for Health Research",doi:"10.5772/47941",slug:"using-geographic-information-systems-for-health-research",totalDownloads:4237,totalCrossrefCites:4,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Alka Patel and Nigel Waters",downloadPdfUrl:"/chapter/pdf-download/40506",previewPdfUrl:"/chapter/pdf-preview/40506",authors:[{id:"96661",title:"Dr.",name:"Alka",surname:"Patel",slug:"alka-patel",fullName:"Alka Patel"},{id:"102839",title:"Dr.",name:"Nigel",surname:"Waters",slug:"nigel-waters",fullName:"Nigel Waters"}],corrections:null},{id:"40519",title:"A Primer on Recent Advancement on Freight Transportation",doi:"10.5772/47955",slug:"a-primer-on-recent-advancement-on-freight-transportation",totalDownloads:2848,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Shih-Miao Chin, Francisco M. Oliveira-Neto, Ho-Ling Hwang, Diane Davidson, Lee D. Han and Bruce Peterson",downloadPdfUrl:"/chapter/pdf-download/40519",previewPdfUrl:"/chapter/pdf-preview/40519",authors:[{id:"100471",title:"Dr.",name:"Shih-Miao",surname:"Chin",slug:"shih-miao-chin",fullName:"Shih-Miao Chin"},{id:"105566",title:"Dr.",name:"Ho-Ling",surname:"Hwang",slug:"ho-ling-hwang",fullName:"Ho-Ling Hwang"},{id:"105569",title:"Dr.",name:"Francisco",surname:"De Oliveira-Neto",slug:"francisco-de-oliveira-neto",fullName:"Francisco De Oliveira-Neto"},{id:"105572",title:"Prof.",name:"Lee",surname:"Han",slug:"lee-han",fullName:"Lee Han"},{id:"105573",title:"Mr.",name:"Bruce",surname:"Peterson",slug:"bruce-peterson",fullName:"Bruce Peterson"},{id:"105576",title:"Ms.",name:"Diaane",surname:"Davidson",slug:"diaane-davidson",fullName:"Diaane Davidson"}],corrections:null},{id:"40520",title:"Developing Web Geographic Information System with the NDT Methodology",doi:"10.5772/47971",slug:"developing-web-geographic-information-system-with-the-ndt-methodology",totalDownloads:3370,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"J. Ponce, A.H. Torres, M.J. Escalona, M. Mejías and F.J. Domínguez-Mayo",downloadPdfUrl:"/chapter/pdf-download/40520",previewPdfUrl:"/chapter/pdf-preview/40520",authors:[{id:"104846",title:"Dr.",name:"Maria",surname:"Escalona",slug:"maria-escalona",fullName:"Maria Escalona"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-vascular-repair-and-remodeling-a-review",title:"Corrigendum to: Vascular Repair and Remodeling: A Review",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79244.pdf",downloadPdfUrl:"/chapter/pdf-download/79244",previewPdfUrl:"/chapter/pdf-preview/79244",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79244",risUrl:"/chapter/ris/79244",chapter:{id:"54438",slug:"vascular-repair-and-remodeling-a-review",signatures:"Nicolás F. Renna, Rodrigo Garcia, Jesica Ramirez and Roberto M.\nMiatello",dateSubmitted:"May 26th 2016",dateReviewed:"January 16th 2017",datePrePublished:null,datePublished:"April 5th 2017",book:{id:"5682",title:"Physiologic and Pathologic Angiogenesis",subtitle:"Signaling Mechanisms and Targeted Therapy",fullTitle:"Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy",slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",publishedDate:"April 5th 2017",bookSignature:"Dan Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/5682.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",middleName:"T.",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"192616",title:"Dr.",name:"Nicolás",middleName:null,surname:"Renna",fullName:"Nicolás Renna",slug:"nicolas-renna",email:"nicolasfede@gmail.com",position:null,institution:{name:"National University of Cuyo",institutionURL:null,country:{name:"Argentina"}}},{id:"202536",title:"Dr.",name:"Rodrigo",middleName:"Damián",surname:"García",fullName:"Rodrigo García",slug:"rodrigo-garcia",email:"rodridg@hotmail.com",position:null,institution:null},{id:"202537",title:"Dr.",name:"Jesica",middleName:null,surname:"Ramirez",fullName:"Jesica Ramirez",slug:"jesica-ramirez",email:"jesicamagali@hotmail.com",position:null,institution:null},{id:"202539",title:"Dr.",name:"Roberto M.",middleName:null,surname:"Miatello",fullName:"Roberto M. Miatello",slug:"roberto-m.-miatello",email:"rmmiatello@gmail.com",position:null,institution:null}]}},chapter:{id:"54438",slug:"vascular-repair-and-remodeling-a-review",signatures:"Nicolás F. Renna, Rodrigo Garcia, Jesica Ramirez and Roberto M.\nMiatello",dateSubmitted:"May 26th 2016",dateReviewed:"January 16th 2017",datePrePublished:null,datePublished:"April 5th 2017",book:{id:"5682",title:"Physiologic and Pathologic Angiogenesis",subtitle:"Signaling Mechanisms and Targeted Therapy",fullTitle:"Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy",slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",publishedDate:"April 5th 2017",bookSignature:"Dan Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/5682.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",middleName:"T.",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"192616",title:"Dr.",name:"Nicolás",middleName:null,surname:"Renna",fullName:"Nicolás Renna",slug:"nicolas-renna",email:"nicolasfede@gmail.com",position:null,institution:{name:"National University of Cuyo",institutionURL:null,country:{name:"Argentina"}}},{id:"202536",title:"Dr.",name:"Rodrigo",middleName:"Damián",surname:"García",fullName:"Rodrigo García",slug:"rodrigo-garcia",email:"rodridg@hotmail.com",position:null,institution:null},{id:"202537",title:"Dr.",name:"Jesica",middleName:null,surname:"Ramirez",fullName:"Jesica Ramirez",slug:"jesica-ramirez",email:"jesicamagali@hotmail.com",position:null,institution:null},{id:"202539",title:"Dr.",name:"Roberto M.",middleName:null,surname:"Miatello",fullName:"Roberto M. Miatello",slug:"roberto-m.-miatello",email:"rmmiatello@gmail.com",position:null,institution:null}]},book:{id:"5682",title:"Physiologic and Pathologic Angiogenesis",subtitle:"Signaling Mechanisms and Targeted Therapy",fullTitle:"Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy",slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",publishedDate:"April 5th 2017",bookSignature:"Dan Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/5682.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",middleName:"T.",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9180",leadTitle:null,title:"Heterogeneous Catalysis",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThis book aims to cover a detail insight knowledge and applications of heterogeneous catalysis in energy sectors, environmental remediation, and biomedical applications. Globally, there is a continuous need for the energy and most of the energy are provided from the carbon sources which are continuously diminished. The use of carbon-based energy resources is associated with the environmental issues which are non-renewable. Therefore, an alternative route and renewable source are required for energy production. The most advanced and novel method is the electrochemical and photochemical oxidation of water. Doped semiconducting materials, conjugated polymer materials, and graphene-conjugated semiconductors are the core topics of this book.
\r\n\tThis book aims to present a detailed background of the PEC water splitting, experimental setup, role, kinetics and mechanism of the heterogeneous catalysts.
\r\n\tApplication of heterogeneous catalyst in photocatalysis and environmental remediation is also welcome in detail. with the explanation of the application of heterogeneous catalyst in the biomedical field.
Composite materials are engineered or naturally occurring materials made from two or more constituent materials with significantly different physical or chemical properties which remain separate and distinct within the finished structure. Most composites have strong, stiff fibres in a matrix which is weaker and less stiff. The objective is usually to make a component which is strong and stiff, often with a low density. Commercial material commonly has glass or carbon fibres in matrices based on thermosetting polymers, such as epoxy or polyester resins. Sometimes, thermoplastic polymers may be preferred, since they are moldable after initial production. There are further classes of composite in which the matrix is a metal or a ceramic. For the most part, these are still in a developmental stage, with problems of high manufacturing costs yet to be overcome [1]. Furthermore, in these composites the reasons for adding the fibres (or, in some cases, particles) are often rather complex; for example, improvements may be sought in creep, wear, fracture toughness, thermal stability, etc [2].
Fibre reinforced polymer (FRP) are composites used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildings. The usage of FRP composites continues to grow at an impressive rate as these materials are used more in their existing markets and become established in relatively new markets such as biomedical devices and civil structures. A key factor driving the increased applications of composites over the recent years is the development of new advanced forms of FRP materials. This includes developments in high performance resin systems and new styles of reinforcement, such as carbon nanotubes and nanoparticles. This book provides an up-to-date account of the fabrication, mechanical properties, delamination resistance, impact tolerance and applications of 3D FRP composites [3].
The fibre reinforced polymer composites (FRPs) are increasingly being considered as an enhancement to and/or substitute for infrastructure components or systems that are constructed of traditional civil engineering materials, namely concrete and steel. FRP composites are lightweight, no-corrosive, exhibit high specific strength and specific stiffness, are easily constructed, and can be tailored to satisfy performance requirements. Due to these advantageous characteristics, FRP composites have been included in new construction and rehabilitation of structures through its use as reinforcement in concrete, bridge decks, modular structures, formwork, and external reinforcement for strengthening and seismic upgrade [4].
The applicability of Fiber Reinforced Polymer (FRP) reinforcements to concrete structures as a substitute for steel bars or prestressing tendons has been actively studied in numerous research laboratories and professional organizations around the world. FRP reinforcements offer a number of advantages such as corrosion resistance, non-magnetic properties, high tensile strength, lightweight and ease of handling. However, they generally have a linear elastic response in tension up to failure (described as a brittle failure) and a relatively poor transverse or shear resistance. They also have poor resistance to fire and when exposed to high temperatures. They loose significant strength upon bending, and they are sensitive to stress-rupture effects. Moreover, their cost, whether considered per unit weight or on the basis of force carrying capacity, is high in comparison to conventional steel reinforcing bars or prestressing tendons. From a structural engineering viewpoint, the most serious problems with FRP reinforcements are the lack of plastic behavior and the very low shear strength in the transverse direction. Such characteristics may lead to premature tendon rupture, particularly when combined effects are present, such as at shear-cracking planes in reinforced concrete beams where dowel action exists. The dowel action reduces residual tensile and shear resistance in the tendon. Solutions and limitations of use have been offered and continuous improvements are expected in the future. The unit cost of FRP reinforcements is expected to decrease significantly with increased market share and demand. However, even today, there are applications where FRP reinforcements are cost effective and justifiable. Such cases include the use of bonded FRP sheets or plates in repair and strengthening of concrete structures, and the use of FRP meshes or textiles or fabrics in thin cement products. The cost of repair and rehabilitation of a structure is always, in relative terms, substantially higher than the cost of the initial structure. Repair generally requires a relatively small volume of repair materials but a relatively high commitment in labor. Moreover the cost of labor in developed countries is so high that the cost of material becomes secondary. Thus the highest the performance and durability of the repair material is, the more cost-effective is the repair. This implies that material cost is not really an issue in repair and that the fact that FRP repair materials are costly is not a constraining drawback [5].
When considering only energy and material resources it appears, on the surface, the argument for FRP composites in a sustainable built environment is questionable. However, such a conclusion needs to be evaluated in terms of potential advantages present in use of FRP composites related to considerations such as:
Higher strength
Lighter weight
Higher performance
Longer lasting
Rehabilitating existing structures and extending their life
Seismic upgrades
Defense systems
Space systems
Ocean environments
In the case of FRP composites, environmental concerns appear to be a barrier to its feasibility as a sustainable material especially when considering fossil fuel depletion, air pollution, smog, and acidification associated with its production. In addition, the ability to recycle FRP composites is limited and, unlike steel and timber, structural components cannot be reused to perform a similar function in another structure. However, evaluating the environmental impact of FRP composites in infrastructure applications, specifically through life cycle analysis, may reveal direct and indirect benefits that are more competitive than conventional materials.
Composite materials have developed greatly since they were first introduced. However, before composite materials can be used as an alternative to conventional materials as part of a sustainable environment a number of needs remain.
Availability of standardized durability characterization data for FRP composite materials.
Integration of durability data and methods for service life prediction of structural members utilizing FRP composites.
Development of methods and techniques for materials selection based on life cycle assessments of structural components and systems.
Ultimately, in order for composites to truly be considered a viable alternative, they must be structurally and economically feasible. Numerous studies regarding the structural feasibility of composite materials are widely available in literature [6]. However, limited studies are available on the economic and environmental feasibility of these materials from the perspective of a life cycle approach, since short term data is available or only economic costs are considered in the comparison. Additionally, the long term affects of using composite materials needs to be determined. The byproducts of the production, the sustainability of the constituent materials, and the potential to recycle composite materials needs to be assessed in order to determine of composite materials can be part of a sustainable environment. Therefore in this chapter describe the physicochemical properties of polymers and composites more used in Civil Engineering. The theme will be addressed in a simple and basic for better understanding.
The synthetic polymers are generally manufactured by polycondensation, polymerization or polyaddition. The polymers combined with various agents to enhance or in any way alter the material properties of polymers the result is referred to as a plastic. The Composite plastics can be of homogeneous or heterogeneous mix. Composite plastics refer to those types of plastics that result from bonding two or more homogeneous materials with different material properties to derive a final product with certain desired material and mechanical properties. The Fibre reinforced plastics (or fiber reinforced polymers) are a category of composite plastics that specifically use fibre materials (not mix with polymer) to mechanically enhance the strength and elasticity of plastics. The original plastic material without fibre reinforcement is known as the matrix. The matrix is a tough but relatively weak plastic that is reinforced by stronger stiffer reinforcing filaments or fibres. The extent that strength and elasticity are enhanced in a fibre reinforced plastic depends on the mechanical properties of the fibre and matrix, their volume relative to one another, and the fibre length and orientation within the matrix. Reinforcement of the matrix occurs by definition when the FRP material exhibits increased strength or elasticity relative to the strength and elasticity of the matrix alone.
Polymers are different from other construction materials like ceramics and metals, because of their macromolecular nature. The covalently bonded, long chain structure makes them macromolecules and determines, via the weight averaged molecular weight, Mw, their processability, like spin-, blow-, deep draw-, generally melt-formability. The number averaged molecular weight, Mn, determines the mechanical strength, and high molecular weights are beneficial for properties like strain-to-break, impact resistance, wear, etc. Thus, natural limits are met, since too high molecular weights yield too high shear and elongational viscosities that make polymers inprocessable. Prime examples are the very useful poly-tetra-fluor-ethylenes, PTFE’s, and ultrahigh-molecular-weight-poly-ethylenes, UHMWPE’s, and not only garbage bags are made of polyethylene, PE, but also high-performance fibers that are even used for bullet proof vests (alternatively made from, also inprocessable in the melt, rigid aromatic polyamides). The resulting mechanical properties of these high performance fibers, with moduli of 150 GPa and strengths of up to 4 GPa, represent the optimal use of what the potential of the molecular structure of polymers yields, combined with their low density. Thinking about polymers, it becomes clear why living nature used the polymeric concept to build its structures, and not only in high strength applications like wood, silk or spider-webs [7].
The linking of small molecules (monomers) to make larger molecules is a polymer. Polymerization requires that each small molecule have at least two reaction points or functional groups. There are two distinct major types of polymerization processes, condensation polymerization, in which the chain growth is accompanied by elimination of small molecules such as H2O or CH3OH, and addition polymerization, in which the polymer is formed without the loss of other materials. There are many variants and subclasses of polymerization reactions.
The polymer chains can be classified in linear polymer chain, branched polymer chain, and cross-linked polymer chain. The structure of the repeating unit is the difunctional monomeric unit, or “mer.” In the presence of catalysts or initiators, the monomer yields a polymer by the joining together of n-mers. If n is a small number, 2–10, the products are dimers, trimers, tetramers, or oligomers, and the materials are usually gases, liquids, oils, or brittle solids. In most solid polymers, n has values ranging from a few score to several hundred thousand, and the corresponding molecular weights range from a few thousand to several million. The end groups of this example of addition polymers are shown to be fragments of the initiator. If only one monomer is polymerized, the product is called a homopolymer. The polymerization of a mixture of two monomers of suitable reactivity leads to the formation of a copolymer, a polymer in which the two types of mer units have entered the chain in a more or less random fashion. If chains of one homopolymer are chemically joined to chains of another, the product is called a block or graft copolymer.
Isotactic and syndiotactic (stereoregular) polymers are formed in the presence of complex catalysts, or by changing polymerization conditions, for example, by lowering the temperature. The groups attached to the chain in a stereoregular polymer are in a spatially ordered arrangement. The regular structures of the isotactic and syndiotactic forms make them often capable of crystallization. The crystalline melting points of isotactic polymers are often substantially higher than the softening points of the atactic product.
The spatially oriented polymers can be classified in atactic (random; dlldl or lddld, and so on), syndiotactic (alternating; dldl, and so on), and isotactic (right- or left-handed; dddd, or llll, and so on). For illustration, the heavily marked bonds are assumed to project up from the paper, and the dotted bonds down. Thus in a fully syndiotactic polymer, asymmetric carbons alternate in their left- or right-handedness (alternating d, l configurations), while in an isotactic polymer, successive carbons have the same steric configuration (d or l). Among the several kinds of polymerization catalysis, free-radical initiation has been most thoroughly studied and is most widely employed. Atactic polymers are readily formed by free-radical polymerization, at moderate temperatures, of vinyl and diene monomers and some of their derivatives. Some polymerizations can be initiated by materials, often called ionic catalysts, which contain highly polar reactive sites or complexes. The term heterogeneous catalyst is often applicable to these materials because many of the catalyst systems are insoluble in monomers and other solvents. These polymerizations are usually carried out in solution from which the polymer can be obtained by evaporation of the solvent or by precipitation on the addition of a nonsolvent. A distinguishing feature of complex catalysts is the ability of some representatives of each type to initiate stereoregular polymerization at ordinary temperatures or to cause the formation of polymers which can be crystallized [1, 6].
Polymerization, emulsion polymerization any process in which relatively small molecules, called monomers, combine chemically to produce a very large chainlike or network molecule, called a polymer. The monomer molecules may be all alike, or they may represent two, three, or more different compounds. Usually at least 100 monomer molecules must be combined to make a product that has certain unique physical properties-such as elasticity, high tensile strength, or the ability to form fibres-that differentiate polymers from substances composed of smaller and simpler molecules; often, many thousands of monomer units are incorporated in a single molecule of a polymer. The formation of stable covalent chemical bonds between the monomers sets polymerization apart from other processes, such as crystallization, in which large numbers of molecules aggregate under the influence of weak intermolecular forces.
Two classes of polymerization usually are distinguished. In condensation polymerization, each step of the process is accompanied by formation of a molecule of some simple compound, often water. In addition polymerization, monomers react to form a polymer without the formation of by-products. Addition polymerizations usually are carried out in the presence of catalysts, which in certain cases exert control over structural details that have important effects on the properties of the polymer [8].
Linear polymers, which are composed of chainlike molecules, may be viscous liquids or solids with varying degrees of crystallinity; a number of them can be dissolved in certain liquids, and they soften or melt upon heating. Cross-linked polymers, in which the molecular structure is a network, are thermosetting resins (i.e., they form under the influence of heat but, once formed, do not melt or soften upon reheating) that do not dissolve in solvents. Both linear and cross-linked polymers can be made by either addition or condensation polymerization.
The polycondensation a process for the production of polymers from bifunctional and polyfunctional compounds (monomers), accompanied by the elimination of low-molecular weight by-products (for example, water, alcohols, and hydrogen halides). A typical example of polycondensation is the synthesis of complex polyester.
The process is called homopolycondensation if the minimum possible number of monomer types for a given case participates, and this number is usually two. If at least one monomer more than the number required for the given reaction participates in polycondensation, the process is called copolycondensation. Polycondensation in which only bifunctional compounds participate leads to the formation of linear macromolecules and is called linear polycondensation. If molecules with three or more functional groups participate in polycondensation, three-dimensional structures are formed and the process is called three-dimensional polycondensation. In cases where the degree of completion of polycondensation and the mean length of the macromolecules are limited by the equilibrium concentration of the reagents and reaction products, the process is called equilibrium (reversible) polycondensation. If the limiting factors are kinetic rather than thermodynamic, the process is called nonequilibrium (irreversible) polycondensation.
Polycondensation is often complicated by side reactions, in which both the original monomers and the polycondensation products (oligomers and polymers) may participate. Such reactions include the reaction of monomer or oligomer with a mono-functional compound (which may be present as an impurity), intramolecular cyclization (ring closure), and degradation of the macromolecules of the resultant polymer. The rate competition of polycondensation and the side reactions determines the molecular weight, yield, and molecular weight distribution of the polycondensation polymer.
Polycondensation is characterized by disappearance of the monomer in the early stages of the process and a sharp increase in molecular weight, in spite of a slight change in the extent of conversion in the region of greater than 95-percent conversion.
A necessary condition for the formation of macro-molecular polymers in linear polycondensation is the equivalence of the initial functional groups that react with one another.
Polycondensation is accomplished by one of three methods:
in a melt, when a mixture of the initial compounds is heated for a long period to 10°-20°C above the melting (softening) point of the resultant polymer;
in solution, when the monomers are present in the same phase in the solute state;
on the phase boundary between two immiscible liquids, in which one of the initial compounds is found in each of the liquid phases (interphase polycondensation).
Polycondensation processes play an important role in nature and technology. Polycondensation or similar reactions are the basis for the biosynthesis of the most important biopolymers-proteins, nucleic acids, and cellulose. Polycondensation is widely used in industry for the production of polyesters (polyethylene terephthalate, polycarbonates, and alkyd resins), polyamides, phenol-formaldehyde resins, urea-formaldehyde resins, and certain silicones [9]. In the period 1965-70, polycondensation acquired great importance in connection with the development of industrial production of a series of new polymers, including heat-resistant polymers (polyarylates, aromatic polyimides, polyphe-nylene oxides, and polysulfones).
The polyaddition reactions are similar to polycondensation reactions because they are also step reactions, however without splitting off low molecular weight by-products. The reaction is exothermic rather than endothermic and therefore cannot be stopped at will. Typical for polyaddition reaction is that individual atoms, usually H-atoms, wander from one monomer to another as the two monomers combine through a covalent bond. The monomers, as in polycondensation reactions, have to be added in stoichiometric amounts. These reactions do not start spontaneously and they are slow.
Polyaddition does not play a significant role in the production of thermoplastics. It is commonly encountered with cross-linked polymers. Polyurethane, which can be either a thermoplastic or thermosets, is synthesized by the reaction of multi-functional isocyanates with multifunctional amines or alcohol. Thermosetting epoxy resins are formed by polyaddition of epoxides with curing agents, such as amines and acid anhydrides.
In comparing chain reaction polymerization with the other two types of polymerization the following principal differences should be noted: Chain reaction polymerization, or simply called polymerization, is a chain reaction as the name implies. Only individual monomer molecules add to a reactive growing chain end, except for recombination of two radical chain ends or reactions of a reactive chain end with an added modifier molecule. The activation energy for chain initiation is much grater than for the subsequent growth reaction and growth, therefore, occurs very rapidly.
Composite is any material made of more than one component. There are a lot of composites around you. Concrete is a composite. It\'s made of cement, gravel, and sand, and often has steel rods inside to reinforce it. Those shiny balloons you get in the hospital when you\'re sick are made of a composite, which consists of a polyester sheet and an aluminum foil sheet, made into a sandwich. The polymer composites made from polymers, or from polymers along with other kinds of materials [7]. But specifically the fiber-reinforced composites are materials in which a fiber made of one material is embedded in another material.
The polymer composites are any of the combinations or compositions that comprise two or more materials as separate phases, at least one of which is a polymer. By combining a polymer with another material, such as glass, carbon, or another polymer, it is often possible to obtain unique combinations or levels of properties. Typical examples of synthetic polymeric composites include glass-, carbon-, or polymer-fiber-reinforced, thermoplastic or thermosetting resins, carbon-reinforced rubber, polymer blends, silica- or mica-reinforced resins, and polymer-bonded or -impregnated concrete or wood. It is also often useful to consider as composites such materials as coatings (pigment-binder combinations) and crystalline polymers (crystallites in a polymer matrix). Typical naturally occurring composites include wood (cellulosic fibers bonded with lignin) and bone (minerals bonded with collagen). On the other hand, polymeric compositions compounded with a plasticizer or very low proportions of pigments or processing aids are not ordinarily considered as composites.
Typically, the goal is to improve strength, stiffness, or toughness, or dimensional stability by embedding particles or fibers in a matrix or binding phase. A second goal is to use inexpensive, readily available fillers to extend a more expensive or scarce resin; this goal is increasingly important as petroleum supplies become costlier and less reliable. Still other applications include the use of some filler such as glass spheres to improve processability, the incorporation of dry-lubricant particles such as molybdenum sulfide to make a self-lubricating bearing, and the use of fillers to reduce permeability.
The most common fiber-reinforced polymer composites are based on glass fibers, cloth, mat, or roving embedded in a matrix of an epoxy or polyester resin. Reinforced thermosetting resins containing boron, polyaramids, and especially carbon fibers confer especially high levels of strength and stiffness. Carbon-fiber composites have a relative stiffness five times that of steel. Because of these excellent properties, many applications are uniquely suited for epoxy and polyester composites, such as components in new jet aircraft, parts for automobiles, boat hulls, rocket motor cases, and chemical reaction vessels.
Although the most dramatic properties are found with reinforced thermosetting resins such as epoxy and polyester resins, significant improvements can be obtained with many reinforced thermoplastic resins as well. Polycarbonates, polyethylene, and polyesters are among the resins available as glass-reinforced composition. The combination of inexpensive, one-step fabrication by injection molding, with improved properties has made it possible for reinforced thermoplastics to replace metals in many applications in appliances, instruments, automobiles, and tools.
In the development of other composite systems, various matrices are possible; for example, polyimide resins are excellent matrices for glass fibers, and give a high- performance composite. Different fibers are of potential interest, including polymers [such as poly(vinyl alcohol)], single-crystal ceramic whiskers (such as sapphire), and various metallic fibers.
Long ago, people living in South and Central America had used natural rubber latex, polyisoprene, to make things like gloves and boots, as well as rubber balls which they used to play games that were a lot like modern basketball. He took two layers of cotton fabric and embedded them in natural rubber, also known as polyisoprene, making a three-layered sandwich like the one you see on your right (Remember, cotton is made up of a natural polymer called cellulose). This made for good raincoats because, while the rubber made it waterproof, the cotton layers made it comfortable to wear, to make a material that has the properties of both its components. In this case, we combine the water-resistance of polyisoprene and the comfort of cotton.
Modern composites are usually made of two components, a fiber and matrix. The fiber is most often glass, but sometimes Kevlar, carbon fiber, or polyethylene. The matrix is usually a thermoset like an epoxy resin, polydicyclopentadiene, or a polyimide. The fiber is embedded in the matrix in order to make the matrix stronger. Fiber-reinforced composites have two things going for them. They are strong and light. They are often stronger than steel, but weigh much less. This means that composites can be used to make automobiles lighter, and thus much more fuel efficient.
A common fiber-reinforced composite is FiberglasTM. Its matrix is made by reacting polyester with carbon-carbon double bonds in its backbone, and styrene. We pour a mix of the styrene and polyester over a mass of glass fibers.
The styrene and the double bonds in the polyester react by free radical vinyl polymerization to form a crosslinked resin. The glass fibers are trapped inside, where they act as a reinforcement. In FiberglasTM the fibers are not lined up in any particular direction. They are just a tangled mass, like you see on the right. But we can make the composite stronger by lining up all the fibers in the same direction. Oriented fibers do some weird things to the composite. When you pull on the composite in the direction of the fibers, the composite is very strong. But if you pull on it at right angles to the fiber direction, it is not very strong at all [8-9]. This is not always bad, because sometimes we only need the composite to be strong in one direction. Sometimes the item you are making will only be under stress in one direction. But sometimes we need strength in more than one direction. So we simply point the fibers in more than one direction. We often do this by using a woven fabric of the fibers to reinforce the composite. The woven fibers give a composite good strength in many directions.
The polymeric matrix holds the fibers together. A loose bundle of fibers would not be of much use. Also, though fibers are strong, they can be brittle. The matrix can absorb energy by deforming under stress. This is to say, the matrix adds toughness to the composite. And finally, while fibers have good tensile strength (that is, they are strong when you pull on them), they usually have awful compressional strength. That is, they buckle when you squash them. The matrix gives compressional strength to the composite.
Not all fibers are the same. Now it may seem strange that glass is used as reinforcement, as glass is really easy to break. But for some reason, when glass is spun into really tiny fibers, it acts very different. Glass fibers are strong, and flexible.
Still, there are stronger fibers out there. This is a good thing, because sometimes glass just isn\'t strong and tough enough. For some things, like airplane parts, that undergo a lot of stress, you need to break out the fancy fibers. When cost is no object, you can use stronger, but more expensive fibers, like KevlarTM, carbon fiber. Carbon fiber (SpectraTM) is usually stronger than KevlarTM, that is, it can withstand more force without breaking. But KevlarTM tends to be tougher. This means it can absorb more energy without breaking. It can stretch a little to keep from breaking, more so than carbon fiber can. But SpectraTM, which is a kind of polyethylene, is stronger and tougher than both carbon fiber and KevlarTM.
Different jobs call for different matrices. The unsaturated polyester/styrene systems at are one example. They are fine for everyday applications. Chevrolet Corvette bodies are made from composites using unsaturated polyester matrices and glass fibers. But they have some drawbacks. They shrink a good deal when they\'re cured, they can absorb water very easily, and their impact strength is low.
For many decades, the residential construction field has used timber as its main source of building material for the frames of modern American homes. The American timber industry produced a record 49.5 billion board feet of lumber in 1999, and another 48.0 billion board feet in 2002. At the same time that lumber production is peaking, the home ownership rate reached a record high of 69.2%, with over 977,000 homes being sold in 2002. Because residential construction accounts for one-third of the total softwood lumber use in the United States, there is an increasing demand for alternate materials. Use of sawdust not only provides an alternative but also increases the use of the by product efficiently. Wood plastic composites (WPC) is a relatively new category of materials that covers a broad range of composite materials utilizing an organic resin binder (matrix) and fillers composed of cellulose materials. The new and rapidly developing biocomposite materials are high technology products, which have one unique advantage – the wood filler can include sawdust and scrap wood products. Consequently, no additional wood resources are needed to manufacture biocomposites. Waste products that would traditraditionally cost money for proper disposal, now become a beneficial resource, allowing recycling to be both profitable and environmentally conscious. The use of biocomposites and WPC has increased rapidly all over the world, with the end users for these composites in the construction, motor vehicle, and furniture industries. One of the primary problems related to the use of biocomposites is the flammability of the two main components (binder and filler). If a flame retardant were added, this would require the adhesion of the fiber and the matrix not to be disturbed by the retardant. The challenge is to develop a composite that will not burn and will maintain its level of mechanical performance. In lieu of organic matrix compounds, inorganic matrices can be utilized to improve the fire resistance. Inorganic-based wood composites are those that consist of a mineral mix as the binder system. Such inorganic binder systems include gypsum and Portland cement, both of which are highly resistant to fire and insects. The main disadvantage with these systems is the maximum amount of sawdust or fibers than can be incorporated is low. One relatively new type of inorganic matrix is potassium aluminosilicate, an environmentally friendly compound made from naturally occurring materials. The Federal Aviation Administration has investigated the feasibility of using this matrix in commercial aircraft due to its ability to resist temperatures of up to 1000 ºC without generating smoke, and its ability to enable carbon composites to withstand temperatures of 800 ºC and maintain 63% of its original flexural strength. Potassium aluminosilicate matrices are compatible with many common building material including clay brick, masonry, concrete, steel, titanium, balsa, oak, pine, and particleboard [10].
Fiberglass refers to a group of products made from individual glass fibers combined into a variety of forms. Glass fibers can be divided into two major groups according to their geometry: continuous fibers used in yarns and textiles, and the discontinuous (short) fibers used as batts, blankets, or boards for insulation and filtration. Fiberglass can be formed into yarn much like wool or cotton, and woven into fabric which is sometimes used for draperies. Fiberglass textiles are commonly used as a reinforcement material for molded and laminated plastics. Fiberglass wool, a thick, fluffy material made from discontinuous fibers, is used for thermal insulation and sound absorption. It is commonly found in ship and submarine bulkheads and hulls; automobile engine compartments and body panel liners; in furnaces and air conditioning units; acoustical wall and ceiling panels; and architectural partitions. Fiberglass can be tailored for specific applications such as Type E (electrical), used as electrical insulation tape, textiles and reinforcement; Type C (chemical), which has superior acid resistance, and Type T, for thermal insulation [11].
Though commercial use of glass fiber is relatively recent, artisans created glass strands for decorating goblets and vases during the Renaissance. A French physicist, Rene-Antoine Ferchault de Reaumur, produced textiles decorated with fine glass strands in 1713. Glass wool, a fluffy mass of discontinuous fiber in random lengths, was first produced in Europe in 1900, using a process that involved drawing fibers from rods horizontally to a revolving drum [12].
The basic raw materials for fiberglass products are a variety of natural minerals and manufactured chemicals. The major ingredients are silica sand, limestone, and soda ash. Other ingredients may include calcined alumina, borax, feldspar, nepheline syenite, magnesite, and kaolin clay, among others. Silica sand is used as the glass former, and soda ash and limestone help primarily to lower the melting temperature. Other ingredients are used to improve certain properties, such as borax for chemical resistance. Waste glass, also called cullet, is also used as a raw material. The raw materials must be carefully weighed in exact quantities and thoroughly mixed together (called batching) before being melted into glass.
Once the batch is prepared, it is fed into a furnace for melting. The furnace may be heated by electricity, fossil fuel, or a combination of the two. Temperature must be precisely controlled to maintain a smooth, steady flow of glass. The molten glass must be kept at a higher temperature (about 1371 °C) than other types of glass in order to be formed into fiber. Once the glass becomes molten, it is transferred to the forming equipment via a channel (forehearth) located at the end of the furnace [13].
Several different processes are used to form fibers, depending on the type of fiber. Textile fibers may be formed from molten glass directly from the furnace, or the molten glass may be fed first to a machine that forms glass marbles of about 0.62 inch (1.6 cm) in diameter. These marbles allow the glass to be inspected visually for impurities. In both the direct melt and marble melt process, the glass or glass marbles are fed through electrically heated bushings (also called spinnerets). The bushing is made of platinum or metal alloy, with anywhere from 200 to 3,000 very fine orifices. The molten glass passes through the orifices and comes out as fine filaments [13].
A long, continuous fiber can be produced through the continuous-filament process. After the glass flows through the holes in the bushing, multiple strands are caught up on a high-speed winder. The winder revolves at about 3 km a minute, much faster than the rate of flow from the bushings. The tension pulls out the filaments while still molten, forming strands a fraction of the diameter of the openings in the bushing. A chemical binder is applied, which helps keep the fiber from breaking during later processing. The filament is then wound onto tubes. It can now be twisted and plied into yarn [14].
An alternative method is the staplefiber process. As the molten glass flows through the bushings, jets of air rapidly cool the filaments. The turbulent bursts of air also break the filaments into lengths of 20-38 cm. These filaments fall through a spray of lubricant onto a revolving drum, where they form a thin web. The web is drawn from the drum and pulled into a continuous strand of loosely assembled fibers [15]. This strand can be processed into yarn by the same processes used for wool and cotton.
Instead of being formed into yarn, the continuous or long-staple strand may be chopped into short lengths. The strand is mounted on a set of bobbins, called a creel, and pulled through a machine which chops it into short pieces. The chopped fiber is formed into mats to which a binder is added. After curing in an oven, the mat is rolled up. Various weights and thicknesses give products for shingles, built-up roofing, or decorative mats [16].
The rotary or spinner process is used to make glass wool. In this process, molten glass from the furnace flows into a cylindrical container having small holes. As the container spins rapidly, horizontal streams of glass flow out of the holes. The molten glass streams are converted into fibers by a downward blast of air, hot gas, or both. The fibers fall onto a conveyor belt, where they interlace with each other in a fleecy mass. This can be used for insulation, or the wool can be sprayed with a binder, compressed into the desired thickness, and cured in an oven. The heat sets the binder, and the resulting product may be a rigid or semi-rigid board, or a flexible bat [15-16].
In addition to binders, other coatings are required for fiberglass products. Lubricants are used to reduce fiber abrasion and are either directly sprayed on the fiber or added into the binder. An anti-static composition is also sometimes sprayed onto the surface of fiberglass insulation mats during the cooling step. Cooling air drawn through the mat causes the anti-static agent to penetrate the entire thickness of the mat. The anti-static agent consists of two ingredients a material that minimizes the generation of static electricity, and a material that serves as a corrosion inhibitor and stabilizer.
Sizing is any coating applied to textile fibers in the forming operation, and may contain one or more components (lubricants, binders, or coupling agents). Coupling agents are used on strands that will be used for reinforcing plastics, to strengthen the bond to the reinforced material. Sometimes a finishing operation is required to remove these coatings, or to add another coating. For plastic reinforcements, sizings may be removed with heat or chemicals and a coupling agent applied. For decorative applications, fabrics must be heat treated to remove sizings and to set the weave. Dye base coatings are then applied before dying or printing [15-16].
Fiberglass products come in a wide variety of shapes, made using several processes. For example, fiberglass pipe insulation is wound onto rod-like forms called mandrels directly from the forming units, prior to curing. The mold forms, in lengths of 91 cm or less, are then cured in an oven. The cured lengths are then de-molded lengthwise, and sawn into specified dimensions. Facings are applied if required, and the product is packaged for shipment [17].
Carbon-fiber-reinforced polymer or carbon-fiber-reinforced plastic (CFRP or CRP or often simply carbon fiber), is a very strong and light fiber-reinforced polymer which contains carbon fibers. Carbon fibres are created when polyacrylonitrile fibres (PAN), Pitch resins, or Rayon are carbonized (through oxidation and thermal pyrolysis) at high temperatures. Through further processes of graphitizing or stretching the fibres strength or elasticity can be enhanced respectively. Carbon fibres are manufactured in diameters analogous to glass fibres with diameters ranging from 9 to 17 μm. These fibres wound into larger threads for transportation and further production processes. Further production processes include weaving or braiding into carbon fabrics, cloths and mats analogous to those described for glass that can then be used in actual reinforcement processes. Carbon fibers are a new breed of high-strength materials. Carbon fiber has been described as a fiber containing at least 90% carbon obtained by the controlled pyrolysis of appropriate fibers. The existence of carbon fiber came into being in 1879 when Edison took out a patent for the manufacture of carbon filaments suitable for use in electric lamps [18].
Based on modulus, strength, and final heat treatment temperature, carbon fibers can be classified into the following categories:
Based on carbon fiber properties, carbon fibers can be grouped into:
Ultra-high-modulus, type UHM (modulus >450Gpa)
High-modulus, type HM (modulus between 350-450Gpa)
Intermediate-modulus, type IM (modulus between 200-350Gpa)
Low modulus and high-tensile, type HT (modulus < 100Gpa, tensile strength > 3.0Gpa)
Super high-tensile, type SHT (tensile strength > 4.5Gpa)
Based on precursor fiber materials, carbon fibers are classified into;
PAN-based carbon fibers
Pitch-based carbon fibers
Mesophase pitch-based carbon fibers
Isotropic pitch-based carbon fibers
Rayon-based carbon fibers
Gas-phase-grown carbon fibers
Based on final heat treatment temperature, carbon fibers are classified into:
Type-I, high-heat-treatment carbon fibers (HTT), where final heat treatment temperature should be above 2000°C and can be associated with high-modulus type fiber.
Type-II, intermediate-heat-treatment carbon fibers (IHT), where final heat treatment temperature should be around or above 1500 °C and can be associated with high-strength type fiber.
Type-III, low-heat-treatment carbon fibers, where final heat treatment temperatures not greater than 1000 °C. These are low modulus and low strength materials [19].
In Textile Terms and Definitions, carbon fiber has been described as a fiber containing at least 90% carbon obtained by the controlled pyrolysis of appropriate fibers. The term "graphite fiber" is used to describe fibers that have carbon in excess of 99%. Large varieties of fibers called precursors are used to produce carbon fibers of different morphologies and different specific characteristics. The most prevalent precursors are polyacrylonitrile (PAN), cellulosic fibers (viscose rayon, cotton), petroleum or coal tar pitch and certain phenolic fibers.
Carbon fibers are manufactured by the controlled pyrolysis of organic precursors in fibrous form. It is a heat treatment of the precursor that removes the oxygen, nitrogen and hydrogen to form carbon fibers. It is well established in carbon fiber literature that the mechanical properties of the carbon fibers are improved by increasing the crystallinity and orientation, and by reducing defects in the fiber. The best way to achieve this is to start with a highly oriented precursor and then maintain the initial high orientation during the process of stabilization and carbonization through tension [18-19].
There are three successive stages in the conversion of PAN precursor into high-performance carbon fibers. Oxidative stabilization: The polyacrylonitrile precursor is first stretched and simultaneously oxidized in a temperature range of 200-300 °C. This treatment converts thermoplastic PAN to a non-plastic cyclic or ladder compound. Carbonization: After oxidation, the fibers are carbonized at about 1000 °C without tension in an inert atmosphere (normally nitrogen) for a few hours. During this process the non-carbon elements are removed as volatiles to give carbon fibers with a yield of about 50% of the mass of the original PAN. Graphitization: Depending on the type of fiber required, the fibers are treated at temperatures between 1500-3000 °C, which improves the ordering, and orientation of the crystallites in the direction of the fiber axis.
a- The conversion of rayon fibers into carbon fibers is three phase process
Stabilization: Stabilization is an oxidative process that occurs through steps. In the first step, between 25-150 °C, there is physical desorption of water. The next step is a dehydration of the cellulosic unit between 150-240 °C. Finally, thermal cleavage of the cyclosidic linkage and scission of ether bonds and some C-C bonds via free radical reaction (240-400 °C) and, thereafter, aromatization takes place.
Carbonization: Between 400 and 700 °C, the carbonaceous residue is converted into a graphite-like layer.
Graphitization: Graphitization is carried out under strain at 700-2700 °C to obtain high modulus fiber through longitudinal orientation of the planes.
b- The carbon fiber fabrication from pitch generally consists of the following four steps:
Pitch preparation: It is an adjustment in the molecular weight, viscosity, and crystal orientation for spinning and further heating.
Spinning and drawing: In this stage, pitch is converted into filaments, with some alignment in the crystallites to achieve the directional characteristics.
Stabilization: In this step, some kind of thermosetting to maintain the filament shape during pyrolysis. The stabilization temperature is between 250 and 400 °C.
Carbonization: The carbonization temperature is between 1000-1500 °C.
Carbon fibers made from the spinning of molten pitches are of interest because of the high carbon yield from the precursors and the relatively low cost of the starting materials. Stabilization in air and carbonization in nitrogen can follow the formation of melt-blown pitch webs. Processes have been developed with isotropic pitches and with anisotropic mesophase pitches. The mesophase pitch based and melt blown discontinuous carbon fibers have a peculiar structure. These fibers are characterized in that a large number of small domains, each domain having an average equivalent diameter from 0.03 mm to 1mm and a nearly unidirectional orientation of folded carbon layers, assemble to form a mosaic structure on the cross-section of the carbon fibers. The folded carbon layers of each domain are oriented at an angle to the direction of the folded carbon layers of the neighboring domains on the boundary [20].
The isotropic pitch or pitch-like material, i.e., molten polyvinyl chloride, is melt spun at high strain rates to align the molecules parallel to the fiber axis. The thermoplastic fiber is then rapidly cooled and carefully oxidized at a low temperature (<100 °C). The oxidation process is rather slow, to ensure stabilization of the fiber by cross-linking and rendering it infusible. However, upon carbonization, relaxation of the molecules takes place, producing fibers with no significant preferred orientation. This process is not industrially attractive due to the lengthy oxidation step, and only low-quality carbon fibers with no graphitization are produced. These are used as fillers with various plastics as thermal insulation materials [20].
High molecular weight aromatic pitches, mainly anisotropic in nature, are referred to as mesophase pitches. The pitch precursor is thermally treated above 350°C to convert it to mesophase pitch, which contains both isotropic and anisotropic phases. Due to the shear stress occurring during spinning, the mesophase molecules orient parallel to the fiber axis. After spinning, the isotropic part of the pitch is made infusible by thermosetting in air at a temperature below it\'s softening point. The fiber is then carbonized at temperatures up to 1000 °C. The main advantage of this process is that no tension is required during the stabilization or the graphitization, unlike the case of rayon or PANs precursors [21].
The characterization of carbon fiber microstructure has been mainly been performed by x-ray scattering and electron microscopy techniques. In contrast to graphite, the structure of carbon fiber lacks any three dimensional order. In PAN-based fibers, the linear chain structure is transformed to a planar structure during oxidative stabilization and subsequent carbonization. Basal planes oriented along the fiber axis are formed during the carbonization stage. Wide-angle x-ray data suggests an increase in stack height and orientation of basal planes with an increase in heat treatment temperature. A difference in structure between the sheath and the core was noticed in a fully stabilized fiber. The skin has a high axial preferred orientation and thick crystallite stacking. However, the core shows a lower preferred orientation and a lower crystallite height [22].
In general, it is seen that the higher the tensile strength of the precursor the higher is the tenacity of the carbon fiber. Tensile strength and modulus are significantly improved by carbonization under strain when moderate stabilization is used. X-ray and electron diffraction studies have shown that in high modulus type fibers, the crystallites are arranged around the longitudinal axis of the fiber with layer planes highly oriented parallel to the axis. Overall, the strength of a carbon fiber depends on the type of precursor, the processing conditions, heat treatment temperature and the presence of flaws and defects. With PAN based carbon fibers, the strength increases up to a maximum of 1300 ºC and then gradually decreases. The modulus has been shown to increase with increasing temperature. PAN based fibers typically buckle on compression and form kink bands at the innermost surface of the fiber. However, similar high modulus type pitch-based fibers deform by a shear mechanism with kink bands formed at 45° to the fiber axis. Carbon fibers are very brittle. The layers in the fibers are formed by strong covalent bonds. The sheet-like aggregations allow easy crack propagation. On bending, the fiber fails at very low strain [23].
The two main applications of carbon fibers are in specialized technology, which includes aerospace and nuclear engineering, and in general engineering and transportation, which includes engineering components such as bearings, gears, cams, fan blades and automobile bodies. Recently, some new applications of carbon fibers have been found. Others include: decoration in automotive, marine, general aviation interiors, general entertainment and musical instruments and after-market transportation products. Conductivity in electronics technology provides additional new application [24].
The production of highly effective fibrous carbon adsorbents with low diameter, excluding or minimizing external and intra-diffusion resistance to mass transfer, and therefore, exhibiting high sorption rates is a challenging task. These carbon adsorbents can be converted into a wide variety of textile forms and nonwoven materials. Cheaper and newer versions of carbon fibers are being produced from new raw materials. Newer applications are also being developed for protective clothing (used in various chemical industries for work in extremely hostile environments), electromagnetic shielding and various other novel applications. The use of carbon fibers in Nonwovens is in a new possible application for high temperature fire-retardant insulation (eg: furnace material) [25].
Aliphatic polyamides are macromolecules whose structural units are characteristically interlinked by the amide linkage -NH-CO-. The nature of the structural unit constitutes a basis for classification. Aliphatic polyamides with structural units derived predominantly from aliphatic monomers are members of the generic class of nylons, whereas aromatic polyamides in which at least 85% of the amide linkages are directly adjacent to aromatic structures have been designated aramids. The U.S. Federal Trade Commission defines nylon fibers as ‘‘a manufactured fiber in which the fiber forming substance is a long chain synthetic polyamide in which less than 85% of the amide linkages (-CO-NH-) are attached directly to two aliphatic groups.’’ Polyamides that contain recurring amide groups as integral parts of the polymer backbone have been classified as condensation polymers regardless of the principal mechanisms entailed in the polymerization process. Though many reactions suitable for polyamide formation are known, commercially important nylons are obtained by processes related to either of two basic approaches: one entails the polycondensation of difunctional monomers utilizing either amino acids or stoichiometric pairs of dicarboxylic acids and diamines, and the other entails the ring-opening polymerization of lactams. The polyamides formed from diacids and diamines are generally described to be of the AABB format, whereas those derived from either amino acids or lactams are of the AB format.
The structure of polyamide fibers is defined by both chemical and physical parameters. The chemical parameters are related mainly to the constitution of the polyamide molecule and are concerned primarily with its monomeric units, end-groups, and molecular weight. The physical parameters are related essentially to chain conformation, orientation of both polymer molecule segments and aggregates, and to crystallinity [26]. This characteristic for single-chain aliphatic polyamides is determined by the structure of the monomeric units and the nature of end groups of the polymer molecules. The most important structural parameter of the noncrystalline (amorphous) phase is the glass transition temperature (Tg) since it has a considerable effect on both processing and properties of the polyamide fibers. It relates to a type of a glass–rubber transition and is defined as the temperature, or temperature range, at which mobility of chain segments or structural units commences. Thus it is a function of the chemical structure; in case of the linear aliphatic polyamides, it is a function of the number of CH2 units (mean spacing) between the amide groups. As the number of CH2 unit’s increases, Tg decreases. Although Tg is further affected by the nature of the crystalline phase, orientation, and molecular weight, it is associated only with what may be considered the amorphous phase.
Any process affecting this phase exerts a corresponding effect on the glass transition temperature. This is particularly evident in its response to the concentration of water absorbed in polyamides. An increase in water content results in a steady decrease of Tg toward a limiting value. This phenomenon may be explained by a mechanism that entails successive replacement of intercatenary hydrogen bonds in the amorphous phase with water. It may involve a sorption mechanism, according to which 3 mol of water interact with two neighboring amide groups [27].
The properties of aromatic polyamides differ significantly from those of their aliphatic counterparts. This led the U.S. Federal Trade Commission to adopt the term ‘‘aramid’’ to designate fibers of the aromatic polyamide type in which at least 85% of the amide linkages are attached directly to two aromatic rings.
The search for materials with very good thermal properties was the original reason for research into aromatic polyamides. Bond dissociation energies of C-C and C-N bonds in aromatic polyamides are ~20% higher than those in aliphatic polyamides. This is the reason why the decomposition temperature of poly(m-phenylene isophthalamide) MPDI exceeds 450 ºC. Conjugation between the amide group and the aromatic ring in poly(p-phenylene terephthalamide) “PPTA” increases chain rigidity as well as the decomposition temperature, which exceeds 550 ºC.
Obviously, hydrogen bonding and chain rigidity of these polymers translates to very high glass transition temperatures. Using low-molecular-weight polymers, Aharoni [19] measured glass transition temperatures of 272 ºC for MPDI and over 295 ºC for PPTA (which in this case had low crystallinity). Others have reported values as high as 4928 ºC. In most cases the measurement of Tg is difficult because PPTA is essentially 100% crystalline. As one would expect, these values are not strongly dependent on the molecular weight of the polymer above a DP of ~10 [22].
The same structural characteristics that are responsible for the excellent thermal properties of these materials are responsible for their limited solubility as well as good chemical resistance. PPTA is soluble only in strong acids like H2SO4, HF, and methanesulfonic acid. Preparation of this polymer via solution polymerization in amide solvents is accompanied by polymer precipitation. As expected, based on its structure, MPDI is easier to solubilize then PPTA. It is soluble in neat amide solvents like N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc), but adding salts like CaCl2 or LiCl significantly enhances its solubility. The significant rigidity of the PPTA chain (as discussed above) leads to the formation of anisotropic solutions when the solvent is good enough to reach critical minimum solids concentration. The implications of this are discussed in greater detail later in this chapter. It is well known that chemical properties differ significantly between crystalline and noncrystalline materials of the same composition. In general, aramids have very good chemical resistance. Obviously, the amide bond is subject to a hydrolytic attack by acids and bases. Exposure to very strong oxidizing agents results in a significant strength loss of these fibers. In addition to crystallinity, structure consolidation affects the rate of degradation of these materials. The hydrophilicity of the amide group leads to a significant absorption of water by all aramids. While the chemistry is the driving factor, fiber structure also plays a very important role; for example, Kevlar 29 absorbs ~7% water, Kevlar 49~4%, and Kevlar 149 only 1%. Fukuda explored the relationship between fiber crystallinity and equilibrium moisture in great detail. Because of their aromatic character, aramids absorb UV light, which results in an oxidative color change. Substantial exposure can lead to the loss of yarn tensile properties. UV absorption by p-aramids is more pronounced than with m-aramids. In this case a self-screening phenomenon is observed, which makes thin structures more susceptible to degradation than thick ones. Very frequently p-aramids are covered with another material in the final application to protect them. The high degree of aromaticity of these materials also provides significant flame resistance. All commercial aramids have a limited oxygen index in the range of 28-32%, which compares with ~20% for aliphatic polyamides.
Typical properties of commercial aramid fibers are while yarns of m-aramids have tensile properties that are no greater than those of aliphatic polyamides, they do retain useful mechanical properties at significantly higher temperatures. The high glass transition temperature leads to low (less than 1%) shrinkage at temperatures below 250 ºC. In general, mechanical properties of m-aramid fibers are developed on drawing. This process produces fibers with a high degree of morphological homogeneity, which leads to very good fatigue properties. The mechanical properties of p-aramid fibers have been the subject of much study. This is because these fibers were the first examples of organic materials with a very high level of both strength and stiffness. These materials are practical confirmation that nearly perfect orientation and full chain extension are required to achieve mechanical properties approaching those predicted for chemical bonds. In general, the mechanical properties reflect a significant anisotropy of these fibers-covalent bonds in the direction of the fiber axis with hydrogen bonding and van der Waals forces in the lateral direction [26].
Aramid-based reinforcement has been viewed as a more specialty product for applications requiring high modulus and where the potential for electrical conductivity would preclude the use of carbon; for example, aramid sheet is used for all tunnel repairs. Product forms include dry fabrics or unidirectional sheets as well as pre-cured strips or bars. Fabrics or sheets are applied to a concrete surface that has been smoothed (by grinding or blasting) and wetted with a resin (usually epoxy). The composite materials used for concrete infrastructure repair that was initiated in the mid 1980s. After air pockets are removed using rollers or flat, flexible squeegees, a second resin coat might be applied. Reinforcement of concrete structures is important in earthquake prone areas, although steel plate is the primary material used to reinforce and repair concrete structures, higher priced fiber-based sheet structures offer advantages for small sites where ease of handling and corrosion resistance are important. The high strength, modulus, and damage tolerance of aramid-reinforced sheets makes the fiber especially suitable for protecting structures prone to seismic activity. The use of aramid sheet also simplifies the application process. Sheets are light in weight and can be easily handled without heavy machinery and can be applied in confined working spaces. Sheets are also flexible, so surface smoothing and corner rounding of columns are less critical than for carbon fiber sheets [28].
FRP involves two distinct processes, the first is the process whereby the fibrous material is manufactured and formed, and the second is the process whereby fibrous materials are bonded with the matrix during the molding process.
Reinforcing Fibre is manufactured in both two dimensional and three dimensional orientations
Two Dimensional Fibre Reinforced Polymer are characterized by a laminated structure in which the fibres are only aligned along the plane in x-direction and y-direction of the material. This means that no fibres are aligned in the through thickness or the z-direction, this lack of alignment in the through thickness can create a disadvantage in cost and processing. Costs and labour increase because conventional processing techniques used to fabricate composites, such as wet hand lay-up, autoclave and resin transfer molding, require a high amount of skilled labour to cut, stack and consolidate into a preformed component.
Three-dimensional Fibre Reinforced Polymer composites are materials with three dimensional fibre structures that incorporate fibres in the x-direction, y-direction and z-direction. The development of three-dimensional orientations arose from industry\'s need to reduce fabrication costs, to increase through-thickness mechanical properties, and to improve impact damage tolerance; all were problems associated with two dimensional fibre reinforced polymers [28].
Fibre preforms are how the fibres are manufactured before being bonded to the matrix. Fibre preforms are often manufactured in sheets, continuous mats, or as continuous filaments for spray applications. The four major ways to manufacture the fibre preform is though the textile processing techniques of Weaving, knitting, braiding and stitching.
Weaving can be done in a conventional manner to produce two-dimensional fibres as well in a multilayer weaving that can create three-dimensional fibres. However, multilayer weaving is required to have multiple layers of warp yarns to create fibres in the z- direction creating a few disadvantages in manufacturing, namely the time to set up all the warp yarns on the loom. Therefore most multilayer weaving is currently used to produce relatively narrow width products or high value products where the cost of the preform production is acceptable. Another Fibre-reinforced plastic 3D one of the main problems facing the use of multilayer woven fabrics is the difficulty in producing a fabric that contains fibres oriented with angles other than 0º and 90º to each other respectively.
The second major way of manufacturing fibre preforms is braiding. Braiding is suited to the manufacture of narrow width flat or tubular fabric and is not as capable as weaving in the production of large volumes of wide fabrics. Braiding is done over top of mandrels that vary in cross-sectional shape or dimension along their length. Braiding is limited to objects about a brick in size. Unlike the standard weaving process, braiding can produce fabric that contains fibres at 45 degrees angles to one another. Braiding three-dimensional fibres can be done using four steps, two-step or Multilayer Interlock Braiding. Four step or row and column braiding utilizes a flat bed containing rows and columns of yarn carriers that form the shape of the desired preform. Additional carriers are added to the outside of the array, the precise location and quantity of which depends upon the exact preform shape and structure required. There are four separate sequences of row and column motion, which act to interlock the yarns and produce the braided preform. The yarns are mechanically forced into the structure between each step to consolidate the structure in a similar process to the use of a reed in weaving.Two-step braiding is unlike the four step process because the two-step includes a large number of yarns fixed in the axial direction and a fewer number of braiding yarns. The process consists of two steps in which the braiding carriers move completely through the structure between the axial carriers. This relatively simple sequence of motions is capable of forming performs of essentially any shape, including circular and hollow shapes. Unlike the four steps process the two steps process does not require mechanical compaction the motions involved in the process allows the braid to be pulled tight by yarn tension alone. The last type of braiding is multi-layer interlocking braiding that consists of a number of standard circular braiders being joined together to form a cylindrical braiding frame. This frame has a number of parallel braiding tracks around the circumference of the cylinder but the mechanism allows the transfer of yarn carriers between adjacent tracks forming a multilayer braided fabric with yarns interlocking to adjacent layers.
The multilayer interlock braid differs from both the four step and two-step braids in that the interlocking yarns are primarily in the plane of the structure and thus do not significantly reduce the in-plane properties of the perform. The four step and two step processes produce a greater degree of interlinking as the braiding yarns travel through the thickness of the preform, but therefore contribute less to the in-plane performance of the preform. A disadvantage of the multilayer interlock equipment is that due to the conventional sinusoidal movement of the yarn carriers to form the preform, the equipment is not able to have the density of yarn carriers that is possible with the two step and four step machines.
Knitting fibre preforms can be done with the traditional methods of Warp and [Weft] Knitting, and the fabric produced is often regarded by many as two-dimensional fabric, but machines with two or more needle beds are capable of producing multilayer fabrics with yams that traverse between the layers. Developments in electronic controls for needle selection and knit loop transfer and in the sophisticated mechanisms that allow specific areas of the fabric to be held and their movement controlled. This has allowed the fabric to form itself into the required three-dimensional perform shape with a minimum of material wastage.
Stitching is arguably the simplest of the four main textile manufacturing techniques and one that can be performed with the smallest investment in specialized machinery. Basically the stitching process consists of inserting a needle, carrying the stitch thread, through a stack of fabric layers to form a 3D structure. The advantages of stitching are that it is possible to stitch both dry and prepreg fabric, although the tackiness of prepare makes the process difficult and generally creates more damage within the prepreg material than in the dry fabric. Stitching also utilizes the standard two-dimensional fabrics that are commonly in use within the composite industry therefore there is a sense of familiarity concerning the material systems. The use of standard fabric also allows a greater degree of flexibility in the fabric lay-up of the component than is possible with the other textile processes, which have restrictions on the fibre orientations that can be produced.
There are two distinct categories of molding processes using FRP plastics; this includes composite molding and wet molding. Composite molding uses Prepreg FRP, meaning the plastics are fibre reinforced before being put through further molding processes. Sheets of Prepreg FRP are heated or compressed in different ways to create geometric shapes. Wet molding combines fibre reinforcement and the matrix or resist during the molding process. The different forms of composite and wet molding, are listed below.
Individual sheets of prepreg material are laid -up and placed in a female-style mould along with a balloon-like bladder. The mould is closed and placed in a heated press. Finally, the bladder is pressurized forcing the layers of material against the mould walls. The part is cured and removed from the hot mould. Bladder molding is a closed molding process with a relatively short cure cycle between 15 and 60 minutes making it ideal for making complex hollow geometric shapes at competitive costs.
A "preform" or "charge", of SMC, BMC or sometimes prepreg fabric, is placed into mould cavity. The mould is closed and the material is compacted & cured inside by pressure and heat. Compression molding offers excellent detailing for geometric shapes ranging from pattern and relief detailing to complex curves and creative forms, to precision engineering all within a maximum curing time of 20 minutes.
Individual sheets of prepreg material are laid-up and placed in an open mold. The material is covered with release film, bleeder/breather material and a vacuum bag. A vacuum is pulled on part and the entire mould is placed into an autoclave (heated pressure vessel). The part is cured with a continuous vacuum to extract entrapped gasses from laminate. This is a very common process in the aerospace industry because it affords precise control over the molding process due to a long slow cure cycle that is anywhere from one to two hours. This precise control creates the exact laminate geometric forms needed to ensure strength and safety in the aerospace industry, but it is also slow and lab our intensive, meaning costs often confine it to the aerospace industry.
Sheets of prepreg material are wrapped around a steel or aluminum mandrel. The prepreg material is compacted by nylon or polypropylene cello tape. Parts are typically batch cured by hanging in an oven. After cure the cello and mandrel are removed leaving a hollow carbon tube. This process creates strong and robust hollow carbon tubes.
Fibre reinforcing fabric is placed in an open mould and then saturated with a wet (resin) by pouring it over the fabric and working it into the fabric and mould. The mould is then left so that the resin will cure, usually at room temperature, though heat is sometimes used to ensure a proper curing process. Glass fibres are most commonly used for this process, the results are widely known as fibreglass, and are used to make common products like skis, canoes, kayaks and surf boards.
Continuous strand of fibreglass are pushed through a hand-held gun that both chops the strands and combines them with a catalyzed resin such as polyester. The impregnated chopped glass is shot onto the mould surface in whatever thickness the design and human operator think is appropriate. This process is good for large production runs at economical cost, but produces geometric shapes with less strength than other molding processes and has poor dimensional tolerance.
Machines pull fibre bundles through a wet bath of resin and wound over a rotating steel mandrel in specific orientations Parts are cured either room temperature or elevated temperatures. Mandrel is extracted, leaving a final geometric shape but can be left in some cases.
Fibre bundles and slit fabrics are pulled through a wet bath of resin and formed into the rough part shape. Saturated material is extruded from a heated closed die curing while being continuously pulled through die. Some of the end products of the pultrusion process are structural shapes, i.e. beam, angle, channel and flat sheet. These materials can be used to create all sorts of fibreglass structures such as ladders, platforms, handrail systems tank, pipe, and pump supports.
Fabrics are placed into a mould which wet resin is then injected into. Resin is typically pressurized and forced into a cavity which is under vacuum in the RTM (Resin Transfer Molding) process. Resin is entirely pulled into cavity under vacuum in the VARTM (Vacuum Assisted Resin Transfer Molding) process. This molding process allows precise tolerances and detailed shaping but can sometimes fail to fully saturate the fabric leading to weak spots in the final shape.
FRP allows the alignment of the glass fibres of thermoplastics to suit specific design programs. Specifying the orientation of reinforcing fibres can increase the strength and resistance to deformation of the polymer. Glass reinforced polymers are strongest and most resistive to deforming forces when the polymers fibres are parallel to the force being exerted, and are weakest when the fibres are perpendicular. Thus this ability is at once both an advantage and a limitation depending on the context of use. Weak spots of perpendicular fibres can be used for natural hinges and connections, but can also lead to material failure when production processes fail to properly orient the fibres parallel to expected forces. When forces are exerted perpendicular to the orientation of fibres the strength and elasticity of the polymer is less than the matrix alone. In cast resin components made of glass reinforced polymers such as UP and EP, the orientation of fibres can be oriented in two-dimensional and three-dimensional weaves. This means that when forces are possibly perpendicular to one orientation, they are parallel to another orientation; this eliminates the potential for weak spots in the polymer.
Structural failure can occur in FRP materials when:
Tensile forces stretch the matrix more than the fibres, causing the material to shear at the interface between matrix and fibres.
Tensile forces near the end of the fibres exceed the tolerances of the matrix, separating the fibres from the matrix.
Tensile forces can also exceed the tolerances of the fibres causing the fibres themselves to fracture leading to material failure [29].
The matrix must also meet certain requirements in order to first be suitable for the FRP process and ensure a successful reinforcement of it. The matrix must be able to properly saturate, and bond with the fibres within a suitable curing period. The matrix should preferably bond chemically with the fibre reinforcement for maximum adhesion. The matrix must also completely envelope the fibres to protect them from cuts and notches that would reduce their strength, and to transfer forces to the fibres. The fibres must also be kept separate from each other so that if failure occurs it is localized as much as possible, and if failure occurs the matrix must also debond from the fibre for similar reasons. Finally the matrix should be of a plastic that remains chemically and physically stable during and after reinforcement and molding processes. To be suitable for reinforcement material fibre additives must increase the tensile strength and modulus of elasticity of the matrix and meet the following conditions; fibres must exceed critical fibre content; the strength and rigidity of fibres itself must exceed the strength and rigidity of the matrix alone; and there must be optimum bonding between fibres and matrix.
FRPs use textile glass fibres; textile fibres are different from other forms of glass fibres used for insulating applications. Textile glass fibres begin as varying combinations of SiO2, Al2O3, B2O3, CaO, or MgO in powder form. These mixtures are then heated through a direct melt process to temperatures around 1300 degrees Celsius, after which dies are used to extrude filaments of glass fibre in diameter ranging from 9 to 17 μm. These filaments are then wound into larger threads and spun onto bobbins for transportation and further processing. Glass fibre is by far the most popular means to reinforce plastic and thus enjoys a wealth of production processes, some of which are applicable to aramid and carbon fibres as well owing to their shared fibrous qualities. Roving is a process where filaments are spun into larger diameter threads. These threads are then commonly used for woven reinforcing glass fabrics and mats, and in spray applications. Fibre fabrics are web-form fabric reinforcing material that has both warped and weft directions. Fibre mats are web-form non-woven mats of glass fibres. Mats are manufactured in cut dimensions with chopped fibres, or in continuous mats using continuous fibres. Chopped fibre glass is used in processes where lengths of glass threads are cut between 3 and 26 mm, threads are then used in plastics most commonly intended for moulding processes. Glass fibre short strands are short 0.2–0.3 mm strands of glass fibres that are used to reinforce thermoplastics most commonly for injection moulding.
Aramid fibres are most commonly known Kevlar, Nomex and Technora. Aramids are generally prepared by the reaction between an amine group and a carboxylic acid halide group (aramid); commonly this occurs when an aromatic polyamide is spun from a liquid concentration of sulfuric acid into a crystallized fibre. Fibres are then spun into larger threads in order to weave into large ropes or woven fabrics (Aramid) [29]. Aramid fibres are manufactured with varying grades to base on varying qualities for strength and rigidity, so that the material can be somewhat tailored to specific design needs concerns, such as cutting the tough material during manufacture.
Fibre-reinforced plastics are best suited for any design program that demands weight savings, precision engineering, finite tolerances, and the simplification of parts in both production and operation. A molded polymer artifact is cheaper, faster, and easier to manufacture than cast aluminum or steel artifact, and maintains similar and sometimes better tolerances and material strengths. The Mitsubishi Lancer Evolution IV also used FRP for its spoiler material [30-32].
Rudder of commercial airplane
Advantages over a traditional rudder made from sheet aluminum are:
25% reduction in weight
95% reduction in components by combining parts and forms into simpler molded parts.
Overall reduction in production and operational costs, economy of parts results in lower production costs and the weight savings create fuel savings that lower the operational costs of flying the airplane.
FRP can be applied to strengthen the beams, columns and slabs in buildings. It is possible to increase strength of these structural members even after these have been severely damaged due to loading conditions. For strengthening beams, two techniques are adopted. First one is to paste FRP plates to the bottom (generally the tension face) of a beam. This increases the strength of beam, deflection capacity of beam and stiffness (load required to make unit deflection). Alternatively, FRP strips can be pasted in \'U\' shape around the sides and bottom of a beam, resulting in higher shear resistance. Columns in building can be wrapped with FRP for achieving higher strength. This is called wrapping of columns. The technique works by restraining the lateral expansion of the column. Slabs may be strengthened by pasting FRP strips at their bottom (tension face). This will result in better performance, since the tensile resistance of slabs is supplemented by the tensile strength of FRP. In the case of beams and slabs, the effectiveness of FRP strengthening depends on the performance of the resin chosen for bonding [32].
Engine intake manifolds are made from glass fibre reinforced PA 66.
Advantages this has over cast aluminum manifolds are:
Up to a 60% reduction in weight
Improved surface quality and aerodynamics
Reduction in components by combining parts and forms into simpler molded shapes. Automotive gas and clutch pedals made from glass fibre reinforced PA 66 (DWP 12-13)
Advantages over stamped aluminum are:
Pedals can be molded as single units combining both pedals and mechanical linkages simplifying the production and operation of the design.
Fibres can be oriented to reinforce against specific stresses, increasing the durability and safety.
FRP is used in designs that require a measure of strength or modulus of elasticity those non-reinforced plastics and other material choices are either ill suited for mechanically or economically. This means that the primary design consideration for using FRP is to ensure that the material is used economically and in a manner that takes advantage of its structural enhancements specifically. This is however not always the case, the orientation of fibres also creates a material weakness perpendicular to the fibres. Thus the use of fibre reinforcement and their orientation affects the strength, rigidity, and elasticity of a final form and hence the operation of the final product itself. Orienting the direction of fibres either, unidirectional, 2-dimensionally, or 3-dimensionally during production affects the degree of strength, flexibility, and elasticity of the final product. Fibres oriented in the direction of forces display greater resistance to distortion from these forces and vice versa, thus areas of a product that must withstand forces will be reinforced with fibres in the same direction, and areas that require flexibility, such as natural hinges, will use fibres in a perpendicular direction to forces. Using more dimensions avoids this either or scenario and creates objects that seek to avoid any specific weak points due to the unidirectional orientation of fibres. The properties of strength, flexibility and elasticity can also be magnified or diminished through the geometric shape and design of the final product. These include such design consideration such as ensuring proper wall thickness and creating multifunctional geometric shapes that can be molding as single pieces, creating shapes that have more material and structural integrity by reducing joints, connections, and hardware [30].
As a subset of plastic FR plastics are liable to a number of the issues and concerns in plastic waste disposal and recycling. Plastics pose a particular challenge in recycling processes because they are derived from polymers and monomers that often cannot be separated and returned to their virgin states, for this reason not all plastics can be recycled for re-use, in fact some estimates claim only 20% to 30% of plastics can be material recycled at all. Fibre reinforced plastics and their matrices share these disposal and environmental concerns. In addition to these concerns, the fact that the fibres themselves are difficult to remove from the matrix and preserve for re-use means FRP amplify these challenges. FRP are inherently difficult to separate into base a material that is into fibre and matrix, and the Fibre-reinforced plastic matrix into separate usable plastic, polymers, and monomers. These are all concerns for environmentally informed design today, but plastics often offer savings in energy and economic savings in comparison to other materials, also with the advent of new more environmentally friendly matrices such as bioplastics and UV-degradable plastics, FRP will similarly gain environmental sensitivity [29].
Strength is a mechanical property that you should be able to relate to, but you might not know exactly what we mean by the word "strong" when are talking about polymers. First, there is more than one kind of strength. There is tensile strength. A polymer has tensile strength if it is strong when one pulls on it. Tensile strength is important for a material that is going to be stretched or under tension. Fibers need good tensile strength.
Then there is compressional strength. A polymer sample has compressional strength if it is strong when one tries to compress it. Concrete is an example of a material with good compressional strength. Anything that has to support weight from underneath has to have good compressional strength [32]. There is also flexural strength. A polymer sample has flexural strength if it is strong when one tries to bend it.
There are other kinds of strength we could talk about. A sample torsional strength if it is strong when one tries to twist it. Then there is impact strength. A sample has impact strength if it is strong when one hits it sharply and suddenly, as with a hammer.
To measure the tensile strength of a polymer sample, we take the sample and we try to stretch. We usually stretch it with a machine for these studies. This machine simply has clamps on each end of the sample, then, when you turn it on it stretches the sample. While it is stretching the sample, it measures the amount of force (F) that it is exerting. When we know the force being exerted on the sample, we then divide that number by the cross-sectional area (A) of our sample. The answer is the stress that our sample is experiencing. Then, using our machine, we continue to increase the amount of force, and stress naturally, on the sample until it breaks. The stress needed to break the sample is the tensile strength of the material. Likewise, one can imagine similar tests for compressional or flexural strength. In all cases, the strength is the stress needed to break the sample. Since tensile stress is the force placed on the sample divided by the cross-sectional area of the sample, tensile stress, and tensile strength as well, are both measured in units of force divided by units of area, usually N/cm2. Stress and strength can also be measured in megapascals (MPa) or gigapascals (GPa). It is easy to convert between the different units, because 1 MPa = 100 N/cm2, 1 GPa = 100,000 N/cm2, and of course 1 GPa = 1,000 MPa. Other times, stress and strength are measured in the old English units of pounds per square inch, or psi. If you ever have to convert psi to N/cm2, the conversion factor is 1 N/cm2 = 1.45 psi.
But there is more to understanding a polymer\'s mechanical properties than merely knowing how strong it is. All strength tells us is how much stress is needed to break something. It doesn\'t tell us anything about what happens to our sample while we\'re trying to break it. That\'s where it pays to study the elongation behavior of a polymer sample. Elongation is a type of deformation. Deformation is simply a change in shape that anything undergoes under stress. When we\'re talking about tensile stress, the sample deforms by stretching, becoming longer. We call this elongation, of course. Usually we talk about percent elongation, which is just the length the polymer sample is after it is stretched (L), divided by the original length of the sample (L0), and then multiplied by 100.
There are a number of things we measure related to elongation. Which is most important depends on the type of material one is studying. Two important things we measure are ultimate elongation and elastic elongation. Ultimate elongation is important for any kind of material. It is nothing more than the amount you can stretch the sample before it breaks. Elastic elongation is the percent elongation you can reach without permanently deforming your sample. That is, how much can you stretch it, and still have the sample snap back to its original length once you release the stress on it. This is important if your material is an elastomer. Elastomers have to be able to stretch a long distance and still bounce back. Most of them can stretch from 500 to 1000 % elongation and return to their original lengths without any trouble [32].
In the elastomers are need show the high elastic elongation. But for some other types of materials, like plastics, it usually they not stretch or deform so easily. If we want to know how well a material resists deformation, we measure something called modulus. To measure tensile modulus, we do the same thing as we did to measure strength and ultimate elongation. This time we measure the stress we\'re exerting on the material, just like we did when we were measuring tensile strength. First, is slowly increasing the amount of stress, and then we measure the elongation the sample undergoes at each stress level. We keep doing this until the sample breaks. This plot is called a stress-strain curve. (Strain is any kind of deformation, including elongation. Elongation is the word we use if we\'re talking specifically about tensile strain.) The height of the curve when the sample breaks is the tensile strength, of course, and the tensile modulus is the slope of this plot. If the slope is steep, the sample has a high tensile modulus, which means it resists deformation. If the slope is gentle, then the sample has a low tensile modulus, which means it is easily deformed. There are times when the stress-strain curve is not nice and straight, like we saw above. The slope isn\'t constant as stress increases. The slope, that is the modulus, is changing with stress. In a case like this we usually, the initial slope change as the modulus change [32].
In general, fibers have the highest tensile moduli, and elastomers have the lowest, and plastics have tensile moduli somewhere in between fibers and elastomers.
Modulus is measured by calculating stress and dividing by elongation, and would be measured in units of stress divided by units of elongation. But since elongation is dimensionless, it has no units by which we can divide. So modulus is expressed in the same units as strength, such as N/cm2.
Intrinsic deformation is defined as the materials’ true stress-strain response during homogeneous deformation. Since generally strain localization phenomena occur (like necking, shear banding, crazing and cracking), the measurement of the intrinsic materials’ response requires a special experimental set-up, such as a video-controlled tensile or a uniaxial compression test. Although details of the intrinsic response differ per material, a general representation of the intrinsic deformation of polymers can be recognized [33], see Figure 1.
Schematic representation of the intrinsic deformation behavior of a polymer material [
That plot of stress versus strain can give us another very valuable piece of information. If one measures the area underneath the stress-strain curve (figure 2), colored red in the graph below, the number you get is something we call toughness.
Plot of stress in function of strain.
Toughness is really a measure of the energy a sample can absorb before it breaks. Think about it, if the height of the triangle in the plot is strength, and the base of the triangle is strain, then the area is proportional to strength strain. Since strength is proportional to the force needed to break the sample, and strain is measured in units of distance (the distance the sample is stretched), then strength strain is proportional is force times distance, and as we remember from physics, force times distance is energy.
From a physics point of view the strength, is that strength tells how much force is needed to break a sample, and toughness tells how much energy is needed to break a sample. But that does not really tell you what the practical differences are. What is important knows that just because a material is strong, it isn\'t necessarily going to be tough as well [34-35].
Plot of stress in function of strain, strong and tough concepts.
The gray plot is the stress-strain curve for a sample that is strong, but not tough (figure 3). As you can see, it takes a lot of force to break this sample. Likewise, this sample ca not stretch very much before it breaks. A material like this which is strong, but can not deform very much before it breaks is called brittle [36].
The gray plot is a stress-strain curve for a sample that is both strong and tough. This material is not as strong as the sample in the gray plot, but the area underneath its curve is a lot larger than the area under the gray sample\'s curve. So it can absorb a lot more energy than the gray-black sample plot.
The gray-black sample elongates a lot more before breaking than the gray sample does. You see, deformation allows a sample to dissipate energy. If a sample can\'t deform, the energy won\'t be dissipated, and will cause the sample to break [37].
In real life, we usually want materials to be tough and strong. Ideally, it would be nice to have a material that would not bend or break, but this is the real world. The gray-black sample has a much higher modulus than the red sample. While it is good for materials in a lot of applications to have high moduli and resist deformation, in the real world it is a lot better for a material to bend than to break, and if bending, stretching or deforming in some other way prevents the material from breaking, all the better. So when we design new polymers, or new composites, we often sacrifice a little bit of strength in order to make the material tougher.
The rigid plastics such as polystyrene, poly(methyl methacrylate or polycarbonate can withstand a good deal of stress, but they won\'t withstand much elongation before breaking. There is not much area under the stress-strain curve at all. So we say that materials like this are strong, but not very tough. Also, the slope of the plot is very steep, which means that it takes a lot of force to deform a rigid plastic. So it is easy to see that rigid plastics have high moduli. In short, rigid plastics tend to be strong, at resist deformation, but they tend not to be very tough, that is, they are brittle.
Flexible plastics like polyethylene and polypropylene are different from rigid plastics in that they don not resist deformation as well, but they tend not to break. The ability to deform is what keeps them from breaking. Initial modulus is high, that is it will resist deformation for awhile, but if enough stress is put on a flexible plastic, it will eventually deform. If you try to stretch it a plastic bag, it will be very hard at first, but once you have stretched it far enough it will give way and stretch easily. The bottom line is that flexible plastics may not be as strong as rigid ones, but they are a lot tougher.
It is possible to alter the stress-strain behavior of a plastic with additives called plasticizers. A plasticizer is a small molecule that makes plastics more flexible. For example, without plasticizers, poly(vinyl chloride), or PVC for short, is a rigid plastic. Rigid unplasticized PVC is used for water pipes. But with plasticizers, PVC can be made flexible enough to use to make things like hoses.
Fibers like KevlarTM, carbon fiber and nylon tend to have stress-strain curves like the aqua-colored plot in the graph above. Like the rigid plastics, they are more strong than tough, and do not deform very much under tensile stress. But when strength is what you need, fibers have plenty of it. They are much stronger than plastics, even the rigid ones, and some polymeric fibers, like KevlarTM, carbon fiber and ultra-high molecular weight polyethylene have better tensile strength than steel.
Elastomers like polyisoprene, polybutadiene and polyisobutylene have completely different mechanical behavior from the other types of materials. Take a look at the pink plot in the graph above. Elastomers have very low moduli. You can see this from the very gentle slope of the pink plot, but you probably knew this already. You already knew that it is easy to stretch or bend a piece of rubber [34]. If elastomers did not have low moduli, they would not be very good elastomers.
But it takes more than just low modulus to make a polymer an elastomer. Being easily stretched is not much use unless the material can bounce back to its original size and shape once the stress is released. Rubber bands would be useless if they just stretched and did not bounce back. Of course, elastomers do bounce back, and that is what makes them so amazing. They have not just high elongation, but high reversible elongation.
The discussion of which types of polymers have which mechanical properties has focused mostly on tensile properties. When we look at other properties, like compressional properties or flexural properties things can be completely different. For example, fibers have very high tensile strength and good flexural strength as well, but they usually have terrible compressional strength. They also only have good tensile strength in the direction of the fibers.
Some polymers are tough, while others are strong, and how one often has to make trade-offs when designing new materials; the design may have to sacrifice strength for toughness, but sometimes we can combine two polymers with different properties to get a new material with some of the properties of both. There are three main ways of doing this, and they are copolymerization, blending, and making composite materials.
The copolymer that combines the properties of two materials is spandex. It is a copolymer containing blocks of elastomeric polyoxyethylene and blocks of a rigid fiber-forming polyurethane. The result is a fiber that stretches. Spandex is used to make stretchy clothing like bicycle pants.
High-impact polystyrene, or HIPS for short, is an immiscible blend that combines the properties of two polymers, styrene and polybutadiene. Polystyrene is a rigid plastic. When mixed with polybutadiene, an elastomer, it forms a phase-separated mixture which has the strength of polystyrene along with toughness supplied by the polybutadiene. For this reason, HIPS is far less brittle than regular polystyrene [38].
In the case of a composite material, we are usually using a fiber to reinforce a thermoset. Thermosets are crosslinked materials whose stress-strain behavior is often similar to plastics. The fiber increases the tensile strength of the composite, while the thermoset gives it compressional strength and toughness.
This brief review of FRP has summarized the very broad range of unusual functionalities that these products bring (Polymers, Aramids, Composites, Carbon FRP, and Glass-FRP). While the chemistry plays an important role in defining the scope of applications for which these materials are suited, it is equally important that the final parts are designed to maximize the value of the inherent properties of these materials. Clearly exemplify the constant trade-off between functionality and processability that is an ongoing challenge with these advanced materials. The functionality that allows these materials to perform under extreme conditions has to be balanced against processability that allows them to be economically shaped into useful forms. The ability of a polymer material to deform is determined by the mobility of its molecules, characterized by specific molecular motions and relaxation mechanisms, which are accelerated by temperature and stress. Since these relaxation mechanisms are material specific and depend on the molecular structure, they are used here to establish the desired link with the intrinsic deformation behavior.
The author would like to offer a special thanks to Universidad Nacional de San Luis, to Instituto de Física Aplicada, and to Consejo Nacional de Investigaciones Científicas y Técnicas for being generously support used in this research works.
According to the World Stroke Organization (WSO) [1], almost 14 million people have their first stroke every year, and worldwide over 80 million people are living with the impact of stroke or cerebrovascular accident (CVA). Additionally, researchers have estimated that, as of 2019, there are more than 17,000 new cases of SCI (spinal cord injury) each year and between 249,000 and 363,000 people are currently living with this injury in the United States [2]. These types of disorders, in most of the cases, are associated with the partial or total loss of the sensory motor and autonomic function. The persons affected by these disorders present a lower quality of life and often dependent on other persons. It is possible to recuperate one part of these loosed sensory motor function with the aid of the rehabilitation therapy, but these treatments are very expensive in health resources and very long in time.
Today, the wearable exoskeletons are present in the hospitals and rehabilitation centers, such as support in the rehabilitation therapy. Although most of this rehabilitation devices focused on the lower limb rehabilitation, commercial solutions such Armeo Power from Hocoma [3], InMotion Arm for Neurological Rehabilitation [4], Amadeo from Tyromotion [5] AlexARm from Kinetek [6] can be founded for the upper limb rehabilitation. Most of these solutions are static devices, with different degrees of freedom (DOF) actuated by DC motors, designed to do the rehabilitation therapy with the patients in the specialized centers. Although the development of the rehabilitation devices for the upper limb was approached in the last years, at present there is still a lack of improvements in this field, so that these devices can be used not only in rehabilitation therapy but also daily life. In this way, the exoskeleton offers the users more autonomy and at the same time improves his quality of life. To optimize the future exoskeletons, different improvements are suggested according to the patient’s opinion, which tested these devices. The order proposed by them was easy to use, small and lightweight, tailor-made, safe, comfortable, less distinctive, durable, and affordable [7]. Many of these characteristics are directly related to the actuators used in these devices.
In the past years, the exoskeletons, especially those of the upper limb, were actuated by different types of actuators: DC and AC motors, pneumatic actuators, hydraulic actuators, and other types of actuators such as the shape memory alloy (SMA) [8]. Although the electric motors are one of the most common actuation systems for the exoskeleton, these are still limited by characteristics such the weight, need of gearboxes to reduce the velocity, and the operation noise. On the other hand, the hydraulic and pneumatic actuators present a good force-weight relation but still limited by the noise and the need of compressed air. The Shape Memory Alloy (SMA) is a metallic alloy, which has the property of recovering its original shape (the memorized shape) after being deformed when heated above the transformation temperature between a martensite phase (at low temperature) and an austenite phase (at high temperature). This presents a good force-to-weight ratio, small volume, and noiseless operation, the SMA-based actuators being considered a good actuation solution for wearable and soft robotics applications and in particularly for rehabilitation devices. The principal disadvantages of this type of actuators are represented by the hysteresis effect, which makes its control difficult, and the low work frequency. These disadvantages limit the use of this type of actuators for certain applications.
Recently, this type of material was used as an actuator in various rehabilitation devices for lower and upper limb and for prosthesis. In [9], a glove actuated by SMA for rehabilitation exercise and assistance was presented. This soft robotic device can provide for the user in grasping 40 N force. The actuator used in this device is based on an SMA wire with diameter of 0.38 mm, cooled by air fans. In [10], the SMA wires were used as actuator for a 3 DOF wrist rehabilitation device. Similarly, in this work, to improve the cooling stage of the actuator, mini air fans were used. The proposed methods do not present the actuator flexibility, and with the air fans, the size of the device increases. In [11], the SMA was used as a hybrid actuator for a hand exoskeleton, combining the SMA springs with a servomotor. Also, the SMA springs were used as actuators for a soft wrist assistive device [12]. In [13] three SMA wires were used in parallel configuration as actuator in a suit-type elbow flexion assistance. For the lower limb, the SMA actuator was embedded in smart clothes for the ankle assistance [14]. This is a totally soft device, which can assist in the ankle with a torque of 100 Ncm. In most of the publications, the authors do not give details about the actuator position response on the cooling stage, where the actuator needs to cool to extend. This necessary time depends on the wire’s diameter, ambient temperature, and if it is or not forced to cool, and this time can affect the device performances.
Our research group, RoboticsLab from Carlos III University of Madrid, Spain, developed different exoskeletons for the upper limb rehabilitation actuated by SMA-based actuators. For the user’s comfort, we propose lightweight exoskeletons, but maintaining the power performance of a rigid exoskeleton. Also, the proposed devices have noiseless operation, low-cost fabrication, and are more compact. These exoskeleton characteristics, in great measure, are due to the used actuator—a flexible structure based on Bowden cable without additional cooling system. According to the proposed actuator based on SMA, we developed three different exoskeletons, which will be presented in this study, for the elbow joint, the wrist joint, and hand rehabilitation. Each one presents two or more DOF according to the articulation where it operates, and the actuators have the possibility to work in antagonistic configuration. According to this configuration, the position error decreases significantly in the cooling stage.
This study is divided into four sections. Section 2 presents the proposed SMA-based actuator used in the exoskeleton structure with its electronic hardware and its control algorithm. This section continues with the presentation of the developed exoskeletons from our laboratory, which have used the SMA-based actuator. Section 3 presents the discussions in terms of the current and future perspective of rehabilitation exoskeleton improvements. Section 4 introduces some conclusions and future works.
This section presents the SMA-based actuator used on the upper limb exoskeletons with its electronic hardware and its control algorithm. Also, in this section, the different exoskeletons configurations for the upper limb, elbow, wrist, and hand, will be presented.
The actuator used in rehabilitation devices is based on SMA and consists of one or more SMA wires, a Bowden cable, a polytetrafluoroethylene (PTFE) tube, and the terminal parts. The actuator force and its dimensions can vary depending on the number of wires and their diameter. According to the necessary force to mobilize different upper limb joint, three wire diameters was considered. The characteristics of these SMA wires used in the configuration of different actuators can be seen in Table 1, where the current represents the approximate current for 1 second contraction.
Diameter size | Resistance | Current | Force | Cooling 70 | Cooling 90 |
---|---|---|---|---|---|
(mm) | ( | (A) | (N) | (s) | (s) |
0.31 | 12.20 | 1.50 | 12.55 | 8.10 | 6.80 |
0.38 | 8.30 | 2.25 | 22.06 | 10.50 | 8.80 |
0.51 | 4.30 | 4.00 | 34.91 | 16.80 | 14.00 |
Properties of the SMA wires [15].
The actuator structure with a single SMA wire can been seen in Figure 1, left side. On the right side, a schematic actuator cross section can be observed. The actuator has been adapted in length, diameter, and number of wires according to the final application. The principal components of the actuator, enumerated in Figure 1, are detailed below:
1 – Bowden cable. It is a type of flexible cable used to transmit the force. In this case, it is composed of a metallic spiral covered with a nylon sheath. This gives the flexibility advantage of the actuator and helps to dissipate the heat when the SMA wire is in the cooling stage (recovering the initial length). In Figure 1, a Bowden cable with 3.5 mm diameter is represented. This Bowden cable is used only for actuators with only one SMA wire. For actuators with more SMA wires, a Bowden cable with diameter 6.5 mm is used. In this last case, depending on the SMA wire diameter, the actuator can have up to five wires if the SMA wires have a diameter 0.51 mm.
2 – PTFE tube. It is transparent, chemically inert, and nontoxic material, which facilitates the SMA wires displacement, considered to be a solid lubricant. This is placed between the SMA wire (or the SMA wires for the multi wires actuator) and the Bowden cable, acting as an electrical insulator. In addition, it can also work at high temperatures, over 250
3 – SMA wire. In Figure 1, the actuator is composed of only one SMA wire. The actuator structure can be modified to include more SMA wires, whose diameter and length are calculated according to the necessary force and the final displacement of the device.
4 – Terminal unit. This is used to fix the SMA wire with the Bowden cable, at one end, and the SMA wire with the actuated system or the tendons of the actuated system, at the opposite end. The terminal unit is composed of two pieces screwed together, which permit to tense the SMA wire, after being mounted in the final application. Furthermore, those terminal units are used as connectors for power supplying the actuator.
SMA-based actuator. Right side: 1 – Bowden cable; 2 – PTFE tube; 3 – SMA wire; 4 – Terminal unit; left side, actuator cross section.
In the exoskeleton structures presented in this chapter, the multi-wire actuators have all the SMA wires inside of only one PTFE tube and everything in a Bowden cable.
This flexible SMA actuator based on Bowden transmission system certainly has some features that make it a good alternative to the use of conventional actuators in soft exoskeletons. Using long SMA wires inside a flexible tube makes it possible to design an actuator that can provide the necessary displacements required by soft exoskeletons. Also, these are easy to integrate and adapt into the flexible and dynamic structures. The possibility of flexing and physical arrangement of the actuator in almost any way has allowed us to better approach the “soft-robotics” concept, so that the actuator no longer imposes rigid mechanical structures on the joints [16].
The electronic hardware consists of one or more position sensors depending of the rehabilitation device (these will be detailed when each device will be described), a microcontroller, and a power circuit required to control the SMA-based actuators.
The electronic power circuit for SMA wires is based on MOSFET transistors. The transistors are activated by pulse width modulation (PWM) provided by the controller. The transistors open and close the circuit with a power supply for the actuators. With these electronics (developed by our research group), the control hardware architecture can manage two, four, or six different actuators (each actuator with one or more SMA wires).
The controller board is based on the STM32F407 Discovery kit [17], from STMicroelectronics, which is programmed with Matlab/Simulink [18]. This manages signals from the sensors, executes the control algorithm for controlling the actuators, and generates the required PWM signals.
Due to the characteristic of hysteresis and the nonlinear behavior of the SMA-based actuator, the control algorithm is a quite complex. A bilinear proportional integral derivative (BPID) controller was proposed to compensate these nonlinearities, which schematically is presented in Figure 2. This is based on previous works and the literature [19, 20, 21].
BPID control algorithm.
In Figure 2, the BPID controller is schematically represented where:
In this section, different exoskeletons prototype developed by our research group is presented. According to the target joint (elbow, wrist, or hand/fingers), the proposed actuator is implemented in different configurations: with only one or more wires with different diameters and lengths.
The elbow joint is a complex articulation that helps to position the hand in space. The humeroulnar and the humeroradial articulations are classified as hinged joints and permit the elbow flexion extension movement. On the other hand, the proximal radioulnar articulation permits the forearm pronation and supination movement and is classified as a trochoid joint [22]. Although the elbow joint in the flexion-extension movement permits a range of movement between 0 and 150 degrees, in a daily living (ADL), the functional range is estimated between 30 and 120 degrees. Similarly, the human body permits approximately 71 degrees of pronation and 81 degrees for supination, though in the ADL the functional range is estimated in 50 degrees of pronation and 50 degrees of supination.
The proposed device can be seen over the human body in Figure 3 (left side frontal plane and right side sagittal plane) and was detailed in a previous work” SMA Based Elbow Exoskeleton for Rehabilitation Therapy and Patient Evaluation” [23]. This has two degrees of freedom (DOF), which permit the movement of flexion-extension and pronation-supination. For safety, the flexion-extension movement was mechanically restricted between 0 and 150 degrees and the pronation-supination movement between −60 and 60 degrees. This is a low-cost device with most of the pieces 3D printed except the pieces that are subjected to high forces made in aluminum. Although it has a rigid structure, this can be set according to the patient segments (arm and forearm) dimensions to maintain the exoskeleton rotation axis aligned with the biomechanics of human body (elbow axis). This can be easy set customizing the exoskeleton for each patient. The segments and articulation of the device are mechanically restricted according to the human body limitations, to carry out a safe rehabilitation therapy. Due to the SMA-based actuator, the exoskeleton presents a noiseless operation and more compact dimensions, which make it less distinctive. The total weight of this device including the actuators is less than 1 kg, which can be classified between the most lightweight elbow rehabilitation devices with 2 DOF.
Elbow exoskeleton over the human body.
The actuators used in this device are based on the SMA wire with 0.51 mm of diameter. The actuators for the flexion-extension movement are composed of four SMA wires each in the same PTFE tube and a Bowden cable, as presented in the Section 2.1. Each actuator in this configuration can exert a nominal force of approximately 140 N, and considering that the linear displacement is converted to rotary displacement through a pulley with a diameter of 0.06 m, the nominal torque in the elbow exoskeleton joint is around 4.2 Nm (a maximum torque of 13.56 Nm). These two actuators work in antagonist configuration, simulating the biceps–triceps muscle group. For the prono-supination movement, the actuators each are based only one SMA wire, each one presenting a force of 35 N. According to the necessary displacement, the actuators have a length of 1.5 m for the flexion-extension and 2 m for the prono-supination. The total weight of the actuators is around 0.54 kg.
The exoskeleton was tested and evaluated with the healthy subjects and post-stroke patients. In total 10 patients with age 61.8 ± 12.98 and six physiotherapists tested the elbow joint exoskeleton and completed the usability test, QUEST 2.0 [24]. The test results were promising with a score of 33 ± 6.90, where the most appreciated items were the weight and dimensions of the exoskeleton, both scored 4.3 ± 0.674. The least appreciated was the item of effectiveness scored with only 3.8 ± 1.03, followed by the comfort and simplicity. These results were influenced by the fact that during the tests, the exoskeleton was in an improvement stage and only was tested in passive mode where the patients with the activity in the motor function do not consider it useful for their rehabilitation therapy.
An active rehabilitation therapy, with the elbow exoskeleton, based on the superficial electromyography (sEMG) signals from the biceps–triceps muscles groups was proposed in [25]. The position reference trajectory for the elbow exoskeleton was generated according to the user movement intention detected on the sEMG signals. This approach improves the exoskeleton effectiveness due that the user is motivated to participate in rehabilitation therapy. The elbow exoskeleton response according to the position reference generated in accordance with the sEMG signals can be seen in Figure 4. Here the blue signal represents the position reference generated by the high-level control algorithm, and the red signal represents the exoskeleton angular position. The green signal represents the normalized sEMG signals from the bicep muscle. The first
Elbow exoskeleton position response according to the sEMG signal activation.
The wrist or carpus is a collection of bones, ligaments, tendons and soft tissues, which connect the forearm with the hand. This complex structure offers a wide range of movement that increases the function of the hand and fingers while also giving them a considerable degree of stability [22]. The wrist articulation plays an important role on the daily life manipulation tasks because its kinematic function allows the orientation of the hand with respect to the forearm, and the kinetics allow the transfer of loads from the forearm to the hand and vice versa. The wrist is composed of several joints that make the connections between the radius and ulna bones with the metacarpal bones and the connections with the first and second row of the carpal bones (midcarpal). The wrist joint presents two movements: in the sagittal plane, presents the flexion-extension movement (90 degrees of flexion and 85 degrees of extension) and in frontal plane, presents the ulnar and radial deviation (ulnar deviation 45 degrees and radial deviation 20 degrees).
The wrist exoskeleton actuated by SMA, proposed by our research group, can be seen in Figure 5 [26]. This presents 2 DOF, one for the flexion-extension movement and the second one for the radial deviation and ulnar deviation. The range of movement achieved with this rehabilitation device is 15 degrees for the flexion, 35 degrees for the extension, 15 degrees with the radial deviation, and 20 degrees with the ulnar deviation. A large part of the device structure is 3D printed and together with the actuators and electronic hardware weighing less than 1 kg. Similar with the elbow joint exoskeleton and the hand rehabilitation glove, due to the actuators’ properties, this is considered a lightweight rehabilitation device with a noiseless operation.
Wrist exoskeleton actuated by SMA.
The actuators of this device are based on SMA wires with 0.51 mm of diameter and are composed of only one SMA wire, inside the PTFE tube and everything inside the Bowden cable. According to the necessary displacements for the wrist mobilization, and according to the electronic power supply, all the actuators of this device present 2.2 m length. With these characteristics, the rehabilitation device can generate a torque greater than 0.5 Nm in the wrist joint. The length of the actuators does not represent an inconvenience, considering their flexibility and the possibility to adapt to the shape of the human body.
Considering that during the rehabilitation therapy, the movements are slow, and continuous, a possible reference can be the sinusoidal one. For example, the step reference is not considered because a sudden movement can cause a muscle spasm. Figure 6 presents the wrist exoskeleton position response on the radial-ulnar deviation with a healthy subject. The control strategy used in this test was based on BPID controller in an antagonist configuration. This configuration works similar such the flexor–extensor muscles group: when the flexor muscles contract the extensors relax and vice versa. In this device, the actuator for the radial deviation was mounted in an antagonist configuration with the radial deviation actuator. The advantage of this configuration consists of decreasing the position error generated by the SMA, the necessary time in a cooling stage to recuperate the initial shape (when it was cool) and by the hysteresis effect. The disadvantage of the antagonist configuration is that after some cycles of continuous work, both actuators present a high temperature, and the system needs to stop to avoid the SMA wires breakage [23].
Position of wrist exoskeleton for radial-ulnar deviation [
In Figure 6, the actuators flowing a sinusoidal reference with one cycle each 25 seconds. The wrist exoskeleton presents three degrees of error, and the device works continuously during 150 seconds. The work frequency of this actuator is not a problem considering that the rehabilitation device is proposed for the first stage of rehabilitation where the movements are slowly. On the other hand, the number of cycles of continuous work in this case was 6, one cycle every 25 seconds. Although, after 150 seconds, the system was forced to stop, the device can alternate with the flexion-extension rehabilitation for a continuous rehabilitation therapy.
The proposed device has considered improvements compared with the current solutions such as portability, noiseless operation, low cost of fabrication, comfort, safety, and easy installation, largely due to the used actuator. The main disadvantage of this device is represented by the slow work frequency, which makes the system only viable for slow rehabilitation therapies. Also, this obligates the system to alternate the therapy between the flexion-extension movement and radial-ulnar deviation.
Hand function plays a fundamental role in performing ADL, maintaining an independent and healthy quality of life. When stroke, SCI, or different neuromuscular disorders occurs, and the hand is affected, the quality of life decreases, and the affected person even becomes dependent on another person. The human hand is a highly complex and multifaceted mobile effector organ that allows it to grasp and manipulate objects. The thumb together with the fingers permits us to manipulate different small objects during daily tasks. Each finger is composed of one metacarpal and three phalanges, and the thumb is composed of one metacarpal and two phalanges, which make that the hand has in total 27 DOF.
In Figure 7, a soft exo-glove developed by our research group can be seen. This is actuated by 12 actuators based on SMA wires in antagonistic configuration: six for the fingers flexion and six for the fingers extension. Each group of six actuators is divided into: one actuator for each finger and two actuators for the thumb (these two actuators permit complex movements such as thumb opposition). The SMA-based actuators are connected to the actuation box, where the position sensors are, and where the connection between the actuators and tendons is done. The tendons are routed and fixed over the glove, where its routing represents the key for the realization of the desired movement when the actuators are activated.
Soft exo-glove for rehabilitation therapies.
The actuators of this device are based on SMA wires, with diameter of 0.38 mm, which presents a force of 22.06 N. According to its characteristics, this can cool after contraction in approximately 8.8 seconds. Considering that the tendon displacement with the proposed routing is around 0.07 m and the SMA actuator when activated contracts 4% of its total length, the total length of each actuator is 2 m. Due to the actuator flexibility, this can take the arm shape and easily can be collocated behind the user.
The developed rehabilitation device is considered totally soft, except the sensors box (where also the connection between the actuators and tendons is done). The actuators, as well as in the other devices (elbow exoskeleton and wrist exoskeleton), are not in contact with the human body, found in the PTFE tube, inside in a Bowden tube, and everything in a flexible PVC tube. With this configuration, the temperature of the actuators is not felt by the user [23].
The future works of this research will focus on integrate the Myo Armband sensor [27] for the hand gesture recognition from the superficial electromyography (sEMG) signals. This gives the possibility to realize the active rehabilitation therapies, according to the user movement intention.
The exoskeletons used during the daily activities offer to the users/patients more autonomy and reduce their dependence on other persons. Also, this improves users’ lives and enhances their perceived well-being and sense of community integration [28]. This perspective to integrate the exoskeletons in the patient’s daily life to offer them more autonomy is one of the principal goals currently. This implicates the improvements of the currently wearable rehabilitation devices, strictly following the appropriate procedures according to the physiotherapists feedback. The new wearable rehabilitation structures need to be more easy to use, tailor-made according to the user, small and lightweight, less distinctive and with more autonomy. These characteristics are considered some of the most important topics of improvements and are closely related to the actuation system.
From the future perspective of the wearable exoskeletons, which can be used during the daily life, the actuators need to meet some requirements for safety, simplicity, and lightweight that human–robot interaction requires. For these reasons, recently new actuation solutions are being investigated, among which are the artificial muscles. Solutions such Pneumatic Artificial Muscles (PAM) or Shape Memory Alloy are only some of these examples, being already integrated in some prototypes of rehabilitation device. The force–weight relation makes them an excellent candidate for these devices. However, there are still limitations, in different aspects such as the control, compressed air is needed (in case of PAMs), a low work frequency, and energy efficiency (in case of SMAs). These are only a few current research topics, focused to offer viable solutions for the wearable exoskeleton actuation.
The rigid exoskeletons limit the user’s freedom movement, complicating his interaction with the environment in a natural way. According to this, we oriented our development on soft exoskeletons or exosuits, aiming of getting closer to the natural user movement. We try to develop exoskeletons that do not constrain the joints like the rigid structures. For the user comfort, we reduce the external structure weight and the actuator weight but maintaining for the most part the performance of a rigid exoskeleton.
The wearable exoskeletons actuated with the SMA-based actuators, developed by our research group, are accessible, easy to use, lightweight, and compact. The test of these devices with the stroke patients and physiotherapists has presented a great interest, obtaining very positive feedback, which encouraged the exoskeletons development initiative. The most appreciative five items on the elbow exoskeleton evaluation with the test QUEST 2.0 were the weight, dimensions, patient adaptation (ergonomics), and safety. These items are directly related to the actuator proposed and used in these devices. Although these have not yet been tested on patients, the wrist exoskeleton and the soft exo-glove stand out for their small dimensions, lightweight, and ergonomic configuration.
This contribution presented the recently work of our research group, RoboticsLab from Carlos III University of Madrid, Spain, in the field of upper limb exoskeletons. Here were presented three different wearable exoskeletons, for elbow, wrist, and hand rehabilitation, movement of which is produced by the SMA-based actuators. Due to the actuator characteristics and proposed design, these devices present: lightweight, noiseless operation, low cost of fabrication, simplicity, and soft or semi-soft structures. According to these characteristics, the proposed devices are not only rehabilitation exoskeletons, which can be used only in the specialized rehabilitation center, but also have the perspective to be used in daily life.
The proposed SMA-based actuator retains the advantages of SMA wires and, in addition, improves the working frequency and adds flexibility to the actuator. This is a promising solution for different applications and especially for softer exoskeletons, which can better adapt to the patient’s requirements and offer better ergonomics. The principal disadvantages of this actuator are the low work frequency (viable for slow movement such as the movements of first phase of rehabilitation therapy) and the energetic efficiency.
The elbow joint exoskeleton was tested with the post-stroke patients and physiotherapists. The items best valued in the QUEST 2.0 test were related in great part with the used actuator: the weight, dimensions, patient adaptation (ergonomics), and safety. Although the wrist and the soft exo-glove have not been tested with patients, these devices also present the same advantages.
The future works will focus on the improvement of the exoskeletons structure, closer to a soft and easy-to-use device, especially improving the current actuation system. Although topics such as the work frequency and efficiency were approached in the previous works [29], these represent the key to develop exoskeletons that can be used like support in daily life, giving a certain autonomy when this is needed.
The research leading to these results have received funding from the” Sistema robótico para propiciar la marcha en niños pequeños con Parálisis Cerebral” under Grant PID2019-105110RB-C32/ AEI / 10.13039/501100011033, funded by Agencia Estatal de Investigación (AEI); from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by Programas de Actividades I&D en la Comunidad de Madrid; and co-funded by Structural Funds of the EU.
The authors declare no conflict of interest.
ADL | Activities of daily living |
BPID | Bilineal Proportional Integral Derivative |
DOF | Degree of Freedom |
PAM | Pneumatic Artificial Muscles |
PID | Proportional Integral Derivative |
PTFE | Polytetrafluoroethylene |
PWM | Pulse width modulation |
SCI | Spinal Cord Injuries |
sEMG | Superficial electromyography |
SMA | Shape Memory Alloy |
WSO | World Stroke Organization |
As this section deals with legal issues pertaining to the rights of individual Authors and IntechOpen, for the avoidance of doubt, each category of publication is dealt with separately. Consequently, much of the information, for example definition of terms used, is repeated to ensure that there can be no misunderstanding of the policies that apply to each category.
",metaTitle:"Copyright Policy",metaDescription:"Copyright is the term used to describe the rights related to the publication and distribution of original works. Most importantly from a publisher's perspective, copyright governs how authors, publishers and the general public can use, publish and distribute publications.",metaKeywords:null,canonicalURL:"/page/copyright-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\\n\\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\\n\\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\\n\\nAgreement samples are listed here for the convenience of prospective Authors:
\\n\\nDEFINITIONS
\\n\\nThe following definitions apply in this Copyright Policy:
\\n\\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\\n\\nWork - a Chapter, including Conference Papers, a Scientific Article and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\\n\\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\\n\\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\\n\\nScientific Journal – Periodical publication intended to further the progress of science.
\\n\\nJournal Article/Scientific Article – Publication based on empirical evidence. It can support a hypothesis with original research, describe existing research or comment on current trends in a specific field.
\\n\\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\\n\\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings, Scientific Journals and Videos.
\\n\\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\\n\\nTERMS
\\n\\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported and Creative Commons 4.0 International License, a license which allows for the broadest possible reuse of published material.
\\n\\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\\n\\nAnd for any purpose, provided the following conditions are met:
\\n\\nAll Works are published under the CC BY 3.0 and CC BY 4.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\\n\\n\\n\\n
LICENSE | \\n\\t\\t\\tUSED FROM - | \\n\\t\\t\\tUP TO - | \\n\\t\\t
\\n\\t\\t\\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \\n\\t\\t\\t | \\n\\t\\t\\t1 July 2005 (2005-07-01) | \\n\\t\\t\\t3 October 2011 (2011-10-03) | \\n\\t\\t
\\n\\t\\t\\t Creative Commons Attribution 3.0 Unported (CC BY 3.0) \\n\\t\\t\\t | \\n\\t\\t\\t5 October 2011 (2011-10-05) | \\n\\t\\t\\tCurrently | \\n\\t\\t
\\n\\t\\t\\t Creative Commons 4.0 International (CC BY 4.0) – for Journal Articles \\n\\t\\t\\t | \\n\\t\\t\\t15 March 2022 | \\n\\t\\t\\tCurrently | \\n\\t\\t
The CC BY 3.0 and CC BY 4.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nRepublishing – More about Attribution Policy can be found here.
\\n\\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\\n\\nDISCLAIMER: Neither the CC BY 3.0 license, CC BY 4.0, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\\n\\nAll rights to Books and Journals and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\\n\\nThe copyright to Books, Journals and other compilations is subject to separate copyright from those that exist in the included Works.
\\n\\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\\n\\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\\n\\nUnder the following terms:
\\n\\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\\n\\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\\n\\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\\n\\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\\n\\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\\n\\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\\n\\nShare — copy and redistribute the material in any medium or format
\\n\\nUnder the following terms:
\\n\\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\\n\\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\\n\\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\\n\\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\\n\\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\\n\\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\\n\\nPolicy last updated: 2016-06-08
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\n\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\n\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\n\nAgreement samples are listed here for the convenience of prospective Authors:
\n\nDEFINITIONS
\n\nThe following definitions apply in this Copyright Policy:
\n\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\n\nWork - a Chapter, including Conference Papers, a Scientific Article and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\n\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\n\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\n\nScientific Journal – Periodical publication intended to further the progress of science.
\n\nJournal Article/Scientific Article – Publication based on empirical evidence. It can support a hypothesis with original research, describe existing research or comment on current trends in a specific field.
\n\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\n\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings, Scientific Journals and Videos.
\n\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\n\nTERMS
\n\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported and Creative Commons 4.0 International License, a license which allows for the broadest possible reuse of published material.
\n\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\n\nAnd for any purpose, provided the following conditions are met:
\n\nAll Works are published under the CC BY 3.0 and CC BY 4.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\n\n\n\n
LICENSE | \n\t\t\tUSED FROM - | \n\t\t\tUP TO - | \n\t\t
\n\t\t\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \n\t\t\t | \n\t\t\t1 July 2005 (2005-07-01) | \n\t\t\t3 October 2011 (2011-10-03) | \n\t\t
\n\t\t\t Creative Commons Attribution 3.0 Unported (CC BY 3.0) \n\t\t\t | \n\t\t\t5 October 2011 (2011-10-05) | \n\t\t\tCurrently | \n\t\t
\n\t\t\t Creative Commons 4.0 International (CC BY 4.0) – for Journal Articles \n\t\t\t | \n\t\t\t15 March 2022 | \n\t\t\tCurrently | \n\t\t
The CC BY 3.0 and CC BY 4.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nRepublishing – More about Attribution Policy can be found here.
\n\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\n\nDISCLAIMER: Neither the CC BY 3.0 license, CC BY 4.0, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\n\nAll rights to Books and Journals and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\n\nThe copyright to Books, Journals and other compilations is subject to separate copyright from those that exist in the included Works.
\n\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\n\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\n\nUnder the following terms:
\n\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\n\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\n\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\n\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\n\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\n\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\n\nShare — copy and redistribute the material in any medium or format
\n\nUnder the following terms:
\n\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\n\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\n\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\n\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\n\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\n\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\n\nPolicy last updated: 2016-06-08
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11456",title:"Autonomous Mobile Mapping Robots",subtitle:null,isOpenForSubmission:!0,hash:"405e1f7c0ef62700f4d590722cf428be",slug:null,bookSignature:"Dr. Janusz Bȩdkowski",coverURL:"https://cdn.intechopen.com/books/images_new/11456.jpg",editedByType:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11459",title:"Soft Robotics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"06e947238d5d4ea1162509a5d66de887",slug:null,bookSignature:"Dr. Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11459.jpg",editedByType:null,editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:495},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"14",title:"Materials Science",slug:"materials-science",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:320,numberOfSeries:0,numberOfAuthorsAndEditors:8300,numberOfWosCitations:17589,numberOfCrossrefCitations:9072,numberOfDimensionsCitations:21456,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"14",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10945",title:"Collagen Biomaterials",subtitle:null,isOpenForSubmission:!1,hash:"721724968654675a93937e3b5645a266",slug:"collagen-biomaterials",bookSignature:"Nirmal Mazumder and Sanjiban Chakrabarty",coverURL:"https://cdn.intechopen.com/books/images_new/10945.jpg",editedByType:"Edited by",editors:[{id:"256296",title:"Dr.",name:"Nirmal",middleName:null,surname:"Mazumder",slug:"nirmal-mazumder",fullName:"Nirmal Mazumder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10847",title:"Aluminium Alloys",subtitle:"Design and Development of Innovative Alloys, Manufacturing Processes and Applications",isOpenForSubmission:!1,hash:"f4ecc3e8fea00488cb2213b7d34b42aa",slug:"aluminium-alloys-design-and-development-of-innovative-alloys-manufacturing-processes-and-applications",bookSignature:"Giulio Timelli",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg",editedByType:"Edited by",editors:[{id:"44147",title:"Prof.",name:"Giulio",middleName:null,surname:"Timelli",slug:"giulio-timelli",fullName:"Giulio Timelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11210",title:"Chalcogenides",subtitle:"Preparation and Applications",isOpenForSubmission:!1,hash:"f5bf032bc55f99e48f4b0e5375ca7442",slug:"chalcogenides-preparation-and-applications",bookSignature:"Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11210.jpg",editedByType:"Edited by",editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",middleName:null,surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11208",title:"Current Trends in Magnesium (Mg) Research",subtitle:null,isOpenForSubmission:!1,hash:"21372a0c65f42d075d4519c2f891e203",slug:"current-trends-in-magnesium-mg-research",bookSignature:"Sailaja S. Sunkari",coverURL:"https://cdn.intechopen.com/books/images_new/11208.jpg",editedByType:"Edited by",editors:[{id:"325832",title:"Dr.",name:"Sailaja S.",middleName:"S.",surname:"Sunkari",slug:"sailaja-s.-sunkari",fullName:"Sailaja S. Sunkari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10942",title:"Fiber-Reinforced Plastics",subtitle:null,isOpenForSubmission:!1,hash:"50dc791b1036b236a6676986cb295c6f",slug:"fiber-reinforced-plastics",bookSignature:"Martin Alberto Masuelli",coverURL:"https://cdn.intechopen.com/books/images_new/10942.jpg",editedByType:"Edited by",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Alberto Masuelli",slug:"martin-alberto-masuelli",fullName:"Martin Alberto Masuelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10489",title:"Biocomposites",subtitle:null,isOpenForSubmission:!1,hash:"c794533fcae9dcea38672f814ae182db",slug:"biocomposites",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10489.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9926",title:"Magnesium Alloys Structure and Properties",subtitle:null,isOpenForSubmission:!1,hash:"a6d1a99f4befe885857743f77e81524c",slug:"magnesium-alloys-structure-and-properties",bookSignature:"Tomasz Tański and Paweł Jarka",coverURL:"https://cdn.intechopen.com/books/images_new/9926.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",middleName:null,surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:"Advances and Applications",isOpenForSubmission:!1,hash:"d9448d83caa34d90fd58464268c869a0",slug:"titanium-dioxide-advances-and-applications",bookSignature:"Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:"Edited by",editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",middleName:null,surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6832",title:"Ruthenium",subtitle:"An Element Loved by Researchers",isOpenForSubmission:!1,hash:"9a3be4dd6035f78add07d239b8eae379",slug:"ruthenium-an-element-loved-by-researchers",bookSignature:"Hitoshi Ishida",coverURL:"https://cdn.intechopen.com/books/images_new/6832.jpg",editedByType:"Edited by",editors:[{id:"210140",title:"Dr.",name:"Hitoshi",middleName:null,surname:"Ishida",slug:"hitoshi-ishida",fullName:"Hitoshi Ishida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:320,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"60680",doi:"10.5772/intechopen.76082",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:16235,totalCrossrefCites:187,totalDimensionsCites:405,abstract:"The environment and its compartments have been severely polluted by heavy metals. This has compromised the ability of the environment to foster life and render its intrinsic values. Heavy metals are known to be naturally occurring compounds, but anthropogenic activities introduce them in large quantities in different environmental compartments. This leads to the environment’s ability to foster life being reduced as human, animal, and plant health become threatened. This occurs due to bioaccumulation in the food chains as a result of the nondegradable state of the heavy metals. Remediation of heavy metals requires special attention to protect soil quality, air quality, water quality, human health, animal health, and all spheres as a collection. Developed physical and chemical heavy metal remediation technologies are demanding costs which are not feasible, time-consuming, and release additional waste to the environment. This chapter summarises the problems related to heavy metal pollution and various remediation technologies. A case study in South Africa mines were also used.",book:{id:"6534",slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"37067",doi:"10.5772/35482",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:9282,totalCrossrefCites:166,totalDimensionsCites:399,abstract:null,book:{id:"2270",slug:"fourier-transform-materials-analysis",title:"Fourier Transform",fullTitle:"Fourier Transform - Materials Analysis"},signatures:"Mizi Fan, Dasong Dai and Biao Huang",authors:[{id:"104647",title:"Prof.",name:"Mizi",middleName:null,surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}]},{id:"42566",doi:"10.5772/53706",title:"Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials",slug:"challenges-and-opportunities-for-spark-plasma-sintering-a-key-technology-for-a-new-generation-of-mat",totalDownloads:9164,totalCrossrefCites:99,totalDimensionsCites:211,abstract:null,book:{id:"3478",slug:"sintering-applications",title:"Sintering Applications",fullTitle:"Sintering Applications"},signatures:"M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner and T. Kessel",authors:[{id:"102383",title:"Dr.",name:"Marta",middleName:null,surname:"Suárez",slug:"marta-suarez",fullName:"Marta Suárez"},{id:"103822",title:"Dr.",name:"J.L",middleName:null,surname:"Menendez",slug:"j.l-menendez",fullName:"J.L Menendez"},{id:"103833",title:"Prof.",name:"Ramón",middleName:null,surname:"Torrecillas",slug:"ramon-torrecillas",fullName:"Ramón Torrecillas"},{id:"162633",title:"Dr.",name:"Adolfo",middleName:null,surname:"Fernández",slug:"adolfo-fernandez",fullName:"Adolfo Fernández"}]},{id:"23617",doi:"10.5772/24118",title:"Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives",slug:"collagen-vs-gelatine-based-biomaterials-and-their-biocompatibility-review-and-perspectives",totalDownloads:9450,totalCrossrefCites:63,totalDimensionsCites:204,abstract:null,book:{id:"1487",slug:"biomaterials-applications-for-nanomedicine",title:"Biomaterials",fullTitle:"Biomaterials Applications for Nanomedicine"},signatures:"Selestina Gorgieva and Vanja Kokol",authors:[{id:"55577",title:"Prof.",name:"Vanja",middleName:null,surname:"Kokol",slug:"vanja-kokol",fullName:"Vanja Kokol"},{id:"61285",title:"BSc",name:"Selestina",middleName:null,surname:"Gorgieva",slug:"selestina-gorgieva",fullName:"Selestina Gorgieva"}]},{id:"46243",doi:"10.5772/57255",title:"Corrosion Inhibitors – Principles, Mechanisms and Applications",slug:"corrosion-inhibitors-principles-mechanisms-and-applications",totalDownloads:13727,totalCrossrefCites:40,totalDimensionsCites:161,abstract:null,book:{id:"3817",slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Camila G. Dariva and Alexandre F. Galio",authors:[{id:"169261",title:"Dr.",name:"Camila",middleName:"G.",surname:"Dariva",slug:"camila-dariva",fullName:"Camila Dariva"},{id:"170138",title:"Dr.",name:"Alexandre",middleName:"Ferreira",surname:"Galio",slug:"alexandre-galio",fullName:"Alexandre Galio"}]}],mostDownloadedChaptersLast30Days:[{id:"76780",title:"Basics of Clay Minerals and Their Characteristic Properties",slug:"basics-of-clay-minerals-and-their-characteristic-properties",totalDownloads:1930,totalCrossrefCites:16,totalDimensionsCites:25,abstract:"Clay minerals such as kaolinite, smectite, chlorite, micas are main components of raw materials of clay and formed in presence of water. A large number of clays used to form the different structure which completely depends on their mining source. They are known as hydrous phyllosilicate having silica, alumina and water with variable amount of inorganic ions like Mg2+, Na+, Ca2+ which are found either in interlayer space or on the planetary surface. Clay minerals are described by presence of two-dimensional sheets, tetrahedral (SiO4) and octahedral (Al2O3). There are different clay minerals which are categorized based on presence of tetrahedral and octahedral layer in their structure like kaolinite (1:1 of tetrahedral and octahedral layers), smectite group of clay minerals (2:1 of tetrahedral and octahedral layers) and chlorite (2:1:1 of tetrahedral, octahedral and octahedral layers). The particle size of clay minerals is <2microns which can be present in form of plastic in presence of water and solidified when dried. The small size and their distinctive crystal structure make clay minerals very special with their unique properties including high cation exchange capacity, swelling behavior, specific surface area, adsorption capacity, etc. which are described in this chapter. Due to all these unique properties, clay minerals are gaining interest in different fields.",book:{id:"10949",slug:"clay-and-clay-minerals",title:"Clay and Clay Minerals",fullTitle:"Clay and Clay Minerals"},signatures:"Neeraj Kumari and Chandra Mohan",authors:[{id:"258132",title:"Dr.",name:"Chandra",middleName:null,surname:"Mohan",slug:"chandra-mohan",fullName:"Chandra Mohan"},{id:"352399",title:"Dr.",name:"Neeraj",middleName:null,surname:"Kumari",slug:"neeraj-kumari",fullName:"Neeraj Kumari"}]},{id:"51535",title:"An Introduction to Hydrogels and Some Recent Applications",slug:"an-introduction-to-hydrogels-and-some-recent-applications",totalDownloads:11734,totalCrossrefCites:70,totalDimensionsCites:140,abstract:"Hydrogels have existed for more than half a century, and today they have many applications in various processes ranging from industrial to biological. There are numerous original papers, reviews, and monographs focused on the synthesis, properties, and applications of hydrogels. This chapter covers the fundamental aspects and several applications of hydrogels based on the old and the most recent publications in this field.",book:{id:"5251",slug:"emerging-concepts-in-analysis-and-applications-of-hydrogels",title:"Emerging Concepts in Analysis and Applications of Hydrogels",fullTitle:"Emerging Concepts in Analysis and Applications of Hydrogels"},signatures:"Morteza Bahram, Naimeh Mohseni and Mehdi Moghtader",authors:[{id:"179718",title:"Prof.",name:"Morteza",middleName:null,surname:"Bahram",slug:"morteza-bahram",fullName:"Morteza Bahram"},{id:"185713",title:"Dr.",name:"Naimeh",middleName:null,surname:"Mohseni",slug:"naimeh-mohseni",fullName:"Naimeh Mohseni"},{id:"185714",title:"Dr.",name:"Mehdi",middleName:null,surname:"Moghtader",slug:"mehdi-moghtader",fullName:"Mehdi Moghtader"}]},{id:"70661",title:"Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects",slug:"bioremediation-techniques-for-polluted-environment-concept-advantages-limitations-and-prospects",totalDownloads:2672,totalCrossrefCites:10,totalDimensionsCites:27,abstract:"Environmental pollution has been rising in the past few decades due to increased anthropogenic activities. Bioremediation is an attractive and successful cleaning technique to remove toxic waste from polluted environment. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms. The main principle is degrading and converting pollutants to less toxic forms. Bioremediation can be carried out ex-situ and in-situ, depending on several factors, which include but not limited to cost, site characteristics, type, and concentration of pollutants. Hence, appropriate bioremediation technique is selected. Additionally, the major methodologies to develop bioremediation are biostimulation, bioaugmentation, bioventing, biopiles, and bioattenuation provided the environmental factors that decide the completion of bioremediation. Bioremediation is the most effective, economical, eco-friendly management tool to manage the polluted environment. All bioremediation techniques have its own advantage and disadvantage because it has its own specific applications.",book:{id:"9343",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",title:"Trace Metals in the Environment",fullTitle:"Trace Metals in the Environment - New Approaches and Recent Advances"},signatures:"Indu Sharma",authors:[{id:"301262",title:"Associate Prof.",name:"Indu",middleName:null,surname:"Sharma",slug:"indu-sharma",fullName:"Indu Sharma"}]},{id:"18275",title:"Modeling and Identification of Parameters the Piezoelectric Transducers in Ultrasonic Systems",slug:"modeling-and-identification-of-parameters-the-piezoelectric-transducers-in-ultrasonic-systems",totalDownloads:10197,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"201",slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Pawel Fabijanski and Ryszard Lagoda",authors:[{id:"13086",title:"Dr.",name:"Pawel",middleName:null,surname:"Fabijański",slug:"pawel-fabijanski",fullName:"Pawel Fabijański"}]},{id:"60680",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:16251,totalCrossrefCites:187,totalDimensionsCites:407,abstract:"The environment and its compartments have been severely polluted by heavy metals. This has compromised the ability of the environment to foster life and render its intrinsic values. Heavy metals are known to be naturally occurring compounds, but anthropogenic activities introduce them in large quantities in different environmental compartments. This leads to the environment’s ability to foster life being reduced as human, animal, and plant health become threatened. This occurs due to bioaccumulation in the food chains as a result of the nondegradable state of the heavy metals. Remediation of heavy metals requires special attention to protect soil quality, air quality, water quality, human health, animal health, and all spheres as a collection. Developed physical and chemical heavy metal remediation technologies are demanding costs which are not feasible, time-consuming, and release additional waste to the environment. This chapter summarises the problems related to heavy metal pollution and various remediation technologies. A case study in South Africa mines were also used.",book:{id:"6534",slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]}],onlineFirstChaptersFilter:{topicId:"14",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"83048",title:"Structural, Magnetic, and Magnetodielectric Properties of Bi-Based Modified Ceramic Composites",slug:"structural-magnetic-and-magnetodielectric-properties-of-bi-based-modified-ceramic-composites",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.106569",abstract:"In this chapter, we introduce a promising composite material, which can be used as a potential candidate in the field of charge storage, sensors, and spintronic devices. The structural, magnetic, and magnetodielectric properties of the pure cum composite samples are investigated. The Rietveld refinement of the X-ray data confirmed the presence of a single (A21am) and mixed phases (A21am + R-3c + Pbam) in the pure and composite sample, correspondingly. The SEM microstructure suggests the contrasting nature of the homogeneous and heterogeneous distribution of grains in the corresponding pure and composite sample. The magnetic properties of the composite sample increase due to the enhanced exchange interaction between the different magnetic ions. The frequency-dependent dielectric subjected to a constant magnetic field indicates the signature of magnetodielectric (MD) coupling for both the samples. The field variation of the MD loop shows the symmetric hysteresis loop in the composite due to the addition of magnetostrictive La0.67Sr0.33MnO3 and the non-collinear antiferromagnetic Bi2Fe4O9 phase. The maximum value of MD% (~0.12%) is enhanced by ~13 times in the composite than in the pure sample. Therefore, the improved MD coupling and symmetric switching of the MD loop of the composite make it a suitable candidate for low power consumption storage devices.",book:{id:"11117",title:"Smart and Advanced Ceramics and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11117.jpg"},signatures:"Rasmita Jena, Kouru Chandrakanta and Anil Kumar Singh"},{id:"83035",title:"Breaking the Property Trade-Offs by Using Entropic Conceptions",slug:"breaking-the-property-trade-offs-by-using-entropic-conceptions",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.106532",abstract:"Entropic conception has been used as an effective strategy for developing materials to break the property recordings of current materials, for example, breaking the trade-off between the high-strength and low-ductility structural alloys. The performance of materials usually under a complex circumstance, a balance of multiple properties, for example, combined the high-strength, high ductility, high conductivity, high corrosion resistance, high irradiation resistance, etc., the strategy of high-entropy-alloy (HEA) will provide a materials design and development technology to realize the goal. Magnetic materials usually exhibit excellent magnetic properties but weak mechanical properties and corrosion resistance. The reported unique behaviors of HEAs, for example, self-healing effects may be the mechanism for the high irradiation resistance of the HEAs, and self-sharpening behaviors of the tungsten-based HEAs main closely be related to the serration behaviors.",book:{id:"11468",title:"High Entropy Materials - Microstructures and Properties",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg"},signatures:"Yong Zhang and Xuehui Yan"},{id:"82929",title:"Prediction of Solubility and Miscibility Parameters of Bismuth-Arsenic Complex and Amorphous Mineral Compounds Using Molecular Dynamics Simulation",slug:"prediction-of-solubility-and-miscibility-parameters-of-bismuth-arsenic-complex-and-amorphous-mineral",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.106316",abstract:"Bismuth is one of the most difficult impurities to remove in mining concentrates and low concentrations generate problems in silver and copper refineries. Therefore, financial penalties are established when concentrations exceed 0.05%. Some researchers had used arsenic to remove bismuth with results of up to 52% of extraction. Unfortunately, this mechanism is not yet fully understood. The objective of this research was to obtain the solubility parameters of amorphous mineral compounds, including bismuth-based compounds, through computational simulation using molecular dynamics. The composition of the mineral sample was determined by X-ray diffraction and the crystalline species were obtained and modeled using Materials Studio software. The nanostructures were optimized by an energy minimization methodology using the Broyden-Fletcher-Goldfarb-Shanno algorithm and were validated using the figure of merit equation and density. Simulations were performed using the Universal Force Field at constant pressure and temperature. The results of the minerals identified in the sample were compared with arsenic trioxide, indicating miscibility between As2O3 and Bi2O3, possible miscibility with 10 other minerals, and immiscibility with the rest. The results indicate that As2O3 can be successfully used for the removal of Bi2O3 without a negative effect on the recovery of other minerals of higher commercial value.",book:{id:"11467",title:"Bismuth-Based Nanostructured Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11467.jpg"},signatures:"Francisco Adrián De la Torre-Martínez, Efren Delgado, María Dolores Josefina Rodríguez Rosales, Hiram Medrano-Roldán, Javier López-Miranda and Damián Reyes-Jáquez"},{id:"82940",title:"Role of Surface Defects and Optical Band-gap Energy on Photocatalytic Activities of Titanate-based Perovskite Nanomaterial",slug:"role-of-surface-defects-and-optical-band-gap-energy-on-photocatalytic-activities-of-titanate-based-p",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.106253",abstract:"In recent years, water pollution has become one of the major challenges faced by humans because of consistent rise in population and industrial activities. Water pollution due to discharge from cosmetics and pharmaceutical wastes, organic dyes, and heavy metal seen as carcinogens has the potential to disrupt hormonal processes in the body. Different approaches such as chlorination, aerobic treatment, aeration, and filtration have been deployed to treat wastewaters before being discharged into the streams, lakes, and rivers. However, more attention has been accorded to treatment approaches that involve use of nanomaterial due to non-secondary pollution, energy efficiency, and ease of operation. Titanate-based perovskite (TBP) is one of the most frequently studied nanomaterials for photocatalytic applications because of its stability and flexibility in optical band-gap modification. This chapter provided an overview of basic principles and mechanisms of a semiconductor photocatalyst, and current synthesis techniques that have been used in formulating TBP nanomaterial. The effect of reaction conditions and approaches such as doping, codoping, composites, temperature, pH, precursor type, surface area, and morphology on surface defects and optical band-gap energy of TBP nanomaterial was highlighted. Importantly, the impact of surface defects and optical band-gap energy of TBP on its photocatalytic activities was discussed. Finally, how to enhance the degradation efficiency of TBP was proposed.",book:{id:"11469",title:"Recent Advances in Perovskite Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11469.jpg"},signatures:"Izunna Stanislaus Okeke, Priscilla Yahemba Aondona, Amoge Chidinma Ogu, Eugene Echeweozo and Fabian Ifeanyichukwu Ezema"},{id:"82718",title:"Refractories for the Cast Iron Melting",slug:"refractories-for-the-cast-iron-melting",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105973",abstract:"Refractory is a very important component in economically successful melting of cast iron. Refractory is used to line the furnace or any other vessel used for melting or holding of the molten metal. This chapter has discussed the different type of furnaces used for the melting of cast iron, the special features of those furnaces and the operational parameters of those furnaces with special emphasis on the coreless induction furnace, which is most commonly used. It has dealt with the installation practices of the refractory lining and also has discussed the mode of failure of the refractory lining and the precautions to be taken during installation and during use.",book:{id:"11766",title:"Cast Iron - Production, Properties, Characterization, and Casting Defects Analysis",coverURL:"https://cdn.intechopen.com/books/images_new/11766.jpg"},signatures:"Prasunjit Sengupta"},{id:"82988",title:"Optimization of Retained Austenite and Corrosion Properties on EN-31 Bearing Steel by Cryogenic Treatment Process",slug:"optimization-of-retained-austenite-and-corrosion-properties-on-en-31-bearing-steel-by-cryogenic-trea",totalDownloads:8,totalDimensionsCites:0,doi:"10.5772/intechopen.106317",abstract:"In this work, the percentage of retained austenite and corrosion rate presented on EN 31 bearing steel was identified by which cryogenic treatment processes. Further investigation carried out the possible mechanism brought in by which treatment has significantly improving the properties of the EN-31 bearing steel. The hardness values of CHT and DCT were compared by using the microstructure view of the CHT and DCT samples. The optimised cryotreated samples were prepared for metallographic examination as per ASTM E3-01. Then, the specimen were subjected to factor level settings such as cooling rate, soaking period, soaking temperature and tempering temperature at various conditions. Moreover, the precipitation of fine carbides and the transformation of retained austenite to martensite showed considerable variations in the hardness of the optimised DCT samples compared with the CHT samples. The mean hardness value of this sample is 861 HV and 19.20%, 847 HV and 17.25%, 838 HV and 17.10%, 857 HV and 18.40%, 790 HV and 13.45% improvement in the hardness compared with CHT.",book:{id:"11468",title:"High Entropy Materials - Microstructures and Properties",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg"},signatures:"Shunmuga Priyan Murugan"}],onlineFirstChaptersTotal:79},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!0,editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",slug:"tomas-jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",biography:"Tomasz Jarzembowski was born in 1968 in Gdansk, Poland. He obtained his Ph.D. degree in 2000 from the Medical University of Gdańsk (UG). After specialization in clinical microbiology in 2003, he started studying biofilm formation and antibiotic resistance at the single-cell level. In 2015, he obtained his D.Sc. degree. His later study in cooperation with experts in nephrology and immunology resulted in the designation of the new diagnostic method of UTI, patented in 2017. He is currently working at the Department of Microbiology, Medical University of Gdańsk (GUMed), Poland. Since many years, he is a member of steering committee of Gdańsk branch of Polish Society of Microbiologists, a member of ESCMID. He is also a reviewer and a member of editorial boards of a number of international journals.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",slug:"katarzyna-garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",biography:"Katarzyna Maria Garbacz, MD, is an Associate Professor at the Medical University of Gdańsk, Poland and she is head of the Department of Oral Microbiology of the Medical University of Gdańsk. She has published more than 50 scientific publications in peer-reviewed journals. She has been a project leader funded by the National Science Centre of Poland. Prof. Garbacz is a microbiologist working on applied and fundamental questions in microbial epidemiology and pathogenesis. Her research interest is in antibiotic resistance, host-pathogen interaction, and therapeutics development for staphylococcal pathogens, mainly Staphylococcus aureus, which causes hospital-acquired infections. Currently, her research is mostly focused on the study of oral pathogens, particularly Staphylococcus spp.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:3,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:30,paginationItems:[{id:"425474",title:"Mr.",name:"Jasper",middleName:"Okoro Godwin",surname:"Okoro Godwin Elechi",slug:"jasper-okoro-godwin-elechi",fullName:"Jasper Okoro Godwin Elechi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/425474/images/19990_n.jpg",biography:"Mr. Elechi is an innovative and passionate food professional and educator who can collaborate across boundaries with an integrated aspiration of innovation to provide good, sustainable, and healthy food solutions that promote human health and conserve planetary health. He has a special interest in innovative food product development, nutrition, indigenous food products, biotechnology, bioeconmy, sustainable global food systems transformation, food safety Nanotechnology, and Nanomaterials. He has carried out independent research and publications in these areas. He possesses comprehensive knowledge and technical know-how on nutritional formulation and production of healthy and sustainable foods from locally available underutilized Cereal-Legume crops for combating food security and malnutrition in developing communities.",institutionString:null,institution:null},{id:"307387",title:"Dr.",name:"Cecilia",middleName:null,surname:"Camporeale",slug:"cecilia-camporeale",fullName:"Cecilia Camporeale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"296882",title:"Dr.",name:"Mario",middleName:null,surname:"Jorizzo",slug:"mario-jorizzo",fullName:"Mario Jorizzo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"307388",title:"Dr.",name:"ROBERTO",middleName:null,surname:"DEL CIELLO",slug:"roberto-del-ciello",fullName:"ROBERTO DEL CIELLO",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"437647",title:"M.Sc.",name:"Fernando",middleName:null,surname:"Teixeira",slug:"fernando-teixeira",fullName:"Fernando Teixeira",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"423338",title:"Dr.",name:"Harjeet",middleName:null,surname:"Singh",slug:"harjeet-singh",fullName:"Harjeet Singh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Chitkara University",country:{name:"India"}}},{id:"443635",title:"Dr.",name:"Suruchi",middleName:null,surname:"Jindal",slug:"suruchi-jindal",fullName:"Suruchi Jindal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Punjab Agricultural University",country:{name:"India"}}},{id:"426265",title:"Mrs.",name:"Inonge",middleName:null,surname:"Chibua",slug:"inonge-chibua",fullName:"Inonge Chibua",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426266",title:"Ms.",name:"Mesha",middleName:null,surname:"Mbisana",slug:"mesha-mbisana",fullName:"Mesha Mbisana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426264",title:"Mr.",name:"Samuel",middleName:null,surname:"Raditloko",slug:"samuel-raditloko",fullName:"Samuel Raditloko",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426394",title:"Dr.",name:"Mags",middleName:null,surname:"Adams",slug:"mags-adams",fullName:"Mags Adams",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"United Kingdom"}}},{id:"441182",title:"Dr.",name:"Neil",middleName:null,surname:"Wilson",slug:"neil-wilson",fullName:"Neil Wilson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"United Kingdom"}}},{id:"425171",title:"Ph.D. Student",name:"Tanya",middleName:null,surname:"Zerbian",slug:"tanya-zerbian",fullName:"Tanya Zerbian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"Cyprus"}}},{id:"424714",title:"Prof.",name:"Elke",middleName:null,surname:"Stedefeldt",slug:"elke-stedefeldt",fullName:"Elke Stedefeldt",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Sao Paulo",country:{name:"Brazil"}}},{id:"425244",title:"Dr.",name:"Rayane",middleName:"Stephanie Gomes",surname:"Stephanie Gomes De Freitas",slug:"rayane-stephanie-gomes-de-freitas",fullName:"Rayane Stephanie Gomes De Freitas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Sao Paulo",country:{name:"Brazil"}}},{id:"424688",title:"Dr.",name:"Bart",middleName:null,surname:"de Steenhuijsen Piters",slug:"bart-de-steenhuijsen-piters",fullName:"Bart de Steenhuijsen Piters",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429404",title:"Dr.",name:"Emma",middleName:null,surname:"Termeer",slug:"emma-termeer",fullName:"Emma Termeer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429407",title:"Dr.",name:"Herman",middleName:null,surname:"Brouwer",slug:"herman-brouwer",fullName:"Herman Brouwer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429406",title:"Dr.",name:"Hubert",middleName:null,surname:"Fonteijn",slug:"hubert-fonteijn",fullName:"Hubert Fonteijn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"427504",title:"Dr.",name:"Kriengsak",middleName:null,surname:"Chareonwongsak",slug:"kriengsak-chareonwongsak",fullName:"Kriengsak Chareonwongsak",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423333",title:"Ph.D. Student",name:"Shivani",middleName:null,surname:"Sood",slug:"shivani-sood",fullName:"Shivani Sood",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"452297",title:"Mr.",name:"Cornelius",middleName:null,surname:"Smah Adamu",slug:"cornelius-smah-adamu",fullName:"Cornelius Smah Adamu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"452296",title:"Mr.",name:"Ikechukwu",middleName:null,surname:"U. Nwiyi",slug:"ikechukwu-u.-nwiyi",fullName:"Ikechukwu U. Nwiyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423395",title:"Assistant Prof.",name:"Adane",middleName:null,surname:"Atara Debessa",slug:"adane-atara-debessa",fullName:"Adane Atara Debessa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426267",title:"Mr.",name:"Banyaladzi",middleName:null,surname:"Paphane",slug:"banyaladzi-paphane",fullName:"Banyaladzi Paphane",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"483388",title:"Dr.",name:"Berhanu",middleName:null,surname:"Denu",slug:"berhanu-denu",fullName:"Berhanu Denu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"483387",title:"Dr.",name:"Degefa",middleName:null,surname:"Tolossa",slug:"degefa-tolossa",fullName:"Degefa Tolossa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426059",title:"Dr.",name:"Dikabo",middleName:null,surname:"Mogopodi",slug:"dikabo-mogopodi",fullName:"Dikabo Mogopodi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"422909",title:"Dr.",name:"Dorcas Stella",middleName:null,surname:"Shumba",slug:"dorcas-stella-shumba",fullName:"Dorcas Stella Shumba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"429405",title:"Dr.",name:"Deborah",middleName:null,surname:"Bakker",slug:"deborah-bakker",fullName:"Deborah Bakker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"20",type:"subseries",title:"Animal Nutrition",keywords:"Sustainable Animal Diets, Carbon Footprint, Meta Analyses",scope:"An essential part of animal production is nutrition. Animals need to receive a properly balanced diet. One of the new challenges we are now faced with is sustainable animal diets (STAND) that involve the 3 P’s (People, Planet, and Profitability). We must develop animal feed that does not compete with human food, use antibiotics, and explore new growth promoters options, such as plant extracts or compounds that promote feed efficiency (e.g., monensin, oils, enzymes, probiotics). These new feed options must also be environmentally friendly, reducing the Carbon footprint, CH4, N, and P emissions to the environment, with an adequate formulation of nutrients.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82291",title:"The Role of Oxidative Stress in the Onset and Development of Age-Related Macular Degeneration",doi:"10.5772/intechopen.105599",signatures:"Emina Čolak, Lepša Žorić, Miloš Mirković, Jana Mirković, Ilija Dragojević, Dijana Mirić, Bojana Kisić and Ljubinka Nikolić",slug:"the-role-of-oxidative-stress-in-the-onset-and-development-of-age-related-macular-degeneration",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/152548",hash:"",query:{},params:{id:"152548"},fullPath:"/profiles/152548",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()