Gehl’s 12 quality criteria (2018) for public urban spaces (source: adopted from Gehl and Svarre [3]).
-Preparation and fabrications of nanolayers with different methods.\n
-Description of recent achievements related to very important III-V heterostructures.\n
-Descriptions of mechanical, thermal, optoelectronic, photocatalytic, and tribological properties of nanolayered structures.\n
Some environmentally friendly applications are also treated in this book.\nThe presented book provides a description of specific and original results obtained by authors. We hope that the volume will be of interest for a wide range of readers working in the field of material science.",isbn:"978-953-51-3144-1",printIsbn:"978-953-51-3143-4",pdfIsbn:"978-953-51-4829-6",doi:"10.5772/65465",price:119,priceEur:129,priceUsd:155,slug:"nanoscaled-films-and-layers",numberOfPages:298,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"f43ea8f3894ee0c3e44b2351bf3447d5",bookSignature:"Laszlo Nanai",publishedDate:"May 24th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5789.jpg",numberOfDownloads:19267,numberOfWosCitations:13,numberOfCrossrefCitations:15,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:32,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:60,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 26th 2016",dateEndSecondStepPublish:"October 17th 2016",dateEndThirdStepPublish:"January 13th 2017",dateEndFourthStepPublish:"April 13th 2017",dateEndFifthStepPublish:"June 12th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"61978",title:"Prof.",name:"Laszlo",middleName:null,surname:"Nanai",slug:"laszlo-nanai",fullName:"Laszlo Nanai",profilePictureURL:"https://mts.intechopen.com/storage/users/61978/images/system/61978.png",biography:"Prof. Nanai was born on April 19, 1948, in Csopak (Hungary). He studied physics (MSc) at Saint Petersburg State University (RU), and his PhD degree and habilitation in the field of quantum electronics were obtained at Lebedev Physical Institute, Moscow (RU), and Szeged University (H). \r\n\r\nHe is a specialist in the fields of solid-state physics, laser-matter interaction fabrication and characterization of nanostructures. He has written over 170 scientific publications including about 10 books and chapters in books and conference proceedings.",institutionString:"University of Szeged",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Szeged",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics"}],chapters:[{id:"54288",title:"Formation of Nanolayer on Surface of EPD Coatings Based on Poly-Ether-Ether-Ketone",doi:"10.5772/67570",slug:"formation-of-nanolayer-on-surface-of-epd-coatings-based-on-poly-ether-ether-ketone",totalDownloads:1438,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Poly-ether-ether-ketone (PEEK) is a high performance polymer with many intrinsic properties. When it is used in the form of coating, an improvement of some of its functional properties was achieved by forming a surface nanolayer. In this chapter, it will be described how it was possible to obtain this result. Firstly, three kinds of PEEK composite coatings were deposited by electrophoretic deposition, adding alumina particles, polytetrafluoroethylene (PTFE) and lignin to PEEK. Then, the composite coatings were thermal treated in a furnace. Therefore, surface nanostructure and chemical composition of these PEEK composite coatings were modified with respect to bulk coatings, due to interaction between PEEK chain and secondary phase, emphasised by the thermal treatment conditions. Experimental evidence of the formation of surface nanolayer was provided by SEM, TEM, GIXRD, ATR-FTIR and XPS characterisations. Functional characterisations demonstrated that wear resistance—in the presence of alumina particles—hydrophobicity—in the presence of PTFE—and corrosion resistance—in the presence of Lignin—were increased with respect to pure PEEK.",signatures:"Maria Federica De Riccardis",downloadPdfUrl:"/chapter/pdf-download/54288",previewPdfUrl:"/chapter/pdf-preview/54288",authors:[{id:"77857",title:"Dr.",name:"M. Federica",surname:"De Riccardis",slug:"m.-federica-de-riccardis",fullName:"M. Federica De Riccardis"}],corrections:null},{id:"54678",title:"Electroless Deposition of Nanolayered Metallic Coatings",doi:"10.5772/intechopen.68220",slug:"electroless-deposition-of-nanolayered-metallic-coatings",totalDownloads:3440,totalCrossrefCites:5,totalDimensionsCites:8,hasAltmetrics:1,abstract:"Electroless metallic coating is referred as the deposition of a substrate material by the process of chemical or autocatalytic reduction of aqueous metal ions deposited to a substrate material without any external supply of power. Electroless nickel alloys are generally considered synonymous to the word “electroless coating” as ~90% of productions in industries are of this alloy coating. Rest of the electroless metallic coatings includes gold, copper, palladium, cobalt, silver, etc. These electroless metallic coatings (other than electroless nickel coatings) are also one of the vibrant areas in the field of materials properties and surface engineering research. From the year 2000 to till date, nearly 1000 SCI indexed research papers were published on this topic. However, no comprehensive studies about the recent progress on this topic were reported elsewhere so far. In this context, the present chapter aims to give a complete overview on various aspects of the rest of the electroless metallic nanocoatings/layer as a whole. More importance will be on the recent developments of the nanocharacteristics and future scopes.",signatures:"Jothi Sudagar, Rajendraprasad Tamilarasan, Udaykumar Sanjith, Raj\nRajendran and Ravi Kumar",downloadPdfUrl:"/chapter/pdf-download/54678",previewPdfUrl:"/chapter/pdf-preview/54678",authors:[{id:"202302",title:"Dr.",name:"Jothi",surname:"Sudagar",slug:"jothi-sudagar",fullName:"Jothi Sudagar"},{id:"203599",title:"Dr.",name:"Tamilarasan",surname:"Tr",slug:"tamilarasan-tr",fullName:"Tamilarasan Tr"},{id:"203600",title:"MSc.",name:"Sanjith",surname:"U",slug:"sanjith-u",fullName:"Sanjith U"},{id:"203601",title:"Prof.",name:"Rajendran",surname:"R",slug:"rajendran-r",fullName:"Rajendran R"},{id:"203602",title:"Prof.",name:"Ravi Kumar",surname:"Nv",slug:"ravi-kumar-nv",fullName:"Ravi Kumar Nv"}],corrections:null},{id:"54328",title:"Laser Prepared Thin Films for Optoelectronic Applications",doi:"10.5772/67659",slug:"laser-prepared-thin-films-for-optoelectronic-applications",totalDownloads:1503,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Laser techniques such as pulsed laser deposition, combinatorial pulsed laser deposition, and matrix-assisted pulsed laser evaporation were used to deposit thin films for optoelectronic applications. High-quality transparent conductor oxide films ITO, AZO, and IZO were deposited on polyethylene terephthalate by PLD, an important experimental parameter being the target-substrate distance. The TCO films present a high transparency (>95%) and a reduced electrical resistivity (5 × 10−4 Ωcm) characteristics very useful for their integration in the flexible electronics. InxZn1−xO films with a compositional library were obtained by CPLD. These films are featured by a high optical transmission (>95%), the lowest resistivity (8.6 × 10−4 Ωcm) being observed for an indium content of about 44–49 at.%. Organic heterostructures based on arylenevinylene oligomers (P78 and P13) or arylene polymers (AMC16 and AMC22) were obtained by MAPLE. In the case of ITO/P78/Alq3/Al heterostructures, a higher current value is obtained when the film thickness increases. Also, a photovoltaic effect was observed for heterostructures based on AMC16 or AMC22 deposited on ITO covered by a thin layer of PEDOT:PSS. Due to their optical and electrical properties, such organic heterostructures can be interesting for the organic photovoltaic cells (OPV) applications.",signatures:"Marcela Socol, Gabriel Socol, Nicoleta Preda, Anca Stanculescu and\nFlorin Stanculescu",downloadPdfUrl:"/chapter/pdf-download/54328",previewPdfUrl:"/chapter/pdf-preview/54328",authors:[{id:"21373",title:"Dr.",name:"Anca",surname:"Stanculescu",slug:"anca-stanculescu",fullName:"Anca Stanculescu"},{id:"21611",title:"Dr.",name:"Florin",surname:"Stanculescu",slug:"florin-stanculescu",fullName:"Florin Stanculescu"},{id:"178419",title:"Dr.",name:"Gabriel",surname:"Socol",slug:"gabriel-socol",fullName:"Gabriel Socol"},{id:"184343",title:"Dr.",name:"Nicoleta",surname:"Preda",slug:"nicoleta-preda",fullName:"Nicoleta Preda"},{id:"198589",title:"Dr.",name:"Marcela",surname:"Socol",slug:"marcela-socol",fullName:"Marcela Socol"}],corrections:null},{id:"54765",title:"Heteroepitaxy of III–V Zinc Blende Semiconductors on Nanopatterned Substrates",doi:"10.5772/67572",slug:"heteroepitaxy-of-iii-v-zinc-blende-semiconductors-on-nanopatterned-substrates",totalDownloads:1563,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:"In the last decade, zinc blende structure III–V semiconductors have been increasingly utilized for the realization of high‐performance optoelectronic applications because of their tunable bandgaps, high carrier mobility and the absence of piezoelectric fields. However, the integration of III–V devices on the Si platform commonly used for CMOS electronic circuits still poses a challenge, due to the large densities of mismatch‐related defects in heteroepitaxial III–V layers grown on planar Si substrates. A promising method to obtain thin III–V layers of high crystalline quality is the growth on nanopatterned substrates. In this approach, defects can be effectively eliminated by elastic lattice relaxation in three dimensions or confined close to the substrate interface by using aspect‐ratio trapping masks. As a result, an etch pit density as low as 3.3 × 105 cm−2 and a flat surface of submicron GaAs layers have been accomplished by growth onto a SiO2 nanohole film patterned Si(001) substrate, where the threading defects are trapped at the SiO2 mask sidewalls. An open issue that remains to be resolved is to gain a better understanding of the interplay between mask shape, growth conditions and formation of coalescence defects during mask overgrowth in order to achieve thin device quality III–V layers.",signatures:"Thomas Riedl and Jörg K.N. Lindner",downloadPdfUrl:"/chapter/pdf-download/54765",previewPdfUrl:"/chapter/pdf-preview/54765",authors:[{id:"196852",title:"Dr.",name:"Thomas",surname:"Riedl",slug:"thomas-riedl",fullName:"Thomas Riedl"},{id:"197870",title:"Prof.",name:"Jörg K.N.",surname:"Lindner",slug:"jorg-k.n.-lindner",fullName:"Jörg K.N. Lindner"}],corrections:null},{id:"54687",title:"Surface Modification of III-V Compounds Substrates for Processing Technology",doi:"10.5772/67916",slug:"surface-modification-of-iii-v-compounds-substrates-for-processing-technology",totalDownloads:1971,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Semiconductor materials became a part of nowadays life due to useful applications caused by characteristic properties as variable conductivity and sensitivity to light or heat. Electrical properties of a semiconductor can be modified by doping or by the application of electric fields or light; and from this view, devices made from semiconductors can be used for amplification or energy conversion. The compound semiconductor materials from III-V class experienced a qualitative leap from promising potential to nowadays technologic environment. The III-V semiconductor compounds are the material bases for electronic and optoelectronic devices such as high-electron-mobility transistors (HEMT), bipolar heterostructure transistors, IR light-emitting diodes, heterostructure lasers, Gunn diodes, Schottky devices, photodetectors, and heterostructure solar cells for terrestrial and spatial operating conditions. Among III-V semiconductor compounds, gallium arsenide (GaAs) and gallium antimonide (GaSb) are of special interest as a substrate material due to the lattice parameter match to solid solutions (ternary and quaternary) whose band gaps cover a wide spectral range from 0.8 to 4.3 μm in the case of GaSb. The solid/solid interfaces could play a key part in the development of microelectronic device technology. In most of the cases, the initial surface of III-V compounds exposed to laboratory conditions is covered usually with native oxide layers. Various techniques for performing the surface cleaning process are used, e.g., controlled chemical etching, in situ ion sputtering, coupled with controlled annealing in vacuum and often these classic techniques are combined in order to prepare an eligible semiconductor surface to be exposed to a technological device chain. The evolution of surface native oxides in different cleaning procedures and the characteristics of as-prepared semiconductor surface were investigated by modern surface investigation techniques, i.e., X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) combined with electrical characterization. Surface preparation of semiconductors in particular for III-V compounds is a necessary requirement in device technology due to the existence of surface impurities and the presence of native oxides. The impurities can affect the adherence of ohmic and Schottky contacts and due to thermal decomposition of native oxides (e.g., GaSb) it also affect the interface metal/semiconductor. The practical experience reveals that the simple preparation of a surface is a nonrealistic expectation, i.e., surface preparation is a result of combined treatments, namely chemical etching and thermal treatment, ion beam sputtering and thermal reconstruction procedure.",signatures:"Rodica V. Ghita, Constantin Logofatu, Constantin-Catalin Negrila,\nLucian Trupina and Costel Cotirlan-Simioniuc",downloadPdfUrl:"/chapter/pdf-download/54687",previewPdfUrl:"/chapter/pdf-preview/54687",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",surname:"Ghita",slug:"rodica-v.-ghita",fullName:"Rodica V. Ghita"},{id:"197743",title:"Dr.",name:"Lucian",surname:"Trupina",slug:"lucian-trupina",fullName:"Lucian Trupina"},{id:"198134",title:"Dr.",name:"Constantin",surname:"Logofatu",slug:"constantin-logofatu",fullName:"Constantin Logofatu"},{id:"198135",title:"Dr.",name:"Constantin-Catalin",surname:"Negrila",slug:"constantin-catalin-negrila",fullName:"Constantin-Catalin Negrila"},{id:"198140",title:"Dr.",name:"Costel",surname:"Cotirlan-Simioniuc",slug:"costel-cotirlan-simioniuc",fullName:"Costel Cotirlan-Simioniuc"}],corrections:null},{id:"54581",title:"Nanoscaled Fluorescent Films and Layers for Detection of Environmental Pollutants",doi:"10.5772/67869",slug:"nanoscaled-fluorescent-films-and-layers-for-detection-of-environmental-pollutants",totalDownloads:1798,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Hazardous gas and ion pollutants are the most serious environmental problems around the world. It is of great importance to develop devices for easy detection of these hazardous substances. Fluorescence technology with high resolution and operational simplicity has attracted a lot of attention in recent years. Organic fluorescent dyes absorb/emit lights within a broad wavelength range, which is suitable for various demands. Chromophores, such as perylene, cyanine dyes, spiropyran, and so on, are widely studied as fluorescent probes for gases and ions. The dyes could respond to external stimuli through structural changes of the conjugated chromophore itself or the attached functional groups, leading to detectable spectral changes. Organic dyes are incorporated into nanoscaled films and layers, which are portable and durable for effective sensing in complex environments. In this chapter, preparation and application of fluorescent films and layers (FFL) for gaseous/ionic detection are reviewed. We discuss the response mechanism of fluorescent dyes, the fabrication of nanoscaled FFL, and some examples of FFL for the detection of gas and ion pollutants.",signatures:"Meizhen Yin and Chendong Ji",downloadPdfUrl:"/chapter/pdf-download/54581",previewPdfUrl:"/chapter/pdf-preview/54581",authors:[{id:"197509",title:"Prof.",name:"Meizhen",surname:"Yin",slug:"meizhen-yin",fullName:"Meizhen Yin"},{id:"200372",title:"Mr.",name:"Chendong",surname:"Ji",slug:"chendong-ji",fullName:"Chendong Ji"}],corrections:null},{id:"54290",title:"Mechanical Nanoprocessing and Nanoviscoelasticity of Surface- Modified Polycarbonate",doi:"10.5772/67512",slug:"mechanical-nanoprocessing-and-nanoviscoelasticity-of-surface-modified-polycarbonate",totalDownloads:1283,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"To clarify their potential as atomic force microscope (AFM) memory media, the nanometer‐scale mechanical processing properties of untreated and fluorocarbon plasma‐treated polycarbonate samples were determined via the sliding of an AFM tip. The surface energy of the polycarbonate was reduced by the fluorocarbon plasma treatment, as well as the force necessary for processing. Nanometer‐scale precise processing of the polycarbonate was realized after the fluorocarbon plasma treatment, and the interval pitch in the formation of lines, spaces, and nanometer‐scale fine dots was minimized to 60 nm with these samples. The viscoelastic properties of the fluorinated polycarbonate were evaluated using an AFM in force modulation mode. The fluorocarbon plasma treatment reduced the friction force of the polycarbonate sample and improved its wear resistance, which caused the friction durability corresponding to the reliability of data reproduction to be markedly improved. These results show that high‐density recording can be realized by nanometer‐scale processing of fluorocarbon plasma‐treated polycarbonate samples.",signatures:"Shojiro Miyake and Mei Wang",downloadPdfUrl:"/chapter/pdf-download/54290",previewPdfUrl:"/chapter/pdf-preview/54290",authors:[{id:"22097",title:"Dr.",name:"Mei",surname:"Wang",slug:"mei-wang",fullName:"Mei Wang"}],corrections:null},{id:"54966",title:"Green Intelligent Nanomaterials by Design (Using Nanoparticulate/2D-Materials Building Blocks) Current Developments and Future Trends",doi:"10.5772/intechopen.68434",slug:"green-intelligent-nanomaterials-by-design-using-nanoparticulate-2d-materials-building-blocks-current",totalDownloads:1501,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Feasibility of designing and synthesizing ‘smart’ and ‘intelligent’ materials using nanostructured building blocks has been examined here based on the current status of the progress made in this context. The added advantages of using 2D layered/nonlayered materials along with phytosomal species derived from natural plants are highlighted with special reference to their better programmability along with minimum toxicity in biomedical applications. The current developments taking place in their upscaled productions are also included while assessing their upcoming industrial usages in diverse fields.",signatures:"Dinesh Kumar and Shamim Ahmad",downloadPdfUrl:"/chapter/pdf-download/54966",previewPdfUrl:"/chapter/pdf-preview/54966",authors:[{id:"196523",title:"Dr.",name:"Shamim",surname:"Ahmad",slug:"shamim-ahmad",fullName:"Shamim Ahmad"},{id:"205981",title:"Prof.",name:"Dinesh",surname:"Kumar",slug:"dinesh-kumar",fullName:"Dinesh Kumar"}],corrections:null},{id:"54751",title:"Molybdenum Disulfide-Based Photocatalysis:Bulk-to-Single Layer Structure and Related Photomechansim for Environmental Applications",doi:"10.5772/67825",slug:"molybdenum-disulfide-based-photocatalysis-bulk-to-single-layer-structure-and-related-photomechansim-",totalDownloads:2005,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Bulk-to-single layer molybdenum disulfide (MoS2) is widely used as a robust candidate for photodegradation of organic pollutants, hydrogen production, and CO2 reduction. This material features active edge sites and narrow band gap features, which are useful for generating reactive species in aqueous suspensions. However, the high-charge carrier recombination, photocorrosion, unstable sulfide state, and formation of Mo-S-O links during photocatalytic reactions limit its applicability. Thus, research has focused on improving the performance of MoS2 by tailoring its bulk-to-single layer structure and combining it with other semiconductor materials to improve the photocatalytic performance. Different strategies have been successfully applied to enhance the photocatalytic activity of MoS2, including tailoring of the surface morphology, formation of heterojunctions with other semiconductors, doping, and modification with excess sulfur or carbon nanostructures. This review describes the influence of starting precursors, sulfur sources, and synthetic methods to obtain heterostructured morphologies and study their impact on the photocatalytic efficiency. Finally, the relevance of crystal facets and defects in photocatalysis is outlined. Future applications of MoS2 with tailoring and tuning physicochemical properties are highlighted.",signatures:"Surya Veerendra Prabhakar Vattikuti and Chan Byon",downloadPdfUrl:"/chapter/pdf-download/54751",previewPdfUrl:"/chapter/pdf-preview/54751",authors:[{id:"196995",title:"Prof.",name:"S V Prabhakar",surname:"Vattikuti",slug:"s-v-prabhakar-vattikuti",fullName:"S V Prabhakar Vattikuti"},{id:"199682",title:"Prof.",name:"Chan",surname:"Byon",slug:"chan-byon",fullName:"Chan Byon"}],corrections:null},{id:"54449",title:"Advance in Tribology Study of Polyelectrolyte Multilayers",doi:"10.5772/67571",slug:"advance-in-tribology-study-of-polyelectrolyte-multilayers",totalDownloads:1395,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This review introduced the preparation and structural characterization of polyelectrolyte multilayers in recent years and also summarized the tribology research progress of the polyelectrolyte multilayers, including tribological properties, surface adhesion characteristics, and wear resistance properties. Statistics analysis indicated that nanoparticles‐doped polyelectrolyte multilayers present better friction and wear performance than pristine polyelectrolyte multilayers. Furthermore, the in situ growth method resulted in improved structural order of nanoparticles composite molecular deposition film. In situ nanoparticles not only reduced the molecular deposition film surface adhesion force and friction force but also significantly improved the life of wear resistance. That was due to the nanoparticles that possessed a good load‐carrying capacity and reduced the mobility of the polymer‐chain segments, which can undergo reversible shear deformation. Based on this, further research direction of in situ nanoparticles molecular deposition film was proposed.",signatures:"Yanbao Guo and Deguo Wang",downloadPdfUrl:"/chapter/pdf-download/54449",previewPdfUrl:"/chapter/pdf-preview/54449",authors:[{id:"196649",title:"Dr.",name:"Yanbao",surname:"Guo",slug:"yanbao-guo",fullName:"Yanbao Guo"},{id:"197584",title:"Prof.",name:"Deguo",surname:"Wang",slug:"deguo-wang",fullName:"Deguo Wang"}],corrections:null},{id:"54123",title:"Thermal Radiative Wavelength Selectivity of Nanostructured Layered Media",doi:"10.5772/67395",slug:"thermal-radiative-wavelength-selectivity-of-nanostructured-layered-media",totalDownloads:1371,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Thermal radiative transport yields unique thermal characteristics of microscopic thin films—wavelength selectivity. This chapter focuses on a methodology about adjusting the wavelength selectivity of thin films embedded with nanoparticles in the far‐field and near‐field regimes. For nanostructured layered media doped with nanoparticles, Maxwell‐Garnett‐Mie theory is applied to determine the effective dielectric function for the calculation of radiative thermal transport. The thermal radiative wavelength selectivity can be affected by volume fraction and/or the size of the embedded nanoparticles in thin films. To characterize wavelength selectivity and optical property of nanostructured materials, both real and imaginary parts of effective refractive index need to be analyzed. It has been shown that the nanoparticles made of polar or metallic materials have different influence on thermal radiative wavelength selectivity of microscopic thin films.",signatures:"Yi Zheng",downloadPdfUrl:"/chapter/pdf-download/54123",previewPdfUrl:"/chapter/pdf-preview/54123",authors:[{id:"197058",title:"Prof.",name:"Yi",surname:"Zheng",slug:"yi-zheng",fullName:"Yi Zheng"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"7194",title:"Methods for Film Synthesis and Coating Procedures",subtitle:null,isOpenForSubmission:!1,hash:"0278e5a9a9d429a23692d1ce9bae2c2c",slug:"methods-for-film-synthesis-and-coating-procedures",bookSignature:"László Nánai, Aneeya Samantara, László Fábián and Satyajit Ratha",coverURL:"https://cdn.intechopen.com/books/images_new/7194.jpg",editedByType:"Edited by",editors:[{id:"61978",title:"Prof.",name:"Laszlo",surname:"Nanai",slug:"laszlo-nanai",fullName:"Laszlo Nanai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"397",title:"Nanofibers",subtitle:"Production, Properties and Functional Applications",isOpenForSubmission:!1,hash:"934fe33b73b2ecba961c67d5a90021ec",slug:"nanofibers-production-properties-and-functional-applications",bookSignature:"Tong Lin",coverURL:"https://cdn.intechopen.com/books/images_new/397.jpg",editedByType:"Edited by",editors:[{id:"49937",title:"Dr.",name:"Tong",surname:"Lin",slug:"tong-lin",fullName:"Tong Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1045",title:"Nanocomposites and Polymers with Analytical Methods",subtitle:null,isOpenForSubmission:!1,hash:"65d477e855685ea85913e5aba0c5217e",slug:"nanocomposites-and-polymers-with-analytical-methods",bookSignature:"John Cuppoletti",coverURL:"https://cdn.intechopen.com/books/images_new/1045.jpg",editedByType:"Edited by",editors:[{id:"49991",title:"Dr.",name:"John",surname:"Cuppoletti",slug:"john-cuppoletti",fullName:"John Cuppoletti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3200",title:"Nanofibers",subtitle:null,isOpenForSubmission:!1,hash:"97487143b896780afaf08cfd67cd1eec",slug:"nanofibers",bookSignature:"Ashok Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/3200.jpg",editedByType:"Edited by",editors:[{id:"7718",title:"Professor",name:"Ashok",surname:"Kumar",slug:"ashok-kumar",fullName:"Ashok Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5139",title:"Semiconductor Photocatalysis",subtitle:"Materials, Mechanisms and Applications",isOpenForSubmission:!1,hash:"ddd35bd632c061ec2e69a0886a817443",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",bookSignature:"Wenbin Cao",coverURL:"https://cdn.intechopen.com/books/images_new/5139.jpg",editedByType:"Edited by",editors:[{id:"48383",title:"Prof.",name:"Wenbin",surname:"Cao",slug:"wenbin-cao",fullName:"Wenbin Cao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3077",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",subtitle:null,isOpenForSubmission:!1,hash:"38dd4fb088a27b2552bf3d371e8c2872",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",bookSignature:"Satoru Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/3077.jpg",editedByType:"Edited by",editors:[{id:"30519",title:"Dr.",name:"Satoru",surname:"Suzuki",slug:"satoru-suzuki",fullName:"Satoru Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"191",title:"Advances in Nanocomposite Technology",subtitle:null,isOpenForSubmission:!1,hash:"4dc3407e602cdd348af663727baebe3d",slug:"advances-in-nanocomposite-technology",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/191.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3558",title:"Advances in Graphene Science",subtitle:null,isOpenForSubmission:!1,hash:"f3a2158260a79c0fc8a4298864aa7dcd",slug:"advances-in-graphene-science",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/3558.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"861",title:"Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"f32b97a9aa541939cb212373d471d477",slug:"nanomaterials",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/861.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"correction-to-the-cultural-reinforcers-of-child-abuse",title:"Correction to: The Cultural Reinforcers of Child Abuse",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/47331.pdf",downloadPdfUrl:"/chapter/pdf-download/47331",previewPdfUrl:"/chapter/pdf-preview/47331",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/47331",risUrl:"/chapter/ris/47331",chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}}]}},chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}}]},book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11887",leadTitle:null,title:"Neuroendocrine Neoplasms - Diagnostics and Treatment",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tNeuroendocrine tumors (NETs) are rare tumors derived from the neuroendocrine cell system and are more commonly found in the gastrointestinal (GI) tract, as well as in other locations. They are relatively rare, accounting for 2% of all malignancy cases in the United States. In recent years their incidence has been increasing also as a result of the improved instrumental investigations available. Most patients are asymptomatic and these neoplasms are detected during routine examinations. Clinical presentation depends on the organ being involved and the hormone being secreted. Several biochemical tests are developed to help with the diagnosis of NETs including 5-hydroxyindoleacetic acid (5-HIAA) and chromogranin A (CgA). The improved diagnostic techniques allow today the earlier recognition of these tumors. The natural history, diagnosis, and management of these tumors may not be fully understood. Treatment involves a surgical approach, for both primary and metastatic lesions, as well as medical management for symptom management and disease progression. This book will aim to review the current clinical knowledge regarding the diagnosis, treatment, and prognosis of these fascinating neoplasms and the associated hormonal syndromes.
",isbn:"978-1-83969-323-6",printIsbn:"978-1-83969-322-9",pdfIsbn:"978-1-83969-324-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"b5021a0ff7c9b8eeb223817153005f83",bookSignature:"Dr. Pasquale Cianci and Dr. Enrico Restini",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11887.jpg",keywords:"Genetic Risks, Multiple Endocrine Neoplasia, Epidemiology, Clinical Aspects, Classification, Biomarkers, Carcinoid Syndrome, Immune Factors, Chemotherapy, CT, MRI, F-FDG",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 21st 2022",dateEndSecondStepPublish:"June 28th 2022",dateEndThirdStepPublish:"August 27th 2022",dateEndFourthStepPublish:"November 15th 2022",dateEndFifthStepPublish:"January 14th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Researcher in general surgery, Ph.D. and Fellow of the ACS, contract Professor at the University of Foggia. Associate Editor at Frontiers in Surgical Oncology, BMC Surgery, Annals of Medicine, and InTech Open Book Series. Reviewer for many major surgery journals.",coeditorOneBiosketch:"A pioneer in minimally invasive surgery with particular application to laparoscopy and robotics. Director of the General surgery unit of the Lorenzo Bonomo hospital - Andria (Italy), Head of the Surgery and Traumatology Department of the ASL-BAT. He holds the corporate license to use the Da Vinci Xi, Flex Robotics system, and Cyberknife.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",biography:"General Surgeon at 'Lorenzo Bonomo” Hospital-Department of Surgery and Traumatology-ASL BAT-Andria-Puglia (Italy), and Ph.D. at the Department of Medical and Surgical Sciences, University of Foggia (Italy), Fellow of American College of Surgeons (FACS). Contract Professor in General and Emergency Surgery, Gastroenterology and Human Physiology, Faculty of Medicine - Nursing Science and Physiotherapy Courses. Professor in surgical anatomy at the specialty school in general surgery. Contract Professor of I Level Masters: Intestinal stoma care nurse, Operating room nurse and Emergency medicine and critical area. Member of some of the most important Italian Scientific Surgical Societies: EAES, SICE, ACOI, SPIGC, SIUCP, ACS. Author of 70 national and international scientific papers, books and book chapters which are well appreciated in the health community. Editorial Board member of Frontiers in Surgical Oncology, BMC Surgery, Annals of Medicine, WJSP, Asian Journal of Research and Reports in Endocrinology, IntechOpen Edition. Reviewer of major international scientific journals such as Medicina, the Turkish Journal of Gastroenterology, Medical Principles and Practice, IntechOpen Edition, World Journal of Surgical Procedures, Oxford Medical Case Reports, BMJ Case Reports, Austin Pancreat Disord, World Journal of Gastroenterology, Case Studies in Surgery, World Journal of Surgical Oncology, Journal of Cancer and Tumor International, Journal of Basic and Applied Research International, International Journal of Medical and Pharmaceutical Case Reports, British Journal of Medicine and Medical Research, Faculty and Speaker at numerous national and international Surgical Congresses. Special interest in laparoscopic surgery, robotic surgery, endocrine surgery and coloproctology.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"302435",title:"Dr.",name:"Enrico",middleName:null,surname:"Restini",slug:"enrico-restini",fullName:"Enrico Restini",profilePictureURL:"https://mts.intechopen.com/storage/users/302435/images/system/302435.jpg",biography:"Enrico Restini, MD, is head of the Department of Surgery and Traumatology-Andria, Italy. He is a contract professor in Surgery and Health Management and an expert in advanced technologies and their impact on health organizations (HTA) (LUM University-BA). Since 2007, Dr. Restini has been honorary president of the Apulian section of Aistom. He is a member of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), the Italian Society of Endoscopic and Minimally Invasive Surgery (SICE), SICOB, SIC, Italian Society of Private Hospital Surgery, and Association of Italian Hospital Surgeons (ACOI). He is a founding member of ARTOI, and has been a SICE National Councilor since 2012. He has spoken at numerous national and international surgical congresses and authored fifty national and international scientific papers. His special interests include laparoscopic surgery, robotic surgery, endocrine surgery, and digestive surgery.",institutionString:"ASL BAT - Department of Surgery and Traumatology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440204",firstName:"Ana",lastName:"Cink",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440204/images/20006_n.jpg",email:"ana.c@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6591",title:"Proctological Diseases in Surgical Practice",subtitle:null,isOpenForSubmission:!1,hash:"df22314ee5125fe03618cc962080552f",slug:"proctological-diseases-in-surgical-practice",bookSignature:"Pasquale Cianci",coverURL:"https://cdn.intechopen.com/books/images_new/6591.jpg",editedByType:"Edited by",editors:[{id:"196218",title:"Dr.",name:"Pasquale",surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10477",title:"Pheochromocytoma, Paraganglioma and Neuroblastoma",subtitle:null,isOpenForSubmission:!1,hash:"ea4b534c4c57be0eaa9c5624c7e2b139",slug:"pheochromocytoma-paraganglioma-and-neuroblastoma",bookSignature:"Pasquale Cianci, Enrico Restini and Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/10477.jpg",editedByType:"Edited by",editors:[{id:"196218",title:"Dr.",name:"Pasquale",surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70940",title:"Development of Lightweight Steels for Automotive Applications",doi:"10.5772/intechopen.91024",slug:"development-of-lightweight-steels-for-automotive-applications",body:'\nThe ever-increasing competition in the automotive industry requires the application of low-cost production, which is strongly connected with lightweight manufacturing. The need for lightweight manufacturing in the vehicle industry is supported by several reasons: among them, the stringent and further increasing environment restrictions, the need for the reduction of harmful emissions, and the higher safety requirements should be mentioned. In the fulfillments of these requirements, the weight reduction has a determinant role. In the total weight of an automobile, the car body has a decisive role. Sheet metal forming is regarded as one of the most important manufacturing processes in the production of car body elements. Therefore, the elaboration of new, low-cost manufacturing processes is one of the main objectives in sheet metal forming: in these developments, the lightweight production principles are of utmost importance. The two main trends for producing lightweight automotive parts are the application of high strength steels or lightweight materials—especially various high strength aluminum alloys [1]. In this chapter, we will mainly focus on high strength steel materials.
\nConsidering the major requirements for the automotive industry in the recent decades, the main driving forces of material developments can be clearly defined, too.
\nThe competition in car manufacturing is extremely strong, and the requirements are often contradictory: for example, from the customers’ side, more economical, safer, and higher comfort together with better performance are the most important issues. These are further increased by legal requirements as the ever-increasing rigorous environment restrictions as the reduction of harmful emissions and higher safety requirements. Some of the legal requirements are in accordance with the customers’ demands; some imposes further requirements on car manufacturing. Due to the worldwide competition in car manufacturing, the automotive industry has to find the appropriate answers for these challenges. To meet all these requirements is impossible with conventional materials and conventional manufacturing methods. This is one of the main reasons that the development needs in the automotive industry are the main driving forces in material development, too.
\nIn the fulfillment of these manifold requirements, the weight reduction has an important role: reducing the overall weight of vehicles results in lower consumption and thus less harmful emissions together with more economical vehicles and increased environmental protection. If we analyze the potential weight reduction in various parts of a regular automobile [2], it can be seen that about 45% of the total weight is covered by the body parts, chassis, and suspension elements (Figure 1); thus we have to focus on these components. These parts are mainly produced by sheet metal forming: this is why the sheet metal forming as a key technology has a critical role in the weight reduction of automobiles and why lightweight design principles are in the forefront of research and development in the automotive industry.
\nWeight ratio of various vehicle components [
Applying lightweight design principles in the body-in-white production necessitates the application of thinner sheets; however, both the customers’ demand and the legal prescriptions require higher safety. To solve these contradictory requirements, higher strength materials are needed. However, applying higher strength materials, it leads to further contradictions: increasing the strength results in the decrease of the formability. It is well known that strength and ductility (formability) have a hyperbolic relationship. Therefore, it is important to find a good compromise between strength and formability properties. This is a great challenge in material developments that will be analyzed in the next sections.
\nIn the last 40–45 years, the reduction of fuel consumption led to the intensive development of new materials. These developments resulted in the widespread application of various grades of high strength steels. The origin of these developments can be traced back to the mid-seventieth, when the first micro-alloyed steels arrived to the industrial application. Since then, due to the continuous pressure on material development, several new high strength steel grades appeared and reached already the everyday industrial application. Systematic analysis of these developments can be found in several papers from various authors in the literature [3, 4, 5, 6, 7]. In the next sections, a systematic classification of these developments will be summarized.
\nSteel developments—in general and particularly for the automotive industry—may be classified in several different ways. One usual way of classification is done according to the metallurgical designation. These may be grouped into low strength steels (including mild steels, interstitial free (IF) steels), conventional high strength steels like carbon-manganese (C-Mn) steels, bake-hardenable (BH) steels, high strength low alloyed (HSLA) steels, and the newer types of Advanced High Strength Steels (AHSS), e.g., Dual Phase (DP) steels, Transformation Induced Plasticity (TRIP) steels, Twinning Induced lasticity (TWIP) steels, Complex Phase (CP) steels, martensitic (MS) steels. In recent years, new AHSS grades have been developed, for example, Extra Advanced High Strength Steels (X-AHSS) and Ultra Advanced High Strength Steels (U-AHSS), and various types of the so-called third-generation AHSS steels, e.g., TRIP-aided bainitic ferrite (TBF) and Quenching & Partitioning (Q&P) or different types of NanoSteels: all these with the primary aim to provide even higher strength parameters with significantly increased formability.
\nAnother classification introduces various mechanical properties—mainly strength and formability parameters as the Ultimate Tensile Strength (UTS) and Total Elongation (TE). This type of classification is often used together with the designation of development steel generations, as well. In Figure 2, the well-known relationship between strength and ductility parameters is shown applying the abovementioned classification method with a graphical representation. From Figure 2, it may be also seen that the product of the ultimate tensile strength and the total elongation (UTS × TE) follows a hyperbolic function. The constant (C = UTS × TE) provides further possibility to classify the steel developments by their generation.
\nRelationship between ultimate tensile strength (UTS) vs total elongation (TE) for various generations of high strength steels [
In Figure 2, the material group shown by gray color includes the conventional mild steels (IF and mild steels) formerly widely applied in Body in White (BiW) production in the automotive industry. The group of conventional high strength steels (colored by light blue) includes bake hardening (BH), isotropic (IS), high strength interstitial free (HS IF), carbon-manganese (C-Mn), and high strength low alloyed (HSLA) steels. Following the conventional high strength steels, an intensive development started in the steel industry in close cooperation with the automotive industry to develop different types of Advanced High Strength Steels (AHSS) to meet the needs of lightweight automotive structures.
\nThe development of first generation of Advanced High Strength Steels for automotive application may be regarded as the first step in this development process. DP steels, Complex Phase (CP) steels, certain types of TRIP steels, and martensitic steels (MART) belong particularly to this group. For these steels, the C constant defined above can be found between 10,000 and 25,000. The first-generation AHSS (often referred as conventional AHSS) grades have good strength but limited ductility.
\nHowever, it is worth mentioning that for these Advanced High Strength Steels, the increase of strength parameters is much more significant than the decrease of the ductility parameters. This is particularly valid for the Dual Phase (DP) steels, Complex Phase steels (CP), Martensitic Complex Phase (MART/CP) steels, and TRIP steels. This is the reason why this group gains wide application in car body production.
\nThe group of steels that can be found around the C = 40,000–60,000 MPa × % may be regarded as the second generation of Advanced High Strength Steels. This group includes the Twinning Induced Plasticity (TWIP) steels and some austenitic Stainless Steels (AUST SS) with high manganese content. These steel grades provide superior combination of strength and ductility. TWIP steel had successfully been trial-produced at POSCO in the early 1990s, but the trial was not extended to commercialization due to limitations in facilities and productivity [4]. Trial productions have also been made at some European steel companies. These attempts demonstrated the outstanding mechanical performance of TWIP steels; however, these trial productions turned to be commercially unsuccessful due to low productivity and high cost [5]. New approaches and further developments are done continuously to reduce these difficulties and make them suitable for automotive parts manufacturing.
\nThe third generation of AHSS is still in the phase of development—though there are already industrial realizations, too. In this development stage, several new concepts have been already proposed. The main target in developing the third generation of AHSS is twofold, i.e., to achieve mechanical properties in the range between the first- and second-generation AHSS shown in the strength-ductility diagram (Figure 2) but with less alloying elements and, hence, with less expensive production than the second-generation AHSS steels [6]. The microstructure of these steels consists of a high strength phase (e.g., nano/ultrafine-grained ferrite, martensite, or bainite) combined with a further phase or constituent that provides substantial ductility and work hardening (e.g., austenite). With this development concepts, very high strength steels in the GPa range with even though remarkable formability can be produced [7].
\nThe projected changes in the application of Advanced High Strength Steels is given by Matlock et al. [8] for North American vehicle industry (Figure 3), but similar trend may be estimated for other geographical regions, e.g., the European Automotive manufacturers and the Far East countries (China, Japan, and Korea). In Figure 3, the changes of the absolute content of AHSS applications (in kg) and percentage changes related to the total weight of vehicles are shown. Both changes show an exponential increase with a slightly higher one concerning the absolute values.
\nProjected changes of the absolute amount (kg) and the percentage values for the total weight of vehicles.
In the last 30–40 years, there were several projects studying and initiating the development of new grades of Advanced High Strength Steels. Most of these projects were initiated by automotive companies, and in most cases various consortiums were established for this purpose. Each of these projects aimed to meet as much as possible the requirements analyzed in Section 2.
\nAmong these projects, the Ultralight Steel Automotive Body (ULSAB) satisfied most of the requirements stated for a lightweight automotive structure and proved to be structurally sound, safe, executable, and affordable. Though it was a highly expensive project with the participation of 35 companies representing 18 countries, it could meet the challenges to reduce the weight of steel auto body structures at no additional costs, while maintaining or even improving the overall performance [9].
\nFurther projects followed the ULSAB concept, among them the Ultralight Steel Auto Closures (ULSAC) [10], or the Ultralight Steel Auto Body-Advanced Vehicle Concept (ULSAB-AVC) [11], and the Future Steel Vehicle (FSV) [12]. All these projects led to the further development of Advanced High Strength Steels reaching the GigaPascal range of strength together with increased ductility.
\nIn the previous section, we could see the main material development tendencies and their classification that included various kinds of conventional steels as well, which had a prominent role in the history of car making in the last century. In the next sections, we will mainly focus on the main types of Advanced High Strength Steels and their properties.
\nAHSS are complex, sophisticated materials, with carefully selected chemical compositions and multiphase microstructures, achieved by precisely controlled heating and cooling processes. Various strengthening mechanisms are applied to get significantly increased strength, better formability, improved toughness, and fatigue properties to meet the various requirements that are defined for automotive body structures [13].
\nThe group of AHSS materials includes Dual Phase (DP), Complex-Phase (CP), Ferritic-Bainitic (FB), Martensitic (MS), Transformation-Induced Plasticity (TRIP), Hot-Formed Press Hardened (HF, or PHS), Twinning-Induced Plasticity (TWIP) and some austenitic stainless steels (AUST SS) with high manganese content. These first- and second-generation AHSS grades due to their unique mechanical properties are well qualified to meet many of the functional and performance requirements in automobiles. From these generations of AHSS, DP and TRIP steels are excellent in the crash zones due to their high-energy absorption [14], while structural elements of the passenger compartment can be made from extremely high strength steels, such as martensitic and boron-alloyed Press Hardened Steels (PHS), and hence, resulting in improved safety performance.
\nRecently, there is an increased research interest for the development of the third generation of AHSS. These steels usually apply special alloying and thermomechanical processing to provide improved strength-ductility combinations compared to the present first- and second-generation AHSS grades but at lower costs. There are several good examples for these, e.g., in the USA, a program sponsored by the Department of Energy made available the development of 1200 MPa steels with threefold improvements in ductility [15]. New generation of Advanced High Strength Steel (AHSS) grades contains significant alloying and multiple phases. The multiple phases provide increased strength and ductility not attainable with single-phase steels, such as the high strength, low alloyed (HSLA) grades. In the next sections, these AHSS will be discussed.
\nAs we could see from the historical analysis, Dual-Phase steels have a dominant role in the last 40 years of automotive industry; therefore, we start the overview of Advanced High Strength Steels with this group.
\nThe development of Dual-Phase (DP) steels was right at the beginning of the new age of steel development following the conventional high strength steel era. Current commercially available and widely applied AHSS steels have evolved from significant early work on Dual-Phase steels in the late 1970s and early 1980s. Dual-Phase steels are one of the more widely applied Advanced High Strength Steels in todays’ car making industry. This is mainly due to their better strength and formability parameter combination than the conventional high strength steels like HSLA steels. DP steels possess high specific strength, good initial work hardening rate, continuous yielding behavior, and superior ductility compared to conventional steel grades. These properties make them particularly suitable for body structures, closures, fuel tanks, etc. in vehicles [16].
\nDual-Phase (DP) steels generally consist of ferrite matrix containing mainly hard martensite or in some cases bainite second phase as islands as shown in Figure 4. It is very characteristic that the ferrite phase is generally continuous providing excellent ductility. During forming, strain is concentrated in the lower strength ferrite phase surrounding the martensite islands providing unique work hardening rate that is experienced in DP steels.
\nSchematic view and real micrograph of a DP steel. Left: Schematic view of a microstructure of a DP steel containing martensite islands in ferrite matrix. Right: Micrograph of a DP 690 steel containing martensite islands in ferrite matrix.
There are various commonly used processing routes for producing DP steels. One of the methods (Route A in Figure 5) involves rapid cooling from the intercritical temperature to room temperature directly. The resulting microstructure comprises ferrite and martensite [17]. Higher intercritical temperatures, for the same soaking period, result in larger amounts of martensite with increased tensile strength and decreased percentage elongation [18]. It is reported by several papers [19] that the increase in martensite fraction in DP steels promotes crack initiation and thus results in worse ductility. Therefore, martensite fraction should be kept in the range of 10–40%.
\nProcessing routes for producing DP steels.
Another method for processing of DP steels (Route B in Figure 5) applies first slow cooling from the austenitic region to the desired ferrite transformation temperature, followed by quenching to room temperature for transforming the remaining austenite to martensite [20]. The properties obtained by this method include lower tensile strength and higher ductility than those of gained by the first method (Route A).
\nThe third method for producing DP steels (Route C in Figure 5) involves hot rolling of steel, followed by first slow cooling to the intermediate temperature, followed by second cooling at a very fast rate and finally slow cooling (i.e., coil cooling) to room temperature. This method of cooling is known as ultrafast cooling (UFC), and the processing route is referred to as new-generation thermomechanical controlled processing [21]. The properties obtained by Route C are better (as compared to those obtained by Route A and Route B) because higher grain refinement is achieved during rolling.
\nSeveral authors have reported that DP steels with ultrafine bainite and fine ferrite-bainite/martensite microstructure with precipitation hardening can achieve good strength without loss of ductility, making this steel category more suitable for third-generation AHSS [5].
\nAdvanced high-strength transformation-induced plasticity (TRIP) steels are well suited for lightweighting car body construction with added advantage to reduce the safety problems. TRIP steels can be found already in the 1st+ generation AHSS as shown in Figure 2. One of the main features of TRIP steels that the strain or stress-induced transformation of retained austenite present in the microstructure in a sufficient amount can substantially harden the steel during deformation depending on the processing route and therefore results in a higher ductility [22].
\nThe microstructure of TRIP steels contains retained austenite embedded in a primary matrix of ferrite. Figure 6a shows schematic microstructure of TRIP steel, while Figure 6b is a micrograph of a typical TRIP steel (TRIP 700).
\nSchematic view and micrograph of the microstructure of TRIP steel. (a) Schematic view of the microstructure of a TRIP steel and (b) micrograph of a typical TRIP steel (TRIP 700).
In addition to a minimum of 5 vol.% of retained austenite, hard phases such as martensite and bainite are present in varying amounts. TRIP steels typically require an isothermal hold at an intermediate temperature, which produces some bainite.
\nTRIP steels are characterized by a relatively low content of alloying elements. For example, in TRIP 790 steel (UTS ≈ 790 MPa), the total content of alloying elements is about 3.5 wt.%. Thus, the selection of suitable alloying elements and the amount required to produce the intended properties is critical in the alloy design stage. The carbon content in TRIP steels is higher than in DP steels. Carbon is generally kept in the range of 0.20–0.25% because of weldability reasons. The higher carbon content is necessary for stabilizing the retained austenite phase to below ambient temperature. In TRIP steels, austenite stabilizers are present, mainly C, Mn, and/or Ni. These elements assist maintaining the necessary carbon content within the retained austenite. TRIP steels mainly contain multiphase microstructures composed of about 50–55% ferrite, 30–35% bainite, 7–15% retained austenite, and 1–5% martensite.
\nThe outstanding combination of ductility and strength in TRIP steels is a result of deformation based on transformation of retained austenite to martensite [23]. This transformation (on deformation) of phases is called the TRIP effect that provides excellent strength and elongation combination together with high impact resistance. These characteristics predestinate TRIP steels as good candidate for the third-generation AHSS, too. Dispersed hard second phases in soft ferrite provide high work hardening rate, as experienced in DP steels, too. Furthermore, in TRIP steels, the retained austenite progressively transforms to martensite with increasing strain, thereby increasing the work hardening rate at higher strain levels.
\nThe main processing of TRIP steels consists of heating the steel to the austenitic zone, cooling down to the intercritical region followed by deformation here, and quick transfer to the bainitic zone with subsequent soaking there, and finally quenching to room temperature (as shown in Figure 7).
\nConventional processing route of TRIP steels.
The deformation in the intercritical region increases the rate of austenite (γ) to ferrite (α) transformation. The remaining austenite is enriched with carbon content, which stabilizes the γ phase. Furthermore, this deformation increases the nucleation rate of bainite but decreases its growth rate that results in small plates of bainite. This part of the T–t cycle also helps to enrich the γ phase with carbon and further increases the stability of γ phase. The stability of retained austenite is enhanced by the high carbon content, and the more carbon in γ phase results in more stability of γ during the TRIP effect, too, since more stable austenite needs more time to transform into martensite; these processes contribute to the increase of the ductility. The austenite to martensite transformation increases the tensile strength of the final microstructure. With this process, an improved strength–ductility combination is achieved [24]. Obviously, this processing route of TRIP steels is more time-consuming. This is because it needs special arrangements to deform the material at high temperature, to hold the specimen in the bainite region, and so on. This limits the use of TRIP steels in industrial applications. Some authors [25] using this route reported that rolling in the intercritical region improves TRIP steel properties by enhancing the carbon content and dislocation density, decreasing the grain size, and resulting in a granular type morphology.
\nComplex Phase (CP) steels belong to the group of steels with usually very high ultimate tensile strength (UTS ≈ 800 MPa or even greater). CP steels generally have chemical composition and microstructure similar to TRIP steels, but it contains some quantities of other elements, e.g., Nb, Ti, and V. These additional elements enhance the precipitation strengthening effect. CP steels typically do not have retained austenite, but contain more hard phases like martensite and bainite within the ferrite/bainite matrix.
\nThe mechanical properties of CP steels may be characterized by continuous yielding and high uniform elongation. CP steels with the bainitic matrix have excellent formability. It is primarily due to the relatively small difference between the hardness of bainite and martensite. In CP steels, the bainitic ferrite is strengthened by high density of dislocations (dislocation density is above ρ > 1012/cm2) together with fine dispersion of martensitic second phase and carbo-nitrides or carbides. This bainite microstructure of CP steels exhibits better strain hardening and strain capacity than that for fully bainitic microstructure. In its microstructure, the martensite and bainitic ferrite phases are separated by a third phase of intermediate strength.
\nMartensitic steels (MS) have mostly martensitic microstructure with some small amounts of ferrite and bainite. These steels have the highest strength but lowest formability. Martensitic steels, currently available with strengths of 900–1800 MPa, are used for body parts where deformation may be limited [26].
\nProducing MS steels, the austenite is transformed almost entirely to martensite during quenching on the run-out table or in the cooling section of the continuous annealing line. MS steels may be characterized by martensitic matrix containing small amounts of ferrite and/or bainite. Within the group of multiphase steels, MS steels have the highest tensile strength level. Martensitic steels show the highest ultimate strength in final products, up to 1800 MPa or even higher [27]. Their concept is based upon well-established rules with respect to chemical composition and processing technology. In order to improve ductility and provide adequate formability even at extremely high strength values, MS steels are often subjected to post-quench tempering.
\nAdditional carbon in MS steels increases the hardenability and contributes to further strengthening the martensite. Further elements (like manganese, silicon, chromium, molybdenum, boron, vanadium, and nickel) are used in various combinations to further increase hardenability. Microstructure of martensitic steels is mainly composed of lath martensite, which is developed by the transformation of austenite during quenching after hot rolling or annealing. Martensitic steels are very hard to form, so they typically are roll formed or press hardened (hot stamped): it will be detailed in the next section where the Press Hardening Steels (PHS) will be described.
\nAmong the Advanced High Strength Steels, Press Hardening Steels (PHS) form a unique group: these are mostly different kinds of boron-alloyed manganese steels and gain wide application to produce high strength structural body elements (e.g., A- and B-pillars, etc.). Press Hardening Steels are widely used in car body manufacturing in hot forming processes. There are several grades of Press Hardening Steels; among them, the 22MnB5 alloy is regarded as the basic type of PHS steels. Here, the hot forming of Press Hardening Steels will be analyzed.
\nHot forming of steels is a complex forming and tempering operation: it is often termed as hot press forming or press hardening of steels, too. The full austenitization of the material is regarded as the first step in hot press forming. Forming is performed in this state when the material has good formability; then the part is cooled down rapidly in the tool applying the critical cooling rate, hence resulting in martensitic microstructure.
\nThe usual temperature–time diagram for hot press forming is shown in Figure 8. Through the above-described combination of heating, holding, forming, and rapid cooling, very complex parts can be produced with excellent strength properties [28]. There are various process variants in hot press forming: among them, the so-called direct and indirect hot forming may be regarded as the basic ones. In direct or single-stage hot forming, the blank sheet is directly austenitized, then transferred to the stamping tool, and cooled down rapidly in the forming tool providing excellent strength properties [29]. In indirect or often termed as two-stage hot press forming, the initial blank is formed in cold state, and then either a hot forming is used to produce the complex parts or just a calibration process occurs in hot forming condition. The austenitization and the subsequent quenching are the inherent parts of this process chain, too, to provide the required high strength properties.
\nTemperature vs process time for hot press forming of PHS.
There are further process variants besides these two basic ones: the final microstructure, as well as the mechanical properties of the part, can be effectively controlled by the holding temperature and the controlled cooling process. These process variants may be derived either by altering the holding temperature or by changing the cooling rate. Depending on the holding temperature, two further process variants can be proposed: full austenitization is the basic alternative, i.e., when the holding temperature is selected in the homogeneous γ-zone. A further process variant depending on the holding temperature is derived if the holding temperature is in the (α + γ) intercritical zone (i.e., between the A1 and the A3 temperature). In this case, there is no full austenitization; the starting microstructure contains, besides austenite, ferrite, too. Obviously, just the austenite content can be transformed into martensite, and the final microstructure after the hot forming and cooling process is completed has a certain amount of ferrite, too. Obviously, it results in lower strength than the full austenitization; however, it also leads to a certain amount of ductility leading to better toughness properties, as well.
\nFurther process variants can be also derived by changing the cooling rate after the forming process. If the cooling rate is higher than the upper critical one, the final microstructure is martensite; when the cooling rate is lower than the upper critical one, besides martensite, bainite can be also found in the microstructure. However, it also results in somewhat lower strength depending on the quantity of bainite; however, it also results in the increase of toughness that may be advantageous, for example, increasing the crashworthiness of the part due to the better energy absorption properties of bainite [30].
\nIt is essential that the forming could be finished above the Ms temperature: at this stage, these material grades still have suitable formability. After forming, the component is cooled down together with the tool: this cooling should provide the critical cooling rate to get high strength of martensitic microstructure. By this process, springback is eliminated, and very strong components can be formed to complex geometries.
\nTypical press hardened steels (PHS) have tensile strength of 1500–2000 MPa. In the last decades, they are already extensively used in safety and crash-resistant car body components. New-generation PHS are expected to have higher strength even above 2000 MPa. However, it should be noted that these PHS grades are used where only very small deformation is allowed. These steels have been adopted for use in many parts, including, for example, sill structures, or A- and B-pillar reinforcements. Recently, many floor panels also are made by hot forming to save weight.
\nTWIP steels belong to the second generation of AHSS and are based on the potential mechanism of obtaining a superior balance of tensile strength and elongation using the TWIP effect. The name of this steel is originated from this characteristic deformation mode, i.e., the twinning. The twinning causes high value of the instantaneous hardening rate (n-value) as the microstructure becomes finer and finer. The resultant twin boundaries serve as grain boundaries and strengthen the steel (Figure 9).
\nSchematic view and micrograph of TWIP steel microstructure. Left: Schematic view of TWIP steel microstructure. Right: Micrograph of a TWIP steel in annealed condition.
TWIP steels have high manganese content (Mn = 17–24%) that causes the steel to be fully austenitic even at room temperatures. TWIP steels are normally composed of Fe, Mn, or Ni (15–35%), Si (1–3%), and Al (1–3%) [31]. These steels exhibit outstanding tensile strength-ductility combination (e.g., a TWIP steel with tensile strengths above 1000 MPa may possess 50–60% ductility) [32]. The n-value may increase to a value of 0.4 that may result in 50–60% uniform elongation. The tensile strength may be even higher than 1500 MPa [33].
\nIn TWIP steels, the strain hardening is strongly dependent on the stacking fault energy (SFE). This parameter controls the deformation behavior of the steel. Alloying elements generally decrease SFE leading to enhanced twinning behavior during deformation and hence lead to improved ductility. It is also known that SFE < 20 mJ/m2 causes austenite to martensite conversion and by this results in the TRIP effect. For pure twinning, SFE is desired to be greater than 20 mJ/m2. Aluminum is added to steel to raise SFE, to retard the TRIP effect and to result in pure twinning.
\nTWIP steels show superior mechanical performance, but this category is not practically viable for industrial applications because of its limitations: poor productivity and high production costs. The main production route of TWIP steels includes homogenizing above the upper critical temperature for a long period and quenching to room temperature [34]. TWIP steels can be also produced by homogenizing, followed by deformation at a temperature above the upper critical one, with subsequent quenching to room temperature. Deformation at higher temperature provides fine grain size and high volume fraction of twins. The finer the grain structure, the more twinning occurs that improves ductility and strength.
\nTwo types of twins are observed in the TWIP steels: (a) annealing twins caused by heat treatment and (b) deformation twins caused by deformation. The yield stresses of coarse-grained TWIP steels usually result in less than 400 MPa strength, which restricts the use of TWIP steels in the automotive sector, particularly for those parts that are supposed to be active during a crash. Many attempts are reported in the literature to increase the yield strength of TWIP steels. These attempts include, for example, grain size refinement by using V, Ti, and Nb as alloying elements to enhance precipitation of carbides, cold rolling followed by annealing treatment, and partial recrystallization [35].
\nAs it was already discussed at the Classification of AHSS Developments (Section 3.1), the main target in developing the third-generation AHSS is to achieve the properties in the range between the first- and second-generation AHSS with less alloying elements, hence, with less expensive processing that are suitable for early commercialization. The range of third-generation AHSS (3GAHSS) development maybe clearly identified on the diagram of tensile strength vs total elongation in between the first- and second-generation AHSS regions as shown in Figure 2.
\nHowever, it is also obvious that potential production requires a systematic design methodology to identify the possible combinations of microstructural constituents, which may lead to the required mechanical properties.
\nOne of the possibilities to apply a systematic design methodology is the application of a simplified composite model [36] considering various combinations of multiphase (ferrite, austenite, bainite, and martensite) materials. With the variations of phase fractions in the hypothetical microstructure, the predicted mechanical properties can be calculated.
\nAnother possibility to use a systematic design methodology is the application of the Integrated Computational Materials Engineering (ICME). It provides a framework for utilizing computational multiscale material development driven by multidisciplinary engineering design, analysis, and performance requirements [37]. This concept is initiated and supported by the National Research Council in the USA [38]. The ICME model can be used to guide both the material selection and the design optimization. Alternatively, it can be also used to new material development to get the best-suited macroscopic properties for a given structural application, through the determination of chemical composition and microstructural characteristics in a “reverse engineering” approach. In the automotive industry, the potential of the ICME method for vehicle lightweighting was recognized by the United States Department of Energy (DOE), too, which funded the project “Integrated Computational Materials Engineering Approach to Development of Lightweight Third Generation Advanced High Strength Steel (3GAHSS) Vehicle Assembly [39]. The abovementioned ICME approach was implemented in this project in two ways. First, the ICME principles were applied in the development of a material modeling tool set by combining material models at different length scales. Second, the Combined Constraints Crystal Plasticity (CCCP) model was implemented as a microscale constitutive model [40]. In this project, two targets were set by the United States Department of Energy: one is the 1200 MPa strength with 30% total elongation (which means C = 1200 × 30 = 36,000 MPa × %), and the other one is 1500 MPa strength with 25% total elongation (which means C = 1500 × 25 = 37,500 MPa × %) [41].
\nSimilar projects were initiated by other steel companies and research institutes in the world. Among others, ArcelorMittal announced systematic developments of third-generation steels [42]. The microstructure of these steels consists of a high strength phase (e.g. nano/ultrafine-grained ferrite, martensite, or bainite) combined with a further phase or constituent that provides substantial ductility and work hardening (e.g. austenite). In the next sections, some results and representatives of these 3G developments will be introduced.
\nThe development of austenitic steel grades with high alloying contents of manganese (15–30%) was already applied during the development of second-generation AHSS. It resulted in outstanding mechanical properties (high strength with excellent elongation), which made it attractive for the automotive industry. These high strength and ductility grades were based on the austenitic single-phase concept. Their deformation mechanisms were mainly the twinning-induced plasticity (TWIP). Additionally, it was also discovered that combining specific proportions of TWIP and TRIP mechanisms allows precise control of strength and ductility [43].
\nIn recent steel developments, it was experienced that a further deformation mechanism is provoked when different alloying concepts are used. Microband-induced plasticity (MBIP) is one of these newly discovered mechanisms, which localizes the deformation within arrays of precipitates and, thus, retarding the onset of mechanical instability and supporting homogenous yielding. Beside the outstanding mechanical properties, the steels offer processing challenges compared to low carbon steels; however, they are very expensive due to the high alloy additions required to produce austenitic microstructure.
\nHowever, these high manganese content steels initiated the development of another new group of steels belonging to the third-generation AHSS grades, namely, the medium manganese steels. The microstructure of these steels consists of a high strength phase (e.g. nano/ultrafine-grained ferrite, martensite, or bainite) combined with a further phase or constituent that provides substantial ductility and work hardening (e.g. austenite). The carbide-free bainite (CFB) or ultrafine lamellar bainite (ULB) is another possible concept. By choosing the alloying concept and the cooling condition, it is possible to suppress the carbide formation and, thus, to produce a very fine lamellar bainitic structure with austenite films between the bainite leaves. This concept provides very high strength steels right above 1 GPa and with remarkable formability.
\nQuenched and partitioned (Q&P) steels are the result of the recent developments of third-generation AHSS steels. The elaboration of Q&P steels is partly based on the knowledge of duplex stainless steels and the quenching and partitioning process [44], as well as on the properties of medium manganese steels [45]. The Q&P steels usually contain carbon, manganese, silicon, nickel, and molybdenum alloying elements. The amount of alloying elements can be around 4%, which is much lower than that of in the second-generation AHSS. During heat treatment of Q&P steel, quenching is interrupted and is reheated for partitioning. With this reheating process, a unique microstructure is created containing 5–12% stable retained austenite, 20–40% ferrite, and 50–80% martensite.
\nBaosteel was one of the first companies to apply Q&P steels, initially with 980 MPa and later 1180 MPa strength [46]. It was demonstrated that a B-pillar reinforcement could be cold-formed using Q&P 1180. Auto/Steel Partnership (A/SP) also has tested Q&P 980 using GM’s B-pillar die, proving that this steel has better formability and is less prone to edge cracking than DP 980.
\nRecently, Q&P steels were developed up to 2100 MPa tensile strength with 9% uniform elongation and about 13% total elongation. The elongation level of this steel is comparable to DP 980, which is a cold-formable grade.
\nQ&P steels are a series of C-Si-Mn, C-Si-Mn-Al, or other similar compositions that are processed by the quenching and partitioning (Q&P) heat treatment. Q&P steels possess an excellent combination of strength and ductility with a final microstructure of ferrite (in the case of partial austenitization), martensite and retained austenite. This microstructure makes them suitable to use in the automotive industry as new-generation AHSS. They are suitable for cold stamping of various structures and safety parts having complicated shape to improve fuel economy and promoting passenger safety.
\nIt is possible to change the amount of retained austenite at room temperature and its stability with alloying elements as carbon, manganese, nickel, etc. based on the knowledge gained by duplex stainless steels. However, it affects the cost and may be detrimental concerning the welding properties. The third generation of AHSS grades were developed to overcome these disadvantages; few of the good examples are those third-generation AHSS that are based partly on the quenching and partitioning process (Q&P steels) and on the properties of medium manganese steels. In this case, the composition of steel is not adequate for keeping the retained austenite at room temperature, but annealing, cooling, and thermal processes are optimized to change the austenite’s composition and decrease its Ms temperature. For medium-Mn steels, where a relatively larger manganese amount (typically between 5 and 8 wt. %) is characteristic, the thermal treatment is slightly simplified. The intercritical annealing provides a chance to form austenite and to increase its carbon and manganese content; then the steel is cooled down to room temperature. The complex multiphase fine-grained microstructure together with the TRIP effect arising from the progressive transformation of the retained austenite during deformation provides the excellent mechanical behavior. By these processes, the UTS above 1200 MPa and uniform elongation larger than 12% can be achieved.
\nThe concept of Q&P process for automotive materials was first published by Speer et al. [44]. In Q&P process, the material is quenched down below the Ms temperature, where austenite is not fully transformed. Due to the alloying concept of Q&P steels, this temperature usually is in the range of 200–350°C. It means that the microstructure is a mixture of martensite and austenite. Steel is then reheated and aging is done between 300 and 500°C; this is termed as the “partitioning step.” During this treatment, carbon diffuses from the supersaturated martensite, providing the carbon enrichment of austenite, which increases its stability at room temperature; furthermore, it supports further TRIP effect during deformation. Besides these, tempering of martensite occurs, which improves its damage resistance properties, while keeping high strength.
\nThis simplified scheme does not reveal all the complex evolution of the microstructure during partitioning, and the detailed mechanisms of Q&P evolution are still a matter of debate and not fully elucidated. For instance, the formation of bainite during partitioning cannot be completely excluded; it could explain the measured carbon enrichment in the retained austenite, as the partitioning temperatures are consistent with those for bainite formation.
\nEven if the detailed mechanisms are not fully revealed, the benefits of Q&P treatment by the improved mechanical properties have been clearly shown. The current range of strength that can be achieved with this new concept is between 1000 and 1500 MPa, with a total elongation of 20%. Moreover, as the matrix is a kind of tempered martensite, damage resistance is improved compared to DP or TRIP steels with the same strength level.
\nThe development of such grades requires an important modification of the annealing line; quenching and reheating step was not possible until the recent years. The strong request from the automotive market toward third-generation Advanced High Strength Steels has led steel making companies to invest in the upgrading of their annealing lines to ensure processing of Q&P steel products.
\nTBF, a low-alloy grade like Q&P steels, can be produced by the existing heat treatment facilities. Stable retained austenite is its key component. Bainitic ferrite matrix with retained austenite inclusions may be regarded as the most common microstructure for TBF steels. It is produced by isothermal holding in the bainitic regions after fast cooling from fully austenitic microstructures. Typical chemical compositions of TBF steels contain C, Si, and Mn as major alloying elements. Alloy modifications include variations of the Al, Nb, and Cr content [47]. The cementite formation during bainitic transformation is suppressed by the Si constituent. The added Si enhances the C content in retained austenite, and it stabilizes the austenite. High Si contents of 1.5 wt% are used in these types of steels. Consequently, the transformation of retained austenite into martensite produced by either deformation or thermal processes during final cooling is prevented. Although Si has major importance to prevent carbide precipitation during annealing of the cold rolled material, it causes problems during processing via continuous annealing lines. Therefore, other alloying elements having similar effect of suppressing carbide formation have to be considered.
\nNanoSteel®, a third class of third-generation AHSS, is still under development and not commercially available. In 2002 (following 6 years of research at Idaho National Laboratory), a NanoSteel Co. was established in the United States [48]. Trial production of NanoSteel sheets was started in 2012. The nanocrystalline structure was produced by special chemistry and heat treatment. After casting, the steel is mainly austenitic. Applying special heat treatment, the grain size of austenite is refined to nanometer scale. During plastic deformation, stress-induced nanoscale phase transformation increases strain hardening.
\nGerman company Engineering+Design AG (EDAG) recently published a design study in which the steel used in a 2011 Honda Accord® was replaced with NanoSteel products. The National Highway Traffic Safety Administration (NHTSA) sponsored a research study to compare the results to formerly applied conventional AHSS. The results showed further 8% weight reduction to conventional AHSS and 30% overall weight reduction to former model Honda Accord 2011 [49].
\nIn this chapter, the recent developments and future trends in Advanced High Strength Steel production and application were overviewed. Considering both the customers’ demand and the legal requirements, it was shown that some of these requirements are coinciding while others are contradictory. To fulfill these often contradictory requirements, the application of high strength steels may be regarded as one of the most promising developments. Among these developments, the application of new Advanced High Strength Steels (AHSS) is the most important one. In the last 45–50 years, different grades of AHSS were developed. They are classified as first-, second-, and third-generation AHSS. Some of these AHSS grades are already widely applied in the world automotive industry; some still are in the development phase. The main properties, the metallurgical background and the main processing routes of AHSS were discussed.
\nThis work summarizes the results achieved within the project
The author declares no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
This study adopted qualitative attributes of quality open spaces from [1, 2, 3] for analysing pocket open spaces. Research related to parks is often limited to large parks and public squares. Studies on pocket open space in high-density cities are rare. Most pocket open spaces in Hong Kong are smaller than 1000 sqm falling short compared with open space provision in other metropolitan cities. Hong Kong is a high-density high-rise city with urban population density exceeding 7126 per sqkm. Only 25% land area is developed due to challenging terrain conditions. There is a significant need for urban parks for improving emotional and physical well-being of residents who live in compact living environments as small as 12 sqm in high-rise buildings.
Zoning plans prescribe total percentage of open spaces per district based on population without further guidelines on location, size, required amenities, spatial quality and landscape design. Residual spaces in districts that were developed in 1970s were later transformed into public open spaces. Pocket open spaces considered for this study are district and local-level public amenities intended for passive recreation for the surrounding community. These are primarily being used by elderly daily in the community.
A mixed-use residential and commercial district built under the ‘new town development programme’ in early 1970s provided the context for this study. This 6000 ha district accommodates 302,814 inhabitants with a density of 5300 persons per sq.km and a stock of 103,219 households. About 21.5% population are above 60 years of age [4]. To facilitate emotional and physical well-being of the increasing ageing population, easily accessible and safe outdoor amenities are vital. Although open space per capita 1 sqm in Hong Kong is far below compared with many other metropolitan cities, 87% residents live within 400 m and 94% within 800 m to public open spaces in this district [5]. In total, 131.84 ha are zoned as open spaces with sizes ranging from > 1 ha to 5 ha< to provide active and passive recreational facilities for the community [6]. Six out of eight pocket open spaces considered for this study are less than 1 ha. However, the total district-level open space provision is almost twice compared with recommended 20 ha for a population of 100,000 by the guidelines.
Average wind speed in most urban areas is approximately 1 m/s. Humidity levels from June to September range between 75 and 84% with average summer temperature reaching 34.5°C [7]. High humidity, hot weather, low wind velocity and poor air quality are key challenges deterring the enjoyment of outdoor life. Although predominant summer wind directions in this district are from the East, South and South-East quarters [8], street grids are aligned to South-East and North-West directions without facilitating adequate wind flow along the streets. Longer span of 90% of these pocket open spaces is aligned to North-East and South-West direction.
This section establishes criteria important for designing quality and functional open spaces based on previous research, benchmarking standards and guidelines. Gehl and Svarre [1, 2, 3] have contributed to the knowledge immensely through their comprehensive research on public spaces. Twelve quality criteria by Gehl Institute [3] emphasize on human perception and experience-associated aspects such as protection, comfort and enjoyment linked to public spaces. Scholars defined spatial and functional attributes of open spaces; as unbuilt spaces with a high proportion of natural elements [9, 10] cultural landscapes for socializing [11], spaces for human health, well-being and social cohesion [12] and areas for neighbourhood recreation [13]. This research extends Gehl’s matrix [3] by incorporating spatial design, microclimatic and functional dimensions and responses from the surrounding built environment.
Undeniably open spaces contribute to human well-being and quality of life besides creating desirable microclimates. World Health Organization [12] advocates open spaces for promoting healthy, liveable and sustainable cities. Green open spaces contribute to the sustainability of compact cities [14]. Dines et al. [15] opine that ‘for most people, every day public spaces provide opportunities both as places of interaction and as places of retreat’. Scholars correlate nature connectedness with improved emotional and physical well-being [16, 17] and quality of life [18]. Pivotal attributes for creating quality and functional open spaces are proximity to where people live or work [19, 20, 21], presence of natural features [21, 22], cleanliness and maintenance [21], presence of amenities [22], sufficient park size [20] and people’s participation in planning green spaces [23]. Summarizing [14] claims strategic planning, design and management as the key criteria for delivering functionality and benefits.
Environmental parameters such as air temperature, mean radiant temperature, wind speed and relative humidity surrounding open spaces affect thermal comfort in addition to personal parameters such as clothing insulation and metabolic rate. High-density cities often suffer from low levels of urban ventilation, yet significant level of shading from the surrounding built environment. Scholars disagree with the use of thermal comfort as feedback for design decisions due to subjective preferences by individuals and the absence of suitable thermal comfort indices for specific outdoor conditions [24, 25, 26]. Given the subjectivity of thermal comfort perception, Jansson [14] and Jendritzky et al. [27] recommend reliance on meteorological variables as a reasonable way of inferring thermal comfort conditions. Confirming this approach, Rose et al. [28] argues the importance of understanding influence from key environmental factors affecting outdoor thermal comfort, but the futility of design interventions to modify outdoor thermal comfort conditions.
Most urban areas consist of increased amount of impervious material that aggravates Urban Heat Island (UHI) effect through increased air temperature. Scholars advocate the use of high-albedo material for mitigating UHI effect [29, 30, 31]. Cool paving materials have shown promising results in lowering surface temperature due to their high solar reflectance and low heat storage properties [30, 32]. Although cool paving reduces air temperature, a study by Erell et al. [33] suggests their inadequacy in reducing radiant heat. Shading helps reduce mean radiant temperature compared with exposed open areas. Studies from Singapore, Taiwan and Tokyo that represent similar urban morphological and climatological conditions to Hong Kong report correlations between greenery and air temperature. Chau et al. [34] reports 1.3°C temperature difference between areas with greenery and their surroundings in Hong Kong urban parks. He further reported 1–2°C lower temperature inside the parks compared with 150 m away from the parks. Similar findings were reported by Nichol [35] based on a study conducted in Singapore. Using a numerical model, Honjo and Takakura [36] established 300 m as the optimum influenced distance from a 100 m diameter green area. Supporting above recommendations, Chen and Wong [37] reported positive contributions from greenery on microclimates within and surrounding two large urban parks in Singapore.
Kawashima [38] compared surface temperature on vegetation, buildings and exposed soil based on satellite imagery confirming lowest surface temperature on vegetation (1.4–2.7°C) compared with buildings (2–3.4°C) and soil (2.3–4.9°C). Santamouris et al. [30] reported similar trends on tree canopies 32.9°C, grass 35.6°C, under tree canopies 28.7°C and exposed concrete areas 40.7°C in Singapore CBD. Even small green areas such as 40 × 60 m have shown 3°C reduction in temperatures in summer compared with outside areas [39]. These studies have established the role of greenery in lowering surface temperature and air temperature cooling the surrounding environment through shading and evapotranspiration.
Due to extreme high density in Hong Kong, impacts from building envelope albedo could be serious. Besides building masses, majority of horizontal surfaces are predominantly paved with very little soft landscape. Studies that compared thermal properties argued that grass and poly material contribute to very low amount of thermal energy, thereby reducing UHI effect compared with concrete and asphalt [40, 41, 42]. A study in Tokyo reported 2°C lower surface temperature at 1.2 m above grass compared with asphalt and concrete surfaces [43]. Similar conclusions were arrived at a study that compared grass and asphalt in Iran [37]. These studies support the role of urban greening on reducing air and mean radiant temperature through evapotranspiration in grass and reducing adverse impacts from low-albedo material such as asphalt.
Less sky exposure is attributed to less solar radiation entering the urban canyon, thereby reducing mean radiant temperature [44]. A study in Taipei city reported elevated temperature due to solar radiation absorption by unshaded hardscape areas within parks and surrounding areas [45]. The same study recommended reducing unshaded paved areas to less than 50% and to integrate at least 30% greenery and shading to alleviate negative effects. Comparison of three different shading scenarios; 4.9–9 m tall trees, pergolas at 4 m height around buildings with and without vegetation reported lowest mean radiant temperature around pergolas with vegetation [46]. Authors opine that pergolas and vegetation block longwave radiation. Ojaghlou and Khakzand [47] and Baghaeipoor and Nasrollahi [48] associated reduction in sky view factor (SVF) with reduction in mean radiant temperature. Analysing 18 600 × 600 m test sites in Hong Kong, Yuan and Chen [49] established a positive correlation between SVF and the Urban Heat Island effect. Adopting a software-based method [50] concluded a strong relationship between SVF and the temperature using areal means on a large sample area.
Gehl’s 12 quality criteria combine human perception-based aspects such as protection, comfort and enjoyment articulated through pragmatic criteria (Table 1). Pragmatic aspects focus on accessibility, navigation within, seating options, safety concerns, impact from environmental conditions, aesthetics and how people interact. These criteria are derived from research on public spaces in European cities. Therefore, some of these criteria require modifications to suite high-density Hong Kong context.
Protection | Protection against traffic and accidents |
Protection against harm by others | |
Protection against unpleasant sensory experience | |
Comfort | Options for mobility |
Options to stand and linger | |
Option for sitting | |
Options for seeing | |
Options for talking/ hearing | |
Options for play, exercise and activities | |
Enjoyment | Human scale |
Opportunities to enjoy positive aspects of climate | |
Experience of aesthetic qualities and positive sensory experiences |
Gehl’s 12 quality criteria (2018) for public urban spaces (source: adopted from Gehl and Svarre [3]).
Hong Kong Planning Standards and Guidelines [6] advocate sustainable and liveable open spaces through four guiding principles: ‘quantity’, ‘quality’, ‘good practice’ and ‘vision’ (Table 2). HKSAR Planning Department [6] recommends that open spaces should be safe, functional, accessible and usable spaces for the community, not just residual spaces for merely fulfilling regulations. Local open spaces are non-statutory land uses and should be at least 500 sqm in extent in urban areas intended for passive uses. Government Greening Policy aspires enhancing urban ecology by active planting and preserving and maintaining trees.
Quantity | 1 sqm per person for district level and local level open spaces |
Quality | high quality facilities, environmental standards and layout design in-line with users’ aspirations |
Good practice | provide easy access, improve facilities as a community |
Vision | assessment of existing facilities in relation to location, demographics, land uses and functions and socio-economic characteristics and prospects for future developments of the district |
HKPSG on delivering sustainable and liveable open spaces.
Open spaces should cater to elderly, persons with disability, children and adults in an integrated manner; therefore, safety is a major consideration in open space design with regard to location, identifiable entrances, surface texture and facilities provided. Provision of slip resistant surface finishes, adequate furniture and positioning them under shading and away from the pedestrian paths are essential.
However, these guidelines do not provide measurable criteria for designing or assessing open spaces in relation to quality, good practices and vision objectives in Table 2.
Since the case study district was developed prior to the announcement of HKPSG [6], most open spaces considered for this study do not adhere to the guidelines. In total, 500 sqm minimum open space extent and 1 sqm per capita requirements have not been met in most instances. Majority of pocket open spaces appears to be residual spaces located amidst of commercial areas, residential blocks and adjacent to traffic roads.
Open spaces in the case study district varied from 200 sqm to 10,600 sqm, with only four out of eight open spaces being over 500 sqm. All eight urban public open spaces are located within 100 m radius from residential and commercial neighbourhoods and are well integrated into the urban fabric ensuring safety and easy accessibility (Figure 1). ‘LEED Cities and Communities Plan and Design Standards’ [51] specify 11.25 sqm per capita green open spaces within 400 m radius from residential areas.
Park network indicating location and orientation in relation to summer wind directions; East, South and South-East quarters.
Surrounding context consists of six to seven storeys tall old Chinese shop houses and 10–15 storeys tall public housing estates providing sense of human scale and sense of protection. Given the long operating hours of the commercial areas until 10 pm, these parks are well lit during day and night. Survey respondents appreciated the proximity, sense of safety, emotional comfort and physical well-being they receive by these pocket open spaces. Mantler and Logan [16] and McEwan et al. [18] reported positive impacts on adults spending time outdoors. Two open spaces are located adjacent to major traffic roads curtailing the enjoyment due to likely traffic accidents, exposure to noise and air pollution. These parks are completely pedestrianized; therefore, no bicycle paths are provided.
Analysing large number of open spaces in Hong Kong, Civic Exchange Hong Kong [52] opines, ‘access and linkages’, ‘comfort and image’, ‘uses and activities’ and ‘sociability’ are vital in creating quality open spaces. Overall, these parks aligned with over 60% of the ‘protection’ and ‘comfort’ criteria according to Gehl’s matrix.
User survey and field studies revealed that these open spaces are primarily being used for passive recreation by senior citizens during late mornings and late afternoons. All these pocket open spaces are accessible to elderly and disabled persons. One consists of basic fitness equipment for elderly, and two consist of play elements for children. Six out of eight open spaces are predominantly made of hardscape. HKSAR Planning Department [6] stipulates minimum 70% soft landscape inclusive of 60% trees for passive recreational areas. None of these open spaces have achieved these standards as these parks were established before the guidelines were enacted. Although they are conveniently located, there are no identifiable entrances or boundaries to majority of these open spaces. Due to the compact size, navigation within was straightforward, however, lacked clear demarcations between sitting-out areas and pedestrian paths. Only the largest park is designed with defined landscape and hardscape areas, walkways and variety of sitting-out areas for small and large groups. Although seating has been the primary attraction in these open spaces, current seating arrangement is ad hoc; not all seating places are provided in shaded areas. Photographic survey confirmed users’ preference for shaded areas.
Although seating has been the primary attraction in these pocket open spaces, shadow analysis confirmed random positioning of seating without aligning with shading that occurs from the surrounding built environment. Five open spaces are paved with light colour cement blocks; two with orange colour eco blocks and two open spaces surfaced with dark colour rubber mats in the activity areas. None of these open spaces have paid attention to views or focal points.
These open spaces demonstrated about 50% alignment with the ‘comfort/ spatial design and quality’ criteria in the matrix.
Air temperature, solar radiation, relative humidity, wind speed and direction were considered as the meteorological measurements affecting thermal comfort.
Urban heat island effect caused by excessive hardscapes in the parks and surrounding building density and low urban wind speed challenge user comfort during summer. Figure 2 presents an analysis of hardscape to greenery ratio and orientation in relation to summer wind directions; East, South and South-East quarters.
Microclimatic and spatial analysis of the pocket parks.
Figure 3 presents a strong inverse correlation between greenery percentage and air temperature with r= −0.77 supporting that increased vegetation helps reduce air temperature in these pocket open spaces. Although the temperature range was narrow, lowest temperature values are associated with greenery above 49%. Effectiveness of trees in lowering air temperature in parks and the vicinity have been reported by previous scholars [29, 30, 31, 32].
Correlation between air temperature and greenery % in pocket open spaces.
Santillán-Soto et al. [40] reported elevated temperature levels in unshaded hardscapes in parks in Taipei due to solar radiation absorption. This study recommended that parks should be designed with less than 50% of paved areas and at least 30% of vegetation and shading. On the contrary to scholars’ definition of open spaces as unbuilt spatial and functional features with high proportion of natural elements [9] and areas with permeable soft surfaces [53], seven out of eight pocket open spaces predominantly consisted of hardscape despite prevalent 2–3.5°C UHI effect in Hong Kong [54]. BEAM Plus Hong Kong green building guidelines recommend 50% or more passive open spaces and pedestrian zones to achieve thermal comfort [55]. Although these standards refer to new development projects, they provide a quantifiable criterion applicable to Hong Kong.
Figure 4 indicates a strong inverse correlation with r= −0.86; parks with higher greenery percentages reported lower wind speeds perhaps due to friction created by hedges and shrubs. Refs. [56, 57, 58, 59] also confirmed reduced wind speed within urban canopy due to trees. Parks with open passages diagonal or perpendicular to the prevailing wind directions reported high wind speeds.
Greenery % and wind speed in pocket open spaces.
Hong Kong experiences a warm humid summer with high relative humidity and low wind speed affecting outdoor thermal comfort. In Hong Kong at 28°C temperature, a wind speed of 0.9–1.3 m/s is required to provide neutral thermal comfort for a person in light clothing [60]. All open spaces reported above 28°C, yet with wind speeds ranging between 0.9 and 1.8 m/s presumably providing users with comfortable outdoor thermal environments.
These open spaces are surrounded by mid-rise to high-rise buildings, casting partial shadows at different times during the day (Figure 5). Number of scholars have associated low Sky View Factor (SVF) with low air temperature due to reduced solar radiation [39, 42, 43, 44, 45]. This is another indication of desirable thermal comfort in these parks if seating positions are aligned with these shadow patterns. These open spaces demonstrated about 60% alignment with ‘enjoyment/ microclimatic and thermal comfort aspects’ in Gehl’s quality criteria matrix [3].
Shadow analysis that compares 11:30 and 15:30 h on a sunny day.
Findings and guidelines from [3, 5, 6, 47] were adopted when developing user survey. Purpose of the survey was to understand users’ perceptions associated with these pocket open spaces and to understand their expectations. Most frequent users are male over 50 who use these pocket open spaces 5–7 days a week: whilst users between 30 and 40 years old use them less than 2 days a week between 3 and 6 pm. All age groups use these parks for relaxation and socializing with friends.
Users appreciate the proximity of these open spaces to their neighbourhoods and the use of slip resistant paving material providing them sense of safety, emotional comfort and physical well-being. World Health Organization [12] emphasizes the need for green spaces and their proximity; refs. [16, 18] confirm positive impacts on adults spending time outdoors.
Users’ concerns include small size, over crowdedness, noise, lack of separation from traffic roads, with further emphasis on the need for improving functionality, quality and comfort-related aspects such as pavilions for resting, seating under shade, sanitary facilities, hygiene and more landscape. Further they wish for large parks, large canopy trees, colourful landscapes, natural elements and views.
Considering the increasing ageing population in Hong Kong, public amenities should adopt an all-encompassing approach to ensure user comfort, well-being and safety. Key parameters are categorized into the following: planning, spatial and design, landscape, facilities, maintenance. Current planning regulations should focus on specifying strategic locations for positioning open spaces besides providing guidelines. Table 3 presents recommendations.
Aspect | Current provision | Recommendation and [relevant references] | |
---|---|---|---|
Planning aspects | Location |
|
|
Accessibility |
|
| |
Spatial and design aspects | Provision |
| |
Configuration |
| ||
Universal accessibility |
| ||
Surface material |
|
| |
Landscape |
|
| |
Seating arrangement |
|
| |
Comfort | Lighting |
|
|
Thermal comfort |
| ||
Noise and pollution mitigation |
| ||
Well-being |
|
| |
Facilities |
|
| |
Operational & feedback | Maintenance Feedback |
|
Recommended planning, spatial, comfort and operational criteria for creating functional and quality pocket open spaces.
This study revealed number of correlations that are worthy of further investigations. Impacts from shading by surrounding buildings on reducing air temperature are pertinent and beneficial to high-density cities. Although trees contribute to reducing air temperature, further studies are important to establishing tree densities or layouts that would not compromise wind speed within the urban canopy.
This study focused on the functionality and quality of public pocket open spaces in extremely high-density Hong Kong where people live in compact high-rise towers. Eight open spaces from a mixed-use residential district that was developed in early 1970s provided the context for this study. Over 21.5% of population represents elderly above 60 years. All these open spaces have followed inclusive design principles making them elderly- and disable-friendly.
This study adopted Planning Standards and Guidelines Draft Outline Zoning Plan 2017 four principles: ‘quantity’, ‘quality’, ‘vision’ and ‘good practice’, Gehl’s ‘twelve quality criteria for experiencing public spaces’ as the basis for qualitative analysis validated by spatial, microclimatic, shadow analysis, photographic data, user behaviour patterns and user perception surveys.
Certain aspects in Gehl quality criteria [3] were not applicable to Hong Kong context. This study contributed to knowledge by developing design guidelines to promote quality and functionality of pocket open spaces in high-density cities. In terms of open space per capita and the extent, these pocket open spaces fell short compared with other similar cities in Asia [47]. Proximity of these open spaces to residential estates and commercial developments contributed to sense of protection, accessibility and frequent usage by the elderly in the late afternoons when parks cool off.
Given the small scale, navigation within was convenient. These parks had no clear entrances and segregation between pedestrian paths and seating areas. Seating areas are randomly positioned without benefiting from shading that occurs from the surrounding tall buildings.
Majority of these parks predominantly consisted of hardscape despite prevalent urban heat island effect. However, field data supported desirable thermal comfort conditions in these parks perhaps attributed to combination of other factors such as shading from surrounding buildings, alignment to wind paths and vegetation in some parks.
Landscape, shading, seating arrangements and provision of sanitary facilities require improvement to promote user comfort and well-being. User survey confirmed findings from qualitative, spatial and microclimatic analysis.
Although these parks made no reference to any standards at the time they were developed, majority of the parks indicated considerable alignment with Gehl’s quality criteria.
The author is grateful to Chu Hai College of Higher Education for research funding. Author would like to thank student assistants, Lam Ho and Yiksun Lai, for their contribution in data collection, graphics and simulation studies, Dyrus Hau, Joyce Lee, Joanna Chan and Villy Choi for conducting user surveys and Mr. R. Tan for sharing planning guidelines knowledge.
The authors declare no conflict of interest.
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22421},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33697}],offset:12,limit:12,total:135704},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:240},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"969",title:"Mathematical Optimization",slug:"mathematical-optimization",parent:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:108,numberOfWosCitations:74,numberOfCrossrefCitations:95,numberOfDimensionsCitations:154,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"969",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9965",title:"Computational Optimization Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d2c7d240aed947e7780605dab6dde1c3",slug:"computational-optimization-techniques-and-applications",bookSignature:"Muhammad Sarfraz and Samsul Ariffin Abdul Karim",coverURL:"https://cdn.intechopen.com/books/images_new/9965.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8521",title:"Multicriteria Optimization",subtitle:"Pareto-Optimality and Threshold-Optimality",isOpenForSubmission:!1,hash:"05baea741edde509bab2259dad7f6384",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",bookSignature:"Nodari Vakhania and Frank Werner",coverURL:"https://cdn.intechopen.com/books/images_new/8521.jpg",editedByType:"Edited by",editors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6577",title:"Optimization Algorithms",subtitle:"Examples",isOpenForSubmission:!1,hash:"d38cfd898b85237638ab1cdeba85a8c5",slug:"optimization-algorithms-examples",bookSignature:"Jan Valdman",coverURL:"https://cdn.intechopen.com/books/images_new/6577.jpg",editedByType:"Edited by",editors:[{id:"177759",title:"Associate Prof.",name:"Jan",middleName:null,surname:"Valdman",slug:"jan-valdman",fullName:"Jan Valdman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6587",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",subtitle:null,isOpenForSubmission:!1,hash:"0ed45966bfc64bb7ce110191bfbec73d",slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",bookSignature:"Javier Del Ser and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/6587.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6363",title:"Particle Swarm Optimization with Applications",subtitle:null,isOpenForSubmission:!1,hash:"bd3e64f30fb874076a8a9af1f52c3caa",slug:"particle-swarm-optimization-with-applications",bookSignature:"Pakize Erdoğmuş",coverURL:"https://cdn.intechopen.com/books/images_new/6363.jpg",editedByType:"Edited by",editors:[{id:"80893",title:"Dr.",name:"Pakize",middleName:null,surname:"Erdogmus",slug:"pakize-erdogmus",fullName:"Pakize Erdogmus"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5165",title:"Optimization Algorithms",subtitle:"Methods and Applications",isOpenForSubmission:!1,hash:"be6004a7c88dc524c5c277cac27d6022",slug:"optimization-algorithms-methods-and-applications",bookSignature:"Ozgur Baskan",coverURL:"https://cdn.intechopen.com/books/images_new/5165.jpg",editedByType:"Edited by",editors:[{id:"15540",title:"Prof.",name:"Ozgur",middleName:null,surname:"Baskan",slug:"ozgur-baskan",fullName:"Ozgur Baskan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"60097",doi:"10.5772/intechopen.75381",title:"Robust Optimization: Concepts and Applications",slug:"robust-optimization-concepts-and-applications",totalDownloads:2562,totalCrossrefCites:23,totalDimensionsCites:31,abstract:"Robust optimization is an emerging area in research that allows addressing different optimization problems and specifically industrial optimization problems where there is a degree of uncertainty in some of the variables involved. There are several ways to apply robust optimization and the choice of form is typical of the problem that is being solved. In this paper, the basic concepts of robust optimization are developed, the different types of robustness are defined in detail, the main areas in which it has been applied are described and finally, the future lines of research that appear in this area are included.",book:{id:"6587",slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"José García and Alvaro Peña",authors:[{id:"227809",title:"Ph.D.",name:"Jose",middleName:null,surname:"Garcia",slug:"jose-garcia",fullName:"Jose Garcia"},{id:"240407",title:"Dr.",name:"Alvaro",middleName:null,surname:"Peña",slug:"alvaro-pena",fullName:"Alvaro Peña"}]},{id:"51131",doi:"10.5772/63785",title:"Survey of Meta-Heuristic Algorithms for Deep Learning Training",slug:"survey-of-meta-heuristic-algorithms-for-deep-learning-training",totalDownloads:3161,totalCrossrefCites:15,totalDimensionsCites:25,abstract:"Deep learning (DL) is a type of machine learning that mimics the thinking patterns of a human brain to learn the new abstract features automatically by deep and hierarchical layers. DL is implemented by deep neural network (DNN) which has multi-hidden layers. DNN is developed from traditional artificial neural network (ANN). However, in the training process of DL, it has certain inefficiency due to very long training time required. Meta-heuristic aims to find good or near-optimal solutions at a reasonable computational cost. In this article, meta-heuristic algorithms are reviewed, such as genetic algorithm (GA) and particle swarm optimization (PSO), for traditional neural network’s training and parameter optimization. Thereafter the possibilities of applying meta-heuristic algorithms on DL training and parameter optimization are discussed.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Zhonghuan Tian and Simon Fong",authors:[{id:"1952",title:"Dr.",name:"Simon",middleName:null,surname:"Fong",slug:"simon-fong",fullName:"Simon Fong"},{id:"186166",title:"MSc.",name:"Zhonghuan",middleName:null,surname:"Tien",slug:"zhonghuan-tien",fullName:"Zhonghuan Tien"}]},{id:"51209",doi:"10.5772/62472",title:"A Review and Comparative Study of Firefly Algorithm and its Modified Versions",slug:"a-review-and-comparative-study-of-firefly-algorithm-and-its-modified-versions",totalDownloads:2944,totalCrossrefCites:17,totalDimensionsCites:24,abstract:"Firefly algorithm is one of the well-known swarm-based algorithms which gained popularity within a short time and has different applications. It is easy to understand and implement. The existing studies show that it is prone to premature convergence and suggest the relaxation of having constant parameters. To boost the performance of the algorithm, different modifications are done by several researchers. In this chapter, we will review these modifications done on the standard firefly algorithm based on parameter modification, modified search strategy and change the solution space to make the search easy using different probability distributions. The modifications are done for continuous as well as non-continuous problems. Different studies including hybridization of firefly algorithm with other algorithms, extended firefly algorithm for multiobjective as well as multilevel optimization problems, for dynamic problems, constraint handling and convergence study will also be briefly reviewed. A simulation-based comparison will also be provided to analyse the performance of the standard as well as the modified versions of the algorithm.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Waqar A. Khan, Nawaf N. Hamadneh, Surafel L. Tilahun and Jean\nM. T. Ngnotchouye",authors:[{id:"180330",title:"Dr.",name:"Surafel",middleName:null,surname:"Tilahun",slug:"surafel-tilahun",fullName:"Surafel Tilahun"},{id:"180784",title:"Dr.",name:"Waqar Ahmed",middleName:null,surname:"Khan",slug:"waqar-ahmed-khan",fullName:"Waqar Ahmed Khan"},{id:"185148",title:"Dr.",name:"Nawaf",middleName:null,surname:"Hamadneh",slug:"nawaf-hamadneh",fullName:"Nawaf Hamadneh"},{id:"185149",title:"Dr.",name:"Jean M. T.",middleName:null,surname:"Ngnotchouye",slug:"jean-m.-t.-ngnotchouye",fullName:"Jean M. T. Ngnotchouye"}]},{id:"61251",doi:"10.5772/intechopen.76979",title:"A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems",slug:"a-brief-survey-on-intelligent-swarm-based-algorithms-for-solving-optimization-problems",totalDownloads:1644,totalCrossrefCites:8,totalDimensionsCites:12,abstract:"This chapter presents an overview of optimization techniques followed by a brief survey on several swarm-based natural inspired algorithms which were introduced in the last decade. These techniques were inspired by the natural processes of plants, foraging behaviors of insects and social behaviors of animals. These swam intelligent methods have been tested on various standard benchmark problems and are capable in solving a wide range of optimization issues including stochastic, robust and dynamic problems.",book:{id:"6587",slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"Siew Mooi Lim and Kuan Yew Leong",authors:[{id:"229799",title:"Dr.",name:"Siew Mooi",middleName:null,surname:"Lim",slug:"siew-mooi-lim",fullName:"Siew Mooi Lim"},{id:"231023",title:"Dr.",name:"Kuan Yew",middleName:null,surname:"Leong",slug:"kuan-yew-leong",fullName:"Kuan Yew Leong"}]},{id:"68118",doi:"10.5772/intechopen.88185",title:"Overview of Multi-Objective Optimization Approaches in Construction Project Management",slug:"overview-of-multi-objective-optimization-approaches-in-construction-project-management",totalDownloads:1218,totalCrossrefCites:5,totalDimensionsCites:12,abstract:"The difficulties that are met in construction projects include budget issues, contractual time constraints, complying with sustainability rating systems, meeting local building codes, and achieving the desired quality level, to name but a few. Construction researchers have proposed and construction practitioners have used optimization strategies to meet various objectives over the years. They started out by optimizing one objective at a time (e.g., minimizing construction cost) while disregarding others. Because the objectives of construction projects often conflict with each other, single-objective optimization does not offer practical solutions as optimizing one objective would often adversely affect the other objectives that are not being optimized. They then experimented with multi-objective optimization. The many multi-objective optimization approaches that they used have their own advantages and drawbacks when used in some scenarios with different sets of objectives. In this chapter, a review is presented of 16 multi-objective optimization approaches used in 55 research studies performed in the construction industry and that were published in the period 2012–2016. The discussion highlights the strengths and weaknesses of these approaches when used in different scenarios.",book:{id:"8521",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",title:"Multicriteria Optimization",fullTitle:"Multicriteria Optimization - Pareto-Optimality and Threshold-Optimality"},signatures:"Ibraheem Alothaimeen and David Arditi",authors:[{id:"304595",title:"Dr.",name:"David",middleName:null,surname:"Arditi",slug:"david-arditi",fullName:"David Arditi"},{id:"304596",title:"Dr.",name:"Ibraheem",middleName:null,surname:"Alothaimeen",slug:"ibraheem-alothaimeen",fullName:"Ibraheem Alothaimeen"}]}],mostDownloadedChaptersLast30Days:[{id:"60097",title:"Robust Optimization: Concepts and Applications",slug:"robust-optimization-concepts-and-applications",totalDownloads:2561,totalCrossrefCites:23,totalDimensionsCites:31,abstract:"Robust optimization is an emerging area in research that allows addressing different optimization problems and specifically industrial optimization problems where there is a degree of uncertainty in some of the variables involved. There are several ways to apply robust optimization and the choice of form is typical of the problem that is being solved. In this paper, the basic concepts of robust optimization are developed, the different types of robustness are defined in detail, the main areas in which it has been applied are described and finally, the future lines of research that appear in this area are included.",book:{id:"6587",slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"José García and Alvaro Peña",authors:[{id:"227809",title:"Ph.D.",name:"Jose",middleName:null,surname:"Garcia",slug:"jose-garcia",fullName:"Jose Garcia"},{id:"240407",title:"Dr.",name:"Alvaro",middleName:null,surname:"Peña",slug:"alvaro-pena",fullName:"Alvaro Peña"}]},{id:"76058",title:"Ultrasonic Detection of Down Syndrome Using Multiscale Quantiser with Convolutional Neural Network",slug:"ultrasonic-detection-of-down-syndrome-using-multiscale-quantiser-with-convolutional-neural-network",totalDownloads:392,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Down Syndrome is a genetic condition that occurs when there is an extra copy of a chromosome 21 in the newly formed fetus. EIF is observed as one of the possible symptoms of DS. But in comparison to the other symptoms like nasal bone hypoplasia, increased thickness in the nuchal fold, EIF is very much less prone to DS. Hence, recommending the pregnant women with EIF to undergo the diagnostic process like amniocentesis, CVS and PUBS is not always a right choice as these diagnostic processes suffer serious drawbacks like miscarriage, uterine infections. This chapter “Ultrasonic Detection of Down Syndrome Using Multiscale Quantiser With Convolutional Neural Network” presents a new ultrasonic method to detect EIF that can cause DS. Ultrasonic Detection of Down Syndrome Using Multiscale Quantiser with Convolutional Neural Network entails two stages namely i) training phase and ii) testing phase. Training phase aims at learning the features of EIF that can cause DS whereas testing phase classifies the EIF into DS positive or DS negative based on the knowledge cluster formed during the training phase. A new algorithm Multiscale Quantiser with the convolutional neural network is used in the training phase. Enhanced Learning Vector Classifier is used in the testing phase to differentiate the normal EIF from EIF causing DS. The performance of the proposed system is analysed in terms of sensitivity, accuracy and specificity.",book:{id:"9965",slug:"computational-optimization-techniques-and-applications",title:"Computational Optimization Techniques and Applications",fullTitle:"Computational Optimization Techniques and Applications"},signatures:"Michael Dinesh Simon and A.R. Kavitha",authors:[{id:"213441",title:"Dr.",name:"A.R.Kavitha",middleName:null,surname:"Balaji",slug:"a.r.kavitha-balaji",fullName:"A.R.Kavitha Balaji"},{id:"335252",title:"Dr.",name:"Michael",middleName:null,surname:"Dinesh Simon",slug:"michael-dinesh-simon",fullName:"Michael Dinesh Simon"}]},{id:"51131",title:"Survey of Meta-Heuristic Algorithms for Deep Learning Training",slug:"survey-of-meta-heuristic-algorithms-for-deep-learning-training",totalDownloads:3161,totalCrossrefCites:15,totalDimensionsCites:25,abstract:"Deep learning (DL) is a type of machine learning that mimics the thinking patterns of a human brain to learn the new abstract features automatically by deep and hierarchical layers. DL is implemented by deep neural network (DNN) which has multi-hidden layers. DNN is developed from traditional artificial neural network (ANN). However, in the training process of DL, it has certain inefficiency due to very long training time required. Meta-heuristic aims to find good or near-optimal solutions at a reasonable computational cost. In this article, meta-heuristic algorithms are reviewed, such as genetic algorithm (GA) and particle swarm optimization (PSO), for traditional neural network’s training and parameter optimization. Thereafter the possibilities of applying meta-heuristic algorithms on DL training and parameter optimization are discussed.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Zhonghuan Tian and Simon Fong",authors:[{id:"1952",title:"Dr.",name:"Simon",middleName:null,surname:"Fong",slug:"simon-fong",fullName:"Simon Fong"},{id:"186166",title:"MSc.",name:"Zhonghuan",middleName:null,surname:"Tien",slug:"zhonghuan-tien",fullName:"Zhonghuan Tien"}]},{id:"58127",title:"Particle Swarm Optimization Solution for Power System Operation Problems",slug:"particle-swarm-optimization-solution-for-power-system-operation-problems",totalDownloads:1680,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Application of particle swarm optimization (PSO) algorithm on power system operation is studied in this chapter. Relay protection coordination in distribution networks and economic dispatch of generators in the grid are defined as two of power system-related optimization problems where they are solved using PSO. Two case study systems are conducted. The first case study system investigates applicability of PSO on providing proper overcurrent relay settings in the grid, while in the second case study system, the economic dispatch of a 15-unit system is solved where PSO successfully provides the optimum power output of generators with minimum fuel costs to satisfy the load demands and operation constraints. The simulation results in comparison with other methods show the effectiveness of PSO against other algorithms with higher quality of solution and less fuel costs on the same test system.",book:{id:"6363",slug:"particle-swarm-optimization-with-applications",title:"Particle Swarm Optimization with Applications",fullTitle:"Particle Swarm Optimization with Applications"},signatures:"Mostafa Kheshti and Lei Ding",authors:[{id:"120842",title:"Associate Prof.",name:"Mostafa",middleName:null,surname:"Kheshti",slug:"mostafa-kheshti",fullName:"Mostafa Kheshti"},{id:"213017",title:"Prof.",name:"Lei",middleName:null,surname:"Ding",slug:"lei-ding",fullName:"Lei Ding"}]},{id:"51209",title:"A Review and Comparative Study of Firefly Algorithm and its Modified Versions",slug:"a-review-and-comparative-study-of-firefly-algorithm-and-its-modified-versions",totalDownloads:2943,totalCrossrefCites:17,totalDimensionsCites:24,abstract:"Firefly algorithm is one of the well-known swarm-based algorithms which gained popularity within a short time and has different applications. It is easy to understand and implement. The existing studies show that it is prone to premature convergence and suggest the relaxation of having constant parameters. To boost the performance of the algorithm, different modifications are done by several researchers. In this chapter, we will review these modifications done on the standard firefly algorithm based on parameter modification, modified search strategy and change the solution space to make the search easy using different probability distributions. The modifications are done for continuous as well as non-continuous problems. Different studies including hybridization of firefly algorithm with other algorithms, extended firefly algorithm for multiobjective as well as multilevel optimization problems, for dynamic problems, constraint handling and convergence study will also be briefly reviewed. A simulation-based comparison will also be provided to analyse the performance of the standard as well as the modified versions of the algorithm.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Waqar A. Khan, Nawaf N. Hamadneh, Surafel L. Tilahun and Jean\nM. T. Ngnotchouye",authors:[{id:"180330",title:"Dr.",name:"Surafel",middleName:null,surname:"Tilahun",slug:"surafel-tilahun",fullName:"Surafel Tilahun"},{id:"180784",title:"Dr.",name:"Waqar Ahmed",middleName:null,surname:"Khan",slug:"waqar-ahmed-khan",fullName:"Waqar Ahmed Khan"},{id:"185148",title:"Dr.",name:"Nawaf",middleName:null,surname:"Hamadneh",slug:"nawaf-hamadneh",fullName:"Nawaf Hamadneh"},{id:"185149",title:"Dr.",name:"Jean M. T.",middleName:null,surname:"Ngnotchouye",slug:"jean-m.-t.-ngnotchouye",fullName:"Jean M. T. Ngnotchouye"}]}],onlineFirstChaptersFilter:{topicId:"969",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Rosa María Martínez-Espinosa is a Full Professor of Biochemistry and Molecular Biology at the University of Alicante, Spain, and has been the vice president of International Relations and Development Cooperation at this university since 2010. She created the research group in applied biochemistry in 2017 (https://web.ua.es/en/appbiochem/), and from 1999 to the present has made more than 200 contributions to Spanish and international conferences. Furthermore, she has around seventy-five scientific publications in indexed journals, eighty book chapters, and one patent to her credit. Her research work focuses on microbial metabolism (particularly on extremophile microorganisms), purification and characterization of enzymes with potential industrial and biotechnological applications, protocol optimization for genetically manipulating microorganisms, gene regulation characterization, carotenoid (pigment) production, and design and development of contaminated water and soil bioremediation processes by means of microorganisms. This research has received competitive public grants from the European Commission, the Spanish Ministry of Economy and Competitiveness, the Valencia Region Government, and the University of Alicante.",institutionString:"University of Alicante",institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:3,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:3,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Chemical Biology",value:15,count:4,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:18,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:392,paginationItems:[{id:"438472",title:"M.Sc.",name:"Christos",middleName:null,surname:"Nouris",slug:"christos-nouris",fullName:"Christos Nouris",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/438472/images/system/438472.png",biography:"Dr. Christos Nouris received an MD from the School of Medicine, Aristotle University of Thessaloniki, Greece, and an MSc in Medical Research Methodology from the same university. After completing his residency in anaesthesiology at AHEPA University Hospital, he worked as a consultant anaesthesiologist in the District General Hospital of Veria, Greece. Later, he completed his fellowship in intensive care at “G. Papageorgiou” General Hospital, Thessaloniki, Greece. Since 2017 he has been working as a consultant at AHEPA University Hospital. He also teaches medical students at the School of Medicine, Aristotle University of Thessaloniki, and students in the Postgraduate Nursing Specialties Program, University General Hospital AHEPA, and the Committee for the European Education in Anesthesiology (CEEA) teaching programs.",institutionString:"AHEPA University Hospital",institution:{name:"AHEPA University Hospital",country:{name:"Greece"}}},{id:"181267",title:"Dr.",name:"Jie",middleName:null,surname:"Tang",slug:"jie-tang",fullName:"Jie Tang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/181267/images/system/181267.png",biography:"Jie Tang, MD, MPH, is an academic nephrologist and associate professor of Medicine at Albert Medical School, Brown University, USA. His research interest is in glomerular disorders and bone mineral metabolism. Dr. Tang has served on journal editorial boards and published many articles in peer-reviewed journals. He is also a well-regarded clinician-educator, mentoring medical students, residents, and nephrology fellows. He gives lectures every year on national and international stages and has authored book chapters on various topics. He is a fellow of the American Society of Nephrology and an active member of the International Society of Nephrology. Dr. Tang is currently serving on the medical advisory boards for the National Kidney Foundation and End-Stage Renal Disease Network.",institutionString:"Brown University",institution:{name:"Brown University",country:{name:"United States of America"}}},{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/200252/images/system/200252.png",biography:"Dr. Theodoros K. Aslanidis received an MD from Plovdiv Medical University, Bulgaria, and a Ph.D. from Aristotle University of Thessaloniki, Greece. After serving as a medical doctor in the Hellenic Army Force and as a rural physician at Outhealth Centre, Iraklia and Serres’ General Hospital, Greece, he completed anesthesiology specialty training at Hippokratio General Hospital of Thessaloniki. He also completed Critical Care subspecialty training at AHEPA University Hospital, and the Prehospital Emergency Medicine postgraduate program, Hellenic National Centre for Emergency Care. He served as an EMS physician and emergency communication center medic before moving to his current post as consultant-researcher at the Intensive Care Unit, St. Paul General Hospital of Thessaloniki, Greece. He also serves as a senior lecturer in the Research Faculty, College of Offshore and Remote Medicine, Pretty Bay, Malta.",institutionString:"Saint Paul General Hospital of Thessaloniki",institution:null},{id:"313921",title:"Dr.",name:"Hassan M.",middleName:null,surname:"Heshmati",slug:"hassan-m.-heshmati",fullName:"Hassan M. Heshmati",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313921/images/system/313921.jpg",biography:"Dr. Hassan Massoud Heshmati is an endocrinologist with 46 years of experience in clinical research in academia (university-affiliated hospitals, Paris, France; Mayo Foundation, Rochester, MN, USA) and pharmaceutical companies (Sanofi, Malvern, PA, USA; Essentialis, Carlsbad, CA, USA; Gelesis, Boston, MA, USA). His research activity focuses on pituitary tumors, hyperthyroidism, thyroid cancers, osteoporosis, diabetes, and obesity. He has extensive knowledge in the development of anti-obesity products. Dr. Heshmati is the author of 299 abstracts, chapters, and articles related to endocrinology and metabolism. He is currently a consultant at Endocrinology Metabolism Consulting, LLC, Anthem, AZ, USA.",institutionString:"Endocrinology Metabolism Consulting, LLC",institution:null},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a scientist and Principal Investigator at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering the lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via artificial intelligence-based analyses of exosomal Raman signatures. Dr. Paul also works on spatial multiplex immunofluorescence-based tissue mapping to understand the immune repertoire in lung cancer. Dr. Paul has published in more than sixty-five peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award and the 2022 AAISCR-R Vijayalaxmi Award for Innovative Cancer Research. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"213308",title:"Associate Prof.",name:"Manuel Víctor",middleName:null,surname:"López-González",slug:"manuel-victor-lopez-gonzalez",fullName:"Manuel Víctor López-González",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/213308/images/10301_n.jpg",biography:null,institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"169212",title:"Prof.",name:"Pavol",middleName:null,surname:"Svorc",slug:"pavol-svorc",fullName:"Pavol Svorc",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169212/images/system/169212.jpg",biography:"Dr. Pavol Švorc is an Associate Professor, Doctor of the Natural Sciences, Philosophe Doctor. In 1982 he became a Doctor of the Natural Sciences from General Biology, Natural Faculty, Šafarik’s University in Košice. In 1995 he received a PhD. – Physiology and Patophysiology, Natural Faculty Šafarik’s University in Košice. In 2005 he became an Associate Professor from Normal and Patological Physiology, Medical Faculty, Šafarik’s University in Košice. From 1982 to 1983 Dr.Švorc worked as an independent specialist in the local museum in Poprad, Slovakia. In 1983 he started working as a lecturer at the Department of Physiology, Šafarik’s University in Kosice, Slovakia. From\r\n2011 until 2014 he was a Head of the Institute of Physiology and Pathophysiology, Medical Faculty, University of Ostrava, Czech Republic. His research interest includes:\r\nChronobiology of cardiovascular system, respiratory system and autonomic nervous system.",institutionString:"Pavol Josef Safarik University",institution:{name:"University of Pavol Jozef Šafárik",country:{name:"Slovakia"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. in Chemistry in July 2000, and his Ph.D. in Physical Chemistry in 2007 from the University of Khartoum, Sudan. In 2009 he joined the Dr. Ron Clarke research group at the School of Chemistry, Faculty of Science, University of Sydney, Australia as a postdoctoral fellow where he worked on the Interaction of ATP with the phosphoenzyme of the Na+, K+-ATPase, and Dual mechanisms of allosteric acceleration of the Na+, K+-ATPase by ATP. He then worked as Assistant Professor at the Department of Chemistry, University of Khartoum, and in 2014 was promoted to Associate Professor ranking. In 2011 he joined the staff of the Chemistry Department at Taif University, Saudi Arabia, where he is currently active as an Assistant Professor. His research interests include:\r\n(1) P-type ATPase Enzyme Kinetics and Mechanisms; (2) Kinetics and Mechanism of Redox Reactions; (3) Autocatalytic reactions; (4) Computational enzyme kinetics; (5) Allosteric acceleration of P-type ATPases by ATP; (6) Exploring of allosteric sites of ATPases and interaction of ATP with ATPases located in the cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, México. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 270 peer-reviewed papers, 32 book chapters, and 4 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:null,institution:null},{id:"318757",title:"Associate Prof.",name:"Irina Alexandrovna",middleName:null,surname:"Savvina",slug:"irina-alexandrovna-savvina",fullName:"Irina Alexandrovna Savvina",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318757/images/18742_n.jpg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"17",type:"subseries",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80485",title:"Potential Marker for Diagnosis and Screening of Iron Deficiency Anemia in Children",doi:"10.5772/intechopen.102792",signatures:"Yulia Nadar Indrasari, Siti Nurul Hapsari and Muhamad Robiul Fuadi",slug:"potential-marker-for-diagnosis-and-screening-of-iron-deficiency-anemia-in-children",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"79693",title:"Ferroptosis: Can Iron be the Last or Cure for a Cell?",doi:"10.5772/intechopen.101426",signatures:"Asuman Akkaya Fırat",slug:"ferroptosis-can-iron-be-the-last-or-cure-for-a-cell",totalDownloads:109,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",slug:"current-trends-in-orthodontics",publishedDate:"August 17th 2022",editedByType:"Edited by",bookSignature:"Farid Bourzgui",hash:"badce0e23eb5176fd653b049d5295c0a",volumeInSeries:9,fullTitle:"Current Trends in Orthodontics",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.jpg",institutionString:"University of Hassan II Casablanca",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"August 17th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.jpg",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"