Physical methods for aflatoxin degradation in food and feed.
\r\n\tThe protection of biodiversity is a major target of the European Union Marine Strategy Framework Directive, requiring an assessment of the status of biodiversity on the level of species, habitats, and ecosystems including genetic diversity and the role of biodiversity in food web structure and functioning. The restoration of marine ecosystems can support the productivity and reliability of goods and services that the ocean provides to humankind, to maintain ecosystem integrity and stability. Some of the goods produced by the marine ecosystem services are fish harvests, wild plant and animal resources, water, some of the services provided recreation, tourism, breeding and nursery habitats, water transport, carbon sequestration, erosion control, and habitat provision.
",isbn:"978-1-83968-460-9",printIsbn:"978-1-83968-459-3",pdfIsbn:"978-1-83968-544-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"727e7eb3d4ba529ec5eb4f150e078523",bookSignature:"Dr. Ana M.M. Marta Gonçalves",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",keywords:"Non-indigenous Species, Dynamics, Ecosystem Maturation, Ecological Succession, Water Quality, Recovery, Biodiversity, Environmental Status, Ecosystem Services, Goods Production, Carbohydrates, Carrageenan",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 14th 2022",dateEndSecondStepPublish:"June 22nd 2022",dateEndThirdStepPublish:"August 21st 2022",dateEndFourthStepPublish:"November 9th 2022",dateEndFifthStepPublish:"January 8th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Ana Marta Gonçalves (h-index 19) holds a Ph.D. in Biology, from the University of Coimbra, Portugal, in collaboration with Ghent University, in 2011. During her research career obtained several grants is highly international competitive calls, including the MARS award for young scientists funded by The Royal Netherlands Institute for Sea Research (NIOZ) and the Foundation for Science and Technology (FCT, Portugal) grants.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",middleName:"Marta",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves",profilePictureURL:"https://mts.intechopen.com/storage/users/320124/images/system/320124.jpg",biography:"Ana Marta Gonçalves obtained a Ph.D. in Biology with a specialization in Ecology from the University of Coimbra, Portugal, in collaboration with Ghent University, Belgium, in 2011. Currently, she is an auxiliary researcher at the Marine and Environmental Sciences Center (MARE), Portugal, where she is also a member of the Directive Board. Since 2016, she has been a member of the Scientific Council of the Institute for Interdisciplinary Research, University of Coimbra (IIIUC). Dr. Gonçalves holds various administrative and management positions in international networks, societies (e.g., Society of Environmental Toxicology and Chemistry, AIL), and associations (e.g., PROAQUA). She is an editorial board member and reviewer for several indexed journals. She has published more than 70 journal articles, 50 book chapters, and 165 communications in international scientific events. She participated as a member and/or coordinator in more than twenty-five national and international projects and is currently the coordinator of four research projects. She has supervised more than ninety-five national and international undergraduate and graduate students. She has experience as a teacher of university courses and in accredited training sessions for teachers. Additionally, she has coordinated several ocean literacy and environmental education activities for kindergarten and school students. During her research career, Dr. Gonçalves obtained several grants and a MARS award for young scientists funded by The Royal Netherlands Institute for Sea Research (NIOZ).\n\nShe has expertise in biosafety, biochemical pathways, and impacts of stressors in aquatic species. Her research focus is on the valorization of marine resources and their applications in the industrial sector, such as the food and pharmaceutical industries. Her studies also highlight the application of biomarker tools for monitoring and managing aquatic systems",institutionString:"University of Coimbra",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"278926",firstName:"Ivana",lastName:"Barac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/278926/images/8058_n.jpg",email:"ivana.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"76296",title:"Promising Detoxification Approaches to Mitigate Aflatoxins in Foods and Feeds",doi:"10.5772/intechopen.96813",slug:"promising-detoxification-approaches-to-mitigate-aflatoxins-in-foods-and-feeds",body:'Aflatoxins are toxic secondary metabolites, mainly produced by many species of
The challenges related to aflatoxins can be overcome by adopting innovative and novel strategies. The risk of aflatoxins can be reduced by preventing the contamination of foods from aflatoxins at the pre-harvest stage and removing/eliminating the aflatoxins from aflatoxin contaminated food at the post-harvest stage. Prevention strategies, including the use of pesticides, fertilizers, maintaining optimum temperature and moisture for storage, right harvesting time, are only partly responsible for achieving aflatoxin-free food and feed. In order to eliminate aflatoxin completely, post-harvest strategies are followed. The post-harvest strategies include cleaning, sorting, milling and dehulling [13], treatment at temperature between 237 and 306°C [14], mineral binders such as, montmorillonite, zeolite, aluminosilicate, bentonite that bind aflatoxins. Such binders may partially or completely conteract the toxicity of dietary aflatoxins [15]. Elliott et al. [16] have reported the cytotoxic effects induced by mineral binders like DNA damage, reduced cell viability, apoptosis, oxidative stress.
In the past decades, numerous promising novel strategies for aflatoxin mitigation have been developed. They are broadly categorized as physical, chemical and biological approaches. Physical strategies involve the utilization of radiations and cold plasma for the fast aflatoxin degradation [17]. Chemical methods include the treatment with electrolyzed oxidizing water, organic acids, ozone and natural plant extracts. These are methods have been widely used in several countries such as USA and China [18]. Microbial and enzymatic based conversion of highly toxic aflatoxins into less toxic or non-toxic metabolites are included in biological methods [19]. In this chapter, we will address each of these novel technologies for aflatoxin degradation in detail.
In the recent times, ionizing irradiation (viz. electron beam, gamma and ultraviolet rays) and nonionizing irradiation (viz. infrared waves, radio waves, visible light waves and microwaves) has been employed extensively for the degradation of aflatoxin present in the food and feed (Table 1).
Physical Degradation method | Food product treated | Aflatoxin (μg kg−1 or μg L−1) | Degradation Percentage | Parameters for treatment | Reference |
---|---|---|---|---|---|
Brazil nut | AFB1 (4.8) | 65.7 | 300 kGy | [20] | |
Peanut | AFB1 (1000) | 70.0 | 300 kGy | [21] | |
Red chili | AFB1 (11–35) | 86–98 | 6 kGy | [22] | |
Cattle feed | AFB1 (50) | 85 | 10 kGy | [23] | |
Corn | AFB1 (57–1210) | 85.6–98.6 | 10 kGy | [23] | |
Brazil nut | AFB1 (4.8) | 84.2 | 10 kGy | [20] | |
Peanut | AFB1 (300) | 43 | 9 kGy | [24] | |
White pepper | AFB1 (60), AFB2 (18), AFG1 (60) and AFG2 (18) | 50.6, 35.2, 47.7 and 42.9 | 30 kGy | [25] | |
Almond | AFB1 (20), AFB2 (20), AFG1 (20) and AFG2 (20) | 19.3, 11.0, 21.1and 16.6 | 15 kGy | [26] | |
Peanut | AFB1 (2000) | 100 | 220–400 nm at 0.8 mW cm−2 for 80 min | [21] | |
Peanut | AFB1 (350) | 99.1 | 254 nm for 10 h | [27] | |
Peanut oil | AFB1 (128) | 96 | 365 nm at 55–60 mW cm−2 for 20 min | [28] | |
Peanut oil | AFB1 (52.0) | 86.1 | 365 nm at 6.4 mW cm−2 for 10 min | [29] | |
Peanut oil | AFB1 (2000) | 100 | 220–400 nm at 0.8 mW cm−2 for 30 min | [30] | |
Red chili powder | AFB1 (1872) | 87.8 | 365 nm for 60 min | [31] | |
Rice bran | AFB1 (36) and AFB2 (4.4) | 90.3 and 86.7 | 0.52 J cm−1 per pulse for 15 s | ||
Rough rice | AFB1 (132) and AFB2 (45) | 75.0 and 39.2 | 0.52 J cm−1 per pulse for 80 s | [32] | |
Peanut | AFB1 (5–183) and AFB2 (7–46.7) | 50–60 and 100 | Heating in microwave oven at 92°C for 5 min | [33] | |
Corn flour | AFB1 (100) | 67.7 | Heating in microwave oven for 10 min | [34] | |
Alkalized corn | AFB1 (22.5) and AFB2 (69.6) | 36 and 58 | 1650 W | [35] |
Physical methods for aflatoxin degradation in food and feed.
Electron beam irradiation (EBI) technology has great potential for aflatoxin degradation. EBI technology offers the advantage of high effectiveness, low equipment cost, dosage control, short processing time, low heat generation, few variables and in-line processing [36]. EBI technology has been applied for degradation of aflatoxins in coconut agar [37]. Efficiency of EBI technology for degradation of aflatoxin is lesser than that of γ radiation. Assuncao et al. [20] found that EBI at doses of 10 and 5 kGy decreased the content of AFB1 in Brazilnuts by 65.7 and 53.3%, respectively, whereas γ irradiation at same doses led to reduction in AFB1 by 84.2 and 70.6%, respectively. Liu et al. [21] used EBI dose of 300 kGy for reduction of AFB1 by 70%. As the selected dose was ten times of the maximum permissible dosage allowed by FDA, so this method is not highly efficient and preferable in AFB1 degradation in peanut meal.
Gamma (γ) rays has been the most preferred radiation source for the food owing to its high penetrability and reactivity. Treatment of food by gamma rays of upto 10 kGy has no toxicological, or microbiological hazards [38]. Additionally, γ irradiation results in the interaction of high energy of γ rays with the water present in the food products. This produces highly reactive free radicals such as superoxide radical (O2•−), hydrogen (H•) radical and hydroxyl ion (OH−) that in turn destroy aflatoxins and also attack DNA of pathogenic microbes [14, 39]. Markov
Many studies in the literature showed that treatment of food commodities with γ rays ranging from 5 to 10 kGy led to degradation of significant amount of aflatoxins. For instance, irradiation with γ rays at low dose of upto 6 kGy has reduced Aflatoxin B1 (AFB1) level in red chillies and fruits for around 90% [22, 40]. The AFB1 level reduced for about 95% in maize seed samples with γ irradiation dose of 10 kGy [23]. AFB1 in Brazil nuts can be eliminated upto 84.2% by irradiation of γ rays at 5 to 10 kGy [20]. Likewise, γ irradiation at dose of 10 kGy decreased ochratoxin A (OTA) in coffee beans and dry-cured meat for almost 100% and 22.5% respectively [41, 42]. Nevertheless, few studies in the literature concluded that γ irradiation could not effectively eliminate aflatoxins in food. For e.g. irradiation of black and white pepper with γ rays at 10 kGy dose has no significant effect on its aflatoxins content [25]. Gamma irradiation of poultry feed at 15 kGy dose resulted in 13.6, 11.0, 21.1, 18.2% decrease in AFG2, AFB2, AFG1 and AFB1, respectively [43]. However, the efficiency of γ rays - mediated aflatoxin degradation depends on numerous factors such as concentration of mycotoxin, dose of radiation, content of water, air humidity, composition of food and type and number of fungal strains [25, 39].
The advantage γ irradiation offers is high capacity for microbial inactivation that reduces the microbial load and increases shelf life of food. Gamma irradiation technology has been approved by more than 55 countries such as Japan, USA, European countries, China for food processing [44]. This technology is not preferable with high vitamin and lipid content because polyunsaturated fatty acids undergo extensive peroxidation in unsaturated bonds, leading to increased oxidative rancidity [45].
Apart from being an economical non-thermal technology for Alfatoxin decontamination, Ultraviolet (UV) irradiation is also highly cost effective and eco-friendly [46]. Treatment of food products with moderate doses of UV rays has no negative impact on its sensory and physicochemical properties [47]. Though UV rays can efficiently penetrate into transparent or clear liquids, its penetration efficiency through solids is limited. Therefore, granular or opaque foods has to be in the form of thin layer for decontamination by UV rays [48]. UV light effectively removed of Patulin (PAT) from apple cider and juice. Zhu et al. [49] have used different wavelengths of UVC for PAT reduction in apple juice. They found UVC of 222 nm wavelength was most effective. Exposure to UV affected the taste of apple cider and juice. Intensity and duration of UV irradiation are important factors that affect the elimination efficiency of aflatoxins elimination efficiency Irradiation with short wavelenght (254 nm) and long wavelength (362 nm) UV rays for 30 minutes resulted in complete elimination of AF-B1 and AF-G1 in wheat grains, whereas exposure to same dose of short and long wavelength of UV rays for 2 hours reduced AF-B2 in wheat grains by 50 and 74% respectively [50]. Exposure of pistachio, almond and groundnut with UVC at 265 nm for 15 minutes led to 100% removal of AF-G2 from all the nut samples and complete degradation of AF-G1 in pistachio and almond. UV-C irradiation at 265 nm for 45 minutes showed 97% degradation of AF-B1 [51]. Treatment with UV-A and UV-B rays can also be used for reduction of mycotoxins produced from
Non-thermal Pulsed light (PL) technology has been used for degradation of aflatoxins in food and feed. This FDA-approved technology generates short, high-intensity flashes of broad spectrum light (100–1100 nm) including UV, visible and IR radiation that destroy the nucleic acid and cell wall structure of microbes within few seconds [53]. Eight PL flashes of 1 J cm−2 during 300 ms flash resulted in degradation of AFB1 in water by 92.7% [54]. In another study, PL at 0.52 J cm−1 per pulse was applied for 80 seconds and 15 seconds to treat rough rice and bran, respectively. It was observed that on 15 seconds of PL treatment AFB1 and AFB2 in rice bran reduced by 90.3 and 86.7% respectively, while on 80 seconds of treatment AFB1 and AFB2 in rough rice reduced by 75.0 and 39.2% respectively [32]. PL treatment also inactivated the mutagenicity and cytotoxicity of these aflatoxins. Abuagela et al. [55] treated dehulled peanuts with PL at 0.4 J cm-1 per pulse. No significant variation in the chemical properties including acidity value, fatty acid content and peroxide value of oil obtained from PL treated peanuts. Aflatoxins levels dignificantly decreased by 91% in PL treated dehulled peanuts. For large industrial scale application of PL technology would require the development of cost- effective equipment for PL treatment.
Microwave heating generates a high temperature (130°C or higher) that is required for aflatoxin reduction in peanut and corn [56, 57]. Aflatoxin contaminated corn was microwave heated at 1650 W power for 5.5 minutes, resulted in reduction in AFB1, AFB2 by 36 and 58%, respectively [35]. Mobeen et al. [33] microwave cooked peanut and its products and reported reduction in AFB1 level by 50–60%, while level of AFB2 reduced to non-detectable limits. Treatment of corn flour by microwave heat for 10 minutes duration led to decrease in AFB1 content up to 67.7% [34]. Major drawback of aflatoxin decontamination by this method is the uneven distribution of temperature during microwave heating. This results in the generation of hot and cold spots in the treated food product [58]. Overheating in the hot spot may lead to loss of nutritional value and quality whereas lesser temperature in cold spot may not be sufficient for degradation of aflatoxins. In view of this, aflatoxin detoxification using microwave heating method has moderate success and limited application.
The fourth state of matter, plasma predominantly consists of UV rays, ions, electrons, reactive nitrogen species (RNS), reactive oxygen species (ROS) [59]. Based on its temperature, plasma can be categorized into thermal and non-thermal (cold) plasma. Cold plasma is generated through electrical discharges in gases at temperature between 30 and 60°C and atmospheric pressure [60]. Cold plasma technology has been employed for aflatoxin degradation at ambient pressure and temperature [61, 62]. Ouf et al. [63] used argon cold plasma at atmospheric pressure for 9 minutes on
Electrolyzed oxidizing water (EOW) or electro-activated water is produced by the electrolysis of water containing 1% sodium chloride (NaCl). The resulting water is an electrolyzed one that can be used as a disinfectant. EOW can be categorized into two major types according to its pH and oxidation–reduction potential (ORP): a) neutral electrolyzed oxidizing water (NEOW) with pH of 5.0–6.5, ORP of 800–900 mV; b) acidic electrolyzed oxidizing water (AEOW) with pH of less than 3.0, ORP of more than 1000 mV [66]. Major advantage of EOW is that it turns to ordinary water after use that has no potential threat to animals and environment. Treatment of aflatoxin contaminated corn with NEOW at room temperature for 15 minutes, resulted in significant reduction in the genotoxicity and cytotoxicity of aflatoxins in HepG2 cells [67]. Gomez- Espinosa et al. [68] further confirmed that NEOW treatment of aflatoxin contaminated corn significantly reduces the aflatoxicosis in turkey.
Organic acids have been widely used for aflatoxin degradation in food industry. AFB1 contaminated soyabean soaked in 1.0 N tartaric acid, lactic acid and citric acid, and at room temperature for 18 hours, resulted in reduction in AFB1 level by 95.1, 92.7 and 94.1%, respectively [69]. Acidulation with lemon juice for 60 minutes at 120°C for decontamination of AFB1 in roasted pistachio nuts, reduced the AFB1content by 50.2% [70]. Acidulation can be combined with other decontamination technologies for better results. For instance, acidulation coupled with pulsed light technique led to aflatoxin degradation in peanuts up to 98.3%. On the other hand, pulsed light and citric acid treatment separately decreased aflatoxins by 78.1 and 20.2%, respectively [71]. Organic acid treatment results in leaching of nutrients such as water-soluble proteins, starch, minerals. However, it has several health benefits on livestocks. The only drawback of this method is the high cost of organic acids.
Ozone (O3), a most powerful oxidizing, antimicrobial and disinfecting agent, can be used directly for decontaminating various food products [72]. FDA has granted ozone as Generally Recognized As Safe (GRAS) status for water and food industry [73]. Ozone cause the progressive oxidation of sulfhydryl group of amino acids of proteins, peptides and enzymes or polyunsaturated fatty acids into shorter molecular fragments. Ozone also result in degradation of unsaturated lipids in cell wall envelope, disruption and leakage of microbial cellular contents [74]. Ozone degrade aflatoxins AF-B1 and AF-G1 through an electrophilic attack on C8-C9 double bond of difuran ring, resulting in ozonide formation. This is followed by rearrangement into molozonide derivatives like organic acids, ketones and aldehydes [75]. On the contrary, AF-B2 and AF-G2 are more resistant to ozonisation as they lack C8-C9 double bond in their structure [76]. Ozone treatment of groundnut samples increased the rate of aflatoxin detoxification and has no effect on the peroxide, resveratrol, acids and polyphenol content [77]. Treatment of AFB1- contaminated maize with ozone resulted in decreased toxicity of the treated samples [78].
Major advantages of using ozone as aflatoxin detoxification method are (i) ozone can be applied in gaseous as well as liquid forms (ii) no leftover residue after contact and no hazardous disposal (iii) easy on-site generation of ozone [72, 79]. Till date several studies have been conducted on ozonation at laboratory scale. There is a need to develop efficient eqipments to scale up the process for successful commercial application of this technology for detoxification of aflatoxin contaminated food and feed.
Natural plant extracts are considered as food additives by food industry worldwide. They are well known for their anti-inflammatory and anti-microbial properties. Incubation of AFB1 with
Biological degradation of aflatoxins involves microorganism or enzyme based detoxification of aflatoxins into less toxic or non-toxic metabolites. This method has emerged as an efficient and eco-friendly strategy for degradation of aflatoxins.
Various microorganisms isolated from different sources can degrade afltatoxins present in food and feed. Risa
Adebo
Recently, the reports on isolation, identification and purification of aflatoxin-degrading enzymes from microorganisms have increased significantly. Various enzymes such as oxidases, peroxidases, reductases and laccases are capable of degrading aflatoxins. Laccases represent a class of multicopper oxidase enzymes widely present in fungi, plants, bacteria and insects. They catalyze oxidation of various phenolic and non-phenolic compounds coupled to reduction of molecular oxygen in water. Alberts
Peroxidases are a class of oxidoreductases that catalyze oxidation of substrates with the use of hydrogen peroxide or organic peroxide. They are mainly heme- proteins with contain iron (III) protoporphyrin IX as the prosthetic group. Peroxidases are widespread in nature, found in both prokaryotes and eukaryotes. Researchers have achieved 65 and 97% reduction in AFM1 and AFB1, respectively in milk with horse radish peroxidase (HRP) treatment at 30°C following 8 hours of incubation [108]. Another group used manganese peroxidase (MnP) isolated from
Scientists are working constantly towards identification, isolation and purification of novel aflatoxin detoxifying enzymes from wide variety of organisms. For instance, an extracellular enzyme MADE was purified from
The main advantage of cell free enzyme based aflatoxin degradation is that it has no negative impact on the degradation ability and organoleptic properties of food products [95]. Although cell free aflatoxin degradation enzymes are extremely effective, however their application in food and feed industry is still limited due to certain shortcomings. Firstly, the low yield of aflatoxin-degrading enzymes in the native hosts. This can be solved by the intervention of recombinant DNA technology. Secondly, food processing generally requires the use of solvents, extreme temperature and pH conditions. This can effect the catalytic efficiency and stability of the wild type enzymes. The use of enzyme engineering technologies such as random or site directed mutagenesis could address these issues [114].
In comparison to natural enzymes, nanozymes are more robustness, cost effective, stabile and durable. Nanozymes are the nanomaterials with intrinsic enzyme like properties that catalyze the substrates of natural enzymes following the same catalytic mechanisms and kinetics under physiological conditions [115]. The laccase-mimicking nanozyme was prepared by coordinating guanosine monophosphate (GMP) with Cu2+ at room temperature. This led to formation of amorphous metal–organic framework (MOF) nanomaterial. Cu/GMP nanozyme has the same catalytic efficiency as the natural laccase but it is 2400-fold more cost-effective and more robust against extreme temperature, pH salt and storage conditions [116]. Nanozymes with peroxidase-like activity such as CuMnO2 nanoflakes [117], FeMnO3 nanoparticle-filled polypyrrole nanotubes [118], FePt nanoparticle-decorated graphene oxide nanosheets [119], Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets [120] have been prepared. The recent technological advancements will open the gate for the development and application of nanozymes to aflatoxin detoxification in food and feed industry.
Contamination caused by aflatoxins in food and feed poses a great threat to human and animal health and result in considerable economic loss to the agriculture production of the country. To produce healthy, high quality, aflatoxin free food products is the worldwide concern. Researchers have been working continuously for the development of effective aflatoxin decontamination strategies since decades. Despite all the efforts, there still a need to come up with an efficient decontamination technology that meets all these criteria for industrial commercialization: (i) Retain/enhance the nutritional quality of the food (ii) Efficiently reduce aflatoxins to the safe limits without leaving toxic residues (iii) cost effective and eco-friendly. So far, no aflatoxin decontamination strategy has been developed that meet all the mentioned criteria. For instance, physical and chemical methods may change the organoleptic properties and chemical composition of food and feed. Biological approaches are more specific, effective with more control over the generated bio-products of aflatoxin detoxification. Use of pure enzyme for aflatoxin degradation has no negative impact on the degradation efficiency, chemical composition and organoleptic properties of food products. Further, adoption of enzyme engineering technology would provide highly efficient and specific aflatoxin detoxifying enzymes in the near future.
Author is grateful to University of Hyderabad for providing necessary facilities.
Authors have no competing interests.
Medicinal plants are getting more demand because of their distinctive features as an abundant source of curative phytochemicals that may be used to develop new medications. Approximately 20% of all known plants have been employed in pharmacological investigations, positively improving the healthcare system by treating cancer and other ailments [1]. Many of these medicinal plants are good sources of phytochemicals like polyphenols, carotenoids, flavonoids, anthocyanins, and vitamins that possess antioxidant activities. Today, medicinal plants are finding diverse use in society from medicine to cosmetics, nutraceuticals, herbal drinks, herbal foods, and other articles in their daily uses. Plant phytoconstituents are created as secondary metabolites, which are produced through a variety of biological routes in secondary metabolism. The choice of solvents for extracting phytoconstituents from plants is critical. A suitable solvent has an appropriate extraction capacity as well as the ability to maintain the chemical structure of the desired molecules stable [2].
Green technologies are increasingly being employed in practically every scientific sector to promote ecologically acceptable activities that do little or no harm to humans. Ionic liquids, aqueous biphasic systems, and pressurized hot water have all become attractive research topics in recent years [3]. Traditional techniques of extracting phytoconstituents require the use of more powerful and toxic solvents (nonenvironmentally friendly), as well as more energy. Each method’s extraction time varies, ranging from minutes to 7 days in the case of maceration [4]. Another problem is that none of the current plant processing methods meets all the economical, safety, and scalability requirements. Other concerns include security hazards, solvent toxicity, and the existence of solvent remnants in the extracts. The high cost of feedstock, the high cost of extracting desirable bioactive compounds, their comparatively low yield, and the resulting substantial concentration of residual waste biomass are the major roadblocks to commercially viable phytochemical production [5]. In many process sectors, microwave-assisted extractions like ultrasound-assisted extraction, pulsed electric field extraction, and molecular distillation have been reported. Green chemistry, as ecological and economic chemistry, could be one of the solutions to humanity’s future [6]. The entire process of green extraction of phytoconstituents from natural sources is concluded in the Figure 1.
Extraction of crude drugs using green solvent, green extraction process, and purification techniques.
A vast diversity of plants, animals, and microorganisms can produce a wide spectrum of chemical compounds with amazing health-care properties in nature. Science is steadily changing our world by finding the possibilities of natural products [7]. Natural product extraction has been practised since civilization. Extraction methods are used in the perfume, cosmetics, pharmaceutical, food, and chemicals sectors. Recent extraction technique advancements have mostly focused on creating solutions that employ lower solvents [8].
Soxhlet extraction, maceration, and hydro distillation (HD) are examples of traditional/conventional extraction processes. The choice of specific solvents has a considerable impact on any extraction rate. The polarity of the target biochemical is the most significant factor to consider, and when choosing a solvent, the solvent’s molecular affinity for the solute, as well as its environmental friendliness, toxicity, and economic efficiency, must all be considered. Simple, safe, repeatable, low-cost, and adaptable to a variety of applications are all desirable characteristics in an extraction procedure. High-temperature extraction (e.g., Soxhlet technique, HD) has been shown to cause changes in the composition due to phytoconstituent degradation [9].
To circumvent the constraints of classic extraction procedures, green extraction techniques can be employed to extract phytoconstituents from plants. The majority of these include less harmful chemical synthesis, nontoxic chemicals, safe solvent aides, energy efficiency patterns, use of sustainable feedstock, fewer derivatives, catalysis, design to avoid deterioration, and time scheduling for pollution avoidance, hazardous air pollutants, and naturally safer chemistry for safety programs. The development of effective and selective technologies for extracting and isolating bioactive phytoconstituent is crucial. This article aims to provide a detailed overview of green solvents employed, as well as the methods for extracting and isolating natural compounds form natural sources. Green solvents can help to improve old procedures significantly, especially when incorporated with new and novel methodologies. Hydrolysis of cellulose from biomass with supercritical water and the extraction of hydrophobic compounds using supercritical CO2 are few examples of green extraction process.
Solvents, their vapors, and mists have a variety of health impacts. Many contain narcotic properties, causing lethargy, dizziness, carcinogens, etc. Solvents irritate the eyes and respiratory system, as well as causing skin problems. High doses can cause unconsciousness and death in certain people. Petroleum-based solvents, which are mostly sourced from fossil fuels, are commonly utilized in various stages of the analytical process [10]. Solution preparation, extraction, and enrichment of phytoconstituents, washing of extracts, solvent exchange, sample preservation, dilution, cleaning of glassware, liquid desorption, derivatization, analytical separation, and detection are all activities that involve solvents in phytochemistry. A suitable solvent has an appropriate extraction capacity as well as the ability to maintain the chemical structure of the desired molecules stable.
Water is one such “green” solvent that can have its properties changed by changing the temperature. Water’s polarity allows it to be employed as an extraction solvent for both natural and inorganic substances that are aqueous soluble, like proteins, carbohydrates, and organic acids. Water is an important green solvent for the extraction of phytoconstituents. It has no harmful health or environmental consequences [11]. Furthermore, it is the safest and cheapest solvent. The technology used has an impact on the extractability of biologically active chemicals. Water is used as the only extractant in several ways, including decoction, infusion, and hydro distillation. Water as a solvent can be used in a variety of traditional and modern procedures. Extraction with pressurized hot water is one of the most promising new green extraction techniques and procedures, especially in a dynamic mode [11]. Water, on the other hand, has several drawbacks in terms of the less solubility of nonpolar molecules and energy required to enrich products. This difficulty can be overcome in part by employing supercritical water or a mixture of alcohol and water.
When using hydro distillation, high temperatures and long distillation times might cause volatiles to change and be lost. Supercritical water extraction (SWE) was shown to have a quicker extraction time, cheaper costs, and higher purity than hydro distillation. In terms of oxygenated components, SWE’s products yielded higher valuable essential oil. To boost extraction yields, microwave-assisted extraction with water as a solvent has been proposed.
Alcohols like methanol, ethanol, and isopropyl alcohol have similar solvent properties such as solvent strengths, dielectrics, critical points, and hydrogen donating abilities. However, due to its nontoxic nature, ethanol has ascended to the top [12]. Alkanes (heptane, hexane) and simple alcohols (methanol, ethanol) are healthier for the environment than dioxane, acetonitrile, acids, formaldehyde, and tetrahydrofuran [13]. The main disadvantage of alcohol is that they are flammable and some of them are toxic (i.e., methanol). In addition, extended exposure to their vapors can also lead to health problems.
CO2 as a liquid or supercritical solvent possesses multiple features of an admirable green solvent. They are incombustible, nonpoisonous, nonenvironmentally harmful, plentiful, inexpensive, easy to produce, simple to eliminate from a product, do not add to smog, and do not contribute to global warming [14]. Purified CO2 is produced, pressurized, and cooled to a liquid state at 20 psi and −20°C before being stored or transported in insulated bulk containers for use in a variety of liquid and supercritical CO2 processes. The viscosity of CO2 is extremely low, and supercritical CO2 has negligible surface tension [15]. The strong diffusivity, along with the low viscosity, causes significant improvements in the condensed phases. Supercritical fluid extraction of a crude drug is achieved by passing supercritical CO2 over a column packed drug material. Until the substrate is depleted, supercritical CO2 travels over the column of packed material and dissolves soluble components. The loaded solvent is then transported through a separator, where the soluble components precipitate as pressure and temperature are reduced. The CO2 is recirculated once it has been condensed. It is employed in the removal of caffeine from coffee and tea, the removing fatty material from cacao, the production of hops extracts, sesame seed oil, and pesticide extraction from rice. Under high pressure, SC CO2 is used to extract triglycerides and volatile compounds. Volatile, triglyceride and phenolic chemicals etc. are extricated at high pressure (300–400 bars) with EtOH. Add water or alcohols like ethanol or iso-propyl-alcohol to the SC-CO2 extraction has already been used to modify the polarity [16].
DES is formed when the melting point of a mixture of substances is much lower than the melting points of the two constituents. A hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) are required to build a DES system, and when mixed in the right proportions, they generate a novel “mesh” of hydrogen-bond-interconnected molecules with remarkable physicochemical features [17]. Their extraordinary physicochemical features (like ionic liquids) combined with remarkable green properties, low cost, and ease of handling are piquing researchers’ attention in a variety of sectors. The eutectic composition of DESs is formed by heating and stirring two or more solid starting components to generate a transparent, viscous homogenous liquid. Other techniques involve grinding (combining and powdering solid components till clear liquid forms), evaporation (dissolving all starting elements in water and then removing the water via evaporation at reduced pressure), and freeze-drying (dissolving all starting components in water and then draining the water via evaporation at reduced pressure).
Among them, heating and stirring below the melting points of the individual constituents is possibly the most acceptable method [18]. Because DESs are nonflammable and nonvolatile, they are easier to store. They are also biodegradable, unlike standard organic solvents. Furthermore, DES manufacture is cost-effective, simple to run, and requires no modification, making their use on a broad scale possible. DESs can be made by mixing molecules derived from natural sources (e.g., glycerol and glucose), which makes them environmentally friendly. Within the HBD section, polymerized deep eutectic solvents (PDEs) are a novel category of DESs that can be polymerized [17].
The high viscosity of DES is a key disadvantage that can limit their usage as extraction solvents since it prevents the solvent from penetrating the extraction matrix. Although increasing the temperature of the extraction process helps reduce viscosity, this is not always the best solution because it consumes energy, and some heat-sensitive phytochemicals may not withstand the higher temperature. The addition of a co-solvent to the extraction medium is a straightforward technique to remedy this problem. Most of the time, this co-solvent is water, which keeps the process green; nevertheless, organic solvents like methanol have also been utilized. Alkaloids, phenolic acids, flavonoids, and saponins are all extracted using DES [19].
The DES is called natural deep eutectic solvents (NADES) when amino acids, organic acids, sugars etc. are used to make DES [20]. Due to the natural nature of its ingredients, NADESs are deemed environmentally beneficial and “readily biodegradable,” and the resulting extracts can use in food, pharmaceutical, and cosmetics preparations. Because of their great stability and solubilization properties, NADES is ideal candidates to replace traditional solvents. NADESs combinations have efficiently extracted bioactive compounds including flavonoids, phenolic acids, alkaloids, natural pigments, sugars, peptides, and volatile components from natural matrices [21].
ILs were a type of organic salt that consisted of an organic cation (e.g., imidazolium, pyrrolidinium, pyrrolidinium tetra alkyl ammonium, pyrrolidinium tetra alkyl phosphonium) and an inorganic or organic anion (e.g., tetrafluoroborate, hexafluorophosphate, and bromide) that form of liquid below 100°C [22]. Because of their distinctive and construction dependent features, like low nucleophilicity, mixability with water or organic solvents, and good extractability, ILs have been frequently used [23]. A variety of organic and inorganic substances are perhaps enriched and separated using IL-based methods. As a result, they have been frequently used in food safety, drug testing, environmental monitoring, biological analysis, and other areas. The ability of ILs could be tailor-made for the extraction of alkaloids, flavonoids, terpenoids, phenylpropanoids, quinones, and other phytoconstituents from plants. A vast number of research organizations have also created IL-based silica and polymers that can improve the extraction/separation of target chemicals.
Extraction is an important step in the isolation of bioactive chemicals from plant matter. However, because of the existence of complex cell wall polysaccharides including cellulose, hemicellulose, lignin, pectin alginate, and carrageenan, the extraction yield of bioactive chemicals is poor. Researchers are now considering modern methods of extracting these compounds because of the low specific gravity of bioactive compounds, the low productivity of the solvents used to extract these compounds, high energy, high durability, solvent residue in the extracts, and the decline in the quality of the final product, as well as environmental concerns [23]. The use of enzymes to extract bioactive chemicals from plants could be a viable substitute for traditional solvent extraction methods. Enzymes are excellent catalyzers for extracting, modifying, or synthesizing complex bioactive substances from nature. The natural ability of enzymes to accelerate reactions with perfect particularity, regiospecificity, and the ability to employ under gentle processing conditions in an aqueous medium facilitate enzyme-based extraction [24]. The use of enzymes for sugar extraction is a new topic that needs further research. To improve extraction processes, custom enzymes must be developed, either by biodiversity screening, genetic engineering perspective, or a mix of the two. From plant sources, enzyme-aided extraction can be utilized to obtain lipophilic, polyphenolic, and hydrophilic chemicals [25]. Factors including high enzyme production and downstream processing costs, extended incubation times, and an extra stage (de-emulsification) in the process are still preventing aqueous enzyme extraction from becoming commercially viable. Commercial enzyme production has been accelerated, and enzyme synthesis has now become more affordable. The downstream processing expenses could be reduced by using appropriate technology rather than the traditional technique [26].
The predominant element of essential oils derived from citrus fruit peels is d-limonene, which belongs to the terpene family. Since its cleaner and degreaser properties were discovered and considered, d-limonene has sparked a surge of interest. In this sense, this chemical has been classified as a viable alternative to halogenated carbon hydrates or traditional degreasing chemicals commonly used in industry and households. Several authors have attempted to create a commercial application for d-limonene. Sustainable chemistry has generated a lot of study into the processing of renewable fuels due to the demand for environment-friendly techniques and products [27].
Because d-limonene has a higher boiling point (175°C) than n-hexane (69°C), it uses more energy to recover the solvent by evaporation. To minimize the difficulty of solvent recovery caused by high d-limonene’s boiling point, a technique based on steam or hydro-distillation employing Clevenger can be used. Distilled water was added to the extracted oil and d-limonene mixture after Soxhlet extraction with d-limonene. D-limonene and extracted oil were separated using a Clevenger device and azeotropic water distillation at less than 100°C [28]. It is a valuable and practical method for determining the lipids and oils in olive seeds. Waste minimization, rapid operation, and energy saving are all possible with Soxhlet microwave-integrated with limonene and microwave Clevenger distillation [29]. Limonene has a dielectric constant that is very similar to that of hexane and has been used to extract rice bran oil, oil from olive leftovers, carotenoids from tomatoes or algae and, more recently, algal lipids from wet algae [30].
Solvent-free extraction of a variety of important natural products (essential oils, fragrances, edible oils, antioxidants, and other organic compounds) eliminates the price and threats correlated with large amounts of solvent. It minimizes the amount of wastewater after extraction and uses a fraction of the energy that a traditional solvent-solid extraction process does.
In 2008, Chemat et al. developed the MHG method, which uses
Crude drugs can be extracted in fresh or dried form. Grinding and drying of plant materials are examples of pre-preparation. This has an impact on the preservation of phytochemicals in final extracts. Air drying takes anywhere from 3 to 7 days. To optimize extraction operations and save energy, mechanical disruption pre-treatments can be employed alone or in combination. Bead milling, high-pressure homogenization, and hydrodynamic cavitation are all methods for mechanical disruption. The extraction of lipids has been demonstrated to be aided using a bead mill. Powdered samples, on the other hand, have a more homogenized and smaller particle size, developing in substantial surface contact with extraction solvents [31].
Nanotechnologies, including microwave, ultrasound, and pulse electric field, were found to improve operation efficacy as a pre-treatment before drying. After size reduction and before extraction, microwave pre-treatments upgraded the extraction of polyphenols, sugars, and other compounds. Pre-treatments with a pulsed electric field (PEF) improved extraction efficiencies in terms of yield and extract standard. PEF pre-treatment of rapeseed, apple, and sugar beet fruit extracts before mechanical expression resulted in higher yields [26]. Oven-drying is one more pre-extraction method that uses heat energy to eliminate moisture from substances. This procedure for preparing a sample is regarded as particular easiest and most rapid thermal processing method available for phytochemicals.
Costly drugs can be dried by freeze-drying. In freeze-drying before use, the sample is frozen at −80°C to −20°C to lyophilize any liquid (e.g., solvent, moisture) in the body samples. The mouth of the test tube or other container holding the sample is wrapped in needle-poked-parafilm to avoid sample loss during the operation. Freeze-drying resulted in a greater phenolic content compared to air-drying because most phytochemicals are preserved. This strategy is used to keep phytoconstituents safe. Freeze-drying, on the other hand, is a difficult process. Microwave drying is more expensive than traditional air drying. As a result, only fragile, heat-sensitive goods and high-quality materials are permitted [32].
The main goal of green extraction procedures is to obtain a rapid extraction, increased efficient energy usage, higher mass and heat transfer, smaller apparatus, and fewer processing stages [3]. Several novel alternatives to traditional techniques for obtaining target compounds from a variety of crude drugs have been proposed, such as ultrasound-assisted extraction (UAE), subcritical and supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and accelerated solvent extraction (ASE) [33]. These extraction methods, which are alternatives to traditional procedures, have piqued the curiosity of academics, who see future applications for recovering bioactive molecules from plants in less time using green solvents. Most of these new methods have already shown promise in extracting high-value chemicals, particularly natural antioxidants, from various sources such as plants or food processing by-products [34].
It is a physical technique in which pressure is employed to extract the oil or juice from a material. A tincture press was used to do this. When essential oils are temperature sensitive, this approach is used. It’s used to extract essential oils from citrus peels like lemons and oranges. Squeezing any plant material at high pressures to extract oils or other liquids is known as expression. In remote rural locations, hand-operated presses or crushes are used, while in industrial hubs, massive mechanical presses are used. However, the products obtained are impure and frequently contain impurities such as water, mucoid particles, and cell tissues, making them murky, and pressing the volatile oil in plants completely is difficult. As a result, the crushed residue is frequently steam distilled to remove all volatile oils. Black soybean oil, for example, is frequently extracted using the low-temperature pressing process [31].
Enfleurage is the method of extracting aroma from flowers by absorbing it through contact with cold lipids. This method is used for fragrant flowers like jasmine and tuberose, which retain their unique aroma even after being plucked. To prevent fat odors from entering, fats should be saturated and odorless. It’s best to use refined lard or beef suet. On both sides of a glass plate mounted on a rectangular hardwood frame or chassis, fat is thinly deposited. On a fat-coated chassis, fresh aromatic flowers are delicately stacked. Enfleurage produces far more floral oil than other processes.
Ultrasound extractions can now be finished in minutes with high reliability, reducing solvent consumption, clarifying control and work-up, improving final product purity, removing wastewater after treatment, and consuming only a fragment of the fossil energy required for a traditional extraction method [35]. USAE (ultrasound-assisted extraction) has been used to extract polyphenols from vegetable tissues, protein, sugar, and starch from cereals and legumes, oil, and flavor components. Extraction efficiency and rate are improved by sonication. It lowers the required temperature, saves solvents, and promotes the solubilization of the desired chemicals. Solubility is enhanced by a significant increase in the very temperature [36].
To extract phytochemicals from plants, both the cell wall and the cell membrane must be broken. Because of this, ultrasounds are used in ultrasound-assisted extraction for cell disintegration. Ultrasounds are sound waves that are above the human hearing range, with frequencies ranging from 20 kHz to a few gigahertz. Plant materials and liquids absorb the energy emitted by ultrasonic waves and convert it to heat. The frequency, intensity, and duration of ultrasonic therapy affect the amount of heat created in plant materials [37]. This heat energy debases proteins, destroys plant cells, and causes therapeutic substances to be released from plant cells. In most cases, the highest extraction rate is attained in the initial few minutes, which is also the most profitable time [38].
The extraction of thermally labile chemicals is possible because of carbon dioxide’s low critical temperature (304.1 K). It can replicate a variety of organic solvents by adjusting the density of SCF carbon dioxide. Because of its variable solvating strength, this feature allows for selective extraction, purification, and fractionation techniques. SCF carbon dioxide media provide the prime possibility for fractionation of reaction products and solvent separation, which can be performed by simply depressurizing the media. This is because SCF quickly penetrates and leaves solid matrices, compared to the use of organic solvents with a higher viscosity [39]. It has a broad variety of applications, including the extraction of common spices such as black pepper, celery seed, cumin, cinnamon, clove bud, and nutmeg. Extraction of Natural Colors: Paprika Pigments, etc. Dry Ginger, Saw Palmetto, Rosemary, and other botanicals are used to extract active ingredients. Forskolin, Turmerones—from Turmeric,
Nontraditional ways are more prominent when it comes to improving the quality and quantity of desired items. By directly linking microwave energy with the bulk reaction mixture, microwave irradiation creates efficient internal heating. The magnitude of energy transfer is determined by the molecules’ dielectric characteristics. Radiation absorption and heating can be quite selective in this approach (Hoz et al.). The reduction in operating time and solvent use are two major benefits of microwave treatments. However, during microwave processing, acceleration in chemical reactions of target substances such as epimerization, oxidation, and polarization should be considered with dielectric heating.
Microwave-assisted extraction without solvents is a long-term technology for extracting and separating chemicals from natural plant resources. Microwave heating is directed at the moisture content of new material. Under microwave irradiation, plant cell water and charged molecules are stimulated; this internal alteration causes a significant amount of pressure to be imposed on plant cell walls, resulting in cell swelling. Due to the rupturing of plant cells, this swelling causes an increase in the mass transfer of solutes. As a result, phytochemical leaching from the plant cellular matrix into the extractant is facilitated during MAE [40]. The best extraction conditions were a microwave power of 150 W for 90 min. Concerning the efficiency and yield of essential oils, solvent-free microwave extraction was superior. As a result, increased rates of adsorption, diffusion, and separation of phytochemicals from the plant matrix into the extracting solvent are more likely [41].
An MAE can be performed using two different types of equipment. The apparatus runs at atmospheric pressure in the open mode, which is often coupled with a refluxing mechanism. Domestic microwaves are frequently modified to accommodate this model. The closed mode, on the other hand, allows for high-pressure operation. Pumping inert gas into the extraction chamber increases the pressure. During the heating of the extraction mixture, however, vapor pressure may generate a degree of pressure. Since these molecules were stable at microwave heating settings of up to 100°C for 20 min, this approach was confined to small-molecule phenolic compounds like phenolic acids (gallic acid and ellagic acid), quercetin, isoflavones, and trans-resveratrol. Due to compound oxidation, more MAE cycles (e.g., from 2 10 s to 3 10 s) resulted in a considerable reduction in phenolic and flavanone yields. Because tannins and anthocyanins are prone to temperature degradation, they may not be suitable for MAE [32].
Microwave-assisted hydro distillation (MAHD) is like standard hydro distillation, with the exception that the solvent is heated using microwaves. The solvent (typically water) and plant parts are placed inside a microwave oven (normally running at 2.45 GHz), and different output powers and reaction periods can be used to improve the extraction process. Again, using microwaves for the heating process speeds up the extraction of chemicals, requiring shorter timeframes to generate comparable amounts of extracts. Furthermore, the chemical makeup of extracts obtained by standard hydro distillation and MAHD is not comparable.
In batch mode, the electric field strength (EFS) ranges from 100 to 300 V/cm, while in continuous mode, the EFS ranges from 20 to 80 kV/cm. An external electrical force is used in electro-permeabilization or electroporation to increase the permeability of cell membranes. The cell membrane is perforated by the formation of hydrophilic holes, which result in the opening of protein channels. When high-voltage electrical pulses are applied across the electrodes, the sample experiences a force per unit charge termed the electric field. The plant material is removed once the membrane loses its structural functioning [41]. Anthocyanin, carotenoids, lycopene, lutein, polyphenols, alkaloids, lactase, protein, polysaccharides, fat, oil, and other bioactive compounds are extracted using PEF. PEF-assisted extraction provides more bioactive component extracts, uses less energy, and takes less time to process, according to the study, resulting in the optimal process parameters [42].
The extracts, which contain numerous phytoconstituents, must be separated and purified further to obtain the fraction or pure phytoconstituents. The techniques utilized for isolation and purification from the extract are determined by the physical and chemical properties of the component to be separated. The physical approaches employed for this goal are as follows.
The point of supersaturation in the solvent in which phytopharmaceuticals are soluble causes them to crystallize. The processes involved in the crystallization of phytoconstituents are slow concentration, slow evaporation, and chilling. Crystallization is an ideal purification procedure. It is operationally easy, very inexpensive, and may be done in quantities ranging from a few micrograms to hundreds of kilograms. The results are normally highly pure (unlike the mixes that can sometimes be obtained with distillation). Using chromatography to purify that much material is a nightmare. Another key point to remember about crystallization is that X-ray crystallography can be used to discover the structure of unknown molecules. With very few exceptions, X-ray crystallography is the gold standard for structure determination: if you can get a substance to crystallize, you can determine its structure. The only issue is that not all compounds crystallize, and finding circumstances that can preferentially recrystallize one chemical can take a long time [43].
This is a process of purifying phytoconstituents from a mixture. It’s commonly used to separate hydrocarbons like crude oil, citral, and eucalyptol. Purification is accomplished by comparing the boiling points of the different substances. When heat is applied, the fractional distillation equipment is built in such a way that each chemical evaporates and separates at its boiling point. As a result, each fractionated chemical will condense and be collected separately via numerous syphons coupled to fractional distillation apparatus [44].
The fractional distillation method is based on differences in compound volatility and is affected by physicochemical properties of the components, as well as the pressure and temperature of the distillation process. The mass and energy transition between the fluid and vapor stages of the mixture has an impact on separation efficiency. Most terpenes are thermally unstable, dissolving, or oxidizing when exposed to high temperatures, light, or oxygen. As a result, the distillation technique is typically used at vacuum pressures to lower the vaporization temperature of the volatile mixture. Due to the boiling temperature reduction, the vacuum also slows processes such as thermal deterioration in temperature-sensitive chemicals. In the chemical industry, vacuum fractional distillation is used to separate compounds with extremely high boiling points that would need a lot of energy to separate under atmospheric pressure [45].
Fractional liberation separates some components from a mixture. The weakest base in the free salt is liberated first when an aqueous solution of alkaloid salts is treated with aliquots of alkali, followed by base liberation in ascending order of basicity. After each addition, shake the mixture with an organic solvent to get a fractionated sequence of bases. Organic acids that are soluble in water-immiscible solvents take a similar route. It is feasible to fractionally liberate acids in this case by adding mineral acids to a mixture of acid salts.
Chromatography on a column separates and purifies phytochemicals on a laboratory and industrial scale without the use of complicated technology. The “eluent” is the liquid employed as the mobile phase, and the stationary phase is usually a solid or a liquid. The sample solution is supplied to a porous stationary phase, and the mobile phase is delivered at a greater pressure via the column, causing separation depending on the solute’s affinity for the stationary phase. The development of HPLC (High-Performance Liquid Chromatography) was aided by the need for a higher degree of separation and faster analysis, which was met by refining the stationary phase packing material to a size of 3–10 m and eluent delivery via a high-pressure pump. Despite its extensive and time-consuming nature, commercial use of column chromatography is comparable to that of other techniques. The advantages of column chromatography include efficient sample handling regardless of the number or nature of the samples, the availability of a wide range of adsorbents, the selection and recyclization of a large solvent system, improved purity of the product, and minimal space requirements. Column chromatography has a few disadvantages, including the use of a large amount of mobile phase, compared to other techniques it is a complicated technique, time consumption, the requirement for an expert, and a greater cost of identifying the separated product.
The fundamental disadvantage of column chromatography is that it is a time-consuming technique; however, vacuum liquid chromatography can solve this problem. In vacuum chromatography, rather than using pressure, vacuum is employed to improve the flow rate and hence speed up the fractionation process. The stationary phase is usually 40–60 mesh particle size silica or reversed-phase silica, and the crude extracts are separated by gradient elution. TLC is a typical method for examining eluted fractions [43].
In the pharmaceutical sector, simulated moving bed (SMB) technology is an economical and eco-friendly process for purifying crude extracts and fractions [46]. It has a higher purity and yield than other techniques. A traditional Simulated Moving Bed system has 4–24 columns divided into four zones. In general, a four-column SMB should be sufficient for testing and optimizing purification conditions. Purification of sugars, proteins, monoclonal antibodies, separation of organic solvents, optical isomers, charged molecules, and desalting are all common applications. For the separation of crude medicines, the SMB technique utilizes extremely less solvent. The SMB technique is simple to adapt to a continuous process and can be integrated with other equipment such as evaporation. SMB, on the other hand, necessitates meticulous process control and is less adaptable than traditional elution chromatography.
CE provides several advantages, including a smaller sample, high efficiency leads to shorter analysis time, cheap, environmental friendliness, reduced solvent usage, and a powerful tool appropriate for drug discovery [47]. CE is a new method for analyzing different phytochemical groups. Variations in mass to charge ratios are used to separate phytochemicals in capillary electrophoresis. Because borate can form compounds with the flavonoid nucleus’ ortho dihydroxyl groups and the sugar’s vicinal cis-dihydroxyl groups, borate buffers with a pH of 8–11 and a concentration of 25–200 mM are generally used [48].
Capillary zone electrophoresis (CZE) is the most basic characteristic, and it’s been utilized to isolate a variety of target molecules, especially polyphenolic compounds like epicatechin, catechin, quercetin, gentistic acid, caffeic acid, gallic acid, trans-resveratrol, myricetin, and rutin from wine and grape samples. A CZE technique was also used to isolate antioxidants in Ginkgo leaf extracts. For the separation of anthocyanins in wine, a new CZE approach was developed recently [49]. Food analysis, environmental monitoring, clinical diagnostics, and pharmaceutical analysis have mostly used capillary electrophoresis. Since it allows the use of chirality selectors with limited aqueous solubility, nonaqueous capillary electrophoresis can be utilized to separate enantiomeric drugs. Furthermore, the low dielectric constant of organic solvents can let chiral counter-ions that have less selectivity in aqueous environments form ion pairs and therefore increase their selectivity. CE-MS is one of many multidimensional techniques used in the pharmaceutical and biotechnology industries, particularly for drug development. Because high resolution and structural and/or molecular weight information of an analyte may be collected along with using a mass spectrometer as a detector for CE splitting, could be useful. CE has various advantages (for example, high speed, efficiency, and low price); yet, combining CE with MS produces several problems. CE solvents, for example, are not accepted by MS.
Molecular imprinting knowledge has been a prominent isolation method in the last years because of its distinctive qualities, such as high selectiveness, economical, and ease of preparation. Many correlative cavities with the memory of the template molecules’ size, shape, and functional groups are produced when the template molecules are removed from the molecular imprinted polymer (MIP). As a result, the template molecule and its analogues will be able to recognize the MIP and adsorb it selectively. MIPs have been extensively used in the isolation of phytoconstituents and as sorbents for solid-phase extraction of herbal materials to enrich phytoconstituent components. MIP was made with methyl methacrylate as the monomer, solanesol as the template molecule, and ethylene glycol as the crosslinker by a suspension polymerization method. This technique is used for the purification of enriching in water extract of
Plant materials go through several processes to acquire the necessary secondary metabolites and/or extract, including drying, extraction, separation, and purification. To produce better eco-friendly processes, the current investigation of the use of green solvents in the field of extraction needs more awareness for a greater perception of different factors such as innate solvent properties (polarity, viscosity, solubility, and pH), external factors (temperature, time, and solid-liquid ratio), and cytotoxicity. However, more study is needed on green or smart solvents that have high specificity for phytochemical compounds, as well as improved stability, recovery, and reduced operational costs. Until now, the framework has only been used to evaluate organic solvents. To expand the currently established techniques to new solvents, more study is required. This entails looking into novel waste-solvent treatment technologies as well as alternative solvent production techniques. Will the eventual transfer of DES/NADES-based extraction technologies to industrial sectors need further investments? Would their use result in a shorter lifespan for the extractors and the analytical tools required for their identification and quantification in the long run? All the questions are still open, and there are a lot of options for answers in the future.
IntechOpen will act in accordance with its published Refund Policy if requests for refunds are made.
",metaTitle:"Refund Policy",metaDescription:"IntechOpen will act in accordance with its Refund Policy if requests for refunds are made.",metaKeywords:null,canonicalURL:"/page/refund-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Refunds are possible in the following cases:
\\n\\n1. A double payment, in which case a full refund will be made.
\\n\\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\\n\\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\\n\\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Refunds are possible in the following cases:
\n\n1. A double payment, in which case a full refund will be made.
\n\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\n\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\n\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"11559",title:"Photocatalysts - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fc9a28dbceaeccb8991b24aec1decd32",slug:null,bookSignature:"Prof. Nasser S Awwad, Dr. Saleh S. Alarfaji and Dr. Ahmed Alomary",coverURL:"https://cdn.intechopen.com/books/images_new/11559.jpg",editedByType:null,editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11560",title:"Piezoelectric Materials - New Opportunities to Energy Harvesting Devices",subtitle:null,isOpenForSubmission:!0,hash:"ef99895997e3b7c308813218cd6f61e7",slug:null,bookSignature:"D.Sc. Rafael Vargas-Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/11560.jpg",editedByType:null,editors:[{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11563",title:"A Comprehensive Review of the Versatile Dehydration Processes",subtitle:null,isOpenForSubmission:!0,hash:"91d7853d4e74d161d7a8f5913626cf94",slug:null,bookSignature:"Ph.D. Jelena Jovanovic",coverURL:"https://cdn.intechopen.com/books/images_new/11563.jpg",editedByType:null,editors:[{id:"447810",title:"Ph.D.",name:"Jelena",surname:"Jovanovic",slug:"jelena-jovanovic",fullName:"Jelena Jovanovic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11895",title:"Sonochemistry - Recent Advances, New Perspectives, and Advanced Applications",subtitle:null,isOpenForSubmission:!0,hash:"a3bb7281ab6a6ce27a0d69cddedc05fd",slug:null,bookSignature:"Prof. Mohammed Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/11895.jpg",editedByType:null,editors:[{id:"137240",title:"Prof.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11898",title:"Glycerol - Current Catalytic and Biochemical Processes for Sustainability",subtitle:null,isOpenForSubmission:!0,hash:"f4b04aa4b82f5a8f2de916212b20da55",slug:null,bookSignature:"Ph.D. Israel Pala-Rosas, Dr. Jose Salmones and Prof. Jose Luis Contreras Larios",coverURL:"https://cdn.intechopen.com/books/images_new/11898.jpg",editedByType:null,editors:[{id:"284261",title:"Ph.D.",name:"Israel",surname:"Pala-Rosas",slug:"israel-pala-rosas",fullName:"Israel Pala-Rosas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11899",title:"Ethanol Chemistry - Production, Modelling, Applications, and Technological Aspects",subtitle:null,isOpenForSubmission:!0,hash:"bee828f72f44f58c6bcb10453b91c3e9",slug:null,bookSignature:"Assistant Prof. Rampal Pandey",coverURL:"https://cdn.intechopen.com/books/images_new/11899.jpg",editedByType:null,editors:[{id:"338234",title:"Assistant Prof.",name:"Rampal",surname:"Pandey",slug:"rampal-pandey",fullName:"Rampal Pandey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11902",title:"Lignin - Chemistry, Structure, and Application",subtitle:null,isOpenForSubmission:!0,hash:"4c3ccf3ce961d9c60aeb9774034eeb87",slug:null,bookSignature:"Associate Prof. Arpit Sand and Dr. Jaya Tuteja",coverURL:"https://cdn.intechopen.com/books/images_new/11902.jpg",editedByType:null,editors:[{id:"287032",title:"Associate Prof.",name:"Arpit",surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11903",title:"Covalent Organic Frameworks",subtitle:null,isOpenForSubmission:!0,hash:"8125f3f415f5d2fa9583abde0143602d",slug:null,bookSignature:"Prof. Yanan Gao and Dr. Fei Lu",coverURL:"https://cdn.intechopen.com/books/images_new/11903.jpg",editedByType:null,editors:[{id:"171387",title:"Prof.",name:"Yanan",surname:"Gao",slug:"yanan-gao",fullName:"Yanan Gao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11904",title:"Actinides - New Insights on Contamination, Exposure, and Analytical Techniques",subtitle:null,isOpenForSubmission:!0,hash:"a74f62997524c0c100aac1388bf529e8",slug:null,bookSignature:"Dr. Markus R. Zehringer",coverURL:"https://cdn.intechopen.com/books/images_new/11904.jpg",editedByType:null,editors:[{id:"311750",title:"Dr.",name:"Markus R.",surname:"Zehringer",slug:"markus-r.-zehringer",fullName:"Markus R. Zehringer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11905",title:"Rare Earth Elements - Emerging Advances, Technology Utilization, and Resource Procurement",subtitle:null,isOpenForSubmission:!0,hash:"38ffcf92affa26770585dbc04b3742fe",slug:null,bookSignature:"Dr. Michael Thomas Aide",coverURL:"https://cdn.intechopen.com/books/images_new/11905.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11908",title:"Self-Assembly of Materials and Supramolecular Structures",subtitle:null,isOpenForSubmission:!0,hash:"e9cc643ae0a219e91e445a1e61b33a22",slug:null,bookSignature:"Prof. Hemali Rathnayake and Dr. Gayani Pathiraja",coverURL:"https://cdn.intechopen.com/books/images_new/11908.jpg",editedByType:null,editors:[{id:"323782",title:"Prof.",name:"Hemali",surname:"Rathnayake",slug:"hemali-rathnayake",fullName:"Hemali Rathnayake"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:28},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1166",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-biophysics-condensed-matter-physics",parent:{id:"205",title:"Biophysics",slug:"nanotechnology-and-nanomaterials-biophysics"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:161,numberOfWosCitations:178,numberOfCrossrefCitations:199,numberOfDimensionsCitations:505,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1166",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"4624",title:"Biosensors",subtitle:"Micro and Nanoscale Applications",isOpenForSubmission:!1,hash:"9793f3e7640905f75bac8ad7c237752e",slug:"biosensors-micro-and-nanoscale-applications",bookSignature:"Toonika Rinken",coverURL:"https://cdn.intechopen.com/books/images_new/4624.jpg",editedByType:"Edited by",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4616",title:"Nanomaterials",subtitle:"Toxicity and Risk Assessment",isOpenForSubmission:!1,hash:"a96b5d34ca84aecacbab309ba1e7e563",slug:"nanomaterials-toxicity-and-risk-assessment",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/4616.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2259",title:"The Delivery of Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:"ca3c54296ceb94d17500474ed6f0ee71",slug:"the-delivery-of-nanoparticles",bookSignature:"Abbass A. Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/2259.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1330",title:"Advances in Unconventional Lithography",subtitle:null,isOpenForSubmission:!1,hash:"96f98ca60d487eabffec289d8b25895d",slug:"advances-in-unconventional-lithography",bookSignature:"Gorgi Kostovski",coverURL:"https://cdn.intechopen.com/books/images_new/1330.jpg",editedByType:"Edited by",editors:[{id:"63186",title:"Dr.",name:"Gorgi",middleName:null,surname:"Kostovski",slug:"gorgi-kostovski",fullName:"Gorgi Kostovski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"36875",doi:"10.5772/34157",title:"Silver Nanoparticles",slug:"silver-nanoparticles",totalDownloads:31452,totalCrossrefCites:26,totalDimensionsCites:63,abstract:null,book:{id:"2259",slug:"the-delivery-of-nanoparticles",title:"The Delivery of Nanoparticles",fullTitle:"The Delivery of Nanoparticles"},signatures:"Hassan Korbekandi and Siavash Iravani",authors:[{id:"98949",title:"Dr.",name:"Hassan",middleName:null,surname:"Korbekandi",slug:"hassan-korbekandi",fullName:"Hassan Korbekandi"},{id:"102776",title:"Dr.",name:"Siavash",middleName:null,surname:"Iravani",slug:"siavash-iravani",fullName:"Siavash Iravani"}]},{id:"36882",doi:"10.5772/34795",title:"Nanoparticles Based on Modified Polysaccharides",slug:"nanoparticles-based-on-modified-polysaccharides",totalDownloads:7902,totalCrossrefCites:17,totalDimensionsCites:47,abstract:null,book:{id:"2259",slug:"the-delivery-of-nanoparticles",title:"The Delivery of Nanoparticles",fullTitle:"The Delivery of Nanoparticles"},signatures:"Hassan Namazi, Farzaneh Fathi and Abolfazl Heydari",authors:[{id:"101658",title:"Prof.",name:"Hassan",middleName:null,surname:"Namazi",slug:"hassan-namazi",fullName:"Hassan Namazi"}]},{id:"36899",doi:"10.5772/34080",title:"Nanoparticles in Ancient Materials: The Metallic Lustre Decorations of Medieval Ceramics",slug:"nanoparticles-in-ancient-materials-the-metallic-lustre-decorations-of-medieval-ceramics",totalDownloads:6590,totalCrossrefCites:19,totalDimensionsCites:34,abstract:null,book:{id:"2259",slug:"the-delivery-of-nanoparticles",title:"The Delivery of Nanoparticles",fullTitle:"The Delivery of Nanoparticles"},signatures:"Philippe Sciau",authors:[{id:"98593",title:"Dr.",name:"Philippe",middleName:null,surname:"Sciau",slug:"philippe-sciau",fullName:"Philippe Sciau"}]},{id:"48443",doi:"10.5772/60676",title:"Graphene — A Platform for Sensor and Biosensor Applications",slug:"graphene-a-platform-for-sensor-and-biosensor-applications",totalDownloads:3755,totalCrossrefCites:10,totalDimensionsCites:33,abstract:"Graphene, mother of all carbon materials, has opened up new era of exploration due to its unique properties. Graphene, one-atom thick, exhibits a unique chemical structure and outstanding electronic, optical, thermal, and mechanical properties that made it compelling for various engineering applications. Graphene and graphene-based materials are promising candidates for fabricating state-of-the-art nano-scale sensors and biosensors. They featured with good conductivity and large specific surface area thereby; graphene-based sensors/biosensors performed well with good accuracy, rapidness, high sensitivity and selectivity, low detection limits, and long-term stability. They are ideally used as gas sensors, electrochemical sensors for heavy metal ions, immunosensors and dihydronicotinamide dinucleotide NADH, DNA, catecholamine neurotransmitters, paracetamol, glucose, H2O2, hemoglobin, and myoglobin biosensors. This chapter reviews the applications of graphene in nanotechnology since it came to the field particularly in sensing and biosensing applications. It updates the reader with the scientific progress of the current use of graphene as sensors and biosensors. There is still much room for the scientific research and application development of graphene-based theory, materials, and devices. Despite the vast amount of research already conducted on graphene for various applications, the field is still growing and many questions remain to be answered.",book:{id:"4624",slug:"biosensors-micro-and-nanoscale-applications",title:"Biosensors",fullTitle:"Biosensors - Micro and Nanoscale Applications"},signatures:"Nada F. Atta, Ahmed Galal and Ekram H. El-Ads",authors:[{id:"30072",title:"Prof.",name:"Nada",middleName:null,surname:"F. Atta",slug:"nada-f.-atta",fullName:"Nada F. Atta"},{id:"174033",title:"Prof.",name:"Ahmed",middleName:null,surname:"Galal",slug:"ahmed-galal",fullName:"Ahmed Galal"},{id:"174034",title:"MSc.",name:"Ekram",middleName:null,surname:"El-Ads",slug:"ekram-el-ads",fullName:"Ekram El-Ads"}]},{id:"48322",doi:"10.5772/60510",title:"New Materials for the Construction of Electrochemical Biosensors",slug:"new-materials-for-the-construction-of-electrochemical-biosensors",totalDownloads:3536,totalCrossrefCites:11,totalDimensionsCites:32,abstract:"The development of electrochemical sensors has attracted great interest due to these sensors’ high sensitivity and selectivity. Here, we present the general concept and the classification of biosensors, their advantages and drawbacks, the main strategies in electrochemical biosensor technology and the materials used in electrochemical sensors, such as electrodes and supporting substrates, materials for improved sensitivity and selectivity, materials for bioreceptor immobilization, and biological recognition elements. Various nanomaterials, such as carbon-based materials (carbon nanotubes, graphene, carbon nanoparticles), inorganic and organic nanoparticles (magnetic and metal nanoparticles, nanosized clays), conductive and insulating polymers (nanosized and nanostructured polymers, molecularly imprinted polymers), and hybrid materials, etc., have been successfully applied for the enhancement of the electroanalytical performance of biosensors and for the immobilization of biorecognition elements. Among these, due to their unique physiochemical features, carbon-based materials, such as carbon nanotubes and graphenes, have received special attention in recent years, and examples of surface functionalization using various types of nanoparticles are presented. The future trends in sensor research activities and areas of development that are expected to have an impact in biosensor performance, like immobilization techniques, nanotechnology, miniaturization and multisensor array determinations, are also examined.",book:{id:"4624",slug:"biosensors-micro-and-nanoscale-applications",title:"Biosensors",fullTitle:"Biosensors - Micro and Nanoscale Applications"},signatures:"Robert Săndulescu, Mihaela Tertiş, Cecilia Cristea and Ede Bodoki",authors:[{id:"28983",title:"Prof.",name:"Robert",middleName:"Valentin",surname:"Sandulescu",slug:"robert-sandulescu",fullName:"Robert Sandulescu"}]}],mostDownloadedChaptersLast30Days:[{id:"48359",title:"Immunosensors",slug:"immunosensors",totalDownloads:3112,totalCrossrefCites:7,totalDimensionsCites:22,abstract:"Immunosensors are solid-state devices in which the immunochemical reaction is coupled to a transducer. They form one of the most important classes of affinity biosensors based on the specific recognition of antigens by antibodies to form a stable complex, in a similar way to immunoassay. Depending on the type of transducer there are four types of immunosensor: electrochemical, optical, microgravimetric and thermometric. The most commonly used bioelements for the development of electrochemical immunosensors are antibodies (Ab), followed by aptamers (Apt) and, in the last five years, microRNA (miRNA). In order to perform an early diagnosis, a method that is able to measure peptides and proteins directly in a sample, without any sample pre-treatment or any separation, is preferred. This direct detection can be performed with methods making use of the specific interaction of proteins with Ab, Apt and miRNA. The recent developments made in the immunosensor field, regarding the incorporation of nanomaterials for increased sensitivity, multiplexing or microfluidic-based devices, may have potential for promising use in industry and clinical analysis. Some examples of assays for several commercially available biomarkers will be presented. The main application fields, beside biomedical analysis, are drug abuse control, food analysis and environmental analysis.",book:{id:"4624",slug:"biosensors-micro-and-nanoscale-applications",title:"Biosensors",fullTitle:"Biosensors - Micro and Nanoscale Applications"},signatures:"Cecilia Cristea, Anca Florea, Mihaela Tertiș and Robert Săndulescu",authors:[{id:"28983",title:"Prof.",name:"Robert",middleName:"Valentin",surname:"Sandulescu",slug:"robert-sandulescu",fullName:"Robert Sandulescu"}]},{id:"48575",title:"Impedimetric Sensors for Bacteria Detection",slug:"impedimetric-sensors-for-bacteria-detection",totalDownloads:3705,totalCrossrefCites:6,totalDimensionsCites:20,abstract:"The application of electrochemical biosensors based on impedance detection has grown during the past years due to their high sensitivity and rapid response, making this technique extremely useful to detect biological interactions with biosensor platforms. This chapter is focused on the use of electrochemical impedance spectroscopy (EIS) for bacterial detection in two ways. On one hand, bacteria presence may be determined by the detection of metabolites produced by bacterial growth involving the media conductivity changes. On the other hand, faster and more selective bacterial detection may be achieved by the immobilization of bacteria on a sensor surface using biorecognition elements (antibodies, antimicrobial peptides, aptamers, etc.) and registering changes produced in the charge transfer resistance (faradic process) or interfacial impedance (nonfaradic process). Here we discuss different types of impedimetric biosensors for microbiological applications, making stress on their most important parameters, such as detection limits, detection times, selectivity, and sensitivity. The aim of the paper was to give a critical review of recent publications in the field and mark the future trends.",book:{id:"4624",slug:"biosensors-micro-and-nanoscale-applications",title:"Biosensors",fullTitle:"Biosensors - Micro and Nanoscale Applications"},signatures:"Sergi Brosel-Oliu, Naroa Uria, Natalia Abramova and Andrey Bratov",authors:[{id:"174122",title:"Dr.",name:"Andrey",middleName:null,surname:"Bratov",slug:"andrey-bratov",fullName:"Andrey Bratov"},{id:"175939",title:"MSc.",name:"Sergi",middleName:null,surname:"Brosel-Oliu",slug:"sergi-brosel-oliu",fullName:"Sergi Brosel-Oliu"},{id:"175940",title:"Dr.",name:"Naroa",middleName:null,surname:"Uria",slug:"naroa-uria",fullName:"Naroa Uria"},{id:"175941",title:"Dr.",name:"Natalia",middleName:null,surname:"Abramova",slug:"natalia-abramova",fullName:"Natalia Abramova"}]},{id:"48322",title:"New Materials for the Construction of Electrochemical Biosensors",slug:"new-materials-for-the-construction-of-electrochemical-biosensors",totalDownloads:3542,totalCrossrefCites:11,totalDimensionsCites:32,abstract:"The development of electrochemical sensors has attracted great interest due to these sensors’ high sensitivity and selectivity. Here, we present the general concept and the classification of biosensors, their advantages and drawbacks, the main strategies in electrochemical biosensor technology and the materials used in electrochemical sensors, such as electrodes and supporting substrates, materials for improved sensitivity and selectivity, materials for bioreceptor immobilization, and biological recognition elements. Various nanomaterials, such as carbon-based materials (carbon nanotubes, graphene, carbon nanoparticles), inorganic and organic nanoparticles (magnetic and metal nanoparticles, nanosized clays), conductive and insulating polymers (nanosized and nanostructured polymers, molecularly imprinted polymers), and hybrid materials, etc., have been successfully applied for the enhancement of the electroanalytical performance of biosensors and for the immobilization of biorecognition elements. Among these, due to their unique physiochemical features, carbon-based materials, such as carbon nanotubes and graphenes, have received special attention in recent years, and examples of surface functionalization using various types of nanoparticles are presented. The future trends in sensor research activities and areas of development that are expected to have an impact in biosensor performance, like immobilization techniques, nanotechnology, miniaturization and multisensor array determinations, are also examined.",book:{id:"4624",slug:"biosensors-micro-and-nanoscale-applications",title:"Biosensors",fullTitle:"Biosensors - Micro and Nanoscale Applications"},signatures:"Robert Săndulescu, Mihaela Tertiş, Cecilia Cristea and Ede Bodoki",authors:[{id:"28983",title:"Prof.",name:"Robert",middleName:"Valentin",surname:"Sandulescu",slug:"robert-sandulescu",fullName:"Robert Sandulescu"}]},{id:"36883",title:"Polysaccharide-Based Nanoparticles for Controlled Release Formulations",slug:"polysaccharide-based-nanoparticles-for-controlled-release-formulations",totalDownloads:5129,totalCrossrefCites:7,totalDimensionsCites:25,abstract:null,book:{id:"2259",slug:"the-delivery-of-nanoparticles",title:"The Delivery of Nanoparticles",fullTitle:"The Delivery of Nanoparticles"},signatures:"A. Martínez, A. Fernández, E. Pérez, M. Benito, J.M. Teijón and M.D. Blanco",authors:[{id:"98943",title:"Dr.",name:"Maria Dolores",middleName:null,surname:"Blanco",slug:"maria-dolores-blanco",fullName:"Maria Dolores Blanco"}]},{id:"36882",title:"Nanoparticles Based on Modified Polysaccharides",slug:"nanoparticles-based-on-modified-polysaccharides",totalDownloads:7905,totalCrossrefCites:17,totalDimensionsCites:47,abstract:null,book:{id:"2259",slug:"the-delivery-of-nanoparticles",title:"The Delivery of Nanoparticles",fullTitle:"The Delivery of Nanoparticles"},signatures:"Hassan Namazi, Farzaneh Fathi and Abolfazl Heydari",authors:[{id:"101658",title:"Prof.",name:"Hassan",middleName:null,surname:"Namazi",slug:"hassan-namazi",fullName:"Hassan Namazi"}]}],onlineFirstChaptersFilter:{topicId:"1166",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:47,paginationItems:[{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:22,group:"subseries"},{caption:"Oral Health",value:1,count:25,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:754,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/144918",hash:"",query:{},params:{id:"144918"},fullPath:"/profiles/144918",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()