The types of catalysts and substrates and properties used in gas conversion syngas production.
\r\n\t
",isbn:"978-1-83962-547-3",printIsbn:"978-1-83962-546-6",pdfIsbn:"978-1-83962-548-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",bookSignature:"Dr. John P. Tiefenbacher",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",keywords:"Managing Urbanization, Managing Development, Managing Resource Use, Drought Management, Flood Management, Water Quality Monitoring, Air Quality Monitoring, Ecological Monitoring, Modeling Extreme Natural Events, Ecological Restoration, Restoring Environmental Flows, Environmental Management Perspectives",numberOfDownloads:22,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 12th 2021",dateEndSecondStepPublish:"February 9th 2021",dateEndThirdStepPublish:"April 10th 2021",dateEndFourthStepPublish:"June 29th 2021",dateEndFifthStepPublish:"August 28th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A geospatial scholar working at the interface of natural and human systems, collaborating internationally on innovative studies about hazards and environmental challenges. Dr. Tiefenbacher has published more than 200 papers on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher (Ph.D., Rutgers, 1992) is a professor of Geography at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to spatial adaptation to climate change, spatial responses in wine growing regions to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes and hazards, historical ethnic enclaves in American cities and regions, and environmental adaptations of 19th century European immigrants to North America's landscapes.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:[{id:"76073",title:"Integrating Ecological Site Descriptions with Soil Morphology to Optimize Forest Management: Three Missouri Case Studies",slug:"integrating-ecological-site-descriptions-with-soil-morphology-to-optimize-forest-management-three-mi",totalDownloads:22,totalCrossrefCites:0,authors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"},{id:"269286",title:"Dr.",name:"Christine",surname:"Aide",slug:"christine-aide",fullName:"Christine Aide"},{id:"269287",title:"Dr.",name:"Indi",surname:"Braden",slug:"indi-braden",fullName:"Indi Braden"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3054",title:"Approaches to Disaster Management",subtitle:"Examining the Implications of Hazards, Emergencies and Disasters",isOpenForSubmission:!1,hash:"0d6576de4f4c7fc7b8db5e91cba6dc28",slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/3054.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"865",title:"Perspectives on Nature Conservation",subtitle:"Patterns, Pressures and Prospects",isOpenForSubmission:!1,hash:"4a4d39cf2a0c2a9416049331b508aa88",slug:"perspectives-on-nature-conservation-patterns-pressures-and-prospects",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/865.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8011",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",isOpenForSubmission:!1,hash:"43ca8c43ab0963f6c43350764f696b63",slug:"natural-hazards-risk-exposure-response-and-resilience",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70600",title:"Microwave Radiated Sorption-Hazardous Emission Control by Popped Borax and Salted Pumice for Coal Combustion in Thermal Power Plants",doi:"10.5772/intechopen.89370",slug:"microwave-radiated-sorption-hazardous-emission-control-by-popped-borax-and-salted-pumice-for-coal-co",body:'Marble wastes, fine limestone, or hydrated lime is used as sorbent in fluidized bed combustion as desulfurizing sorbent in postcombustion. Popped borax and Tatvan pumice waste and char waste are yielded in two different size forms over sand size and − 20 micron. The forest wood wastes is in lump size conventionally evaluated in char carbon industry and other may be evaluated as filling materials in fine size lower than 20 microns. The waste carbon may be evaluated as sorbent in fluidized combustion of coal in composite forms following solid-liquid separation thickeners. In this study, Şırnak asphaltite char and clayish char as sorbent coal waste or char in finer size lower than 10 mm pyrolyzed may avoid heat decrease and without deteriorate nature and environment near thermal power plants. The waste fine of marble processing plants may be very effective in neutralizing acidic industrial waste waters and avoiding water contamination in streams. The utility of coal char and clayish char waste in toxic gas emission control during fluidized bed combustion can efficiently be made possible. However, fluidized combustion is carried out below 8 mm solid fuel combustion with addition of sorbent at weight rate of 20–25%. In order to avoid this high amount of sorbent consumption, the clayish char or coal waste cold be sufficient in homogenous disturbing flow manner of that waste material, clayish coal waste and Şırnak asphaltite char or biomass waste char pellets following pyrolyzed manure and local wood waste were used in laboratory type combustion chamber at 20% weight rate.
About 40, 60, and 80% manure char containing Şırnak asphaltite pellets were used in our combustion experiments as 1–2 mm sized pellets. The popped borax and pumice waste pellets provided an 88% sulfur dioxide emission and also wood char and soot pellets provided 45% emission reduction in fluidized bed combustion. Microwave activity in wet pellet columns was found to be effective in desulphurization of flue gas and char occurrence.
In the Thermal Coal Power station in Silopi, Şırnak, Park Elektrik Co., 405 MW electricity was produced using fluidized bed combustion in three boilers by burning 232 kg coal per MW [1]. Şırnak asphaltite contained 6.7% pyrite and 3.8% organic sulfur and combusted with local limestone as 92% calcium carbonate and 4% magnesium carbonate at 10% weight rate in the fluidized bed for desulfurizing sorbent [2]. Processing technologies using animal manure and combustible municipal waste should be under contribution to the fuel side for energy production in European countries (Figure 1) [3]. About 49% of the total municipal waste in Sweden was converted to energy in 2014 and this rate was 39, 7, and 22% for the Netherlands, the USA, and the EU27, respectively.
Waste-to-energy production and distribution of countries according to the European waste [
Regarding advanced technological developments in energy production, the low-quality municipal wastes needed the most economical technologies. In order to make it possible to produce waste-derived fuel products as Char and even coal waste diverted source in China [4, 5, 6, 7, 8, 9]. Combustible municipal waste rate reached 27.0% as paper and cardboards, and additionally, dried food waste was 14.6% and the yard waste was 13.5% after suitable segregation of the total collected waste in China in 2015 as seen in Figure 2.
Municipal solid waste (MSW) management in China from 1980 to 2013 [
On the way of washing and processing characteristics of the lignite as considered environment are distinctly separated in utilization and classification. In the view of producing high-value cleaned products, pyrolysis municipal waste or lignite char are being processed for their final products, managed on this active carbon purpose. Carbonized char waste and amount could also be evaluated in sorption and energy need in this study.
Effective carbonization processes depend on numerous factors including coal rank in carbonization and the volatile gaseous matter of coal such as the presence of hydrogen, carbonyl gas, and carbonization rate [11]. For stabilizing the desorption, the settings of optimal diffusion conditions including structure defects (nitrogen, phosphorus, sulfur, etc.), temperature, and oxygen content of coal and the optimizing carbon dioxide concentration ratios [12] added to the adsorption–desorption balance, the residence time, and the spatial distribution of molecules in coal pores among other factors that determine the efficiency of carbonization. Guerrero et al. [13] also included the carbon reactivity and the adsorption characteristics as factors affecting the rate and extent of carbonization that is dependent on the site activation, its gas desorption properties, and its porosity [14]. Carbonization is a prerequisite step for oil generation and soot formation from tire waste, biomass wastes, and coal. TGA results of waste materials showing sufficient carbon conversion are shown in Figure 3 [15].
TGA analysis showing carbon conversion of different waste materials used for carbon production.
A major reason is that the retention time in fixed film processes is longer than that in solid–gas processes. This allows more time for carbonization by cracking the desorbed persistent compounds. Furthermore, high-rank coals allow sufficient intimate contact between surface pores and gas atmosphere in the furnace due to more gas desorption [16, 17].
The porous structure of activated carbon is a factor that determines to a great extent both the rate and degree of carbonization [18]. Sharma et al. [19] found that a mesoporous coal carbonized more efficiently than a microporous coal.
Phenol molecules that may undergo an oxidative coupling reaction may be irreversibly adsorbed on coal, which in column back flow may result in low carbonization efficiency. Phenol radicals formed by the removal of a hydrogen atom from each phenol molecule can participate in direct coupling with other phenol-type radicals at even room temperature, with the coal surface serving as a catalyst. The types of catalysts are given in Table 1.
Type | Surface area m2/gr | Weight rate, % | Reaction performance | Contamination | Reference |
---|---|---|---|---|---|
Hematite over clay | 43 | 34 | 45 | Strong | |
Ferrite over fly ash | 20 | 56 | 33 | Strong | [20] |
Titanium oxide over ZEOLİTE | 120 | 12 | 55 | Strong | |
Vanadium oxide over alumina | 78 | 23 | 57 | Weak | |
Cobalt oxide over alumina | 54 | 12 | 45 | Weak | |
Nickel/Pt | 2 | 77 | 33 | Strong |
The types of catalysts and substrates and properties used in gas conversion syngas production.
Carbonization efficiencies exceeding the total desorption abilities during increased fast pyrolysis on coal and wood were also reported by Tosun [21].
The specific surface area measured as BET N2 sorption, total surface activity, oxygen functional groups, total surface impurities, metal concentrations, dielectric value, free radical concentration, and reactivity of coal were related to the carbonization activity. However, in some investigations, the pore size distribution of coal is also greatly to reduce pyrolysis kinetics [15].
Although molecular gas diffusion is described to be the primary mass transport process in the combustion chamber, complex convective gas emissions proliferated the alkali clusters below 1–2 mm size and exothermic combustion reactions increased toxic substances in the gas form, and a relatively porous structure of expanded clay interstitial spaces and cracks reduced over 5 mm size. The combustion gas substances toward the expanded clay surface through this surface alkali are primarily accomplished by molecular diffusion across the microcracks and alkali clusters. In the combustion experiments, the experimental condition is calculated on the basis of the ash composition in the ambient state. So neither the contained water vapor nor the condensing hydrocarbons are taken into account. Expanded clay and limestone sorbent use in asphaltite combustion provided sufficient hold-up gas as shown in Figure 4.
The sulfur sorption effect of expanded clay and limestone in combustion of Şırnak asphaltite [
Soot matter removal during BC treatments results from the combined effect of adsorption and degradation. The efficiency of the combined combustion of waste for soot formation needs lack of oxygen combustion method. The process is higher than expected for either soot formation or carbon without oil alone. The carbon surface for pollutants protects them from shock loadings of toxic and inhibitory materials, such as carbon. High inert gas processes using catalyst carbon as carrier for iron film attachment are efficient to remove soot from ethylene. However, in catalytic systems, the gas attachment to surface is less efficient than that in iron film or in fluidized bed reactors using CO2 and pellets as iron film carrier [22]. This is because, in the latter, then retention time of solids is generally much higher than in black carbon processes, allowing more time for gas attachment to BC. Figure 5 shows the flowsheet used in BC production from pyrolysis oil, waste oil, and natural gas and sometimes oil mixtures [20]. Waste char was proposed to produce from local waste sources in terms of agricultural and forest biomass waste in waste char carbon production system in waste pyrolysis purposed furnace unit for Şırnak as illustrated in Figure 6 [20].
Black carbon production system, purposed plant flowsheet from waste oil and pyrolysis oil and natural gas [
Waste carbon production system proposed for waste pyrolysis purposed furnace unit.
Carbonization of oil waste, asphalt or bitumen for active carbon production in slurries could evaluate efficiently sorption Au in pulp was commonly gold extraction systems, they use AC in fine size and as slurries gold cyanide solutions passed through. Fine activated carbon or char is more advantageous than granule AC. Additionally, powder AC provided uniform carbon site distribution on solids and agitation slurries without contamination or active site blocking. Additionally, less energy is required for milling of carbon considering the oily structure. It is a fact that pyrolysis of oil could become at low temperature carbonization blocking the active carbon sites even contaminated carbon pores when the condensate is removed from the liquid phase through furnace. The oil gradient should be determined for a suitable char production used as sorbent.
Alkali salts such as burned lime and hydrated lime, fluorite and calcium borates, limestone, and fly ash could be used in desulfurization in coal combustion. Marble wastes, coal, and wood char produced in two different forms in size may be also evaluated as sorbent in postcombustion. One type of sorbent, carbonized wood char is in lump size and can easily be evaluated in carbon industry and other fine size may be evaluated as filling materials in paint, rubber, and plastic as fire barrier mixed at fine size under 5 microns, which are collected following solid-liquid separation and milling. Char as carbonized from coal and coal waste in finer size may deteriorate nearby environment and may be used in water treatment and avoid contamination in industrial waste streams. Beneficiating from char waste in toxic gas emission control during combustion can efficiently be made possible. However, fluidized combustion is carried out below 7 mm solid fuel combustion. Fine matters below 100 microns may deteriorate flow manner, so to avoid this disturbing flow manner of that fine char waste material, clayish char pellets were used in combustion chamber. Fine char wastes may also be evaluated with lime as sorbent raw material. The coal fly ash and Şırnak asphaltite fine could manage remediation of soil as sorbent utility without carbonation and neutralizing humate material as waste [23]. The black carbon used in industrial sectors such as rubber, paper, and animal food production may evaluate as much as 40% marble waste fine coal char and fly ash. The fly ash of Silopi Power Plant combusting Şırnak asphaltite fine containing Ca ferrite and alkali ferrite pellets could be used as sorbent in postcombustion. In this study, TGA experiments with 1–2 mm sized ash ferrite pellets of Silopi Power Plant were evaluated and compared with char.
Microwave activity and chemical activity in postcombustion were found to be effective in desulphurization of flue gas and soot occurrence. Microwave activation of fly ash with Ca ferrite and metallic slag was much efficient in humidified exhaust gas reactions. Fine chemical washing during microwave absorption columns and heating may also be evaluated as active site formation at raw material without destroying chemical form for industrial sectors such as active chemical reactivity.
According to the Clapeyron Equation, there is a direct proportionality between the concentration c adsorbent gas mixture and p partial pressure:
For sorbents that have microporous mesoporous structure, Dubinin Equation for first-order isotherm
For meso- and nanoporous sorbents,
For second-order isotherm in which dynamic rate of adsorption by Shilov Equation
For third-order heterogeneous adsorption, where K = B/v = a/vc, thermal power generation causes gas pollution by nitrogen oxide sulfur oxide and heavy toxic cyanide and lead emissions due to fuel contamination in Austria (Figure 7) [24] and coal firing power plant data for Turkey is given in Table 2 [24].
Emission of thermal power plants in Austria.
The sulfur oxide emissions greatly concerned the thermal boilers and energy sector, and caused more efficient new methods for postcombustion SO2 capture from the stack gas. Among procombustion and postcombustion systems, wet flue gas washing was carried out in higher and wider shower stacks, and lime slurry sorption one, which was used for a gas cleaning separation for many years. The characteristic features of adsorption column provide long life of the sorbents used, low energy consumption, and less effect on the environment. However, sorption column by lime slurries at postcombustion application required distinct preparation of the stack gas fed into the washing tower of SO2 separation so that the flue gas temperature is as low as possible and with a lack of steam in it.
The gaseous matter reacts with adsorbent and then adsorbs the sorbent in certain amount that is equal to the amount of previous adsorbent that was partially degraded on the surface of the expanded clay, removing aliphatic hydrocarbons and phenols/chlorinated phenols and carbonyl toxins, along with organic matter–related odor substances.
The Langmuir model [25, 26] is the common one sorption explanation for well-known reacting column packed explaining sequential diffused and concentrated adsorbed matter and kinetics. Although the linear concentration sequentially followed, sequential adsorption packed bed column was usually experimented by various researchers for the sorption diffusion process of fuel carbon materials, and it can also be used for the sorption over leafy composites. The carbon material is soaked in fluid in an ethanol extraction vessel, and after some time, the solute is diffused from the leafy composite substrate matrix and gets adsorbed on the active surface sites, which further mass transfers to the separator vessel in the solvent. The Langmuir extraction model is presented in the following form:
where Y is % extraction yield (w/w) and Yf and KL are constants (Yf is the yield at infinite time).
The temperature dependence of the adsorption coefficient is governed by an Arrhenius equation as follows [27]:
where E is the activation energy (kJ/mol), K0L is the pre-exponential coefficient, and R is the universal gas constant.
This type of microwave treatment may be advantageous in internal selective heating and activating coal grains and provides selective surface oxidation of pyrite in coal desulfurization.
Microwave energy with frequency nonionizing electromagnetic radiation in the range of 300 MHz to 300 GHz stopped. The radiation includes tri-band microwave frequency (UHF: 300 MHz to 3 GHz), super high frequency (SHF: 3 GHz and 30 GHz), and extremely high frequency (EHF 30 GHz to 300 GHz) [28]. The microwaves penetrate the depth of the sample in the form of electromagnetic energy, which increases the temperature of the sample volume, unlike conventional heating [29].
Mineral leaching in slurries under microwave thermal effect, melting of the microwave wet roasting of sulfide concentrates, wet oxidation of refractory gold concentrates, and activated carbon regeneration can be accomplished in wet solutions [30, 31]. There will be wet solutions of ferrite affected by microwave heating as sorbent effect of fly ash of Şırnak asphaltite same as that of limestone rock [20, 21, 32].
Microwave heating technology provides oxidation heating and the interaction was determined to be applicable successfully [28]. Microwave interaction parameters of rocks, microwave penetration, expansion of different mineral grains, and grain boundary cracking properties were examined. The temperature varies according to the thermal effects of microwave on mineral species [33]. Table 3 showed microwave radiation, the higher penetration of mineral grains of pyrite as given and has lead 1019°C like a temperature change.
Pollution | Emission kg/MWh | Emission %/MWh |
---|---|---|
CO2 | 1.650 | 13 |
Particle | 0.174 | 0.3 |
SO2 | 0.011 | 0.01 |
NOx | 0.046 | 0.02 |
Polluting gas emission of thermal power plants in Turkey.
Mineral | Maximum temperature, °C | Time, min |
---|---|---|
Albite | 69 | 7 |
Chromite | 155 | 7 |
Chalcopyrite | 920 | 1 |
Zinabar | 144 | 8.5 |
Gehlenite | 956 | 7 |
Hematite | 1082 | 7 |
Magnetite | 1258 | 2.75 |
Marble | 74 | 4.25 |
Molybdenite | 192 | 7 |
Orthoclase | 67 | 7 |
Pyrite | 1019 | 6.75 |
Pvrotine | 586 | 1.75 |
Quartz | 79 | 7 |
Sphalerite | 88 | 7 |
Zircon | 52 | 7 |
Mineral microwave thermal interaction values [33].
Pore structure of the coal sıde rock, shale texture, contained pyrite at grain size in microns and determined the resistance at intergranular interaction with microwave. The wet heat sorption of the coal’s texture of side rocks and coal was determined with TGA standard test.
The biochar and char waste with clay produced from different combustion temperatures at 700–900°C were tested in three column series for adsorption of SO2 as seen in Figure 5. Test results were determined as weight change in TGA.
The experimentation studied weight adsorbed matter presenting decrease or increase at TGA analyzer and simulated numerical calculations of the carbon porous counted system for letting sequential passage of the flue gas fed as the wet SO2 sorption, by primarily under vacuum pressure swing sorption separation unit, containing the absorption chiller (AC). Steam matter in flue gas affected resulted numerical concept, Mainly it is assumed that gas flowing as the wet flue gas which occurred in comparison upper and lower heat source for AC; the flue gas, which is larger heat carrier so that required by the AC, heat exchangers must be practiced.
The SEPURAN® hollow membrane was effective in gas separation and cleaning. The gas cleaning unit compromised various membrane systems for different applications. SEPURAN® Green is tailored exactly to the specific application, which was ideally clean biogas due to its high CO2/CH4 selectivity.
Gas sorption sequential columns and composite sorbent membranes provided adsorption work according to the principle of selective gas permeation through the char and composite membrane surface. The reactivity and active site pore improve permeation and the inner site mass rate of each gas depend on its solubility on the char surface and active composite membrane material and on the diffusion rate of the gas.
The active char could improve reactivity and high mobility of molecules that pass through the composite membrane. The larger gas molecules take more time to permeate the membrane. The experiments showed that different type of composite polymer membrane materials could work heavier gas separately. The mainly selective gas passage through the membrane in order to clean the flue gases was achieved by means of a partial pressure gradient.
Municipal solid waste (MSW) yielded worthless litter as disposed matter and recycled or covered by land in certain areas, and in many states, it may evaluate as a renewable energy source by incineration. Totally, about 130 million tons of MSW are incinerated annually in waste-to-energy facilities that produce electricity and steam for district heating and even metal contents may be recovered in recycling plants. A large amount of paper is recycled in China, evaluating a significant amount of paper sludge and residue during the paper production process. The incineration plants [34] can use that sludge and provide waste elimination. Currently, two incineration methods, distinguished as either direct incineration of partially dewatered sludge (generally 80% water content) or dried sludge incineration (dried to about 40% water content), are available. Research on comparison of fixed cost, operating cost, and pollutant emissions between the two systems is presented. Fixed cost and steam consumption increase for the dried sludge incineration system though this method possesses many advantages; these include the decrease in consumption of auxiliary coal, service power, and flue gas purification.
The distinct character of adsorption column sorption in packed bed layer was mainly long life use of the sorbents, consuming low energy. The alkali and lime slurries used for washing protect the environment from acid rains and acidic gas emissions such as chlorides and sulfates. Higher column units are used sequentially and in cycling manner provide much efficient capture of the toxic gases in the flue gas fed into the postcombustion system with SO2, even lead and cyanide gases separated on char and composite waste char clay composites so that the flue gas temperature is as low as possible, and there is no water content in it.
Microwave heating of wet coal char samples containing pyrite of minerals may provide the inner thermal stress and interfacial cracks. In this work, following microwave sorption and pellets to a size of minus 1–2 mm from 200 μm and especially, the effect of microwave radiation on char sorption of those char and ferrite fly ash samples was investigated. Limestone and lime mixed pellets were also tested by TGA with microwave wet sorption in columns on combusted Şırnak asphaltite; marl from Şırnak Coal Mine and shale taken from coal mine waste dumps were also tested. In the experiment, microwave power of 900 W microwave radiation was practiced at 20 min cycling sorption bed in Bosch-type microwave laboratory equipment, as shown in Figure 8 [35, 36, 37].
Adsorption amount sequent at back mixing model for column sorption [
Hydrodynamic parameters investigated pressurized column (Figure 9), and simulation results of the output of concentrations (step curve F(t/τ), where τ is the mean residence time of fluid in the column) are shown in Figure 10. According to the shape of the curves in column adsorption shown in Figure 11, the response of the stage-wise back mixing model changes from a mixed flow condition managed at low pressure.
Proposed adsorption model, sequential column series in fluidized bed combustion of Şırnak asphaltite.
Microwave radiation carried out in wet steam of stack gas flow in pressurized packed counter current flow matter.
Spherical core shrinking sorption reaction model [
The popped borax-char column temperature produced from different combustion flue gas exit level or long duration of cooling of exhaust system (Figures 12 and 13). The temperatures at 50–200°C were tested in three column series for adsorption of SO2 as seen in Figure 14. Test results were determined as weight in TGA.
Adsorption column used in postcombustion with packed popped borax-char carbon tubes.
SOx output concentrations packed bed residence time of waste gas in the column unit.
The effect of adsorption pressure effect on sorbent pore change as %.
The popped borax-char column humidity produced from different combustion fuel and combustion temperature exit or fuel moisture content in the exhaust system. The steam amount in flue gas at exhaust chamber that varied at 5–20% was tested in three column series for adsorption of SO2 as seen in Figure 15. Test results were determined as weight in TGA.
The effect of adsorption pressure effect on sorbent weight change as %.
Advanced materials and technologies should be used to prevent pollution of exhaust gas; the material used in this study is finally concluded as efficient and high cut with ecological environmental protection (Figure 16).
The effect of adsorption pressure effect on pumice popped borax compost sorbent weight change as %.
The representative poped borax composite samples at 1–3 mm sized pellet fractions of combustion Şırnak asphaltite, shale and coal waste raised SO2 sorption weight by the microwave radiation increased to 23, 21, and 12% at decreasing pressure., respectively, and all those valuse with char raised to 46, 24, and 14% at decreasing pressure. Microwave wet heating of porous coal did not change. The optimum sorption with char and ferrite using column was effective far more than waste coal and limestone as was discussed in microwave heating ability and heat conduction in the wet column designed in laboratory TGA.
Fine marble waste and char composite may also be evaluated as lime raw material for sorbent material in power sectors and industrial furnaces such as rubber, paper, and wood plants.
The popped borax and char waste pellets managed at 10 minutes in packed bed with a porosity of 21 and 88% sulfur dioxide emission hold up and soot reduced 45% emission reduction in fluidized bed combustion.
The results showed expansion of the operational envelope for gas having much steam carryover and improved performance of the modified column. For low pressures, the modified column can remove all the toxic emissions from the gas stream, resulting in low steam carryover (separation efficiency = 70%). The study of emission control at sustainable development from many aspects in power generation was compulsory, and then advanced materials and technologies should be used to prevent pollution of exhaust gas. The material used in this study is finally concluded as efficient and high cut with ecological environmental protection.
AC | activated carbon |
C | constant defined in Eq.(1)(g/kg) |
Dp | mean pore diameter of adsorbent (nm) |
PD | intraparticle diffusion |
kp | rate constant (mg/(g min1/2)) |
V | surface of adsorbate (cm2 g−1) |
r | volume of adsorbate (mL) |
D | distance in radial direction of adsorbent; 0< r < R (cm) |
ε | adsorbent dose (g L−1) |
ρP | void fraction in the adsorbent |
d | particle density of adsorbent (g cm−3) |
m | weight of adsorbent (g) |
Ea | activation energy (J mol−1) |
R | gas constant (8.314 J mol−1 K−1) or Radius of the particle of adsorbent in the Crank model (cm) |
T | temperature (K) |
Sext | specific area of the adsorbent due to external surface(m2/g) |
SpBET | specific surface area of the adsorbent (m2/g)tadsorption time (min) |
tref | the longest time in adsorption process (min) |
Vmicro | micropore volume of the adsorbent (cm3/g) |
Vpore | total pore volume of the adsorbent (cm3/g) |
DeffA=1−YAYB/DAB+YC/DAC+YD/DAD | Diffusivity |
(ka) | adsorption and |
(kb) | desorption rate constants |
ki | is the IPD rate constant [mg/(g⋅min0.5)], and |
B | is the initial adsorption (mg/g) |
Mycotoxins are secondary toxic metabolites with a wide variety of chemical structures synthesized by fungi (mold) [1]. Mycotoxins are thought to be a kind of “chemical defense system” to protect mold from insects, microorganisms, nematodes, grazing animals, and humans [2]. Molds reproduce by means of spores, and their small molecular weight spores are easily disseminated to environment by wind. They cannot be affected by the adverse environmental conditions and can be present in the latent state for long periods. Moreover, when the environmental conditions are appropriate, spores return to vegetative form and can form into new mold colonies. Agricultural products can be contaminated with mold in pre-harvest via insect and bird damage and harsh weather condition damage such as hail damage. In addition, selected harvesting method is one of the most important reasons in contamination of the mold to the products. Improper storage, transport, and marketing can also cause the mold growth and synthesis of mycotoxins [3].
Mycotoxin can occur in food and agricultural products via many contamination pathways, at any stage of production, processing, transport, and storage (Figure 1) [4]. Factors that affect mold growth and mycotoxin production are temperature, relative humidity, fungicides and/or fertilizers, interaction between the colonizing toxigenic fungal species, type of subtract and nutritional factors, geographical location, genetic requirements, and insect infestation [5, 6].
Factors affecting mycotoxin occurrence in the food and feed chain [
Approximately 400 fungal secondary metabolites are known to be toxic, and one quarter of agricultural products have been reported to be contaminated with mycotoxins in the world [5, 6, 7, 8, 9]. While a type of mold may form more than one mycotoxin, a mycotoxin can be synthesized by many molds. The most common types of mold which are known to produce mycotoxins are
According to the result of many studies in poultry and mammals, mycotoxins can be carcinogenic, mutagenic, teratogenic, hepatotoxic, nephrotoxic, immunosuppressive, and embryotoxic [11]. The phenomenon of toxicity is called mycotoxicosis occurring after consumption of mycotoxin-contaminated product by human and animal [12].
Especially cereals, grains, nuts, oilseeds, fruits, dried fruits, vegetables, cocoa and coffee beans, wine, beer, herbs, and spices are major mycotoxin vectors since they are consumed by a large mass of people and animals [4]. Mycotoxins cause different degrees of toxicity according to exposure time, mycotoxin amount, physiological state, and sensitivity of the organism in humans and animals.
In addition to risk of public health, mycotoxins generate high level of economical loses for food industry due to reduced crop yields, lost trade revenues (local and international), and livestock illnesses [13, 14]. Elimination of mycotoxin is quite though due to resistant to physical, chemical, and biological methods; however, some of the measures described in the following sections may help to prevent mycotoxin. The methods used for mycotoxin determination are chromatography such as high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), gas chromatography-mass spectrometry (GC-MS), and also enzyme-linked immunosorbent assay (ELISA) technique and biosensor-based screening methods [15]. Detection is complicated due to limitations in analytical methodology [16]. Therefore, prevention of mold contamination and mycotoxin synthesis is essential for food safety in food industry.
According to the Food and Agricultural Organization (FAO), 77 countries have established guidance and regulations on mycotoxin in food and feed to control the level of mycotoxin. On the other hand, 13 countries including African countries still do not have specific regulation for food safety [4].
Ergotism is one of the oldest determined mycotoxicoses (disease) in human and results from consumption of the ergot body in rye or other grains infected by a parasitic fungus of the genus
Mycotoxins can occur in the food in several ways (Figure 1), but technically divided into two groups; first is mold growth as a pathogen plant in field, another one is grow on stored. After plant materials are contaminated with mold spores from soil and air, they easily contaminate other food source, production area, laboratory, and even kitchen of our homes. Certain species of mold are capable of mycotoxin synthesis; therefore, each food contaminated with mold always may not contain mycotoxins. Nevertheless, moldy products are considered to be risky products in terms of mycotoxin.
Mycotoxins appear in almost all kinds of animal feed and products such as wheat bran, noug cake, pea hulls, maize grain, milk and meat, and also human food such as cereal, fruit and vegetables, spice, etc. [5]. Consuming these foods creates serious health risks in human and all animal species. Mycotoxin intake by feed or food causes chronic intoxication rather than acute symptoms. Acute toxicity is observed in high-dose mycotoxin exposure, and symptoms show a rapid effect such as borborygmy, abdominal pain, diarrhea, etc. On the other hand, low-level mycotoxin exposure in long period causes serious impairments in the liver, kidney, and immune system organs and tissues. Therefore, mycotoxin plays a significant role in cancer in these organs [2]. Some important mycotoxin health effects are shown in Figure 2. Toxic effects on humans and animals of important mycotoxins are shown in Table 1 [19].
Aflatoxin (AFL), ochratoxin A (OTA), patulin (PAT), fumonisin (FUM), trichothecenes (TCT), and zearalenone (ZEA) mycotoxin health effects [
Mycotoxins | Genus/species | Major food | Toxic effects and diseases |
---|---|---|---|
Aflatoxin | Cereals, feeds, oilseeds and pulp, coconut | Carcinogenic, hepatotoxicity, teratogenicity, decreasing immune systems, affecting the structure of DNA, hepatitis, bleeding, kidney lesions | |
Fumonisin | Cereals, corn | Encephalomalacia, pulmonary edema, carcinogenic, neurotoxicity, liver damage, heart failure, esophageal cancer in humans | |
Ochratoxin OTA | Cereals, herbs, oil seeds, figs, beef jerky, fruits, and wine | Kidney and liver damage, loss of appetite, nausea, vomiting, suppression of immune system, carcinogenic | |
Patulin | Silage, wheat, feeds, apples, grapes, peaches, pears, apricots, olives, cereals | Neural syndromes, brain hemorrhage, skin lesions, skin cancer, lung, mutagenicity, antibacterial effect | |
Trichothecenes (T2, DON, DAS, HT2) | Cereals, feeds, silage, legumes, fruits, and vegetables | Immune suppression, cytotoxic, skin necrosis, hemorrhage, anemia, granulocytopenia, oral epithelial lesions, GIS lesions, hematopoietic, alimentary toxic aleukia (ATA), hypotension, coagulopathy | |
Zearalenone | Cereals, corn, silage, timothy grass, fodder | Carcinogenic, hormonal imbalance estrogenic effect, reproductive problems, teratogenic |
Name of some important mycotoxin-producing fungi, susceptible foods, and mycotoxin effects on humans and animals [19].
Mycotoxins have caused many serious outbreaks worldwide. There was an outbreak that occurred in 1967, and 26 people were poisoned because of the consumption of moldy rice for up to 3 weeks in Taiwan [21]. An outbreak of aflatoxicosis affecting humans, reported in India, led to the death of 100 people in 1974 [22]. Another outbreak was reported in India in 1995, affecting 1424 people due to sorghum and maize contaminated with fumonisin [23]. During January–June 2004, an aflatoxicosis outbreak in eastern Kenya resulted in 317 cases and 125 deaths [24].
Mycotoxin contamination in foods and fodder has been becoming a global concern day by day. According to Food and Agricultural Organization (FAO) reports, it is estimated that mycotoxin affects nearly 25% of the world’s crop each year and is causing huge agricultural product and industrial losses in billions of dollars [25]. For example, estimated annual loss in the United States is approximately $ 0.5–1.5 billion [19]. The main effects of mycotoxins on national economies can be thought in five ways:
Product yield losses due to toxigenic mold diseases
Decrease in commercial value because of contaminated food and feed
Human and animal health losses due to harmful impacts associated with mycotoxin-contaminated food and fodder consumption
Cost of analysis of mycotoxin
Strategies to control mycotoxin contamination
Economic impacts are felt by agricultural chain such as manufacturer of plant and animal, especially cereal industry, consumers, and briefly all farm-to-fork steps.
Aflatoxins are a group of toxic secondary metabolites of filamentous fungi,
Ochratoxin A (OTA) is a natural mycotoxin produced mainly by fungal type of
Fumonisins are generated by various fungal species such as
The International Agency for Research on Cancer (IARC) identified FB1 as possibly carcinogenic to humans (group 2B). Recent studies reported that FB1 causes an increased prevalence of esophageal and liver cancer in humans [59]. Furthermore, this mycotoxin has been found to have toxic effects against several organs (nervous and cardiovascular systems, liver, lung, kidney) in animals [60]. Fumonisins are largely found in corn and corn-based foods and also FB1 in rice, beer, sorghum, cowpea seeds, triticale, beans, asparagus, and soybeans [61].
Zearalenone (ZEA), known as an estrogenic mycotoxin, is a secondary metabolite produced by
Several in vivo studies found that ZEA disrupts hormonal balance due to its similarity to naturally occurring estrogens [64]. The mycotoxin has high affinity for estrogen receptors, causing reproduction and fertility disorders in mammals [65]. In addition, it is known that progressive exposure to endocrine-modulatory compound has been linked with carcinogenesis in human [64]. According to the European Food Safety Authority (EFSA) report in 2014, the bioavailability of toxin is up to 80% in human and animals such as rats, rabbits, and pigs [66]. Moreover, recent works report ZEA is metabolized in the liver and has shown hepatotoxic, immunotoxic, carcinogenic, and nephrotoxic effect in animal tests [67, 68, 69]. As this mycotoxin possesses such consumer health risks, the European Union (EU) has prescribed the limits of ZEA (20–350 μg/kg) for various processed and unprocessed cereals [66].
Trichothecenes are a large group of mycotoxins produced predominantly by
The mechanism of action of trichothecenes is based on the inhibition of protein synthesis in eukaryotes. This mycotoxin affects peptidyl transferase enzyme binding the 60S ribosomal subunit, thus causing the inhibition of protein translation and ribotoxic stress [75]. Also, Pestka reported these groups of mycotoxins cause immunosuppression or immune stimulation by affecting the leucocytes [76].
The family of trichothecenes has a significant impact on cereal and grain production due to health risk for human consumption, livestock feed, or malting purposes [77, 78]. According to report from the FDA, economic losses associated with mycotoxin ranges from USD 0.5 million to over USD 1.5 billion from aflatoxin (corn and peanuts), fumonisin (corn), and deoxynivalenol (wheat) in the United States. [72]. Hence, control of these mycotoxins is essential for human and animal health and economic reasons.
Deoxynivalenol (DON), known as vomitoxin, is the most commonly detected trichothecenes in grains such as wheat, barley, oats, rye, and corn and less often in rice, sorghum, and triticale [79]. Even though NIV presence of cereals appears generally to be lower than DON [80], it has been reported that the occurrence of NIV in of wheat and barley is as prevalent as that of deoxynivalenol (DON) in Japan [81]. According to animal toxicity studies, NIV shows higher toxicity than DON. The LD50 values for DON and NIV in tests in mice were 78 and 39 mg/kg, respectively, and DON and NIV, similarly to other trichothecenes, show inhibitor effect on cell metabolism such as protein, DNA, and RNA synthesis [82]. In addition, these mycotoxins affect cell division and mitochondrial functions [83, 84, 70]. Both mycotoxins exhibit major symptoms such as abdominal discomfort, diarrhea, vomiting, and inflammation of the throat, weight loss, and anorexia [85].
The World Health Organization (WHO) reported that trichothecenes shows fatal and chronic intoxications on human and livestock and also DON shows teratogenic, neurotoxigenic, and immunosuppressant effects [86].
According to the conducted BIOMIN World Mycotoxin Survey, DON appeared in 81% of livestock feed from 81 countries worldwide followed by fumonisins that were detected in 71% of samples. Therefore, DON is reported as the most common mycotoxin worldwide (https://www.biomin.net/en/biomin-mycotoxin-survey/).
Food safety is a key component in public health issue, and a mycotoxin is a huge food safety risk in developing countries. Prevention is the most important and effective way in reducing fungal growth and mycotoxin production to ensure food safety. The following steps that explain prevention and control of mycotoxin occurrence include good agricultural practices (GAP) in field, control practices of harvesting and storage, physical methods (cleaning, milling, etc.), implementation of biotechnological application, biological control through the use of controlled atmosphere during storage, detoxification/degradation, and fermentation techniques.
Pre-harvesting is considered first and one of the most important stages to prevent mold growth and mycotoxin synthesis. Several strategies are available for the produce of healthy products and reduce the mold formation at pre-harvesting, including selection of plants according to the soil structure and production capacity, use of plant which is resistant to fungi and insects, irrigation time, make fertilization, use of insecticides to prevent insect damage [87].
Harvesting at the appropriate time periods (low moisture and full maturity) is essential for reducing the risk of a mycotoxin contamination since overmaturity creates sensitivity to mold growth. Additionally, suitable harvesting equipment and procedures should be used, and crops should be dried after maturity to both reduce grain moisture to safe levels [88].
The latest technological advances provided new paths in mycotoxin control strategies that include the use of a controlled atmosphere with inhibitory or a protective effect and use of naturally occurring compounds under different conditions and essential oils with antioxidant properties to decrease fungal growth and mycotoxin production in grains during storage [89]. Moreover, these strategies also include using regularly cleaned transport vehicles to prevent cross contamination of products; monitoring of temperature, humidity, aeration and pest infestation periodic during storage [90]; using mold inhibitors (propionic acid) to contaminated food and feed; and application of disinfectant such as sodium hypochlorite to storage area [91].
Some studies have shown that using physical methods (dehulling, washing, sorting, and cleaning of visible moldy seed) reduces different mycotoxin species in foods regardless of grain genre [70]. Scudamore and Pascale et al. [92] and Patel [93] observed a reduction of T-2 (62%) and HT-2 (53%) and DON (50%) in wheat seeds after cleaning. Scudamore and Patel also reported a 32% reduction in fumonisin levels in corn in an industrial enterprise [94]. Moreover, milling is an important effect in the reduction of
One of the best applicable strategies for the prevention of mycotoxin formation is the cultivation of fungal infestation-resistant plants and improvement of the genetic composition to suppress mycotoxin production [96]. The benefits of biotechnological applications were observed with Aflasafe. Aflasafe is a biocontrol product that includes a blend of four fungal species covered over grains which reduce aflatoxigenic fungi that produce AFs in maize and groundnuts (https://aflasafe.com/).
Mycotoxins are resistant to heat and cannot be completely destroyed under normal cooking process. On the other hand, mycotoxin reduction has been determined after heating, and this may be the result of reactions changing the chemical structure [70]. Ryu et al. reported heat treatment (at temperature 120–160°C) causes a reduction between 66 and 83% of ZEN [97]. Scott and Lawrence also reported a reduction of 60–100% of fumonisins with a heat treatment at 190°C (60 min) and 220°C (25 min).
Biological control of mycotoxins via detoxification/degradation offers a promising alternative method [98]. Recently the effectiveness of fermentation for the reduction and elimination of mycotoxins has also been proven. Studies documented in the literature generally show that mycotoxins are reduced by conversion, detoxification, binding, degradation, and decontamination after food fermentation [99]. Modification of the chemical structure of the mycotoxin molecule, removal or detoxification/inactivation, and adhesion to bacterial cell walls provide a reduced toxicity during fermentation [99]. Implementation of these preventive methods cannot solve the problem alone; also it must be an integral part of an integrated food safety management system based on the hazard analysis and critical control point (HACCP).
HACCP is a food management system where food safety is addressed through the analysis, control, and monitoring of physical, chemical, and biological hazards from raw material manufacturing, supply, and handling to production, distribution, and consumption of the finished product [100]. The National Advisory Committee on Microbiological Criteria for Foods (NACMCF) published a guideline about HACCP containing seven basic principles, decision tree, and all plans in 1992 [101]. Implementation of HACCP is an effective strategy for prevention, control, and periodic monitoring of mycotoxin in all stages from field to the consumer. There are 12 successive steps recommended to implementation of HACCP system. Previous HACCP studies can be researched to set up tasks from 1 to 5 that specify each food process, and tasks required for mycotoxin control begin at 6 (Principle 1).
Establish the HACCP team.
Describe the product.
Identify the product’s intended use.
Draw up the commodity flow diagram.
Confirm the flow diagram on-site.
Identify and analyze hazard(s) (Principle 1).
Determine the critical control points (CCPs) (Principle 2).
Establish critical limits for each (CCP) (Principle 3).
Establish a monitoring procedure (Principle 4).
Establish corrective action (Principle 5).
Verify the HACCP plan (Principle 6).
Keep record (Principle 7).
Crops and tolerated levels of mycotoxins (μgkg−1) | |||||
---|---|---|---|---|---|
Country | Mycotoxins | Rice | Maize | Spices | Fruit juices |
Brazil | AFB1/AFG1 | 30 | 30 | 30 | 30 |
China | AFB1 | 10 | 20 | — | — |
France | FB1 | 1000 | 1000 | — | — |
Hungary | Total AF OTA | 50 5 | 50 5 | - - | - - |
Japan | AFB1 Patulin | 10 | 10 | 10 | — |
The United States | Total AF Patulin | 20 - | 20 - | 20 - | - 50 |
Turkey | AFB1 Patulin | 2 - | 2 - | 5 - | - - |
Global regulation of mycotoxin contamination in agricultural products [103].
Microbiological and/or chemical tests can be used to confirm which product is meeting CCP.
Asking questions especially to CCP employees.
Internal or external audit by independent person to check whether HACCP system is being implemented.
Step/CCP | Hazard analysis | Monitoring | Corrective action | |||
---|---|---|---|---|---|---|
Hazard | Control | Critical limit | Monitoring | Frequency | ||
Pre-harvest/ growing | Low soil moisture leading to plant stress during kernel development | Irrigate | Lower limit of critical water activity (aw) (check with your agronomist/extension staff for an exact value) | Measure soil moisture and record | Weekly on Monday morning | Additional irrigation; record amounts |
Insufficient soil nutrients leading to plant stress during kernel development | Fertilize | N, P, and K applications as recommended for hybrid by local agronomists (insert the values) | Fertilizer applied (appropriate for soil type and hybrid); amounts and type recorded | As recommended for hybrid | Additional fertilizer; record amounts added | |
Insect attack leading to damaged kernels | Integrated pest management (IPM) plan | Insect population within acceptable limits as determined by control program | Visual inspection and sample, with results recorded | Weekly | Apply pesticide in accordance with IPM plan | |
Harvest | Damage to kernels from harvester | Harvest when kernels are dry | Moisture content ≤14% | Measure and record grain moisture | Prior to harvest | Delay harvest till kernels are dried enough |
Storage | Excessive moisture content of kernels | Do not store until kernels are dry | Moisture content ≤14% | Measure and record grain moisture | Immediately prior to storage | Dry mechanically |
Insect attack, allowing fungi to penetrate kernels | IPM plan | No evidence of insect or rodent infestation using inspection protocols specified in IPM plan | Visual inspection with results recorded | Weekly | Apply pest control methods in accordance with IPM plan | |
High ambient humidity and temperature | Aerate grain to control temperature and humidity | Temperature and humidity within limits recommended in industry literature | Measure and record humidity, ambient temperature, and airflow | Daily during storage | Adjust aeration time of day or airflow to achieve desired temperature and humidity |
HACCP plan of maize [102].
Mycotoxin is a well-known food safety risk, which is a threat to human and livestock health, and has high economic significance in food industry. Recently, the food industry has become aware of the new term modified mycotoxins introduced by Rychlik et al. (masked mycotoxin) [104]. Food safety risk has risen since masked mycotoxins which pose many difficulties including the unknown occurrence/co-occurrence of these compounds and their toxicological properties. In addition, Lorenz et al. reported that the European Food Safety Authority (EFSA) has taken into account efforts to address this emerging issue in food safety by developing strategies on how to evaluate potential added health risk due to the occurrence of modified mycotoxins [104].
Mycotoxigenic molds are difficult to prevent and control due to their widespread presence in nature. Prevention of mycotoxin synthesis in all stages of food processing is an essential point for public health and economic reasons. Many practices used for prevention of mycotoxin include good agricultural practices (GAP) in field, control practices of harvesting and storage, physical methods (cleaning, milling, etc.), implementation of biotechnological application, biological control through the use of controlled atmosphere during storage, detoxification/degradation, and fermentation techniques.
Meanwhile a number of techniques for mycotoxin control and management prove to be quite costly and/or unenforceable in some cases. On the other hand, using fermentation process for appropriate process has been recommended for mycotoxin reduction by Adebiyi et al. [99]. In the future, more emphasis should be given to nanotechnology and genetic engineering practices in the development of durable product types to ensure food safety.
In addition to these applications, food safety management systems such as HACCP, GAP, and good manufacturing practices (GMP) should be integrated at all stages of production, transport, and storage, in order to minimize contamination in food industry. Also fairly new food safety system including threat assessment critical control points (TACCP), vulnerability critical control points (VACCP), and hazard analysis and risk-based preventive controls (HARPC) should be investigated and implemented to ensure an effective control system.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5818},{group:"region",caption:"Middle and South America",value:2,count:5287},{group:"region",caption:"Africa",value:3,count:1757},{group:"region",caption:"Asia",value:4,count:10539},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15929}],offset:12,limit:12,total:119317},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"qngrRaqGuveqFgrcChoyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"55",title:"Immunology",slug:"immunology",parent:{title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:4,numberOfAuthorsAndEditors:103,numberOfWosCitations:50,numberOfCrossrefCitations:42,numberOfDimensionsCitations:77,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"immunology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6243",title:"Autoantibodies and Cytokines",subtitle:null,isOpenForSubmission:!1,hash:"6b5642d13358449f5e7bb5eaec28ead9",slug:"autoantibodies-and-cytokines",bookSignature:"Wahid Ali Khan",coverURL:"https://cdn.intechopen.com/books/images_new/6243.jpg",editedByType:"Edited by",editors:[{id:"64042",title:"Dr.",name:"Wahid Ali",middleName:null,surname:"Khan",slug:"wahid-ali-khan",fullName:"Wahid Ali Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7248",title:"Dendritic Cells",subtitle:null,isOpenForSubmission:!1,hash:"ce3caba88847e8b12beb992e7a63e1dc",slug:"dendritic-cells",bookSignature:"Svetlana P. Chapoval",coverURL:"https://cdn.intechopen.com/books/images_new/7248.jpg",editedByType:"Edited by",editors:[{id:"70021",title:"Dr.",name:"Svetlana P.",middleName:null,surname:"Chapoval",slug:"svetlana-p.-chapoval",fullName:"Svetlana P. Chapoval"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5300",title:"Advanced Biosignal Processing and Diagnostic Methods",subtitle:null,isOpenForSubmission:!1,hash:"6ff0e362b66214cde5c72df4c671f32c",slug:"advanced-biosignal-processing-and-diagnostic-methods",bookSignature:"Christoph Hintermüller",coverURL:"https://cdn.intechopen.com/books/images_new/5300.jpg",editedByType:"Edited by",editors:[{id:"180972",title:"Dr.",name:"Christoph",middleName:null,surname:"Hintermüller",slug:"christoph-hintermuller",fullName:"Christoph Hintermüller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1436",title:"Applications of Immunocytochemistry",subtitle:null,isOpenForSubmission:!1,hash:"ebd0373d5312e8911e528f4d6f6a1905",slug:"applications-of-immunocytochemistry",bookSignature:"Hesam Dehghani",coverURL:"https://cdn.intechopen.com/books/images_new/1436.jpg",editedByType:"Edited by",editors:[{id:"94972",title:"Dr.",name:"Hesam",middleName:null,surname:"Dehghani",slug:"hesam-dehghani",fullName:"Hesam Dehghani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"59914",doi:"10.5772/intechopen.74550",title:"Cytokines and Interferons: Types and Functions",slug:"cytokines-and-interferons-types-and-functions",totalDownloads:4297,totalCrossrefCites:5,totalDimensionsCites:12,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Vinicius L. Ferreira, Helena H.L. Borba, Aline de F. Bonetti, Leticia P.\nLeonart and Roberto Pontarolo",authors:null},{id:"30339",doi:"10.5772/33108",title:"Immunoelectron Microscopy: A Reliable Tool for the Analysis of Cellular Processes",slug:"immunoelectron-microscopy-a-reliable-tool-for-the-analysis-of-biological-processes",totalDownloads:7070,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"applications-of-immunocytochemistry",title:"Applications of Immunocytochemistry",fullTitle:"Applications of Immunocytochemistry"},signatures:"Ana L. De Paul, Jorge H. Mukdsi, Juan P. Petiti, Silvina Gutiérrez, Amado A. Quintar, Cristina A. Maldonado and Alicia I. Torres",authors:[{id:"94062",title:"Dr.",name:"Ana",middleName:"LucÃa",surname:"De Paul",slug:"ana-de-paul",fullName:"Ana De Paul"},{id:"107542",title:"Dr.",name:"Jorge",middleName:null,surname:"Mukdsi",slug:"jorge-mukdsi",fullName:"Jorge Mukdsi"},{id:"107544",title:"Dr.",name:"Juan Pablo",middleName:null,surname:"Petiti",slug:"juan-pablo-petiti",fullName:"Juan Pablo Petiti"},{id:"107545",title:"Dr.",name:"Silvina",middleName:null,surname:"Gutiérrez",slug:"silvina-gutierrez",fullName:"Silvina Gutiérrez"},{id:"107546",title:"Dr.",name:"Amado",middleName:null,surname:"Quintar",slug:"amado-quintar",fullName:"Amado Quintar"},{id:"107548",title:"Dr.",name:"Cristina",middleName:null,surname:"Maldonado",slug:"cristina-maldonado",fullName:"Cristina Maldonado"},{id:"107551",title:"Dr.",name:"Alicia",middleName:null,surname:"Torres",slug:"alicia-torres",fullName:"Alicia Torres"}]},{id:"63198",doi:"10.5772/intechopen.79273",title:"Dendritic Cells: The Tools for Cancer Treatment",slug:"dendritic-cells-the-tools-for-cancer-treatment",totalDownloads:750,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"dendritic-cells",title:"Dendritic Cells",fullTitle:"Dendritic Cells"},signatures:"Hanne Locy, Sarah Melhaoui, Sarah K. Maenhout and Kris\nThielemans",authors:[{id:"253469",title:"Prof.",name:"Kris",middleName:null,surname:"Thielemans",slug:"kris-thielemans",fullName:"Kris Thielemans"},{id:"260847",title:"Mrs.",name:"Hanne",middleName:null,surname:"Locy",slug:"hanne-locy",fullName:"Hanne Locy"},{id:"260848",title:"MSc.",name:"Sarah",middleName:null,surname:"Melhaoui",slug:"sarah-melhaoui",fullName:"Sarah Melhaoui"},{id:"260849",title:"Dr.",name:"Sarah Karen",middleName:null,surname:"Maenhout",slug:"sarah-karen-maenhout",fullName:"Sarah Karen Maenhout"}]}],mostDownloadedChaptersLast30Days:[{id:"59914",title:"Cytokines and Interferons: Types and Functions",slug:"cytokines-and-interferons-types-and-functions",totalDownloads:4297,totalCrossrefCites:5,totalDimensionsCites:12,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Vinicius L. Ferreira, Helena H.L. Borba, Aline de F. Bonetti, Leticia P.\nLeonart and Roberto Pontarolo",authors:null},{id:"61458",title:"Introductory Chapter: Autoantibodies and Their Types",slug:"introductory-chapter-autoantibodies-and-their-types",totalDownloads:702,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Wahid Ali Khan",authors:[{id:"64042",title:"Dr.",name:"Wahid Ali",middleName:null,surname:"Khan",slug:"wahid-ali-khan",fullName:"Wahid Ali Khan"}]},{id:"62204",title:"Highlighting the Role of DC-NK Cell Interplay in Immunobiology and Immunotherapy",slug:"highlighting-the-role-of-dc-nk-cell-interplay-in-immunobiology-and-immunotherapy",totalDownloads:1314,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"dendritic-cells",title:"Dendritic Cells",fullTitle:"Dendritic Cells"},signatures:"João Calmeiro, Mylene Carrascal, Célia Gomes, Amílcar Falcão,\nMaria Teresa Cruz and Bruno Miguel Neves",authors:[{id:"114266",title:"Prof.",name:"Bruno",middleName:"Miguel",surname:"Neves",slug:"bruno-neves",fullName:"Bruno Neves"},{id:"115592",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Cruz",slug:"maria-teresa-cruz",fullName:"Maria Teresa Cruz"},{id:"233883",title:"Prof.",name:"Amílcar",middleName:null,surname:"Falcão",slug:"amilcar-falcao",fullName:"Amílcar Falcão"},{id:"243998",title:"MSc.",name:"João",middleName:null,surname:"Calmeiro",slug:"joao-calmeiro",fullName:"João Calmeiro"},{id:"244001",title:"Dr.",name:"Mylene",middleName:null,surname:"Carrascal",slug:"mylene-carrascal",fullName:"Mylene Carrascal"},{id:"244004",title:"Dr.",name:"Célia",middleName:null,surname:"Gomes",slug:"celia-gomes",fullName:"Célia Gomes"}]},{id:"62945",title:"Dendritic Cell Subsets, Maturation and Function",slug:"dendritic-cell-subsets-maturation-and-function",totalDownloads:1497,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"dendritic-cells",title:"Dendritic Cells",fullTitle:"Dendritic Cells"},signatures:"Ghada Mohammad Zaki Al-Ashmawy",authors:[{id:"255240",title:"Dr.",name:"Ghada",middleName:null,surname:"Al-Ashmawy",slug:"ghada-al-ashmawy",fullName:"Ghada Al-Ashmawy"}]},{id:"58627",title:"Autoantibodies in Silicosis Patients: Silica-Induced Dysregulation of Autoimmunity",slug:"autoantibodies-in-silicosis-patients-silica-induced-dysregulation-of-autoimmunity",totalDownloads:465,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Suni Lee, Hiroaki Hayashi, Naoko Kumaga-Takei, Hidenori Mastzaki,\nKei Yoshitome, Nagisa Sada, Masayasu Kusaka, Kozo Uragami,\nYasumitsu Nishimura and Takemi Otsuki",authors:null},{id:"60035",title:"Autoantibody-Based Diagnostic Biomarkers: Technological Approaches to Discovery and Validation",slug:"autoantibody-based-diagnostic-biomarkers-technological-approaches-to-discovery-and-validation",totalDownloads:863,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Farhanah Aziz, Muneera Smith and Jonathan M Blackburn",authors:null},{id:"63424",title:"Autoantibodies in Viral Infections",slug:"autoantibodies-in-viral-infections",totalDownloads:595,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Subuhi Sherwani, Mushtaq Ahmed Khan and Mohammed Suliman\nAlmogbel",authors:null},{id:"59246",title:"Autoantibodies: Key Mediators of Autoimmune Infertility",slug:"autoantibodies-key-mediators-of-autoimmune-infertility",totalDownloads:707,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Kaushiki M. Kadam, Purvi Mande and Asmita Choudhury",authors:null},{id:"59988",title:"Primary Sjögren’s Syndrome and Autoantibodies",slug:"primary-sj-gren-s-syndrome-and-autoantibodies",totalDownloads:610,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Maria Maślińska and Brygida Kwiatkowska",authors:[{id:"66582",title:"Dr.",name:"Brygida",middleName:null,surname:"Kwiatkowska",slug:"brygida-kwiatkowska",fullName:"Brygida Kwiatkowska"},{id:"77007",title:"Dr.",name:"Maria",middleName:null,surname:"Maślińska",slug:"maria-maslinska",fullName:"Maria Maślińska"}]},{id:"30337",title:"Optimizing Multiple Immunostaining of Neural Tissue",slug:"optimizing-multiple-immunostaining-of-neural-tissue",totalDownloads:8e3,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"applications-of-immunocytochemistry",title:"Applications of Immunocytochemistry",fullTitle:"Applications of Immunocytochemistry"},signatures:"Araceli Diez-Fraile, Nico Van Hecke, Christopher J. Guérin and Katharina D’Herde",authors:[{id:"100799",title:"Prof.",name:"Katharina",middleName:null,surname:"DHerde",slug:"katharina-dherde",fullName:"Katharina DHerde"},{id:"119044",title:"Dr.",name:"Araceli",middleName:null,surname:"Diez-Fraile",slug:"araceli-diez-fraile",fullName:"Araceli Diez-Fraile"},{id:"119045",title:"Dr.",name:"Christopher J.",middleName:null,surname:"Guérin",slug:"christopher-j.-guerin",fullName:"Christopher J. Guérin"},{id:"119046",title:"MSc.",name:"Nico",middleName:null,surname:"Van Hecke",slug:"nico-van-hecke",fullName:"Nico Van Hecke"}]}],onlineFirstChaptersFilter:{topicSlug:"immunology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/105942/mayako-morii",hash:"",query:{},params:{id:"105942",slug:"mayako-morii"},fullPath:"/profiles/105942/mayako-morii",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()