\r\n\tUnstoppable progress in the technologies of synthesis of diamond, graphene, and its compounds with stable parameters will provide materials for the industry of devices for integrated, radio, Opto- and quantum electronics and photonics.
\r\n\tIn most electronic and optical properties, diamond and graphene are superior to traditional and perspective semiconductors. It is safe to say that silicon and gallium arsenide are materials for electronics and optoelectronics of the past, gallium nitride and silicon carbide are high-tech today, and diamond and graphene are the future of electronics and photonics.
Cutaneous malignant melanoma (CMM) is a neoplasm generated through the malignant transformation of epidermal melanocytes, the cells which normally reside in the basal layer of the epidermis and produce the skin pigment melanin (Figure 1A–C). Noncutaneous melanomas can also develop at other sites populated by melanocytes such as choroidal layer of the eye, respiratory, gastrointestinal, and genitourinary mucosal surfaces, or the meninges. The main incriminating agent for causing CMM remains the UV radiation in interaction with host characteristics (Figure 1D). However, CMM may appear in skin areas that are not directly exposed to sun such as palms, soles, or under the nails, which demonstrates a pathogenesis more related to the noncutaneous melanomas. The incidence of CMM has been rising for the last 30 years around the world. Key statistics on CMM released by The American Cancer Society estimate that during 2017, in the US, about 87,110 new melanomas will be diagnosed (about 52,170 in men and 34,940 in women) and about 9730 people are expected to die of melanoma (about 6380 men and 3350 women) [1]. Although CMM makes only 4–7% of skin cancers, this neoplasm causes approximately 80% of skin cancer deaths. CMM is characterized by insidious and fast progression, heterogenic evolution among patients, and significant resistance to diverse therapeutic strategies. CMM is thought to develop in a stepwise manner being initiated with a benign nevus containing cell populations with intense proliferative capacities. Some of these lesions overcome the senescence-inducing signals, exhibit dysplasia (dysplastic nevus), and can progress further toward the malignant stages. The radial growth phase (RGP) is limited to epidermis and has a low invasive potential. In a more advanced stage, the melanoma cells migrate vertically up into epidermis and down into papillary dermis entering a new stage, the vertical growth phase (VGP). In metastatic stage, the tumor cells invade through blood or lymph vessels the distal organs (liver, brain, and lung) where they proliferate, eventually, causing death (Figure 1D). The activity of tumor cells is modulated by the complex and dynamic tumor microenvironment that can be extremely heterogenous among tumors of different patients. The multistep process of CMM progression is defined by a plethora of molecular events that are continuously explored, revised, and updated [2, 3].
Cutaneous malignant melanoma. (A) Schematic representation of epidermal melanocytes with melanosomes (black dots) exported to the surrounding keratinocytes. One melanocyte and 30–40 keratinocytes form the “epidermal melanin unit”. (B) The image of a human melanocyte obtained by confocal fluorescence microscopy of a human skin specimen immunostained for TYR and DCT. The common TYR-DCT staining is in the perinuclear region, whereas TYR staining is visible in dendritic tips too. (C) The image of a human epidermal melanocyte (HEM) in culture, obtained by bright field microscopy. (D) The risk factors for developing cutaneous malignant melanoma and the steps of neoplastic transformation and malignant progression of epidermal melanocytes culminating with the metastatic stage. Several molecular markers and processes emblematic for each tumor stage are indicated.
The only cure for melanoma is the surgical removal of early-stage tumors. For metastatic patients having the median overall survival less than a year, there are different strategies, including combined chemo-/radio- and vaccine therapies, extremely rarely leading to total cure and whose success depends very much on the staging accuracy. Major improvements in the metastatic treatment have been achieved due to advances in understanding the molecularity of this neoplasm. The modern alternative for melanoma evaluation and management is the analysis based on key genes or biomarker(s), pathways, diagnostic technologies, and potentially relevant therapeutics. These tend to replace current limited histological and microscopical evaluation introducing concepts such as “molecular melanoma subtypes” [4], “melanoma disease model (MDM)” [5], or “molecular diagnostic of melanoma” [6], aiming to bring together clinicians, researchers, and pharma for more efficient diagnostic, prognostic, and therapeutic strategies [7, 8]. Tyrosinase-related protein-2 (TRP2, TYRP2) or L-Dopachrome tautomerase (L-DCT) is a member of tyrosinase-related protein (TRP) family known for many years only for its enzymatic activity in the distal steps of melanogenesis. Studies emerging from different groups identified TRP2/L-DCT in relation to processes distinct from melanin synthesis (cell protection from environmental and therapeutic stress), melanoma diagnostic (potential biomarker), and therapy (immunotherapeutic target). TRP2/L-DCT is also expressed in precursors of peripheral nervous system associated with developmental processes and in glioma, a brain cancer similar to melanoma in terms of aggressiveness and therapeutic resistance and more recently, unexpectedly, in nonmelanocytic or nonneuronal cellular phenotypes.
This chapter aims to provide an updated status of TRP2/L-DCT in order to demonstrate its multiple implications in melanoma molecularity and therapeutic potential as well as to open up new perspectives for a better understanding of other molecular processes and pathologies. For simplicity, we will further refer to TRP2/L-DCT as DCT.
TRPs are type I transmembrane N-glycoproteins. Their polypeptides share significant aminoacid sequence homology and similar patterns of polypeptide chain organization, an amino-terminal signal sequence (residues 1–23 in human DCT) followed by a lumenal domain (aa 24–439), a transmembrane (TM) hydrophobic region (aa 473–493) that inserts the protein into subcellular membranous structures and a carboxi-terminal cytoplasmic (CYT) tail (aa 494–519) interacting with the elements of the sorting and traffic machinery. The lumenal domain encompasses the enzymatic active site shaped by two highly conserved metal-binding regions (MeB1 and MeB2) molded at the core of a four-helical bundle. Interspersed with these two metal-binding regions are two Cys-rich regions (Cys1 and Cys2). Cys1 precedes MeB1 and contains 10 Cys residues conserved only in the human TRPs, and Cys2 located between MeB1 and MeB2 contains six Cys residues of which five are conserved in the human TRPs. Unfortunately, none of the human TRPs have been crystallized, but models of human tyrosinase have previously been developed [9]. Using a similar protocol and based on the high degree of sequence homology among TRPs (about 60% on the entire sequence and 66% in the lumenal domain only), we built a structural model for the lumenal domain of human DCT using as templates the available X-ray structures of tyrosinase proteins from
Sequence alignment of human TRPs (TYR, TRP1, and DCT) with the X-ray templates used for modeling DCT (PDB codes 3AX0 and 3NM8). Identical/similar residues between DCT and other sequences are highlighted dark/light gray, metal binding His residues are highlighted black. Assigned/predicted secondary structure elements for templates/DCT are shown above and below the alignment. Membrane pictogram indicates location of (predicted) transmembrane region in all proteins. The rectangles indicate the two Metal-binding regions (MeB1, MeB2). Symbols indicate various functionally relevant residues: stars = phosphorylated residues; diamond = methylated R409 residue; dark triangles = putative N-glycosylation sites, light triangles = experimentally confirmed occupied sites in DCT; arrows = Cys residues. Signal sequence in DCT is thin underlined. The DCT-derived peptides 60–74 [
Despite this high degree of sequence homology between DCT and other human TRPs, distinctive DCT features regarding overall hydrophobicity and charge profiles, active site stereochemistry and composition, N-glycosylation, or phosphorylation patterns generate significant differences in protein function, interaction partners, and sorting/trafficking pathways.
Although the two metal-binding regions in the lumenal domain represent a highly conserved feature of TRP family, DCT has a unique preference for zinc instead of copper, as is in the case of TYR. Purified DCT contains two Zn atoms per protein molecule as measured by atomic absorption spectroscopy and Zn2+ chelation experiments. Zn2+ is the crucial element that accounts for the tautomerization of L-Dopachrome tautomerase [12]. The enzyme DCT reconstituted with Cu2+, which is the cofactor for TYR, or with Fe2+, is inactive, whereas with Co2+ is partially active. Unlike the native DCT, which shows a very strict specificity for L-Dopachrome and for which neither dopaminochrome nor D-Dopachrome are suitable substrates, the reconstituted enzyme is stereospecific as well but is also able to rearrange D-Dopachrome into DHI [13]. At this point, it is important to specify that there is also a D-Dopachrome tautomerase (D-DCT, or D-DT) which is decarboxylating D-Dopachrome to DHI. There is no structural or functional relation between L-DCT and D-DT, which is a circulating cytokine, member of macrophage migration inhibitory factor (MIF) protein superfamily with an overlapping functional spectrum with MIF. Within lumenal domain of human DCT, there are 16 cysteine (Cys) residues, clustered into three regions, the first two located N-terminal to MeA and the third between MeA and MeB. In addition to these clustered Cys residues, single Cys residues may be found in the C-terminus cytoplasmic tails of TYR and TRP1 but not of DCT, which indicates a TYR-TRP1 interaction via intermolecular disulfides without DCT participation [14]. This finding is in agreement with our experimental data, showing that DCT does not share common subcellular structures with TYR or TRP1 (see Section 2.3.1.2) and does not support the early theory that all TRPs are possibly interconnected via intermolecular disulfides. Despite the fact that the number of N-glycosylation sites is almost the same in human TYR (seven sites) and DCT (six sites) and they are all located in the lumenal domain, glycosylation pattern is significantly different between TYR and DCT. In the case of human TYR, occupancy of six of the seven sites was demonstrated by site-directed mutagenesis [9], while in the case of DCT, only two sites (N300 and N342) have been experimentally confirmed to be occupied [15] by MALDI/TOF of a truncated version of protein expressed in insect cells. Both N-glycosylated sites in DCT are located in close vicinity (on opposite sides) of the metal containing active site, possibly influencing ligand access within, but only N300 is conserved in all human TRPs while equivalent of N342 is found only in TRP1 not in TYR. The first two N-sites of TYR, which are required for TYR entry in the CNX cycle [16] are not present in DCT, which further supports the idea that TYR and DCT take different intracellular processing pathways. Indeed, our experimental data confirmed that folding pathways, which in all TRPs are dependent on the step of N-glycan processing, are differently regulated within the same cell phenotype and have further distinct impact on their trafficking and stability (see Section 2.3.1.2). Additional unique characteristics of DCT post-translational modifications refer to the methylated residues. A recent large-scale mass spectrometry analysis of arginine-methylated peptides in human T cells [17] demonstrated methylation of R409 in DCT (indicated by a diamond in the alignment in Figure 2), located at the end of the second metal-binding region. Structurally, this positively charged residue is positioned in the luminal domain and oriented toward the melanosomal membrane (Figure 3), thus likely to interact with the negatively charged head groups of membrane phospholipids. Addition of a methyl group to R409 would shield the positive charge and decrease probability of luminal domain interacting with membrane. Surprisingly, although this residue is conserved in all human TRPs, the same study could not identify similar modification of corresponding residues in the other members of the family. This post-translational modification of DCT could have an impact on interactions between DCT and sorting/traffic machinery and subsequently on DCT intracellular routes. The same study [17] demonstrates that changes in arginine methylation stoichiometry during cellular stimulation in a subset of proteins are critical to T cell differentiation. DCT is a tumor antigen, and several peptides derived from it were identified as targets of CD4+ or CD8+ T-lymphocytes, and their position within DCT sequence is presented in Figure 2 [18, 19, 20, 21, 22]. Whether DCT-methylated peptides could be a part of the peptide-methylated pool involved in triggering T-cell differentiation in melanoma would represent a subject worthwhile to be further investigated. Other distinctive features of DCT TM domain are the presence of cholesterol (CRAC) and caveolin-binding motifs, which supports the idea of an interaction with these membrane components. Our detailed computational analysis using various sequence bioinformatics, structural modeling, and molecular simulation approaches allowed us to generate the first complete structural model of DCT in interaction with caveolin-1. This model revealed DCT-specific structural determinants involved in interaction with membranes having specific compositions and possibly regulating its enzymatic activity and intracellular trafficking, as well as its participation in complex processes as signaling pathways [23] (Figure 3). The overall model advocates for an interaction between Cav1 and DCT mediated by two distinct regions, one within the membrane (hydrophobicity-driven interaction) and the second cytosolic (electrostatics-driven interaction). The CYT DCT domain is predicted to adopt an extended, possibly disordered conformation and has a net positive charge (7 basic and 3 acidic residues out of 26) whose distribution is complementary to that of Cav1 cytosolic region carrying a negative formal charge, which strongly supports the electrostatic interaction between these regions, facilitated by salt bridges (Figure 3, thin lines). Interestingly, the DCT charge distribution in the CYT domain may be modified by the phosphorylation state of two adjacent serine residues (S511, S512 pointed by stars in Figure 2 and indicated by dotted van der Waals spheres in Figure 3) whose phosphorylation was experimentally confirmed by mass spectrometry [24]. We can speculate that phosphorylation of these unique sites may represent a control mechanism for modulating DCT interaction with Cav1 or with other molecules involved in trafficking/sorting/signaling pathways. However, the presence of these interactors would need to be confirmed by additional experimental approaches.
Structural model of DCT protein (cartoon representation) interacting with membrane bilayer and caveolin-1 (Cav1). In the lumenal domain (above membrane) the helical segments indicate the two metal-binding regions, containing two Zn2+ ions (shown as opaque spheres). Putative N-glycosylation sites are depicted using thick sticks. Representative structural models of N-glycans (shown as transparent spheres) are attached to glycosylation sites experimentally shown to be occupied (N300 and N342). Methylated R409 (within lumenal domain) and phosphorylated S511, S512 (within cytosolic membrane) are shown as dotted spheres. Within DCT transmembrane region, aromatic residues F487, F492 (thick sticks) and Y495 (behind helical structure) form the Cav1-binding motif. Charged residues in the cytosolic regions of DCT and Cav1 are labeled and shown as sticks, and putative salt bridges are depicted by thin gray lines connecting oppositely charged residues.
To understand more deeply the specific behavior of TRPs in interaction with cholesterol-rich membranes, we performed molecular dynamics simulations (60 ns) of TYR and DCT TM segments embedded in 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) lipid bilayers in the presence and absence of cholesterol. The 3D structures of TM domains were modeled ab initio as α-helices whose length was based on sequence hydrophobicity and helix propensity profiles which indicated that TYR TM is slightly longer (~4 residues, one helical turn) than DCT TM. Although the two TM domains had identical initial positions and orientations in the membrane bilayer, and the overall helical structure is maintained throughout the entire 60 ns simulations, the TYR TM adopted a more tilted inclination (measured by the angle between α-helix central axis and axis normal to bilayer plane) compared to DCT (upper panels in Figure 4A). The magnitude of this tilting effect is likely correlated with the length of the hydrophobic helix segment that needs to fit within the membrane thickness; therefore, the orientation of shorter DCT helix is closer to normal axis while TYR is more tilted (see plot in Figure 4B). As expected, tilting is less pronounced in cholesterol-containing membrane due to its increased thickness (lower panels in Figure 4A). Surprisingly, cholesterol affects helix translation within membrane in a different manner: while in the cholesterol-free membrane both proteins experience similar levels of helix translation, in cholesterol-containing membrane, DCT translation is highly restricted while TYR translation is only slightly affected, suggesting that cholesterol interacts more tightly with DCT, possibly due to the presence of CRAC signature. This would explain the preferential DCT sorting into CRD domains and distinct trafficking along the secretory pathway (see Section 2.3.1.2). This study, presented here for the first time, is one of the few simulation studies on the importance of cholesterol for TM type I protein stability and trafficking. The DCT structural determinants account for its distinct intracellular processing and biological functions.
Molecular dynamics simulations (60ns) of transmembrane segments of human TYR/DCT embedded in pure POPC bilayer compared to cholesterol-containing membranes. (A) Structural representation of the transmembrane helix (shown as cylinder) every 2ns in the membrane bilayer; and (B) plot of the helix tilt angle variation during simulation, indicating higher tilt for TYR compared to DCT.
DCT is expressed preponderantly in melanocytes, which originate from neural crest cells (NCC) and migrate during embryonic development to different regions (Figure 5). There are also melanocytes in retinal pigmented epithelium (RPE) that originate from the forebrain neuroepithelium and in which DCT expression has also been confirmed [25]. DCT is detected in melanoblast, the progenitor of melanocyte, at embryonic day (E) E9.5, in a SOX10-melanoblast/glial bipotent progenitor, together with microphthalmia-associated transcription factor (MITF) and KIT, whereas TYR or TRP1 are expressed later in the development [26]. In hair follicle, DCT expression has been associated with a pool of melanocytes having stem cell traits of self-renewal and multipotency within the lower permanent proliferation portion of this tisssue [27]. In the precursors of peripheral nervous system which derive also from NCC, the spatial and temporal profiles of DCT expression correlate with neurogenesis during embryonic development and enhance the proliferation of cortical neural progenitor cells and neuroblast migration [28]. A unique cell population called melanocyte-like cells, found within murine and human hearts, that is distributed to the pulmonary veins, atria, and atrioventricular canal, also expresses DCT but has transcriptional profiles distinct from dermal melanocytes. The presence of these DCT-positive cells has been connected with the clinical syndrome of atrial ectopy initiating atrial fibrillation, autonomic dysregulation, and oxidative stress. It seems that DCT-cardiac melanocytes are involved in maintaining the normal balance of oxidative species in the myocardium [29]. The DCT expression is also retained in the malignat counterparts derived from melanocytes and neuronal cells as melanoma retinoblastoma [30], glioma [31], and glioblastoma [32]. Moreover, the neoplastic cells express different DCT transcripts and in higher amounts compared with the normal cells. For example, in patients with glioma, the DCT mRNA transcripts are in excces of 100,000-fold over that in healthy brain [33]. In amelanotic melanoma cells, in which TYR and TRP1 are downregulated or enzymatically inactive, DCT is well expressed [34] and during melanoma malignant progression, DCT expression, unlike TYR or TRP1, remains constant [35]. A recent study presents that DCT is endogenously expressed in HaCaT cells (basal keratinocytes) [36] which has an electrophoretic pattern comparable with DCT in RPE lysate, but distinct from the 68/80 kDa DCT doublet expressed by melanoma cell lines [37, 38]. A significant number of commercially available anti-DCT antibodies include in their technical data sheets, as positive controls for endogenous DCT, cell lysates, or histopathological specimens from cell lines or neoplasms in which DCT is not expected to be expressed such as A431-epidermoid carcinoma (Sigma-Atlas); NBT-II-Nara bladder tumor cells, WEHI-231 B cell line, CTLL-2-cytotoxic lymphocyte (Santa Cruz), human liver cancer tissue lysate, K562 (leukemia) lysate, K-562-chronic myelogenic leukemia, A549-lung carcinoma, HeLa-cervical cancer (Abcam); MCF7 cells-breast cancer, HL-60 cells-caucasian promyelocytic leukemia (Proteintech Group); human cervical cancer tissue (OriGene). Most of them show in WB analysis bands of approximately 50 kDa or/and 30 kDa. Two hypotheses can explain these data: (1) the 50/30 kDa bands are not DCT but possibly contaminants detected due to antibodies cross-reactivity. This would be very unlikely because these antibodies have been raised against different DCT sequences, by different technologies, in different laboratories. However, as many of these antibodies do not show data on these cells having “DCT gene” downregulated or amplified (with specific primers for DCT mRNA), their specificity is still questionable and may induce false-positive results with severe consequences especially in clinic; (2) the 50/30 kDa in nonmelanocytic/-neuronal cells or tissues are indeed derived from DCT (possibly isoforms or degradation products). DCT is expressed in neural crest progenitors that generate multiple cell lineages during development. The demonstrated DCT involvement in anti-apoptotic and stress-resistance pathways (Section 2.4) would qualify it for activated expression in cellular niches of different normal or transformed phenotypes where it would be requested to sustain specific processes. For example, osteopontin, primarily expressed in bone cells (osteoblasts) has become a well-known marker for various neoplasms, including melanoma, where its expression is associated with tumor progression [39]. HaCaT is an immortalized keratinocyte cell line with a high capacity to differentiate and proliferate in which endogenous DCT has detoxification biological activities similar to those already described in melanocytic lineage [36]. These new data consolidate the theory that DCT expression may encompass, indeed, multiple cell phenotypes where it accomplishes, very likely, functions related to cell protection. How is DCT expression activated and modulated in nonmelanocytic/-neuronal cells are questions whose clarification require additional studies. Morevoer, the DCT expression in nonmelanocytic lineages would raise the question whether DCT can still be considered a specific biomarker for the diagnosis of melanocytic lesions.
DCT cellular and tissular expression. DCT is primarly expressed by melanocytic (continous line) and neuronal (interrupted line) cells and by their malignant counterparts (dotted line). DCT possible expression in cells of nonmelanocytic origin is also indicated.
The human DCT gene (h-DCT) has 55-kb and was mapped to the chromosomal region 13q31-q32 with a coding region of eight exons all encompassing the open reading frame of the protein [40]. The h-DCT is controlled by the two separate regulatory regions: the 32-bp element and the proximal region [41]. The 32-bp element is a composite enhancer having potential binding sites for transcription factors that contain a basic helix-loop-helix structure (including Microphthalmia-associated transcription factor—MITF), a high-mobility-group (HMG) domain (the TCF/LEF-1 or SOX family), or an Ets domain [42]. MITF is a master regulator of pigmentary system [43], and there is a selective requirement for MITF-M isoform for melanocyte development. The promoter region of MITF-M contains CREB, SOX10, PAX3, and LEF-1 binding sites. The presence within DCT promotor of the 32-bp element containing a CAATTG motif do not produce significant transactivation by MITF, as in case of the other TRPs, suggesting that the mechanism for melanocyte-specific transcription of the DCT gene is different from that of the other TRPs [44]. In addition to MITF, DCT is regulated by SOX10, which is a high-mobility-group transcription factor that plays a critical role in many processes in neural crest cells, including multipotency, proliferation, apoptosis, survival, and commitment to defined neural crest-derived lineages. SOX10 transiently regulates DCT expression during early melanocyte development, independently of MITF function [45] and synergistically with MITF that enhances SOX10-dependent activation of the DCT promoter [46]. Another member of the SOX family, SOX5, inhibits the SOX10-stimulated activity of the DCT promoter in melanocytes [47]. A synergistic transactivation of DCT gene promotor results also from cooperation between TLEF-1 and MITF or between TLEF-1 and TFE3, a MITF-related protein [48]. The TCF/LEF-1 family regulates target gene transcription in response to Wnt signals. The transcriptional regulation of DCT involves also PAX3, a member of a highly conserved family of transcription factors essential to the development of many tissue types throughout embryogenesis and vital to the maintenance of several stem cell niches. Unlike MITF which is an activator of DCT expression, PAX3 inhibits both DCT expression and the ability of MITF to bind to the DCT promoter. PAX3 forms a repressor complex with LEF1 and GRG4 on the DCT enhancer sequence and actively blocks MITF binding. In the presence of beta-catenin, LEF1 forms a complex with MITF and beta catenin and displaces PAX3 from DCT enhancer [49]. Oppositely, SOX10 does not cooperate with PAX3 to activate DCT in combination with PAX3 [50]. OTX2 is a transcription factor that regulates the specific expression of DCT gene in REP. OTX2 binds to the DCT gene promoter
TRPs follow the general secretory pathway: TRP-polypeptide synthesis and folding in endoplasmic reticulum (ER), the N-glycan maturation along the Golgi complex and transport to the steady-state destination, the melanosomes, the site of melanin synthesis and storage. In parallel with our early research on TRP1 intracellular processing in murine melanoma cells [54], studies of other groups were presenting a specific drug-and UV-resistance mediated by TRP2/DCT in melanoma [55, 56, 57]. In this context, we considered that deciphering the intracellular processing pathways of DCT would bring fundamental knowledge and possible exploitable information into melanoma development and therapy. The immunofluorescence microscopy images and ultracentrifugation data reveal a unique pattern of DCT subcellular distribution. Unexpectedly, DCT is detected in high amounts in a perinuclear position, co-localizing with the TGN marker, syntaxin 6, and in substructures at plasma membrane (PM), showing weak overlapping with late melanosome markers TRP1 and Rab27a. The maturation kinetics and traffic along the secretory pathway show that ER DCT 68 kDa precursor containing high-mannose N-glycans moves along the Golgi where it acquires complex structures, gradually turning into the DCT 80 kDa mature protein, within approximately 3 h [37] compared to 45 min in which TRP1 becomes a fully glycosylated 75 kDa protein [54]. Similar to TYR and TRP1, DCT interacts with the ER lectin chaperone calnexin that assists normal polypeptide folding of all TRPs [37]. In N-glycoproteins, the glycan procesing in ER interferes with polypeptide folding. The step of N-glycan trimming by glucosidase I and II results in the formation of a monoglucosylated precursor that interacts with the ER lectin chaperones, calnexin, or calreticulin, which assist the polypeptide folding. The inhibition of glucosidase I and II with N-butyldeoxynojirimycin (NBDNJ) perturbs N-glycosylation, resulting in a triglucosylated precursor unable to interact with calnexin. In NBDNJ-treated cells, TRP1 folds in the absence of interaction with calnexin, being rescued by another ER chaperone BiP, leaves ER, and moves along Golgi [54], whereas in the same cells, TRP2/DCT conformation is severely altered, and the misfolded protein is targeted to proteasomal degradation [37]. A more recent study reports that the treatment of Melan-a cells, with the chemical compound, A3B5, results also in proteasomal degradation of DCT but not of TYR [58]. Whether DCT from A3B5-treated cells is targeted to proteasome from the ER, via the well-known retrotranslocation pathway or from a post-ER compartment remains to be further investigated. In any case, this is an additional proof that, indeed, DCT fate in melanoma is distinctly regulated from the other TRPs. Additional information about the DCT biosynthetic pathway came from our investigations of the two human amelanotic melanoma cell lines, MelJuSo (MJS) and SKMel28 (SK28) [23]. In SK28, as in other amelanotic cell lines, pH homeostasis is altered, and TYR is retained in the secretory pathway and prematurely, proteasomally degraded [59]. Importantly, in both MJS and SK28, amelanotic cell phenotypes DCT appears at steady state as a mix of the fully processed protein and the partially glycosylated precursor. This pattern indicates that a significant DCT amount is able to overcome the pH-induced blockade being sorted from the early steps of its biosynthetic pathway in a different cargo than TYR. Our experimental data demonstrate that DCT maturation between ER and Golgi is interrupted or pertured in the presence of nystatin [23] or monensin [60], two pharmacological agents that disrupt CRDs or insert in Golgi CRDs, respectively. A significant amount of DCT is detected by co-localization and co-immunoprecipitation experiments in complexes with Cav1, an abundant component of CRDs. The association of DCT with Cav1 and cholesterol is supported by our structural analysis (detailed in Section 2.1). Cav1 downregulation has a profound regulatory impact on DCT and subsequently on its entire biosynthetic pathway [23] (detailed in Section 5.3). Our theory is that a significant fraction of DCT is sorted in the early secretory pathway, possibly from ER, in CRDs with Cav1, in a cargo without TYR and trafficked on a route less sensitive to amelanotic acidic pH. Our data is supporting the concept of the selective ER exit sites and ER-Golgi transport [61] and that production of specific lipids might have a regulatory role in cargo recruitment and export from ER [62]. Another cellular parameter regulating DCT processing, between ER and Golgi is the intravesicular pH. The treatment of B16F1 pigmented melanoma cells with bafilomycin (Baf), a specific inhibitor of v-ATPases and pH corrector, slightly increases the amount of DCT mature complex protein [60]. This demonstrates that pH of the secretory pathway is altered in pigmented phenotypes as well, but to a less extent than in amelanotic cells and that only a DCT fraction is trafficked on a route sensitive to pH alterations too. We also found that DCT maturation between ER and Golgi is interrupted by microtubule depolymerization agent nocodazole (NCZ) when DCT is prevented to reach medial Golgi and remains in the form of the 68 kDa precursor [unpublished data]. Post-Golgi, the membrane composition and the interaction of the sorting and trafic machinery with the CYT tail of TRPs decide their destination [63, 64]. The di-Leu motif (QPLLMD) present in both cytoplasmic tails of TYR and TRP-1 and specifically requested for the interaction with the AP-3/AP-1 sorting elements in post-Golgi compartments is absent from DCT CYT domain which has Tyr-like motif (YRRL). The detection of DCT in TGN area and at PM in both murine and human melanoma cell lines with two distinct antibodies and the low amounts in mature melanosomes [23, 37] support the theory that post-Golgi DCT is trafficked on a distinct route than TYR or TRP-1, possibly being recycled from PM via a recycling endosomal (RE) compartment. Interestingly, in GL261 mouse glioma cell line DCT is also detected at PM, which may indicate a post-Golgi common route for DCT in different tumor cells [65]. We discovered an unexpected effect of the lysosomotropic agent chloroquine (CQ) on DCT stability, from both murine and human cell lines. CQ, a well-known pharmacologic agent that accumulates within acidic compartments, usually recommended as inhibitor of lysosomal enzymatic machinery [66] was expected to block DCT constitutive degradation. Instead, we found that DCT amount synthetized within 30 min (pulse), after 3 h (chase), in the presence of added CQ is diverted to a premature degradation pathway, whereas TRP1 stability is not affected in the same cell line. This is not an artifact, given that DCT degradation can be prevented in CQ-treated cells if Baf is present in the system. It is worth mentioning that DCT degradation is significantly decreased if CQ is added at 6 h chase, when probably DCT is in a more protected compartment. The effects of CQ in living systems are pleiotropic, and many of its action mechanisms or targets are still unknown. CQ interferes with the trafficking [67] and recycling processes from PM [68] or with the fusion vesicular processes, by enhancing the rate of the phagolysosomal fusion [69]. Our theory about CQ impact on DCT fate is that in our experimental conditions (mild CQ concentration, 50 μM and short time period treatment of 2 h), CQ potentiates the fusion between a DCT-positive post-Golgi endosomal compartment with a still proteolytically active one, most likely the lysosomes. It will be also interesting to identify which other proteins share the DCT fate in CQ- treated melanoma cells or if the effect of CQ is similar in other cells phenotypes expressing endogenous DCT.
One of the early events in neoplastic transformation of melanocytes is the uncontrolled proliferation. During this step, tumor cells secrete numerous cytokines and growth factors, which can regulate back the tumor cells activities, by binding to self-receptors (autocrine stimulation) or receptors of neighboring cells (paracrine stimulation) and self-sustaining tumor growth signals. In addition, the nutrient deprivation and numerous homotypic cell-cell contacts, established as a result of the alterations that occurred in cell adhesion molecule repertoire, result in activation of multiple signaling cascades. A similar situation to autocrine/paracrine stimulation is simulated in an
The intracellular journey of DCT in melanoma cells. The DCT biosynthetic pathway within a melanoma cell is schematically presented. All checkpoints along this route are indicated by triangle symbol. The DCT polypeptide is synthetized and folded in ER assisted by lectin chaperone calnexin (Clx). The interruption of N-glycan processing in ER with NBDNJ prevents interaction with Clx. TRP1 is further processed beyond the ER, whereas DCT is targeted to proteasomal degradation (1st checkpoint). Between ER and Golgi, DCT maturation is blocked by disrupting agents of cholesterol-rich domains (CRD) (nystatin-Nys, monensin-Mon) and microtubules (nocodazole-NCZ), intravesicular pH (bafilomycin—Baf) and caveolin-1 (Cav1) downregulation (2nd checkpoint). Post-Golgi, DCT, unlike TRP1, is diverted into a premature degradation pathway induced by CQ treatment (3rd checkpoint). Nutrient deprivation, secreted factors during proliferation and Cav1 gene down regulation are activators of DCT, not of TYR or TRP1, expression (4th checkpoint). Possible DCT recycling route from PM is presented as segmented line. TRP1 post-Golgi route to melanosomes stage III/IV is shown as intrerupted line.
Melanins represent a group of polymers produced by both normal and transformed melanocytes. The skin melanins are synthetized and deposited within melanocyte-specialized cellular organelles called melanosomes that are finally transferred into epidermal keratinocytes ensuring not only skin pigmentation but also UV light absorption and scattering, free radical scavenging, coupled oxidation-reduction reactions, and ion storage [71]. TRPs are the main regulators of principal steps of melanin polymer formation (Figure 7). TYR is the key-enzyme of melanogenesis that catalyzes the hydroxylation of L-Tyrosine to L-3,4-dihydroxyphenyl alanine (L-DOPA). L-DOPA is rapidly oxidized to DOPAquinone that spontaneously undergoes cyclization to Dopachrome. In the absence of any enzymatic activity, Dopachrome loses carboxylic acid generating 5,6-dihydroxyindole (DHI). TRP2 or L-Dopachrome tautomerase (DCT) acts downstream of TYR by rearranging Dopachrome into DHI-2-carboxylic acid (DHICA) that is further oxidized to the corresponding quinone by the activity of TRP1 in mouse or by TYR in humans. In 1992, Jackson and colab reported the cloning and sequencing of mouse cDNA corresponding to the region of the mice coat color mutation slaty. The gene product was named tyrosinase-related protein-2 (TRP-2) due to its high degree of amino acid identity with the other TRPs [72] or Dopachrome tautomerase (DCT) due to enzymatic activity on Dopachrome [73]. DCT is now well acknowledged as the modulator of melanin qualities. L-Dopachrome is the second branch point which under the unique L-DCT action is transformed into DHICA (Figure 7). Melanin derived from oxidation and polymerization of DHI, formed in the absence of DCT are black and insoluble, whereas the DHICA-enriched melanins that contain a higher proportion of carboxylated versus noncarboxylated indolic monomers are brown and more soluble [74]. Despite of numerous mutations identified in other melanosomal proteins, with consequences on pigmentation, no mutations have been described in human DCT, suggesting this is a conserved protein. However, in mouse, mutant alleles of DCT are associated with pigment dilution, producing the slaty (R194Q substitution in the MeA binding domain) and slaty light (G486R substitution in the TM domain) phenotypes. DCT mutations increase pheomelanin and reduce eumelanin produced by melanocytes in culture showing that the enzymatic activity of DCT play a role in determining whether pheo-or eu-melanin pathway is preferred [75]. The intermediates generated during melanogenesis have genotoxic [71] and immunosuppressive properties [76]. DHI is a cytotoxic melanin precursor [77], whereas DHICA is an antioxidant molecule [78], a diffusible chemical messenger [79], and DHICA unlike DHI melanins exhibit potent hydroxyl radical-scavenging activity (Figure 7). Moreover, eumelanins bind calcium with an affinity similar to calmodulin and thus interfere with the intracellular calcium regulation [80]. DCT, as a specific limiting factor of DHI concentration and DHICA-eumelanins formation becomes thus a modulator of different processes in melanocyte in which DHICA and DHICA-melanins are involved. To establish the general impact of DCT on a living organism, the DCT gene was targeted during mouse embryonic development [81]. The DCT-KO mice are viable, have a diluted coat color phenotype, due to reduced melanin content in hair but do not show any decrease in melanocyte numbers. However, under chronic UVA-induced oxidative stress in skin of DCT-KO mice compared with wild-type, the level of reactive oxygen species (ROS) and the numbers of apoptotic cells are increased, whereas the amount of eumelanin is decreased [82]. This demonstrates that, in melanocytes, DCT is involved in regulating a protective pathway in response to environmental stressful conditions. The DCT protective effect seems not to be exerted only via its enzymatic activity. The extremely low growth rate for the DCT-slaty and DCT-slatylight melanocytes could not be abgrogated in the presence of catalase, added to culture medium to overcome effects of H2O2 resulted from DHI excess due to inactivity of mutated DCT [83]. In transformed melanocytes, DCT is a tumor protector as well. In pigmented melanoma, as in melanocytes, DCT generates DHICA and further DHICA-eumelanins, both exerting the antioxidant properties (Figure 7). However, DCT protective activity is independent of melanin pathway, and this is in good-agreement with finding that DCT is well-expressed in amelanotic cell lines and tumors [34, 35]. In a process of identification of genes associated with cis-diamminedichloroplatinum (II)(CDDP)-and X-ray resistance in the amelanotic melanoma cell line WM35, Bed-David’s group found that DCT expression was upregulated in both CDDP- and X-ray resistant mutants compared with the parental line [84]. On the other hand, DCT ectopic overexpression in melanoma cells abrogates UVB-induced apoptosis [57]. DCT-drug resistance-mediated pathway is related to antitumorals that interferes with DNA replication as CDDP, carboplatin, or methotrexate and is not effective to the ones acting on microtubule formation as paclitaxel. In correlation with our data about DCT intracellular processing, we can speculate that DCT-mediated tumor resistance to the microtubule depolymerizing agents, unlike the one to DNA-alkylating agents, requires mature DCT and not DCT precursor which is the only DCT glycoform in cells treated with microtubule depolymerization agents (Section 2.3.1.2). DCT-radiation resistance is addressed to both X- and UVB-radiation that act on DNA by creating DNA strands and causes the formation of pyrimidine dimers, respectively, and are independent of TYR or TRP1 expression or melanin content [85]. DCT protective effect may be explained by either interference with DNA repair mechanisms or the regulation of anti-apoptotic pathways. DCT anti-apoptotic activity has also been reported in AJS sensory neurons in
The processes mediated by DCT in different normal and malignant cell phenotypes.
Although the object of this chapter is DCT in melanoma, we consider that it is of importance to discuss the role of DCT in other cell lineages. We have argued about DCT expression in HaCaT cells (basal keratinocytes) [36] (Section 2.2). The effects of DCT downregulation in HaCaTs are similar to the ones reported so far in melanocytic cells, namely increased ROS levels, DNA damage, and altered cell cycle, which furthermore compromise the infection of these cells with HPV. There are several common processes, mainly related to cell protection, with which DCT interferes, regardless the cell phenotypes in which it is expressed. However, these processes are involved in cell-specific responses to different aggressors (e.g., therapeutic stressors in melanoma and viral infection in basal keratinocytes).
The diagnostic and prognostic of CMM is in general evaluated histopathologicaly. In particular cases, when it is difficult to discriminate between melanocytic lesions and other resembling tumors as sarcomas, lymphomas, or neuroendocrine tumors, the expression of melanocytic biomarkers is requested, and they are commonly assessed by immunohistochemistry. For patients with unambiguous tumor histologic features, the CMM prognostication relied on Breslow’s index, the level of invasion in skin layers (Clark’s level), growth pattern (nodular, superficial spreading, etc.), dimensions, and presence/absence of ulceration information proves to be statistically significant in very large clinical cohorts [91]. The panel of melanoma markers is continuously revised and improved in accordance with the new discoveries related to the molecular mechanisms and pathways in melanoma progression [92]. One of the most challenging is the thin melanoma subset, defined by Breslow depth, 1.0 mm representing patients with early-stage disease. Despite that most are thought to have an excellent clinical outcome (85% survival during a 10-year period) and can be treated effectively, 15% of melanoma deaths result from metastases of thin lesions. Furthermore, the clinical outcome of patients with melanoma of intermediate thickness (2.0–4.0 mm in Breslow depth) is less predictable. Clearly, identifying a high-risk population with thin melanomas remains a challenge, and new markers to assist this patient population are expected in order to establish more accurate risk groups with subsequent more aggressive therapeutic approach and tighter follow-up [93]. Our group assessed for the first time, the expression of DCT comparatively with the one of TYR in a panel of formalin-fixed, paraffin wax-embedded benign and malignant melanocytic lesions. The DCT and TYR proteins were analyzed by immunohistofluorescence microscopy in human specimens by simultaneous triple staining, with anti-DCT/-TYR antibodies, followed by secondary antibodies AlexaFluor-labelled and with DAPI for nuclei [38]. This technique allows to follow DCT and TYR expressions in identical cells within different tumor components. In tumor progression, the expressions of melanoma antigens are often lowered [94], and their immunodetection in histological specimens may be enhanced using antibody populations that recognize more than one epitope. In this study, the DCT expression was assessed with a novel anti-DCT antibody raised in our laboratory against the luminal domain of human DCT and in which the bioinformatic analysis identified multiple potential antigenic sites [38]. There is a heterogeneity in the expressions of the two antigens in benign tumors represented by junctional (JNs), compound (CNs), or dysplastic nevi (DNs) and malignant melanomas represented by superficial spreading (SSMs), nodular (NMs), achromic (ACMs), acralentiginous (ALMs) melanomas. Specimens expressing both antigens, only one and negative for both, were present in different numbers in each melanoma subgroup that was analyzed. The melanocyte neoplastic transformation and malignant progression is well correlated with the dissociation of DCT and TYR expression in distinct cell populations. In Figure 8A is presented an example of DCT and TYR dissociated expression in distinct tumor cells in a specimen representing a nodular melanoma. Within the double-positive category, we have identified in some specimens a subtype named by us “DCT-phenotype” in which DCT and TYR expressions specifically distributed within cell populations of tumor components create a tumor-specific architecture, with cells Tyr+/DCT- in the subepidermal layer, whereas DCT+/Tyr- cells segregate into deep dermis. The DCT-phenotype was found in benign specimens with high neurotization and also in some early malignant ones having low Breslow/Clark indexes but with ulceration. Our theory is that DCT-phenotype is emblematic for a long-lasting, “die-hard” phenotype. The DCT-intense expression is observed in large areas of compound neurotized nevi contributing probably to the well-acknowledged enhanced stability and low proliferation rate of these nevus cells [95] and may not represent a life-threatening problem in benign tumors. However, the superficial malignant melanomas, with low indexes Clark or Breslow but having DCT-phenotype could be a warning signal for considering those specimens as ones of high risk with a possible unfavorable prognostic. The DCT-clones selected in inner dermis of early malignant lesions acquire the expression and subcellular distribution of molecular markers reported to be associated with different types of neoplasms, including melanoma, with extended migratory capacities (caveolin-1-), survival in stressful conditions (cytoplasmic Hif-1α+), activated anti-apoptotic mechanisms (cytoplasmic cyclin D+ and Bcl-1+), angiogenic, and metastatic potential (cytoplasmic cyclin E+) (Figure 8B). Several ALMs or ACMs advanced melanomas diagnosed by anatomopathological analysis with bad prognostic detected DCT as the unique melanosomal antigen. The ALMs distinguish themselves from other melanoma types in terms of a worse prognosis, enhanced aggressiveness, and by a more advanced stage at diagnosis [96], whereas some ACMs are characterized by a peculiar and aggressive evolution [97]. It is very possible that DCT expression in ALMs and ACMs mediates tumor stress resistance pathways and contributes to the malignant characteristics of these melanoma categories. DCT could be an useful adjunct marker increasing sensitivity of tumor cell detection in specimens having downregulated other melanoma antigens, and the DCT-phenotype could represent a parameter associated with high-risk for bad disease outcome.
DCT in melanocytic lesions. (A) A nodular melanoma specimen immunostained for DCT and TYR expressions and analyzed by fluorescence microscopy. Tumor cells co-expressing both markers and cells DCT+/TYR- or DCT-Tyr+ can be observed. Unlike TYR, DCT is well expressed in numerous cells. (B) Schematic representation of DCT and TYR dissociation in melanocyte transformation and melanoma progression and molecular anatomy of DCT-phenotype. The switch in molecular repertoire of markers of tumor progression and bad prognosis in DCT+ cells in intraepidermal (IE) layer is indicated. DCT+ cells in deep dermis acquire molecular parameters of metastatic phenotypes [
The surgical removal is the only cure for melanoma with the condition that the excised lesion be in an early stage. However, the micrometastases cannot be addressed exclusively by the surgery and therefore, combinatorial therapeutical strategies are applied in the attempt to extend survival rates. The treatment options in melanoma are continuously revised, and there are several excellent reviews about this topic [98, 99, 100]. The schematic representation of the treatment of metastatic melanoma including different approaches is shown in Figure 9.
The therapies in melanoma. The different anti-melanoma treatment strategies are presented. DCT-based therapies are integrated part of the targeted therapies. The solid lines indicate the already existing therapies, whereas the dotted lines are proposed as possible adjuvant therapies based on the molecular studies about DCT intracellular processing and stability in melanoma cells. The melanoma specimen is an ulcerated nodular melanoma of a 26-year-old man, from lumbar region (by courtesy of Dr. S. Zurac, Department of Pathology, Colentina University Hospital, Bucharest, Romania).
The identification of different T-cell clones in melanoma patients recognizing peptides derived from DCT (Figure 2) raised the interest for this antigen in the development of anti-melanoma immunotherapeutical strategies. The cellular vaccine engineered to co-express a DCT epitope, with IFN-γ in the same gene by replacing the IFN-γ signal peptide with a DCT epitope-expressing signal peptide, resulted in decreased B16 tumorigenicity and enhanced immunogenicity after gene transfer. More importantly, irradiated transiently, TRP-2 epitope-expressing, IFN-c gene-modified B16 cells worked efficiently as a cellular vaccine to protect animals from parental wild-type tumor challenge [101]. The VacciMax® (VM), a liposome-based antigen delivery platform, has been used to deliver DCT 181–188 in combination with p53-derived peptides. A single administration of VM was capable of inducing an effective CTL response to multiple tumor-associated antigens. The responses generated were able to reject 6-day old B16-F10 tumors [102]. Another plasmide liposome DNA vaccine targeting the DCT in combination with chemokine CCL2 as an adjuvant used xenogeneic (human) DCT in a mouse model and resulted in induction of strong anti-DCT cell-mediated immunity after two vaccinations [103]. A novel vaccine system designed from a long TRP2/DCT peptide with a CD8 epitope (TRP2/DCT 180-88) and a CD4 epitope (TRP2/DCT 88-102) together with α-galactosyl ceramide, a lipid antigen representing a new class of promissing vaccine adjuvants into cationic liposomes tested on mice tumors resulted in the enhanced production of IFN-ϒ and increased cytotoxic T-cell responses [104]. Importantly, the antitumor immune activity involving MDAs as immunotherapeutic targets may have as side effects the damage (depigmentation) of the normal tissues that also express the MDAs [105]. However, in a patient receiving infusion with TIL586 (recognizing the DCT 109–205 peptide), tumor regression was observed, but not depigmentation [20], which demonstrates that immunotherapy directed against some DCT epitopes is specific and does not affect normal tissues. In another study, the inoculation of plasmid DNA encoding murine DCT elicited antigen-specific CTLs that recognized the B16 mouse melanoma and protected the mice from challenge with tumor cells. Moreover, mice that rejected the tumor did not develop generalized vitiligo, indicating that autoimmunity is not automatically triggered by administrating therapeutic MDA-based vaccines [106]. The vaccination with bone marrow-derived dendritic cells loaded with DCT peptide resulted in activation of high avidity CTLs mediating protective antitumor immunity
Despite the already acknowledged DCT involvement in melanoma drug-resistance, there are no reports so far, to our knowledge, about melanoma therapies targeting directly the DCT gene or protein. There is, however, a patent claiming the treatment of melanoma cells
Our data about the intracellular processing and the main checkpoints in DCT fate in tumor cells (Section 2.3) indicate that pharmacological agents that impact DCT stability could represent also potential adjuvants in melanoma therapy. For example, NBDNJ or A3B5 produce specific DCT proteasomal degradation possibly sensitizing tumor cells to therapeutic stress and could also generate DCT-peptides suitable for MHCI presentation and immune response. The selective premature DCT degradation induced in melanoma cells following CQ treatment is another possible way to decrease tumor cell resistance to therapies. CQ has been found to strongly potentiate the inhibitory effect of radiation on tumor cell proliferation [111], to be effective in eliminating chemotherapy-resistant cancer cells and to significantly improve the median survival in glioblastomamultiformis patients [112]. Moreover, the DCT detection at PM by us in melanoma cells [23] and by others in glioma cells [65] introduces DCT as a suitable molecule for targeting tumor cells with specific antibodies. If studies will confirm that DCT is internalized from the PM, this will open interesting perspectives of coupling anti-DCT antibodies with nanocarriers loaded with various antitumor agents. And finally by downregulating DCT (by siRNA or CRISPR/Cas9 system), it can be targeted the Cav1 stability and architecture and possibly some Cav1-mediated pathways including ones involved in tumor progression. The DCT-mediated therapeutic strategies are presented as integrated part of anti-melanoma treatments in Figure 9.
Our most recent studies in two distinct amelanotic melanoma cell lines representing different tumor phenotypes, MJS and SK28, demonstrate a molecular crosstalk, between DCT and caveolin-1 (Cav1), with structural and functional implications [23].
DCT and Cav1 are present in common structures in cytoplasm or decorating segments of PM (Figure 10A). Both Cav1 monomers/oligomers and DCT-precursor/mature forms have the same distribution along a density gradient in an ultracentrifugation experiment. Moreover, Cav1 has been identified in western blot and mass spectrometry analysis of the immunoprecipitates obtained with anti-DCT antibody from MJS cell lysates [23]. These experimental data are strongly supported by the structural analysis of DCT and Cav1 and by DCT-Cav1 structural model presented in Section 2.1.
The structural and functional relationship between DCT and Cav-1. (A) MJS and SK28 amelanotic melanoma cells immunostained for DCT and Cav1 and analyzed by confocal fluorescence microscopy demonstrate DCT and Cav1 in cytoplasmic and PM common structures; in DCT downregulated cells, the morphologies of Cav1 positive structures are severely altered. The fourth and the sixth panels represent the enlarged details of the indicated insets; (B) the DCT-high clones in MJS having downregulated Cav1 expression analyzed by tissue FAXS. In the upper part of quadrant are shown the cells with high DCT expression; (C) the crosstalk between DCT and Cav1. The impact of si-DCT on Cav1 and of si-Cav1 on DCT is indicated. Possible processes mediated by either DCT or Cav1 are indicated in dotted boxes; (D) DCT, unlike TYR or TRP1 is overexpressed during transition from subconfluent (48 h) to semi-confluent (72 h) and confluent (96 h). Medium was not replenished for 96 h (MR−) or replenished every 24 h (MR+). Autocrine/paracrine stimulation (starvation, secreted factors by proliferative MJS tumor cells within 48 h) decrease Cav1, increase DCT expressions, and change the cell morphology. The cells at 48 h are polygonal with visible contacts between adjacent cells, whereas cells at 96 h are elongated with no cell-cell contacts and form large clusters.
The transient downregulation of DCT expression (si-DCT) in MJS and SK28 cells increased the amount of Cav1 protein by its redistribution into more stable, insoluble membrane aggregates with altered morphologies [23] (Figure 10A). This is the first report about a melanosomal protein that regulates Cav1 assembly. We postulate that DCT may regulate Cav1-and/or lipid raft structures by competing either with different signaling molecules for Cav1 binding or with Cav1 monomers for Cav1 oligomerization domain or for cholesterol binding. Both caveolae and Cav1-scaffolds are associated with lipid rafts, which are membrane domains with a very dynamic structure abundant in cholesterol, sphingolipids recruiting different molecular players of signaling platforms, and controlling numerous and diverse cellular processes [113]. Either directly or indirectly, DCT as a major regulator of Cav1- or cholesterol-membrane architecture is thus expected to impact also different cellular events mediated by Cav1 (Figure 10C). For example, the interaction of membrane/lipid rafts, with the cytoskeleton, has impact on trafficking and sorting mechanisms, formation of platforms for cell anchorage to ECM, transduction of signaling cascades across the PM, cell growth and migration, entry of microorganisms (viruses/bacteria), and toxins or nanoparticles [114]. Indeed, we also observed that in MJS cells having downregulated DCT expression, there was an increase in cell volume, a significant redistribution of actin filaments in cell periphery, and a dramatic decrease in cell proliferation by 20 at 48, 60 at 72, and 75% at 96 h coupled with the cell cycle arrest in G1 [unpublished data]. Interestingly, these effects were less prominent in SK28 phenotype that indicates that DCT-mediated processes are tumor phenotype specific. Importantly, our mass spectrometry analysis of immunoprecipitates obtained from MJS cell lysates with anti-DCT antibodies against N- or C-terminus epitopes has identified as potential DCT interactors, regulators of small GTPases (Arf, Rho and Ras) and numerous proteins involved in anti-apoptotic, proliferative, migration, and invasion mechanisms and pathways [unpublished data]. The structural analysis pointed also the possibility that two Ser residues within DCT CYT subdomain to be phosphorylated (Section 2.1). Our theory based on all these data and preliminary information is that DCT, placed in a molecular environment with Cav1, is a key-molecular player acting on one or more signaling pathways involved in tumor cell survival and morphology, either by itself, as a potential target of the phosphorylation cascades, or as modulator of Cav1 or other participants in regulatory processes (Figure 10C). The numerous potential interactors present DCT as a possible new molecular scaffold. Further experimental studies are required to validate these interactions and place DCT in the exact pathway(s) where it operates.
The Cav1 downregulation (si-Cav1) has a dramatic impact on DCT in MJS cells. There is a 20-fold increase over 96 h of Cav1 silencing on DCT mRNA level. Accordingly, there is also a protein increase detected by western blot, and the deglycosylation experiments showed that DCT synthetized in si-Cav1 cells is mainly DCT-precursor. The imagistic studies of confocal immunofluorescence microscopy and Tissue FAXS cytometry quantitative analysis revealed a 7-fold increase in a DCT-population with intense cytoplasmic, but no PM, DCT staining, the “DCT-high clones” (Figure 10B). This is the first report about a melanosomal protein/melanoma antigen-regulated by Cav1 and a novel target gene for Cav1. Cav1 is a regulator of several genes as CyclinD or folate receptor promoters [115] or for survivin, a member of the Inhibitor Apoptosis Protein-family [116]. In melanoma, Cav1 function is still ambiguous. In some studies, Cav1 is associated with tumorigenicity [117], whereas others present Cav1 as a tumor suppressor by inhibiting Wnt-β-catenin-TCF/LEF [118], Src/FAK [119] pathways, or attenuating tumor cell motility by disrupting glycosphingolipid GD3-mediated malignant signaling [120]. In the context of DCT-mediating pro-survival and resistance pathways and the upregulation of DCT in si-Cav1 cells, we consider that Cav1 acts as a tumor suppressor gene, at least in this early malignant phenotype. The exact mechanism of how Cav1 controls DCT gene expression and how this intersects DCT-mediated processes (Figure 10C) needs to be deciphered and validated in one or more melanoma cell line(s) in addition to MJS.
The oncogenic epithelial-mesenchymal transition (EMT) is a multistep process by which epithelial cells acquire invasive mesenchymal phenotype characteristics essential in metastatic spread [121]. EMT is regulated and characterized by molecular mechanisms involving specific transcription factors, signaling pathways, and biomarkers. In melanoma cells which do not have epithelial origin, there is a phenotype switching, with similitudes between the EMT program from development, and this EMT-like switch is a major determinant in tumor metastasis [122]. The role of Cav1 in the oncogenic EMT process is significant but controversial and depends on the type of cancer. In bladder cancer cells, Cav1 promotes invasive phenotypes by inducing EMT [123] in A431 human epidermoid carcinoma cells, the Cav1 downregulation by EGF (an EMT inducer) results in E-cadherin loss, and increased tumor cell invasion [124], whereas in primary tumors of head and neck, squamous cell carcinoma increases EMT and prometastatic properties [125]. During transition from subconfluent (48 h) to confluent (96 h) cultures in MJS, SK28, or MNT-1 cell lines, there is an increase in DCT expression, not observed for either TYR or TRP1 and more abrupt in MJS (VGP) than in MNT or SK28 (metastatic) cells (Figure 10D). Oppositely, in the same MJS culture, Cav1 was severely downregulated, in the same cells highly expressing DCT. The most stimulating agent for DCT overexpression is the culture medium exhausted in nutrients but rich in cytokines and growth factors secreted by the tumor cells during 96 h proliferation, whereas changing medium every 24 h has a lower impact on DCT increase (Figure 10D). EMT can result from multiple extracellular stimuli; for instance, a synergistic effect on EMT has been observed with combined stimulation of EGF and TGF-β [126]. Interestingly, the cell morphology of MJS, but not SK28 cells was dramatically changed during transition from subconfluent to confluent stage from a polygonal, low-expressing DCT/high-Cav1 to an elongated phenotype high-DCT/low- or negative Cav1 (Figure 10D). The same phenotype switching has been observed in si-Cav1 cells highly expressing cytoplasmic DCT. Oppositely, si-DCT cells adopt a wider morphology. We consider that, in MJS phenotype, the DCT and Cav1 crosstalk is a possible part of the EMT program. In subconfluent MJS culture (48 h), groups of 2–4 polygonal cells are interconnected via fine filaments and express low DCT and high Cav1. In confluent culture (96 h), the environmental signals trigger probably, independently, the DCT increase and Cav1 decrease. Furthermore, Cav1 downregulation itself sustains even more the DCT increase. The dynamic analysis of tumor cell populations with Tissue FAXS system demonstrates the perpetuation of a subset of DCT-high/Cav1-low, elongated fibroblast-like cells with long extensions, and forming large clusters (Figure 10D). This metamorphosis is an
TRP2/L-DCT is, undoubtedly, a benefit for the cell expressing it. In melanocytes, the detoxification processes involve the conversion of DCT natural substrate, DHICA into less toxic products. In nonmelanocytic cells, exogenous DCT is able to decrease the effects of oxidative stress acting on substrate analogs. In melanoma, the “preservation” of the expression of certain melanosomal antigens able to ensure tumor cell viability prevails over that of the key-enzymes for pigment production, and TRP2/L-DCT qualifies for this selection. For this prosurvival molecule, the tumor cells reserve complex transcriptional and post-translational mechanisms distinct from the other TRPs. DCT functions as a sensor in case of the autocrine stimulation/stressful conditions when its expression is highly increased, no matter whether the melanogenic pathway is active or not. There is a molecular crosstalk between DCT and Cav1, a master regulator of numerous cellular processes. The members of signaling platforms identified by mass-spectrometry analysis as potential DCT interactors, as well as the impact of DCT expression on cell proliferation, morphology, and cytoskeleton remodeling are strong proofs that DCT is a key player in cellular processes, acting, in our opinion, as a molecular scaffold within one or more signaling hubs. The recent findings about DCT expression pattern in the tumor architecture in correlation with a stable, longlasting/“die-hard” phenotype in benign lesions and with bad prognostic parameters in malignant lesions advocate for considering DCT as a warning indicative of possibly tumor unfavorable outcome.
On the other hand, TRP2/L-DCT has its own vulnerabilities in terms of stability that can be exploited for therapeutic purposes.
In spite of all these information, the role of DCT in melanoma is far from being elucidated or fully exploited and several issues still need clarification: the molecularity behind DCT regulation by Cav1 and DCT impact on Cav1 structural organization; the decipherment of the signaling pathways in which DCT activates, in amelanotic versus pigmented phenotypes in different stages of tumor progression; how are the DCT structural subdomains involved in DCT tumor cell regulatory mechanisms; the DCT role in tumor cell phenotype switching process; the value of DCT phenotype as prognostic indicative; the efficiency of NBDNJ, CQ, as possible adjuvants in melanoma therapeutic strategies; the clarification of DCT expression in nonmelanocytic/nonneuronal cell lines or tumors.
In melanoma, DCT is a double-edged sword, a lethal weapon for cancer cells serving the tumor progression or an exploitable molecular tool for scientists and clinicians to eradicate the malignant cells.
This work was supported by Grant Application 156, Exploratory Research Projects PN-II-ID-PCE-2011-3-0492-1, funded by Ministerul Educației și Cercetării Științifice and by the Academia Română Project 1/2011 of the Institute of Biochemistry. Molecular simulations were performed using the high-performance computational capabilities of the HPC Linux cluster at IBAR and the High-Performance Computing Infrastructure for South East Europe’s Research Communities (HP-SEE), a project cofunded by the European Commission (under contract number 261499) through the Seventh Framework Programme. Gabriela Negroiu acknowledges Dr. Sabina Zurac, Department of Pathology, Colentina University Hospital, Bucharest, Romania for providing the image of the specimen in Figure 9 and for sharing her valuable expertise in melanoma pathology during our collaborative research. Adina Milac is grateful to Dr. Andriy Anishkin, Department of Biology, University of Maryland, College Park, MD, USA for advice and discussions on molecular simulations of cholesterol-containing membranes.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5944},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17700}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11168",title:"Sulfur Industry",subtitle:null,isOpenForSubmission:!0,hash:"39d4f4522a9f465bfe15ec2d85ef8861",slug:null,bookSignature:"Dr. Enos Wamalwa Wambu and Dr. Esther Nthiga",coverURL:"https://cdn.intechopen.com/books/images_new/11168.jpg",editedByType:null,editors:[{id:"187655",title:"Dr.",name:"Enos",surname:"Wambu",slug:"enos-wambu",fullName:"Enos Wambu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Associate Prof.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:682},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"202",title:"Surgery",slug:"surgery",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:142,numberOfSeries:0,numberOfAuthorsAndEditors:3738,numberOfWosCitations:1281,numberOfCrossrefCitations:971,numberOfDimensionsCitations:2233,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"202",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10708",title:"Topics in Regional Anesthesia",subtitle:null,isOpenForSubmission:!1,hash:"264f7f37033b4867cace7912287fccaa",slug:"topics-in-regional-anesthesia",bookSignature:"Víctor M. Whizar-Lugo, José Ramón Saucillo-Osuna and Guillermo Castorena-Arellano",coverURL:"https://cdn.intechopen.com/books/images_new/10708.jpg",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11238",title:"Hernia Surgery",subtitle:null,isOpenForSubmission:!1,hash:"1663b79cce4c6cddb688a027bd0cd34d",slug:"hernia-surgery",bookSignature:"Selim Sözen and Hasan Erdem",coverURL:"https://cdn.intechopen.com/books/images_new/11238.jpg",editedByType:"Edited by",editors:[{id:"90616",title:"Associate Prof.",name:"Selim",middleName:null,surname:"Sözen",slug:"selim-sozen",fullName:"Selim Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editedByType:"Edited by",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10866",title:"Skin Grafts for Successful Wound Closure",subtitle:null,isOpenForSubmission:!1,hash:"7f96063ba4feb9aab82c344a88a8c90c",slug:"skin-grafts-for-successful-wound-closure",bookSignature:"Madhuri Gore",coverURL:"https://cdn.intechopen.com/books/images_new/10866.jpg",editedByType:"Edited by",editors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10711",title:"Arthroscopy",subtitle:null,isOpenForSubmission:!1,hash:"afa83f11ba2442e7612f5b8c6aa3c659",slug:"arthroscopy",bookSignature:"Carlos Suarez-Ahedo",coverURL:"https://cdn.intechopen.com/books/images_new/10711.jpg",editedByType:"Edited by",editors:[{id:"235976",title:"M.D.",name:"Carlos",middleName:null,surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10723",title:"Brachial Plexus Injury",subtitle:"New Techniques and Ideas",isOpenForSubmission:!1,hash:"94c1a38f1ee7a078ee6ec640360c39f2",slug:"brachial-plexus-injury-new-techniques-and-ideas",bookSignature:"Jörg Bahm",coverURL:"https://cdn.intechopen.com/books/images_new/10723.jpg",editedByType:"Edited by",editors:[{id:"78207",title:"Prof.",name:"Jörg",middleName:null,surname:"Bahm",slug:"jorg-bahm",fullName:"Jörg Bahm"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10447",title:"The Art and Science of Abdominal Hernia",subtitle:null,isOpenForSubmission:!1,hash:"d3ace0f00ca1fdef094c105930ad353a",slug:"the-art-and-science-of-abdominal-hernia",bookSignature:"Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/10447.jpg",editedByType:"Edited by",editors:[{id:"235128",title:"Dr.",name:"Muhammad",middleName:null,surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10492",title:"Advances in Minimally Invasive Surgery",subtitle:null,isOpenForSubmission:!1,hash:"99d1149818bdb9bfa83675488599529c",slug:"advances-in-minimally-invasive-surgery",bookSignature:"Andrea Sanna",coverURL:"https://cdn.intechopen.com/books/images_new/10492.jpg",editedByType:"Edited by",editors:[{id:"327116",title:"M.D.",name:"Andrea",middleName:null,surname:"Sanna",slug:"andrea-sanna",fullName:"Andrea Sanna"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10302",title:"Aortic Aneurysm",subtitle:"Clinical Findings, Diagnostic, Treatment and Special Situations",isOpenForSubmission:!1,hash:"edb4662797c08616dc42b7796f1d17fe",slug:"aortic-aneurysm-clinical-findings-diagnostic-treatment-and-special-situations",bookSignature:"Ana Terezinha Guillaumon and Daniel Emilio Dalledone Siqueira",coverURL:"https://cdn.intechopen.com/books/images_new/10302.jpg",editedByType:"Edited by",editors:[{id:"251226",title:"Prof.",name:"Ana Terezinha",middleName:null,surname:"Guillaumon",slug:"ana-terezinha-guillaumon",fullName:"Ana Terezinha Guillaumon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10537",title:"Frontiers in Clinical Neurosurgery",subtitle:null,isOpenForSubmission:!1,hash:"908c7edd9fcb3cbafbf42d30232db9a0",slug:"frontiers-in-clinical-neurosurgery",bookSignature:"Xianli Lv, Guihuai Wang, James Wang and Zhongxue Wu",coverURL:"https://cdn.intechopen.com/books/images_new/10537.jpg",editedByType:"Edited by",editors:[{id:"153155",title:"Dr.",name:"Xianli",middleName:null,surname:"Lv",slug:"xianli-lv",fullName:"Xianli Lv"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9818",title:"Bariatric Surgery",subtitle:"From the Non-Surgical Approach to the Post-Surgery Individual Care",isOpenForSubmission:!1,hash:"6083018185852f95759958b4d9e5e33b",slug:"bariatric-surgery-from-the-non-surgical-approach-to-the-post-surgery-individual-care",bookSignature:"Nieves Saiz-Sapena and Juan Miguel Oviedo",coverURL:"https://cdn.intechopen.com/books/images_new/9818.jpg",editedByType:"Edited by",editors:[{id:"204651",title:"Dr.",name:"Nieves",middleName:null,surname:"Saiz-Sapena",slug:"nieves-saiz-sapena",fullName:"Nieves Saiz-Sapena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9790",title:"Surgical Management of Head and Neck Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"8ae195fe1164fd55b69b775d596f1e8a",slug:"surgical-management-of-head-and-neck-pathologies",bookSignature:"Ho-Hyun (Brian) Sun",coverURL:"https://cdn.intechopen.com/books/images_new/9790.jpg",editedByType:"Edited by",editors:[{id:"184302",title:"Dr.",name:"H. Brian",middleName:null,surname:"Sun",slug:"h.-brian-sun",fullName:"H. Brian Sun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:142,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"26862",doi:"10.5772/27413",title:"Titanium as a Biomaterial for Implants",slug:"titanium-as-a-biomaterial-for-implants",totalDownloads:16257,totalCrossrefCites:51,totalDimensionsCites:125,abstract:null,book:{id:"938",slug:"recent-advances-in-arthroplasty",title:"Recent Advances in Arthroplasty",fullTitle:"Recent Advances in Arthroplasty"},signatures:"Carlos Oldani and Alejandro Dominguez",authors:[{id:"70012",title:"Dr.",name:"Carlos",middleName:null,surname:"Oldani",slug:"carlos-oldani",fullName:"Carlos Oldani"},{id:"73445",title:"MSc.",name:"Alejandro",middleName:"Anibal",surname:"Dominguez",slug:"alejandro-dominguez",fullName:"Alejandro Dominguez"}]},{id:"58199",doi:"10.5772/intechopen.71963",title:"Virtual and Augmented Reality in Medical Education",slug:"virtual-and-augmented-reality-in-medical-education",totalDownloads:3079,totalCrossrefCites:21,totalDimensionsCites:41,abstract:"Virtual reality (VR) and augmented reality (AR) are two contemporary simulation models that are currently upgrading medical education. VR provides a 3D and dynamic view of structures and the ability of the user to interact with them. The recent technological advances in haptics, display systems, and motion detection allow the user to have a realistic and interactive experience, enabling VR to be ideal for training in hands-on procedures. Consequently, surgical and other interventional procedures are the main fields of application of VR. AR provides the ability of projecting virtual information and structures over physical objects, thus enhancing or altering the real environment. The integration of AR applications in the understanding of anatomical structures and physiological mechanisms seems to be beneficial. Studies have tried to demonstrate the validity and educational effect of many VR and AR applications, in many different areas, employed via various hardware platforms. Some of them even propose a curriculum that integrates these methods. This chapter provides a brief history of VR and AR in medicine, as well as the principles and standards of their function. Finally, the studies that show the effect of the implementation of these methods in different fields of medical training are summarized and presented.",book:{id:"6211",slug:"medical-and-surgical-education-past-present-and-future",title:"Medical and Surgical Education",fullTitle:"Medical and Surgical Education - Past, Present and Future"},signatures:"Panteleimon Pantelidis, Angeliki Chorti, Ioanna Papagiouvanni,\nGeorgios Paparoidamis, Christos Drosos, Thrasyvoulos\nPanagiotakopoulos, Georgios Lales and Michail Sideris",authors:[{id:"211650",title:"M.D.",name:"Panteleimon",middleName:null,surname:"Pantelidis",slug:"panteleimon-pantelidis",fullName:"Panteleimon Pantelidis"},{id:"211654",title:"Ms.",name:"Angeliki",middleName:null,surname:"Chorti",slug:"angeliki-chorti",fullName:"Angeliki Chorti"},{id:"220557",title:"Ms.",name:"Ioanna",middleName:null,surname:"Papagiouvanni",slug:"ioanna-papagiouvanni",fullName:"Ioanna Papagiouvanni"},{id:"220558",title:"Mr.",name:"Georgios",middleName:null,surname:"Paparoidamis",slug:"georgios-paparoidamis",fullName:"Georgios Paparoidamis"},{id:"220559",title:"Mr.",name:"Georgios",middleName:null,surname:"Lales",slug:"georgios-lales",fullName:"Georgios Lales"},{id:"220560",title:"Mr.",name:"Thrasyvoulos",middleName:null,surname:"Panagiotakopoulos",slug:"thrasyvoulos-panagiotakopoulos",fullName:"Thrasyvoulos Panagiotakopoulos"},{id:"220561",title:"Mr.",name:"Christos",middleName:null,surname:"Drosos",slug:"christos-drosos",fullName:"Christos Drosos"},{id:"220562",title:"Dr.",name:"Michail",middleName:null,surname:"Sideris",slug:"michail-sideris",fullName:"Michail Sideris"}]},{id:"50915",doi:"10.5772/63266",title:"Doped Bioactive Glass Materials in Bone Regeneration",slug:"doped-bioactive-glass-materials-in-bone-regeneration",totalDownloads:3480,totalCrossrefCites:13,totalDimensionsCites:33,abstract:"In the arena of orthopaedic surgery, autograft is considered to be the gold standard for correction of fracture repair or other bone pathologies. But, it has some limitations such as donor site morbidity and shortage of supply, which evolved the use of allograft that also has some disadvantages such as immunogenic response to the host, low osteogenicity as well as possibilities of disease transmission. Despite the benefits of autografts and allografts, the limitations of each have necessitated the pursuit of alternatives biomaterials that has the ability to initiate osteogenesis, and the graft should closely mimic the natural bone along with regeneration of fibroblasts. A variety of artificial materials such as demineralised bone matrix, coralline hydroxyapatite and calcium phosphate-based ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and bioactive glass have been used over the decades to fill bone defects almost without associated soft tissue development. Most of them were having only the properties of osteointegration and osteoconduction. Only bioactive glass possesses osteogenic property that stimulates proliferation and differentiation of osteoprogenitor cells and in some cases influencing the fibroblastic properties. But, this material has also some disadvantages such as short-term and low mechanical strength along with decreased fracture resistance; but, this was further minimised by ion doping that positively enhanced new bone formation. There are many metal ions such as magnesium (Mg), strontium (Sr), manganese (Mn), iron (Fe), zinc (Zn), silver (Ag) and some rare earths that have been doped successfully into bioactive glass to enhance their mechanical and biological properties. In some of the cases, mesoporous bioactive glass materials with or without such doping have also been employed (with homogeneous distribution of pores in the size ranging between 2 and 50 nm). These biomaterials can be served as scaffold for bone regeneration with adequate mechanical properties to restore bone defects and facilitate healing process by regeneration of soft tissues as well. This chapter encompasses the use of bioactive glass in bulk and mesoporous form with doped therapeutic ions, their role in bone tissue regeneration, use as delivery of growth factors as well as coating material for orthopaedic implants.",book:{id:"5164",slug:"advanced-techniques-in-bone-regeneration",title:"Advanced Techniques in Bone Regeneration",fullTitle:"Advanced Techniques in Bone Regeneration"},signatures:"Samit Kumar Nandi, Arnab Mahato, Biswanath Kundu and Prasenjit\nMukherjee",authors:[{id:"60514",title:"Dr.",name:"Samit",middleName:null,surname:"Nandi",slug:"samit-nandi",fullName:"Samit Nandi"}]},{id:"37120",doi:"10.5772/29607",title:"Trigeminocardiac Reflex in Neurosurgery - Current Knowledge and Prospects",slug:"the-trigeminocardiac-reflex-in-neurosurgery-current-knowledge-and-prospects",totalDownloads:3423,totalCrossrefCites:10,totalDimensionsCites:27,abstract:null,book:{id:"749",slug:"explicative-cases-of-controversial-issues-in-neurosurgery",title:"Explicative Cases of Controversial Issues in Neurosurgery",fullTitle:"Explicative Cases of Controversial Issues in Neurosurgery"},signatures:"Amr Abdulazim, Martin N. Stienen, Pooyan Sadr-Eshkevari, Nora Prochnow, Nora Sandu, Benham Bohluli and Bernhard Schaller",authors:[{id:"78171",title:"Prof.",name:"Bernhard",middleName:null,surname:"Schaller",slug:"bernhard-schaller",fullName:"Bernhard Schaller"},{id:"78525",title:"Mr.",name:"Amr",middleName:null,surname:"Abdulazim",slug:"amr-abdulazim",fullName:"Amr Abdulazim"},{id:"78530",title:"Dr",name:"Pooyan",middleName:null,surname:"Sadr-Eshkevari",slug:"pooyan-sadr-eshkevari",fullName:"Pooyan Sadr-Eshkevari"},{id:"126039",title:"Dr.",name:"Martin",middleName:"Nikolaus",surname:"Stienen",slug:"martin-stienen",fullName:"Martin Stienen"},{id:"126040",title:"Dr.",name:"Nora",middleName:null,surname:"Prochnow",slug:"nora-prochnow",fullName:"Nora Prochnow"},{id:"126041",title:"Dr.",name:"Benham",middleName:null,surname:"Bohluli",slug:"benham-bohluli",fullName:"Benham Bohluli"}]},{id:"26559",doi:"10.5772/28833",title:"Local Antibiotic Therapy in the Treatment of Bone and Soft Tissue Infections",slug:"local-antibiotic-therapy-in-the-treatment-of-bone-and-soft-tissue-infections",totalDownloads:6551,totalCrossrefCites:5,totalDimensionsCites:21,abstract:null,book:{id:"784",slug:"selected-topics-in-plastic-reconstructive-surgery",title:"Selected Topics in Plastic Reconstructive Surgery",fullTitle:"Selected Topics in Plastic Reconstructive Surgery"},signatures:"Stefanos Tsourvakas",authors:[{id:"75532",title:"Dr.",name:"Stefanos",middleName:null,surname:"Tsourvakas",slug:"stefanos-tsourvakas",fullName:"Stefanos Tsourvakas"}]}],mostDownloadedChaptersLast30Days:[{id:"65467",title:"Anesthesia Management for Large-Volume Liposuction",slug:"anesthesia-management-for-large-volume-liposuction",totalDownloads:5965,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The apparent easiness with which liposuction is performed favors that patients, young surgeons, and anesthesiologists without experience in this field ignore the many events that occur during this procedure. Liposuction is a procedure to improve the body contour and not a surgery to reduce weight, although recently people who have failed in their plans to lose weight look at liposuction as a means to contour their body figure. Tumescent liposuction of large volumes requires a meticulous selection of each patient; their preoperative evaluation and perioperative management are essential to obtain the expected results. The various techniques of general anesthesia are the most recommended and should be monitored in the usual way, as well as monitoring the total doses of infiltrated local anesthetics to avoid systemic toxicity. The management of intravenous fluids is controversial, but the current trend is the restricted use of hydrosaline solutions. The most feared complications are deep vein thrombosis, pulmonary thromboembolism, fat embolism, lung edema, hypothermia, infections and even death. The adherence to the management guidelines and prophylaxis of venous thrombosis/thromboembolism is mandatory.",book:{id:"6221",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery"},signatures:"Sergio Granados-Tinajero, Carlos Buenrostro-Vásquez, Cecilia\nCárdenas-Maytorena and Marcela Contreras-López",authors:[{id:"273532",title:"Dr.",name:"Sergio Octavio",middleName:null,surname:"Granados Tinajero",slug:"sergio-octavio-granados-tinajero",fullName:"Sergio Octavio Granados Tinajero"}]},{id:"42855",title:"Critical Care Issues After Major Hepatic Surgery",slug:"critical-care-issues-after-major-hepatic-surgery",totalDownloads:8909,totalCrossrefCites:2,totalDimensionsCites:2,abstract:null,book:{id:"3164",slug:"hepatic-surgery",title:"Hepatic Surgery",fullTitle:"Hepatic Surgery"},signatures:"Ashok Thorat and Wei-Chen Lee",authors:[{id:"52360",title:"Prof.",name:"Wei-Chen",middleName:null,surname:"Lee",slug:"wei-chen-lee",fullName:"Wei-Chen Lee"},{id:"157213",title:"Dr.",name:"Ashok",middleName:null,surname:"Thorat",slug:"ashok-thorat",fullName:"Ashok Thorat"}]},{id:"72175",title:"Fontan Operation: A Comprehensive Review",slug:"fontan-operation-a-comprehensive-review",totalDownloads:1252,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Since the first description of the Fontan operation in the early 1970s, a number of modifications have been introduced and currently staged, total cavopulmonary connection with fenestration has become the most commonly used multistage surgery in diverting the vena caval blood flow into the lungs. The existing ventricle, whether it is left or right, is utilized to supply systemic circuit. During Stage I, palliative surgery is performed, usually at presentation in the neonatal period/early infancy, on the basis of pathophysiology of the cardiac defect. During Stage II, a bidirectional Glenn procedure is undertaken in which the superior vena caval flow is diverted into the lungs at an approximate age of 6 months. During Stage IIIA, the blood flow from the inferior vena cava (IVC) is rerouted into the pulmonary arteries, typically by an extra-cardiac conduit along with a fenestration, generally around 2 years of age. During Stage IIIB, the fenestration is closed by transcatheter methodology 6–12 months after Stage IIIA. The evolution of Fontan concepts, the indications for Fontan surgery, and the results of old and current types of Fontan operation form the focus of this review.",book:{id:"9585",slug:"advances-in-complex-valvular-disease",title:"Advances in Complex Valvular Disease",fullTitle:"Advances in Complex Valvular Disease"},signatures:"P. Syamasundar Rao",authors:[{id:"68531",title:"Dr.",name:"P. Syamasundar",middleName:null,surname:"Rao",slug:"p.-syamasundar-rao",fullName:"P. Syamasundar Rao"}]},{id:"45712",title:"Serdev Sutures® in Middle Face",slug:"serdev-sutures-in-middle-face",totalDownloads:4919,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2989",slug:"miniinvasive-face-and-body-lifts-closed-suture-lifts-or-barbed-thread-lifts",title:"Miniinvasive Face and Body Lifts",fullTitle:"Miniinvasive Face and Body Lifts - Closed Suture Lifts or Barbed Thread Lifts"},signatures:"Nikolay Serdev",authors:[{id:"32585",title:"Dr.",name:"Nikolay",middleName:null,surname:"Serdev",slug:"nikolay-serdev",fullName:"Nikolay Serdev"}]},{id:"55812",title:"Postural Restoration: A Tri-Planar Asymmetrical Framework for Understanding, Assessing, and Treating Scoliosis and Other Spinal Dysfunctions",slug:"postural-restoration-a-tri-planar-asymmetrical-framework-for-understanding-assessing-and-treating-sc",totalDownloads:7646,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Current medical practice does not recognize the influence of innate, physiological, human asymmetry on scoliosis and other postural disorders. Interventions meant to correct these conditions are commonly based on symmetrical models of appearance and do not take into account asymmetric organ weight distribution, asymmetries of respiratory mechanics, and dominant movement patterns that are reinforced in daily functional activities. A model of innate, human asymmetry derived from the theoretical framework of the Postural Restoration Institute® (PRI) explicitly describes the physiological, biomechanical, and respiratory components of human asymmetry. This model is important because it gives an accurate baseline for understanding predisposing factors for the development of postural disorders, which, without intervention, will likely progress to structural dysfunction. Clinical tests to evaluate tri-planar musculoskeletal relationships and function, developed by PRI, are based on this asymmetric model. These tests are valuable for assessing patient’s status in the context of human asymmetry and in guiding appropriate exercise prescription and progression. Balancing musculoskeletal asymmetry is the aim of PRI treatment. Restoration of relative balance decreases pain, restores improved alignment, and strengthens appropriate muscle function. It can also halt the progression of dysfunction and improve respiration, quality of life, and appearance. PRI’s extensive body of targeted exercise progressions are highly effective due to their basis in the tri-planar asymmetric human model.",book:{id:"5816",slug:"innovations-in-spinal-deformities-and-postural-disorders",title:"Innovations in Spinal Deformities and Postural Disorders",fullTitle:"Innovations in Spinal Deformities and Postural Disorders"},signatures:"Susan Henning, Lisa C. Mangino and Jean Massé",authors:[{id:"204825",title:"Dr.",name:"Susan",middleName:null,surname:"Henning",slug:"susan-henning",fullName:"Susan Henning"},{id:"206242",title:"Dr.",name:"Lisa C",middleName:null,surname:"Mangino",slug:"lisa-c-mangino",fullName:"Lisa C Mangino"},{id:"206245",title:"Dr.",name:"Jean",middleName:null,surname:"Massé",slug:"jean-masse",fullName:"Jean Massé"}]}],onlineFirstChaptersFilter:{topicId:"202",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"