A summary of asymmetric crystallization induced by chiral additives or solvents.
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"6113",leadTitle:null,fullTitle:"Human Robot Interaction",title:"Human Robot Interaction",subtitle:null,reviewType:"peer-reviewed",abstract:"Human-robot interaction research is diverse and covers a wide range of topics. All aspects of human factors and robotics are within the purview of HRI research so far as they provide insight into how to improve our understanding in developing effective tools, protocols, and systems to enhance HRI. For example, a significant research effort is being devoted to designing human-robot interface that makes it easier for the people to interact with robots. HRI is an extremely active research field where new and important work is being published at a fast pace. It is neither possible nor is it our intention to cover every important work in this important research field in one volume. However, we believe that HRI as a research field has matured enough to merit a compilation of the outstanding work in the field in the form of a book. This book, which presents outstanding work from the leading HRI researchers covering a wide spectrum of topics, is an effort to capture and present some of the important contributions in HRI in one volume. We hope that this book will benefit both experts and novice and provide a thorough understanding of the exciting field of HRI.",isbn:null,printIsbn:"978-3-902613-13-4",pdfIsbn:"978-953-51-5818-9",doi:"10.5772/51",price:159,priceEur:175,priceUsd:205,slug:"human_robot_interaction",numberOfPages:524,isOpenForSubmission:!1,isInWos:1,hash:"9a29f8c78e1bb0d526244fc8549e9994",bookSignature:"Nilanjan Sarkar",publishedDate:"September 1st 2007",coverURL:"https://cdn.intechopen.com/books/images_new/6113.jpg",numberOfDownloads:67099,numberOfWosCitations:75,numberOfCrossrefCitations:62,numberOfDimensionsCitations:94,hasAltmetrics:0,numberOfTotalCitations:231,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 1st 2017",dateEndSecondStepPublish:null,dateEndThirdStepPublish:null,dateEndFourthStepPublish:null,dateEndFifthStepPublish:null,currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"80960",title:"Dr.",name:"Nilanjan",middleName:null,surname:"Sarkar",slug:"nilanjan-sarkar",fullName:"Nilanjan Sarkar",profilePictureURL:"https://mts.intechopen.com/storage/users/80960/images/system/80960.jpg",biography:"Nilanjan Sarkar is a Professor of Mechanical Engineering (primary) and Electrical Engineering and Computer Science (secondary) at Vanderbilt University. He received his Ph.D. from the GRASP Lab at the University of Pennsylvania. He directs the Robotics and Autonomous Systems Lab and co-directs the Autos Lab at Vanderbilt University. Dr. Sarkar’s research interests are in dynamics, controls, robotics and human-robot and human-machine interactions. He is a Fellow of the ASME.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Vanderbilt University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"569",title:"Intelligent System",slug:"human-computer-interaction-intelligent-system"}],chapters:[{id:"582",title:"Adaptive Personal Space for Humanizing Mobile Robots",doi:"10.5772/5184",slug:"adaptive_personal_space_for_humanizing_mobile_robots",totalDownloads:2165,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Janaka Chaminda Balasuriya, Chandrajith Ashuboda Marasinghe and Keigo Watanabe",downloadPdfUrl:"/chapter/pdf-download/582",previewPdfUrl:"/chapter/pdf-preview/582",authors:[null],corrections:null},{id:"583",title:"The Potential for Modeling Human-Robot Interaction with GOMS",doi:"10.5772/5185",slug:"the_potential_for_modeling_human-robot_interaction_with_goms",totalDownloads:1944,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jill L. Drury, Jean Scholtz and David Kieras",downloadPdfUrl:"/chapter/pdf-download/583",previewPdfUrl:"/chapter/pdf-preview/583",authors:[null],corrections:null},{id:"584",title:"Supporting Complex Robot Behaviors with Simple Interaction Tools",doi:"10.5772/5186",slug:"supporting_complex_robot_behaviors_with_simple_interaction_tools",totalDownloads:2202,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"David J. Bruemmer, David I. Gertman, Curtis W. Nielsen, Douglas A. Few and William D. Smart",downloadPdfUrl:"/chapter/pdf-download/584",previewPdfUrl:"/chapter/pdf-preview/584",authors:[null],corrections:null},{id:"585",title:"Augmented Reality for Human-Robot Collaboration",doi:"10.5772/5187",slug:"augmented_reality_for_human-robot_collaboration",totalDownloads:2815,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Scott A. Green, Mark Billinghurst, XiaoQi Chen and J. Geoffrey Chase",downloadPdfUrl:"/chapter/pdf-download/585",previewPdfUrl:"/chapter/pdf-preview/585",authors:[null],corrections:null},{id:"586",title:"Robots That Learn Language: A Developmental Approach to Situated Human-Robot Conversations",doi:"10.5772/5188",slug:"robots_that_learn_language__a_developmental_approach_to_situated_human-robot_conversations",totalDownloads:1805,totalCrossrefCites:25,totalDimensionsCites:29,signatures:"Naoto Iwahashi",downloadPdfUrl:"/chapter/pdf-download/586",previewPdfUrl:"/chapter/pdf-preview/586",authors:[null],corrections:null},{id:"587",title:"Recognizing Human Pose and Actions for Interactive Robots",doi:"10.5772/5189",slug:"recognizing_human_pose_and_actions_for_interactive_robots",totalDownloads:2306,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Odest Chadwicke Jenkins, German Gonzalez Serrano and Matthew M. Loper",downloadPdfUrl:"/chapter/pdf-download/587",previewPdfUrl:"/chapter/pdf-preview/587",authors:[null],corrections:null},{id:"588",title:"Development of Service Robot System With Multiple Human User Interface",doi:"10.5772/5190",slug:"development_of_service_robot_system_with_multiple_human_user_interface",totalDownloads:2327,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Songmin Jia and Kunikatsu Takase",downloadPdfUrl:"/chapter/pdf-download/588",previewPdfUrl:"/chapter/pdf-preview/588",authors:[null],corrections:null},{id:"589",title:"Human-Robot Interface for End Effectors",doi:"10.5772/5191",slug:"human-robot_interface_for_end_effectors",totalDownloads:3063,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marcin Kaczmarski",downloadPdfUrl:"/chapter/pdf-download/589",previewPdfUrl:"/chapter/pdf-preview/589",authors:[null],corrections:null},{id:"590",title:'"From Saying to Doing" - Natural Language Interaction with Artificial Agents and Robots',doi:"10.5772/5192",slug:"_from_saying_to_doing__-_natural_language_interaction_with_artificial_agents_and_robots",totalDownloads:1795,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Christel Kemke",downloadPdfUrl:"/chapter/pdf-download/590",previewPdfUrl:"/chapter/pdf-preview/590",authors:[null],corrections:null},{id:"591",title:"Can robots replace dogs? Comparison of Temporal Patterns in Dog-Human and Robot-Human Interactions",doi:"10.5772/5193",slug:"can_robots_replace_dogs_comparison_of_temporal_patterns_in_dog-human_and_robot-human_interactions",totalDownloads:2822,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Andrea Kerepesi, Gudberg K. Jonsson, Eniko Kubinyi and Adam Miklosi",downloadPdfUrl:"/chapter/pdf-download/591",previewPdfUrl:"/chapter/pdf-preview/591",authors:[null],corrections:null},{id:"592",title:"A Facial Expression Imitation System for the Primitive of Intuitive Human-Robot Interaction",doi:"10.5772/5194",slug:"a_facial_expression_imitation_system_for_the_primitive_of_intuitive_human-robot_interaction",totalDownloads:2336,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Do Hyoung Kim, Kwang Ho An, Yeon Geol Ryu and Myung Jin Chung",downloadPdfUrl:"/chapter/pdf-download/592",previewPdfUrl:"/chapter/pdf-preview/592",authors:[null],corrections:null},{id:"5260",title:"Evaluating Emotion Expressing Robots in Affective Space",doi:"10.5772/6112",slug:"evaluating_emotion_expressing_robots_in_affective_space",totalDownloads:3079,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Kolja Kuehnlenz, Stefan Sosnowski and Martin Buss",downloadPdfUrl:"/chapter/pdf-download/5260",previewPdfUrl:"/chapter/pdf-preview/5260",authors:[null],corrections:null},{id:"593",title:"Cognitive Robotic Engine: Behavioral Perception Architecture for Human-Robot Interaction",doi:"10.5772/5195",slug:"cognitive_robotic_engine__behavioral_perception_architecture_for_human-robot_interaction",totalDownloads:2102,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Sukhan Lee, Seung-Min Baek and Jangwon Lee",downloadPdfUrl:"/chapter/pdf-download/593",previewPdfUrl:"/chapter/pdf-preview/593",authors:[null],corrections:null},{id:"594",title:"Contact Task by Force Feedback Teleoperation Under Communication Time Delay",doi:"10.5772/5196",slug:"contact_task_by_force_feedback_teleoperation_under_communication_time_delay",totalDownloads:2501,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Masahiro Nohmi and Thomas Bock",downloadPdfUrl:"/chapter/pdf-download/594",previewPdfUrl:"/chapter/pdf-preview/594",authors:[null],corrections:null},{id:"595",title:"What People Assume about Robots: Cross-Cultural Analysis between Japan, Korea, and the USA",doi:"10.5772/5197",slug:"what_people_assume_about_robots__cross-cultural_analysis_between_japan__korea__and_the_usa",totalDownloads:2858,totalCrossrefCites:3,totalDimensionsCites:4,signatures:"Tatsuya Nomura, Tomohiro Suzuki, Takayuki Kanda, Jeonghye Han, Namin Shin, Jennifer Burke and Kensuke Kato",downloadPdfUrl:"/chapter/pdf-download/595",previewPdfUrl:"/chapter/pdf-preview/595",authors:[null],corrections:null},{id:"596",title:"Posture and Movement Estimation Based on Reduced Information. Application to the Context of FES-based Control of Lower-Limbs",doi:"10.5772/5198",slug:"posture_and_movement_estimation_based_on_reduced_information__application_to_the_context_of_fes-base",totalDownloads:1963,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nacim Ramdani, Christine Azevedo-Coste, David Guiraud, Philippe Fraisse, Rodolphe Heliot and Gael Pages",downloadPdfUrl:"/chapter/pdf-download/596",previewPdfUrl:"/chapter/pdf-preview/596",authors:[null],corrections:null},{id:"597",title:"Intelligent Space as a Platform for Human Observation",doi:"10.5772/5199",slug:"intelligent_space_as_a_platform_for_human_observation",totalDownloads:1914,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Takeshi Sasaki and Hideki Hashimoto",downloadPdfUrl:"/chapter/pdf-download/597",previewPdfUrl:"/chapter/pdf-preview/597",authors:[null],corrections:null},{id:"598",title:"Semiotics and Human-Robot Interaction",doi:"10.5772/5200",slug:"semiotics_and_human-robot_interaction",totalDownloads:2001,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Joao Sequeira and M.Isabel Ribeiro",downloadPdfUrl:"/chapter/pdf-download/598",previewPdfUrl:"/chapter/pdf-preview/598",authors:[null],corrections:null},{id:"599",title:"Effect of Robot and Screen Agent Recommendations on Human Decision-Making",doi:"10.5772/5201",slug:"effect_of_robot_and_screen_agent_recommendations_on_human_decision-making",totalDownloads:1796,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Kazuhiko Shinozawa and Junji Yamato",downloadPdfUrl:"/chapter/pdf-download/599",previewPdfUrl:"/chapter/pdf-preview/599",authors:[null],corrections:null},{id:"600",title:"Collective Motion of Multi-Robot System based on Simple Dynamics",doi:"10.5772/5202",slug:"collective_motion_of_multi-robot_system_based_on_simple_dynamics",totalDownloads:2244,totalCrossrefCites:3,totalDimensionsCites:5,signatures:"Ken Sugawara, Yoshinori Hayakawa, Tsuyoshi Mizuguchi and Masaki Sano",downloadPdfUrl:"/chapter/pdf-download/600",previewPdfUrl:"/chapter/pdf-preview/600",authors:[null],corrections:null},{id:"601",title:"Modeling and Control of Piezoelectric Actuators for Active Physiological Tremor Compensation",doi:"10.5772/5203",slug:"modeling_and_control_of_piezoelectric_actuators_for_active_physiological_tremor_compensation",totalDownloads:3474,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"U-Xuan Tan, Win Tun Latt, Cheng Yap Shee, Cameron Riviere and Wei Tech Ang",downloadPdfUrl:"/chapter/pdf-download/601",previewPdfUrl:"/chapter/pdf-preview/601",authors:[null],corrections:null},{id:"602",title:"Automatic Speech Recognition of Human-Symbiotic Robot EMIEW",doi:"10.5772/5204",slug:"automatic_speech_recognition_of_human-symbiotic_robot_emiew",totalDownloads:2423,totalCrossrefCites:7,totalDimensionsCites:7,signatures:"Masahito Togami, Yasunari Obuchi and Akio Amano",downloadPdfUrl:"/chapter/pdf-download/602",previewPdfUrl:"/chapter/pdf-preview/602",authors:[null],corrections:null},{id:"603",title:"Mixed-initiative Multirobot Control in USAR",doi:"10.5772/5205",slug:"mixed-initiative_multirobot_control_in_usar",totalDownloads:1675,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Jijun Wang and Michael Lewis",downloadPdfUrl:"/chapter/pdf-download/603",previewPdfUrl:"/chapter/pdf-preview/603",authors:[null],corrections:null},{id:"604",title:"Robotic Musicianship - Musical Interactions Between Humans and Machines",doi:"10.5772/5206",slug:"robotic_musicianship_-_musical_interactions_between_humans_and_machines",totalDownloads:2151,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Gil Weinberg",downloadPdfUrl:"/chapter/pdf-download/604",previewPdfUrl:"/chapter/pdf-preview/604",authors:[null],corrections:null},{id:"605",title:"Possibilities of Force based Interaction with Robot Manipulators",doi:"10.5772/5207",slug:"possibilities_of_force_based_interaction_with_robot_manipulators",totalDownloads:2817,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Alexander Winkler and Jozef Suchy",downloadPdfUrl:"/chapter/pdf-download/605",previewPdfUrl:"/chapter/pdf-preview/605",authors:[null],corrections:null},{id:"606",title:"Playing Games with Robots - A Method for Evaluating Human-Robot Interaction",doi:"10.5772/5208",slug:"playing_games_with_robots_-_a_method_for_evaluating_human-robot_interaction",totalDownloads:2316,totalCrossrefCites:5,totalDimensionsCites:12,signatures:"Min Xin and Ehud Sharlin",downloadPdfUrl:"/chapter/pdf-download/606",previewPdfUrl:"/chapter/pdf-preview/606",authors:[null],corrections:null},{id:"607",title:"Designing Simple and Effective Expression of Robot's Primitive Minds to a Human",doi:"10.5772/5209",slug:"designing_simple_and_effective_expression_of_robot_s_primitive_minds_to_a_human",totalDownloads:2058,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Seiji Yamada and Takanori Komatsu",downloadPdfUrl:"/chapter/pdf-download/607",previewPdfUrl:"/chapter/pdf-preview/607",authors:[null],corrections:null},{id:"5276",title:"Hand Posture Segmentation, Recognition and Application for Human-Robot Interaction",doi:"10.5772/6097",slug:"hand_posture_segmentation__recognition_and_application_for_human-robot_interaction",totalDownloads:4173,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Xiaoming Yin and Ming Xie",downloadPdfUrl:"/chapter/pdf-download/5276",previewPdfUrl:"/chapter/pdf-preview/5276",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5324",title:"Ambient Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"a05278706b60124f3975fb674f783a08",slug:"ambient-intelligence",bookSignature:"Felix Jesus Villanueva Molina",coverURL:"https://cdn.intechopen.com/books/images_new/5324.jpg",editedByType:"Edited by",editors:[{id:"6504",title:"Dr.",name:"Felix Jesus",surname:"Villanueva",slug:"felix-jesus-villanueva",fullName:"Felix Jesus Villanueva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5113",title:"Augmented Reality",subtitle:null,isOpenForSubmission:!1,hash:"954d173e8f2d779038eab3d42ef6b159",slug:"augmented-reality",bookSignature:"Soha Maad",coverURL:"https://cdn.intechopen.com/books/images_new/5113.jpg",editedByType:"Edited by",editors:[{id:"7692",title:"Dr.",name:"Soha",surname:"Maad",slug:"soha-maad",fullName:"Soha Maad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6935",title:"Toward Super-Creativity",subtitle:"Improving Creativity in Humans, Machines, and Human - Machine Collaborations",isOpenForSubmission:!1,hash:"98c0eed8bde901e69239d5217d9be28d",slug:"toward-super-creativity-improving-creativity-in-humans-machines-and-human-machine-collaborations",bookSignature:"Sílvio Manuel Brito",coverURL:"https://cdn.intechopen.com/books/images_new/6935.jpg",editedByType:"Edited by",editors:[{id:"170935",title:"Ph.D.",name:"Sílvio Manuel",surname:"Brito",slug:"silvio-manuel-brito",fullName:"Sílvio Manuel Brito"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65667",slug:"erratum-the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",title:"Erratum - The Roll of the Entrepreneur in the Establishment of Economic Equilibria",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65667.pdf",downloadPdfUrl:"/chapter/pdf-download/65667",previewPdfUrl:"/chapter/pdf-preview/65667",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65667",risUrl:"/chapter/ris/65667",chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]}},chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]},book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9878",leadTitle:null,title:"Electromagnetic Wave Propagation for Industry and Biomedical Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tElectromagnetic imaging is an emerging biomedical imaging modality, which when matured, might present an effective supplement to current imaging technologies for non-invasive assessment of functional and pathological conditions of tissues. This book aims to provide a state-of-art for the most relevant advancements in the development of electromagnetic sensing and imaging for non-invasive detection, by covering all aspects related to the design, modeling, and experimentation. The authors are welcome to submit original research and review articles reporting recent advances in the application of electromagnetic waves technologies in industry and bioengineering.
\r\n\r\n\tThe scope of this book will be the collection of new and/or review results exploring the use of electromagnetic waves for industrial and biomedical applications with particular focus on inclusion detection and medical treatment as well as a diagnostic tool for disease detection. Potential topics include but are not limited to the following: Electromagnetic sensing and imaging for industry applications, Electromagnetic sensing and imaging for biomedical applications, Microwave sensing and imaging , Non-invasive electromagnetic diagnostic tools, Usage of electromagnetic waves for probing organs and advanced MRI techniques, Theoretical modeling of electromagnetic wave propagation, Application of electromagnetic waves in advanced MRI techniques, RF sensors and coils, Biomaterials for wearable sensors, In vitro and in vivo testing.
",isbn:"978-1-83968-582-8",printIsbn:"978-1-83968-581-1",pdfIsbn:"978-1-83968-583-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e57ef4b5bada0d966637cd303d76278f",bookSignature:"Distinguished Prof. Lulu Wang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9878.jpg",keywords:"Electromagnetic Sensing, Imaging, Biomedical Applications, Electromagnetic Measurements, Conductivity, Electromagnetic Induction Tomography, Electric Impedance Imaging, Microwave Imaging, Biomaterials, RF Coils, Electromagnetic Scattering Problems, Integral Equations",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 26th 2020",dateEndSecondStepPublish:"November 3rd 2020",dateEndThirdStepPublish:"January 2nd 2021",dateEndFourthStepPublish:"March 23rd 2021",dateEndFifthStepPublish:"May 22nd 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"With an M.E. (Hons.) and a Ph.D. degree from the Auckland University of Technology, New Zealand, Dr. Wang is the first author of over 60 peer-reviewed publications, received multiple national and international awards from various professional societies and organizations she is a member of (ASME, IEEE, AAAS, PSNZ, and IPENZ ).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/257388/images/system/257388.jpg",biography:"Lulu Wang is a Full Professor of Biomedical Engineering at Shenzhen Technology University in China. She received the M.E. (First class Hons.) and Ph.D. degrees from the Auckland University of Technology, New Zealand, in 2009 and 2013, respectively. From 2013 to 2015, she was a Research Fellow with the Institute of Biomedical Technologies, Auckland University of Technology, New Zealand. In 2015, Dr. Wang became an Associate Professor of biomedical engineering with the Hefei University of Technology. In 2019, she became a Full Professor of biomedical engineering with the College of Health Science and Environmental Engineering, Shenzhen Technology University. Her research interests include medical devices, electromagnetic sensing and imaging, and computational mechanics. Over the past five years, Dr. Wang is the first author of 60 peer-reviewed publications, 2 ASME books, 7 book chapters, and 12 innovation patents. She has edited three books and two special issues of international journals. Dr. Wang is a member of ASME, IEEE, AAAS, PSNZ, and IPENZ. She has been an active scientific reviewer for numerous journals and international conferences. She received multiple National and International Awards from various professional societies and organizations.",institutionString:"Shenzhen Technology University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6835",title:"Computer Methods and Programs in Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"19f08ef15d97900c94dc8fb04f9afb5f",slug:"computer-methods-and-programs-in-biomedical-signal-and-image-processing",bookSignature:"Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6835.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65093",title:"Chirality in Porous Functional Materials",doi:"10.5772/intechopen.82288",slug:"chirality-in-porous-functional-materials",body:'To design a crystalline material that contains both chirality and porosity in to one framework is still a big challenge [1]. There are many inorganic frameworks with chiral crystal structures and some zeolite frameworks like LTJ, ITQ-37, CZP, BEA, SFS and STW have intrinsic chirality but their synthesis is full of challenges [1, 2, 3]. So far, different chiral induction methods and chiral structure directing agents has been applied to transfer chirality in inorganic frameworks but all of them have a limited success [1, 4]. In contrast to the traditional chiral materials as mentioned above, there are two emerging classes of chiral porous materials known as metal organic frameworks (MOFs) and covalent organic frameworks (COFs) that can be efficiently tailored to induce chirality for asymmetric catalysis and enantiomeric separation. As compared to the zeolite syntheses, homochiral MOFs/COFs can be efficiently constructed using chiral molecules as primary linkers or as supplementary or auxiliary ligands [5]. Herein, we will focus on recent advances in the syntheses of chiral microporous MOFs and COFs, their different properties and application e.g., enantioselective adsorption [6], chiral chromatographic resolution [7, 8], membrane separation [9], their specific structures and advantages over the traditional chiral materials.
Two aspects are notable while discussing chirality in solid materials; either the components of the framework are chiral, or the arrangement of the components in the solid framework is chiral [10]. For the development of chiral materials different strategies have been used, which include the introduction of chiral ligands or chiral templates, control of the chiral physical environment, and post-synthetic modification of the organic struts or the metal nodes through guest exchange [11, 12]. So the three most commonly used strategies for synthesizing homo-chiral microporous materials are, direct synthesis, chirality induction synthesis and post-synthetic modification [13]. Among these, the most successful strategy is to use enantiopure organic linkers (direct synthesis) or the chiral co-ligands to control the stereochemistry at the metal centers. Below is the detail of these strategies.
In order to synthesize chiral MOFs or COFs for specific applications the term “design synthesis” is usually used, according to which the resulting frameworks components are first carefully designed to utilize them for framework construction. In addition during the synthesis, environment and conditions are also carefully controlled for the efficient construction of solid materials. In general a number of different synthesis methods have been developed and reported so far, which include solvothermal synthesis, ionothermal, microwave assisted synthesis, electrochemical synthesis, mechanochemical synthesis and sonochemical synthesis [14, 15].
Most of the chiral materials are being synthesized using design synthesis by direct or bottom up strategy, in which the homochirality in the resulting framework comes from the starting materials. Such type of the synthesis is also known as “chirality conversion process” [16]. In 2015 Jian Zhang and coworkers synthesized a homochiral MOF “FIR-28” (Fujian Institute of Research) an 8-fold interpenetrating srs-type MOF based on (Figure 1). The synthesis was based on direct solvothermal synthesis using the ligand of interest and metal salt, Zn(NO3)26H2O [17].
Structure of the H3TPA ligand, (a) single framework in FIR-28, (b) P-helix, (c) M-helix, (d) 3-connected srs network in FIR-28, and (e) 8-fold interpenetrating framework of FIR-28.
A Boc-protected proline based homochiral MOF DUT-32-NHProBoc was synthesized by Stefan Kaskel group in 2014. The direct synthesis using proline based linker was not successful, so their group functionalized the ditopic linker (4,4′-biphenyldicarboxylic acid) with a chiral BOC-protected proline functionality (NHProBoc group) in three steps. They used two ligands a tritopic 4,4′,4″-[benzene-1,3,5-triyltris (carbonylimino)] trisbenzoate (btcb3) and ditopic 4,4-biphenyldicarboxylate (bpdc2) with Zn(NO3)2·4H2O salt by direct synthesis (Figure 2) [18]. Using bottom-up approach, in 2016 a series of thermally stable chiral COFs, CTpPa-1, CTpPa-2 and CTpBD were successfully synthesized that exhibit a two-dimensional eclipsed layered sheet structure (Figure 3) [19].
(a) Linker used for the synthesis of DUT-32-NHProBoc, (b) crystal structure of DUT-32-NHProBoc and (c) simplified representation of four pore types highlighting bordering chiral ligands L2.
(a) Synthesis of CTp through the esterification of Tp and (+)-Ac-L-Ta, (b) synthesis of chiral COFs through the condensation of CTp and Pa-RR1, (c) graphical view of CTpPa-1, (d) eclipsed structure of CTpPa-1. C, gray; N, blue, O, red; H omitted for clarity.
Wei Wang and coworkers used a facile strategy for the direct construction of chiral functionalized COFs, LZU-72 and LZU-76 using chiral pyrrolidine-containing building blocks. They used 4,4′-(1H-benzo [d] imidazole-4, 7-diyl) dianiline as a rigid scaffold in order to attach chiral moieties. As a result chiral pyrrolidine-embedded building block (S)-4,4′-(-(pyrrolidin-2-yl)-1H-benzo [d] imidazole-4,7-diyl) dianiline was accordingly synthesized and used to successfully construct the above mentioned chiral COFs [20].
In 2005 Lin and coworkers synthesized a series of catalytically active chiral MOFs by designing a variety of chiral pyridyl, carboxylates and phosphonate bridging ligands with orthogonal functional groups using readily available chiral 1,1′-bi-2-naphthol (BINOL) [21]. While in 2012 their group synthesized a highly fluorescent chiral MOF from 1,1-bi-2-naphthol (BINOL) based chiral tetracarboxylate bridging ligand and a cadmium carboxylate infinite chain secondary building unit [22].
In 2008 Jian Zhang et al. described unusual integrated homochirality features in six 3D MOFs containing enantiopure building blocks embedded in intrinsically chiral topological quartz net. Direct synthesis using solvothermal method was used to construct these MOF materials from economically cheap ligands; D or L camphoric acid and divalent or trivalent metal ions in the presence of achiral template cations or molecules. Single crystal analysis revealed that all six MOFs have three homochiral features: 3D intrinsically homochiral net (quartz, quartz dual, srs net), enantiopure molecular chirality and homohelicity. It is noteworthy that chirality of molecular building blocks controls the absolute helicity in each case [23]. In 2014 this group further developed a low-cost homochiral MOF platform which was based on the inexpensive
In 2014 two chiral micro- and mesoporous MOFs were synthesized using stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous framework proved to be an efficient recyclable heterogeneous catalyst when encapsulated with an enantiopure organic amine catalyst. The organocatalyst-loaded framework catalyze the asymmetric direct aldol reactions with significantly in proved stereo-selectivity in comparison to the homogenous organocatalyst [25]. In the past few years, the UiO family of MOFs with linear dicarboxylate organic linkers and Zr6(μ3-O)4(μ3-OH)4 SBUs has particularly been synthesized by direct synthesis method. These MOFs are an ideal platform to design highly efficient MOF catalysts because of their stability in harsh reaction conditions and broad range of solvents [26, 27].
Different chiral ligands have been used for the direct synthesis of chiral microporous frameworks, some of them are given in Figure 4.
Different chiral ligands used to construct chiral porous materials.
In order to prepare a chiral crystalline material from achiral building units different strategies have been applied including, chiral templating, chiral induction, solvent effects, and chiral additive effects. The key feature in all of these processes is the transfer of chiral information from a chiral species to the nucleus of growing crystallite. For successful crystallization of chiral frameworks, such information transfer needs to be very specific, and probably requires quite strong directional bonding to the substrate crystal. That’s the reason templating is rather a disappointing method of forming chiral crystals from achiral building blocks because it might cause framework collapse once the template is thermally removed [5].
In this chapter we will discuss some of the techniques that have been used by different research groups to synthesize chiral MOFs and COFs. One of the important aspects that should be kept in consideration is that the bulk sample must be homochiral. Different bulk measurement techniques have been developed and used so for, such as circular dichroism (CD) spectra, VCD spectrum, or multiple single-crystal for checking the homochirality of the bulk material [28, 29].
In comparison to the direct synthesis, a little progress has been achieved in asymmetric crystallization of enantiopure or enantioenriched materials through chiral induction using achiral precursors. There is great deal of similarity between chiral induction by enantiopure additives and asymmetric catalysts used by organic chemists to synthesize chiral molecules. Although there is no direct proofs of how a chiral solvent or a chiral additive plays its role of induction, recent examples of chiral induction by additive/solvents (Table 1) suggest that chemical bonding interaction between additives and cationic metal sites might be the reasons of induced chirality [5].
Formula of chiral material | (BMIM)2[Ni(HTMA)2(H2O)2 | [(CH3)2NH2][In(thb)2]·(DMF)x | Mn3(HCOO4(adc) | NaZnPO4·H2O |
---|---|---|---|---|
Name or zeolite structure code | SIMOF-1 (St Andrews ionothermal MOF-1) | ATF-1P and ATF-1M (ATF, anionic tetrahedral framework) | Mn-1D and Mn-1L | CZP (chiral zeolite phosphate) |
Key structural features | Anionic MOF with ionic liquid cation as template/guest | Anionic MOF with 2-fold diamond topology. | Neutral MOF with honeycomb channels | Anionic zeolite-type inorganic framework |
Chiral symmetry | P43212 and P41212 | P4122 and P4322 | P3121 and P3221 | P6122 and P6522 |
Chiral induction agents (CIA) | Chiral ionic liquid BMIM | (−)-Cinchonidine for P4122 or (+)-cinchonine for P4322 | (−)-Uridine 5′-phosphate (ump) for P6122 | |
What if CIA is not used? | Formation of achiral material with different structure (SIMOF-2) | Racemic twins | A different crystal structure, Mn (adc) | Racemic |
Solvent | BMIM | DMF or DEF | Mixed DMF and ethanol | Water |
Crystallization temperature | 110°C | 120°C | 120°C | 80°C |
A summary of asymmetric crystallization induced by chiral additives or solvents.
A more recent discovery of chiral induction by Zhang et al. supports the above proposed mechanism that the chiral induction is likely to involve the coordinate bonding between framework metal sites and chiral additives. In 2010 their group explored the enantioselective effect of inexpensive asymmetric molecular catalysts such as enantiopure organic acid (camphoric acid) and naturally occurring amino acid (glutamic acid) for asymmetric crystallization of 3D crystalline porous materials from achiral building units. In this case, the absolute chirality of chiral MOF [Mn3(HCOOH)4]2+ is determined by the chirality of
(a) [Mn(adc)]n chain based on achiral adc ligand with μ4 coordination; (b) porous [Mn3(HCOOH)4]n2+ channel based on inorganic Mn─O─Mn connectivity; (c) two types of enantiopure catalysts used for the synthesis and chiral induction of 1D; the direction of arrows show the possible mechanism of chiral induction. d-camphoric acid initially controls the absolute chirality of [Mn3(HCOOH)4]n2+ frameworks but is later displaced by adc. (d) 3D hybrid framework of 1D, showing the achiral [Mn(adc)]n chains attached to the wall of the nanosized channels.
Illustration of four crystallization processes showing that camphorate ligand not only controls the absolute chirality of crystals, but also enables and catalyzes the growth of chiral crystals.
An early example of chiral induction of porous solids by additives involves the use of chiral alkaloids to induce the absolute chirality of a microporous indium dicarboxylate. In 2008 a series of MOFs, ATF-1, ATF-1P or ATF-1M; (ATF anionic tetrahedral framework; P and M denotes handedness) were synthesized using solvothermal reactions of In(NO3)3·xH2O and ligand H2thb with (or without) cinchonidine or cinchonine in two different solvents (1, DMF; 2, DEF) instead of using chiral solvents, chiral spectator solutes (−)-cinchonidine or (+)-cinchonidine were used to induce the chirality (Figure 6) [16].
Schematic illustration of the generation of conglomerate (ATF-1) or bulk homochirality (ATF-1P and ATF-1M) induced by (−)-cinchonidine or (+)-cinchonine from the basic 4-connected building block with achiral precursors.
In 2005 a 2D layered coordination polymer Co(PDC)·(H2O)2 have been developed, which was comprised of two helical chains using an achiral ligand, pyridine-2,5-dicarboxylic acid (H2PDC). Its synthesis did not involve any chiral reactant or solvent or any other auxiliary agent. Surprisingly, the resultant crystals were not racemic as investigated by the observation of strong signals in vibrational circular dichroism (VCD) spectra. Chirality might come from spatial organization of achiral building blocks in crystalline frameworks [31].
Recently a series of nine chiral 2D-COFs have been synthesized using (R)- or (S)-1-PEA as a chirality inducing catalyst, through imine condensations of Tp with diamine or triamine linkers, as indicated in Figure 7. Among these COFs, CCOF-TpTab exhibited greater enantioselectivity towards chiral carbohydrates in fluorescent quenching. After post-synthetic modification of the enaminone groups with Cu(II) ions, the solid was converted in to a recyclable heterogeneous catalyst which can be used for asymmetric Henry reaction of nitroalkane with aldehydes [32].
Schematic demonstration of the synthesis of CCOFs. These CCOFs are synthesized from achiral precursors by chiral catalytic induction.
MOFs and COFs can be modified to improve their catalytic properties through covalent and coordinate covalent PSM. A variety of active and chiral functional groups can be tethered to metal nodes and organic ligands to convert MOFs and COFs in to catalytically active materials. Through PSM, a single MOF can be modified with several combinations of functional groups and thereby tested as a catalyst for different reactions [33].
Kimoon Kim and coworkers reported the first example of modifying an achiral MOF “MIL-101(Cr)”, built from Cr3+ trimer SBUs and BDC [34] in to an active chiral catalyst. They modified MIL-101 (Cr) in to two chiral MOFs CMIL-1 and CMIL-2, by replacing the coordinated solvent with
In 2014 the first example of pore surface engineering of stable imine linked COF was reported. Pore surface engineering allows a general principle for designing catalytic COFs and molecular design of COF skeletons by controlling the density and composition of the functional groups on the pore walls. Mesoporous imine-linked porphyrin COF [HC☰C]-X-H2P-COF was used as a scaffold. Using the click reaction of this COF with pyrrolidine azide in the presence of a CuI catalyst in toluene-tert-butanol at 25°C yielded the corresponding [Pyr] X-H2P-COFs (as illustrated in Figure 8). Pyrrolidine derivatives are renowned organocatalysts for Michael addition reaction [36, 37]. Engineering pyrrolidine units onto the pore walls generates aqueous organocatalytic COFs with a number of striking catalytic features, including enhanced activity, good recyclability, and high capability to perform transformation. The catalytic activity depends upon the density of the active sites on the pore walls [38].
The general strategy for the pore surface engineering of imine-linked COFs by a condensation reaction and click chemistries (the case for X = 50 was exemplified).
Recently Yong Cui and coworkers synthesized two isostructural 2D Zn (salen)-based CCOFs (chiral covalent organic frameworks) by co-condensation of chiral 1,2-diaminocyclohexane and trisalicylaldehydes alkyl groups. Chiral salen ligands such as (R,R)-1,2-cyclohexanediamino-N,N′-bis-(tert-butyl-salicylidene) are well-known ligands for asymmetric catalysis [39]. By post-synthetic metal exchange, the framework of these CCOFs can be modified for asymmetric catalysis. Their group postsynthetically exchanged Zn2+ ions with Cr, Fe, Mn and Co, and analyzed the improvement of efficiency in asymmetric catalysis, stereoselectivities and recyclability of catalyst [40].
Like molecular homogenous catalysts, MOFs allow for almost the same level of structural rectification, while their large surface area, permanent porosity, and heterogeneous nature facilitate rapid purification and better catalytic activity [26, 41, 42, 43, 44]. Among all the chiral MOFs with improved stereo-selective catalysis reported so far, the most privileged examples are all directly crystallized from efficient chiral ligands, including, BINOL- and salen-based derivatives, but it is challenging to synthesize and grow large single crystals for structural elucidation and to prepare highly stereo-selective catalysts comparable or even extraordinary to their homogeneous counterparts [45, 46, 47, 48]. Solvent-assisted linker exchange (SALE) have been proved to be incredibly effective for the synthesis of MOFs that are difficult to approach de-novo [33, 49, 50, 51, 52, 53]. According to this strategy crystals of a template MOF are placed in the excess solution of secondary linker, as the reaction proceeds the new linker replaces the original MOF linkers while the daughter framework retains the original MOF topology. In addition to the incorporation of desired linker, SALE also proved to be an effective method to incorporate many interesting properties in to the framework like, introduction of catalytically active moieties, incorporation of free carboxylic acid groups by functionalizing defect sites, and enhance proton conductivity as well as photochemical H2 production. In 2015 Yong Cui and coworkers employed a genius approach of synthesizing chiral MOFs using direct synthesis and then by employing SALE they post-synthetically modified one of the chiral VO salen based MOF-2 in to mixed linker salen based MOF-2Cr by exposing MOF-2 to a DMF/MeOH solution of [CrL2Cl] at 60°C for 8 h which led to the partial replacement of units with [Cr(salen)Cl] (2Cr) [12]. Chiral vanadium and chromium salen complexes are famous for their asymmetric catalysis of different types of organic reactions [54, 55, 56].
Homo-chiral microporous materials proved to be not only promising candidates for heterogeneous asymmetric catalysis but also enantioselective adsorbents or separators for the production of optically active organic compounds. Therefore the exploration of homo-chiral microporous materials towards the adsorption and diffusion of enantiomeric molecules is essential and important to promote these materials for chiral resolution [1]. Properly designed microporous MOFs and COFs with uniform, periodically aligned active sites have shown great potential in catalyzing shape-, size-, chemo-, region-, and stereo-selective organic transformations as well as fabricating optically active hybrid materials and devices.
In 2000 Kim el al. reported the synthesis of a homochiral metal organic framework (D-POST-1) that allows the enantioselective inclusion of metal complexes in its pores and catalyzes a trans-esterification reaction in an enantioselective manner. D-POSt-1 built up by the oxo-bridged tri-nuclear metal carboxylates clusters and enantiopure chiral ligand derived from
Trans-esterification in the presence of POST-1.
Xiong et al. prepared a new enantiopure chiral ligand HQA-(6′-methoxy-(8S,9R)-cinchonan-9-ol-3-carboxylic acid) from quinine, “an off-the-shelf antimalarial alkaloid” and utilized it to synthesize a homo-chiral MOF [Cd(QA)2]. The enantioselective separation activity of this MOF was investigated by solvothermal reaction of the powder sample of Cd(QA)2 in the racemic 2-butanol solution at 100°C for 3 days. As a result, a crystalline sample of ((S)-2butanol)@[Cd(QA)2 was analyzed by the single-crystal X-ray diffraction that revealed the inclusion of (S)-2-butanol in to the chiral cavity. The ee value of 2-butanol desorbed from ((S)-2butanol)@[Cd(QA)2 was assessed to be approximately 98.2%. When larger racemic 2-methyl-1-butanol was used, the ee value of (S)-2-methyl-1-butanol obtained was reduced to only 8.2%. Such differences in selectivity for chiral molecules of different size suggest that an appropriate match between pore dimension and the size of chiral guest is the crucial factor for enantioselective adsorption [58].
Although several porous materials such as activated carbon, silica gel, zeolites, and various polymer resins proved to be useful stationary phases in gas chromatography, liquid chromatography and electro-chromatography, MOFs are far less explored for these applications. In 2007, Fedin and Bryliakov et al. reported the first example of utilizing a homochiral 3D porous Zn-MOF “Zn2(bdc)(L-lac)(DMF)” in chiral liquid chromatography (LC) column for resolution of racemic mixtures of chiral alkyl aryl sulfoxides [59, 60].
In 2006 Rosseinsky and coworkers synthesized microporous chiral MOF [Ni2(L-asp)2(bipy) using cheap and readily available amino acid (aspartic acid). Nine chiral diols, having very close functionalities were enantioselectively adsorbed on this chiral MOF at 278 K, which showed that a good match of size and shape between small chiral guest and chiral pore of the homochiral framework is the decisive factor for chiral resolution application. 2-Methyl-2,4-pentanediol demonstrated the highest enantiomeric excess of 53.7%, attributable that both hydroxyl groups of (S)-2-methyl-2,4-pentanediol are involved in hydrogen bonding within the chiral channels [61].
Nowadays membrane separation offers great potential owing to the outstanding prevalence over the traditional methods, such as low-energy consumption, large processing capacity, and a continuous mode of operation. Due to their well-defined porosity and stability, zeolites and mesoporous MOF membranes have attracted a huge interest in engineering applications, such as gas and liquid separations, membrane reactors and chemical sensors. However, it’s still very challenging to synthesize these materials with required chirality, which is the core for chiral separation.
In 2012, first homochiral MOF membrane ‘Zn-BLD’ (Zn2(bdc)(L-lac)(dmf) was fabricated on a porous zinc oxide substrate through a reactive seeding technique. This membrane was used for the enantioselective separation of important chiral compounds especially drug intermediates which was a new step towards the potential development of sustainable and highly efficient chiral separation technique. Intriguingly, homochiral MOF membranes are expected to possess high enantioselectivity as a result of their open chiral channels or cavities and high permeation flux due to high porosity and low mass transfer resistance. Zn-BLD exhibits enantioselective separation of racemic MPSs with preferential adsorption ability to (S)-(MPS over (R)-MPS. At the feed concentration of 5 mmol L−1, an ee value of 33.0% for R-MPS over S-MPS was obtained which was attributed to the different interactions of the two enantiomers with the Zn-BLD inner pores. Such a highly enantioselective separation approach brings advanced materials science to the forefront of a major society need [62].
In 2012, a highly sensitive chiral MOF sensor ‘1’ with greatly enhanced enantioselectivity towards chiral amino alcohols in fluorescent quenching was built from 1,1′-bi-2-naphthol (BINOL) derived chiral tetracarboxylate bridging ligand and a cadmium carboxylate infinite chain secondary building unit. 1 shows higher sensitivity towards chiral amino acids with unprecedentedly high SV constants of up to 31,200 M−1 and an impressive enantioselectivity, with an enantiomeric quenching ratio [KSV(S)/ KSV(R)] of 3.12 for 2-amino-3-methyl-1-butanol. Conformational rigidity of BINOL as well as pre-concentration of the quencher inside the cavities of 1 are the main factors for greatly enhanced detection sensitivity. The confinement effect of MOF cavities for chiral discrimination of analyte and the conformational rigidity of the sensing sites can be utilized to design new MOF materials for future sensing devices [22].
A vast majority of MOFs are prepared by using modular assembly, in which organic struts and inorganic joints are connected in three dimensional networks. Such type of modular assemblies results in the formation of two types of domains in the frameworks, (i) sorting domain [63], whereby the pore apertures act as sieves based on size- and shape-selectivity or (ii) a coverage domain [64] wherein the internal pore surfaces interact non-specifically with guest molecules as a consequence of non-covalent binding forces. In 2010 team of Omar M. Yaghi and J. Fraser Stoddart employed a novel approach known as designer approach, to design active domains [65] with in the MOFs. By using the designer approach their team has successfully constructed new type of distribution domain, the active domains, where an ordered distribution of guests throughout the MOF is maintained by highly specific stereoelectronic control and these active domains are capable of stereoselective molecular recognition. In their reported work, they incorporated the dilocular (two chiral elements) struts (SS)-2 and (RR)-2 containing optically active dilocular bis-binaphthyl [22] crown-6, into (SS)-MOF-1020 and (RR)-MOF-1020 respectively. Such a precise placement of optically active organic struts inside MOF, pave the way well for the advancement of a range of exquisitely engineered chiral stationary phases for carrying out the separation of enantiomers by HPLC [66].
MOFs serve as heterogeneous asymmetric catalysts and their role in asymmetric catalysis was first demonstrated by Fujita et al. in 1994 who synthesized a crystalline porous coordination polymer catalyst for cyanosilylation of aldehydes [67]. Afterwards Aoyama and co-workers developed Ti complex based amorphous microporous solid catalyst for stereoselective Diels Alder reaction [68]. Although it was proposed that the incorporation of catalytically active units in the MOFs can promote the field of asymmetric catalysis but there was no proper report on asymmetric catalysis promoted by structurally well-characterized metal organic systems until 2000. The first homochiral MOF, “POST-1” exhibiting catalytic activity for an asymmetric chemical reaction was reported by Kim and coworkers [57]. Lin and coworkers in 2001 reported the first asymmetric catalysis promoted by metal ions at the nodes of framework [69]. In 2005 their group also adopted a systematic strategy to use privileged chiral ligands, such as BINOL for chiral MOFs used in catalytic asymmetric transformations [21]. In short there are many groups who have been working on the development of homochiral MOF based catalysts since 2005 to present noticeably Lin and coworkers, Hupp and Nguyen et al. and Kim and coworkers [47, 63, 68]. There are some general requirements to be fulfilled by homochiral MOF based catalysts, including close proximity of catalytic centers and chiral induction sites, large accessible pores/channels that allow facile diffusion of substrates and products, and ability to maintain structural integrity during the catalytic process. Due to stringent requirements for successful applications in asymmetric heterogeneous catalysis, the MOF based chiral catalysts are still scarce in literature and this area needs a lot of development [41].
Although it’s difficult to quote all the examples of MOF based heterogeneous catalysts since their discovery in 2000 until now, but we will try to discuss some of the recent examples in this chapter.
Chiral manganese salen complexes are highly effective asymmetric catalysts for olefin epoxidation. In 2006, Albrecht-Schmitt and coworkers synthesized a paddlewheel-stabilized MOF using Mn salen complex and H2bpdc ligand. The MOF-based catalyst confers higher stability, easier separation, recyclability, and substrate size selectivity, as compared to free catalyst [47].
In 2010 Tanaka et al. prepared Cu paddle wheel based chiral MOF (R)-3 and employed this MOF as a catalyst for the kinetic resolution of styrene oxide in the presence of different alcohols. They observed that the kinetic resolution was very sensitive to the structure of alcohols, with MeOH showing the highest conversion and enantioselectivity while bulkier alcohols e.g., EtOH, i-PrOH and t-BuOH, the conversion as well as enantioselectivity was decreased. They proposed a suitable mechanism and explained the reason for the high activity of (R)-3 in the presence of methanol. According to their analysis in the presence of methanol, evacuated MOF is transformed in to 2D in which the substrate is accessible to the Cu active site through diffusion. A pronounced color change was observed from black to green in MeOH during the transformation [45].
Network structure dependent catalytic activity of two chiral Cd MOFs was demonstrated by Lin and coworkers in 2007. They synthesized two Cd MOFs, 1 and 2, using two different salts Cd(NO3)·4H2O2 and Cd(ClO4)·6H2O2 with (R)-6,6′-dichloro-2,2′-dihydroxy-1,1′-binaphthyl-4,4′-bipyridine respectively. They tried to generate heterogeneous asymmetric catalysts by activating Lewis acidic metal centers (namely, Ti(OiPr)4) with the chiral dihydroxy groups that are present as the orthogonal secondary functionalities in the porous solids 1 and 2. Treatment of 1 with Ti(OiPr)4 led to an active catalyst (1.Ti) that efficiently catalyzes the addition of diethylzinc to aromatic aldehydes while mixture of 2 and Ti(OiPr)4 under similar conditions did not show the catalytic activity. The absence of catalytic activity with the 2/Ti(OiPr)4 system is a consequence of the steric hindrance around the chiral dihydroxy groups which prevents the substitution of two isopropoxide groups by the binolate functionality [70]. Lin group made a number of remarkable efforts in developing MOF based active catalysts. In 2010 their group demonstrated a systematic design of eight mesoporous isoreticular CMOFs using copper paddle-wheels and 1′-1,1′-bi-2-naphthol with similar structures but channels of different sizes. By using post-synthetic functionalization with Ti(OiPr)4 they generated chiral Lewis acid catalyst which proved to be highly efficient for conversion of aromatic aldehydes in to chiral secondary alcohols, through addition of alkylzinc or diethylzinc. By slight alteration in BINOL based likers, the size of the channels were modified, which alters the diffusion rates of the organic substrates [48].
Yong Cui and coworkers synthesized a homochiral MOF using an enantiopure 2,2′-dihydroxy-1,1′-biphenyl ligand with Zn(NO3)2·6H2O through solvothermal reaction. Through one proton exchange of the dihydroxyl group with Li(I) ions, the framework proved to be a highly efficient and recyclable heterogeneous catalyst for asymmetric cyanation of aldehydes with up to >99% ee [44].
COFs are among some of the emerging classes of advanced materials which have been greatly seeking the attention of not only chemists but also material scientists. Since the seminal work of Yaghi and coworkers, this class of materials has been through a great deal of progress to serve them for industrial applications. Among its various other applications the most important are their use in enantioselective separations and catalysis. So far, only few chiral COFs have been successfully constructed due to their challenging synthesis and the key bottleneck of creating chiral COFs is the inherent discrepancy between the symmetry for crystalline structures and asymmetry for chiral functionalities. According to the context of this chapter we will briefly try to highlight some examples of CCOFs which played an efficient role in chiral separations and asymmetric catalysis.
Owing to the large surface area, permanent porosity, high solvent and thermal stability, COFs are considered as good candidates to be used for enantiomeric separation of small molecules, especially of biological or pharmacological interest. Yan and coworkers in 2016 synthesized three CCOFs namely, CTpPa-1, CTpPa-2 and CTpBD and then using in situ growth, they fabricated chiral COF bound capillary columns. These chiral COF capillary columns displayed high resolution for the separation of (±)-1-phenylethanol, (±)-1-phenyl-1-propanol, (±)-methyl lactate, and (±)-limonene, which can be efficiently separated within 5 min under excellent repeatability and reproducibility [19].
In 2018 the first chiral 3D COF was constructed by imine condensation of a 2-fold symmetric TADDOL-derived tetraldehyde with a tetrahedral tetra (4-anilyl) methane and transformed in to amide linked COF after post-synthetic oxidation of imine linkages. Both the imine linked COF as well a post-synthetically modified imide linked COF, served as highly reproducible chiral stationary phases for HPLC [71].
COF is an emerging field of material chemistry and needs a lot of development. The ordered nano-channels and periodic layers in COFs make these materials sustainable open catalytic nano-reactors, but their low stability has prohibited their practical application. Among various other groups working on development of CCOFs, Donglin Jiang and his group has achieved a remarkable progress in this regard. In 2015 they synthesized a mesoporous imine based COF “TPB-DMTP-COF” with improved crystallinity and high chemical and thermal stability, by the incorporation of methoxy groups in to the pore walls. They post-synthetically modified this achiral COF in to two distinct CCOFs by engineering the channel walls with chiral centers and organocatalytic species. The resulting crystalline, metal free catalysts presented activity, enantioselectivity, recyclability and environmental benevolence, a set of characteristics that has remained challenging to engineer in heterogeneous catalysis [72].
This chapter summarizes the recent advances in the development of chiral microporous materials, with special emphasis to metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). We discussed some of the synthetic strategies in details and highlighted the current status of chiral microporous materials in enantioselective separation and asymmetric catalysis. Since there is a lot of development needed to be done in this area, as it can open up new doors to the synthesis of advanced green energy materials and catalysis.
metal organic framework covalent organic framework chiral covalent organic frameworks Fujian institute of research tris(4-carboxylphenylduryl)amine tert-butyloxycarbonyl Dresden University of Technology secondary building units adamantane-1,3-dicarboxylic acid phenyl-ethylamine 1,3,5-triformylphloroglucinol 1,3,5-tri(4-aminophenyl)benzene postsynthetic modification methyl phenyl sulfoxides 1,1′-bi-2-naphthol
It is more urgent than ever to find alternative ways to develop the Amazon. This realization comes with the science-based analysis that the Amazon may have come much closer to a tipping point than previously thought. Recent analysis [1] lends support to the idea that the whole Amazon system might flip to second stable climate-vegetation equilibrium, with degraded savannas covering most of the central, southern and eastern portions of the basin.
\nThe drivers of such change are deforestation, climate change and increased forest fires. Given the simultaneous and synergistic impact of these drivers of change, total deforestation must not exceed 20–25% to avoid transgressing a potentially irreversible tipping point.
\nGlobal climate considerations also matter: CO2 emissions from forest burning may well be the biggest unresolved global climate challenge. Without reductions in rainforest burning, including in the Amazon, international goals called for in ratified international Conventions for climate, biodiversity and water protection cannot be reached.
\nThe heightened critical risk to the Amazon forests calls for intensifying the search for disruptive socioeconomic alternatives and transformations. For many decades, contradicting strategies to develop the Amazon have been at work: conservation (we call it the ‘First Way’) versus resource-intensive development (which we call the ‘Second Way’). Considerable efforts were made by successive governments and by NGOs to reconcile those two ways through agricultural ‘sustainable intensification’,—albeit with meager results. The question therefore remains how to unveil the potential of a forest-biodiversity economy in the Amazon.
\nWe argue that a radically different ‘Third Way’ for sustainable development of the Amazon is within reach. We propose to utilize modern technologies of the 4th Industrial Revolution to harness the biological and biomimetic assets of the Amazon’s biodiversity. And we postulate that this Third Way can support a standing forest-flowing river bio-economy while being socially inclusive [2].
\nThe methodological approach of this study starts with a perfunctory examination of land use patterns in the Amazon. We examine two distinct models of land use pathways that in general terms may direct and define the maintenance or not of the Amazon forest. The first model is characterized by expansion of protected areas in the Amazon. It has been labeled ‘The First Way’. In the other model, it is prevalent intensive natural resources exploitation. It has been labeled ‘The Second Way’. In Section 3 of this chapter we briefly assess the overall results of these models in land use (for a comprehensive review, see [2]). We present updated literature data in support for current trends in land use changes, such as planned infrastructure, policies and evidence of ongoing land use processes and change.
\nWe pose two research questions to guide the next phase of the study: Overall, current and planned patterns of land use are environmentally sustainable in the long run? If not, what would be an alternative way? The answers are developed from the basic concepts proposed by [2] for the so-called Amazonia Third Way (A3W), which is based upon a novel economic model. This rests on an innovative, knowledge-based standing forest-flowing rivers bio-economy, valuing the Amazon’s renewable natural resources, biological and biomimetic assets, environmental services and biodiverse molecules and materials. A conceptual model of the A3W is proposed with the main drivers for its planning and implementation. Two of these drivers, namely Technological Drivers and Capacity Development, were considered key to the construction of A3W and are further developed in this work. The technologies of the 4th Industrial Revolution were coupled with core A3W guidelines, leading to the conceptual definition of the Amazonia 4.0. Figure 1 shows a diagram of the methodological approach used in this work.
\nMethodological diagram for the conceptual development of the Amazonia Third Way.
The Amazon forest biome has a total of 45.4% of its territory formed by protected areas and indigenous territories [3] as depicted in Figure 2. This large area where the forest is predominantly protected or managed in a sustainable way [4, 5] is the ballast that makes the First Way a possible model of land use for the Amazon. An effective example of the implementation of conservation policies by Amazonian governments is given by Brazil. In the 1990–2013 period, protected areas of the Amazon have grown from 11 to 125 million hectares and indigenous land have grown from 33 to 125 million hectares [6]. Indigenous territories and protected areas occupy 47.85% of the Brazilian Amazon [7].
\nProtect areas in the Amazon basin. Source: Conservation International [8].
On the other hand, the model of resource-intensive development (Second Way) rests mostly on economic activities that lead to the elimination of the forest and had cycles of intense growth for many decades. RAISG’s ‘Deforestation in the Amazon (1970–2013)’ (see Figure 3) study indicates that up to 9.7% of the region have been deforested until the year 2000, and that between that year and 2013 that rose to 13.3%, which represents 37% increase in 13 years [9]. Given that, by and large, Amazon deforestation rates increased in the last 5 years, it is likely that total deforestation is close to reaching 16% of the whole basin by 2018.
\nMapping of deforestation of the Amazon forest biome for two distinct periods: the total accumulated up to 2000 (red color) and the increment from 2000 to 2013 (black color). Source: RAISG [9].
Other studies show that protected areas and indigenous territories are not necessarily blocking deforestation completely. Although deforestation in indigenous territories in the Amazon remains relatively small, rates have grown 32% between 2016 and 2017 [7]. That points out that the barrier formed by indigenous land and other protected areas may vanish under the pressure of environmental crime and expansion of the commodities frontier, if adequate protection policies are not enforced. The increase of deforestation in some indigenous territories occurs at a time when the total rate of destruction of the Amazon rainforest fell by 16%, from 7892 km2 in August 2015–July 2016 to 6624 km2 in August 2016–July 2017. Notwithstanding the observed decrease, the level is still extremely high in absolute terms [7]. For the same period, the Sistema de Alerta de Desmatamento (SAD) from Instituto do Homem e Meio Ambiente da Amazônia (Imazon) detected an increase of 22% in the rate of deforestation in protected areas [10].
\nBesides the current evidences indicating that protected areas may not be a good proxy for permanent forest conservation because the prevalent model of intensive use of natural resources is a permanent dynamic force toward disrupting it, there are evidences that the future can be even more challenging for the First Way to ensure forest conservation. Official Amazonian countries’ planned infrastructure developments indicate a huge increase in the construction of dams, roads, railroads and ports [11] throughout the Amazon basin. These types of infrastructure pose severe threats to the forestland through their construction and will almost certainly induce new developments of high deforestation profile.
\nIn the Brazilian Amazon, which comprises 65% of the whole biome, deforestation figures from 2005 to 2017 show that a period of consistent decrease from 2004 to 2012 may be now reversed (Figure 4).
\nAnnual deforestation rates in Brazilian Amazon (km2) from 2004 to 2017 and map of fraction of land cover change for 2010 (left panel) based on PRODES data [14] and projections of two possible scenarios for the Amazon in the future up to 2030 [13]: one of large deforestation (called ‘Fragmentation’) and one of declining deforestation (called ‘Sustainability’).
Future land use change in the Amazon has been modeled [12, 13] for two rather opposed scenarios which lead to very different land cover changes (Figure 4). In one of them (the so-called ‘Fragmentation’ scenario), there is a continuous weakening of strict deforestation control policies successfully implemented from 2005 to 2012 in Brazilian Amazon and expansion of resource-intensive activities leading to agricultural and livestock expansion, resulting in over 50% of the Brazilian Amazon deforested by 2050. That is a scenario quite consistent with a progression in time of the Second Way. The other scenario in Figure 4 (the so-called ‘Sustainability’ scenario) calls for continuation and strengthening of the environmental policies to bring deforestation rates close to zero in the near future. It is the land cover change scenario compatible with the Third Way.
\nThe economic rationale to protect the tropical forests (The First Way or the ‘Sustainability’ scenario of Figure 4) rests to some degree upon the assumed low costs of maintaining intact forests as carbon storage and carbon sinks as a non-costly way to mitigate climate change in comparison to more expensive alternatives such as switching energy systems to renewable energy. Calculations for Brazil [15] estimate savings up to USD 100 billion/year to 2030 for Brazil to fulfill its NDC commitments to the Paris Accord if deforestation of the Amazon and Cerrado biomes can become smaller than 4000 km2/year and the bulk of its commitment to reduce national emissions 43% relative to 2005 emissions by 2030 come from land use policy and not from rapidly switching the energy matrix to renewable energy. However, it is clearly short-sighted to view only the carbon pathways as justification to preserve tropical forests. In fact, the Third Way Initiative raises various limitations of such approach (see [2]) and proposes that, in addition to ecosystems services, the economic potential of tropical forests rests on their biological and biomimetic assets to a larger extent.
\nIn this chapter, we analyze the issues and circumstances that have impeded to date socioeconomic development based on Amazon biodiversity assets to occur in large scale. We point out the major failures in dimensions such as concepts (imagination challenges), knowledge (research and information challenges) and implementation (governance and policy challenges & entrepreneurial capacity failures), and the lack of imagination of the potential of an innovative green economy based on nature that goes beyond the Amazon regional institutions. In the opportunity side, we present a summary of a major review in the scientific and technical literature, which identified more than 200 species of Amazonian plants with known potential to provide raw for an initial low-end bio-economy in the Amazon. Many biodiversity products of the Amazonian flora follow have established value chains. We did qualitative analysis on a sample of it to identify its main characteristics, problems, virtues and bottlenecks. This analysis included selected cases of innovative entrepreneurship leveraging relatively low-end technologies and evaluation of 25 enterprises that markets non-timber products of Amazonian biodiversity. The sample encompasses a range of segments, types, sizes and bio-assets processed.
\nThe challenges to achieving sustainable development in the Amazon can be broadly categorized in three categories, similarly to a conceptual framework laid out for planetary health [16]:
conceptual failures (imagination challenges), such as the vision of the Amazon as only a source of commodities for the world and the lack of imagination to create alternative, less socially and environmentally damaging development pathways based on the Amazon’s renewable natural resources (e.g., its rich biodiversity), with value added via technological innovations for an inclusive ‘bio-industrial’ model of development, generating higher income jobs and sustainable development.
knowledge failures (research and information challenges), such as reduced amount of funding to research institutions in the Amazon, focus of research and monitoring systems on land use transformations, insufficient R&D investments by the private sector, and lack of innovative research, for instance, to unveil the hidden economic and societal value of biological assets, that is, a ‘tropical model of development’.
implementation failures (governance and policy challenges & entrepreneurial capacity failures), such as the failure of Amazonian countries’ government to recognize the risks of current and past development policies and the inefficient implementation of a diversified economy by public and private actors and even the failure to share more equitably the benefits of the current resource-intensive economy, reducing social and income inequities.
The lack of imagination of the potential of an innovative green economy based on nature is not restricted to the Amazon regional institutions. Economic viability studies for the Amazon of serious institutions such as the World Bank almost completely ignore such potential. For example, recent studies [17] continue to see the value of forest products in an exclusively extractive way and assume very low returns. For example, less than $10 per year per hectare for non-timber products and just over $20 for sustainable selective logging. They ignore the concrete case of market success of agroforestry systems such as çaí, with proven annual returns of between $200 and $1000 per hectare [18], adding more than $1 billion annually to the regional economy [19].
\nThe intense resource-based agribusiness, mining and hydropower in the Amazon generate wealth and little of that is reinvested to propel health and education improvements within the Amazon beyond what is called for in the licensing process. That is in part due to the regressive taxation system and in part due to historical inefficiencies in investments in public services. For instance, the highest average per capita income region in Pará—annual per capita income of close to R$50,000—is the iron ore-rich Carajás area, with overall income higher than national average. However, social indicators such as health and education services are no different than other regions of the State of Pará and much lower than national averages. In summary, very little of the wealth remains in the region and improves the wellbeing of the population.
\nThe discourse on sustainability has been allowed to proceed as a sign of the times and to be aligned with global trends starting with the 1992 Earth Summit in Rio and to transmit an international aura of adherence, but in fact the concrete development policies for the Amazon never in fact deviated from the one devised by the military government out of geopolitical concerns: livestock and agricultural occupation to ensure sovereignty and exploitation of minerals, hydropower and fossil fuels as drivers for economic development.
\nThe intense and swift expansion of the Brazilian agriculture frontier in the Amazon resulted not only in the growth of the country’s GDP since the 1960s, but also in the rates of tree felling and greenhouse gas emissions—a consequence of conversion of forest landscapes into pasture for cattle raising and agricultural fields for grain production. Some numbers illustrate this human-orchestrated metamorphosis. Since 1997, more than 20 billion trees have been cut in the world’s largest rainforest. In 2016, more than half of the 8000 km2 of Amazon deforestation was transformed into new pastures. Currently, beef and dairy farming and production account for 45% of gross Brazilian GHG emissions.
\nThe main public policies responsible for the sharp reduction in deforestation from 2005 to 2014 seem to have already reached their limit, so much so that deforestation has been growing in 2015 and 2016, even in a period of historic economic recession, demonstrating once again the decoupling of deforestation with economic growth, neither when GDP grows nor when GDP shrinks. The underlying reasons for continued land cover change are more complex than simply responding to global markets.
\nUnfortunately, we may not have a long window of time to change course with respect sustainable pathways for the Amazon. Tipping points not to be transgressed for forest-climate stability are in the horizon. The synergistic effects of land cover and climate changes, and with increased forest fires due to a combination of forest degradation, use of fire in agriculture and droughts, make the risks even greater. Earth system modeling [2] shows that the synergistic combinations of those drivers could lead to a relatively rapid transition to new forest-climate equilibrium with loss 50–60% of the forest over eastern, southern and central Amazon, replaced by degraded savannas and dry forests. The sense of urgency to avert a systemic risk to the Amazon forests must be kept in mind in the search for solutions.
\nThe knowledge of nature, accumulated over 3.5 billion years of evolutionary processes, that finds in the Amazonian biodiversity one of its greatest showrooms, is a potentially very large bio-economic asset. The number of molecular substances with specific and usable functions is practically incalculable, since each existing species is itself a biochemical design laboratory. And most species are yet unknown and every 3 days, on average, one new species is discovered [20].
\nEven though a single substance with a desired function discovered by the study of living things in the Amazon could be biologically synthesized and produced industrially by laboratories to reduce costs or to provide quantities demanded for world consumption, the intrinsic knowledge that generated its form and function was stored in the forest and ready to be copied.
\nA review carried out in the scientific and technical literature as part of this work identified more than 200 species of Amazonian plants with known potential to provide raw for an initial low-end bio-economy in the Amazon. A reduced listing of the 20 very promising species that have been widely used, integrate local productive chains or show strong potential use in food, cosmetics, perfumery, medicinal, advanced materials and biotechnology have their distribution modeled. The listing includes rosewood (Aniba rosaeodora), Brazil nut (Bertholletia excelsa), cumaru/tonka (Dipteryx odorata), açaí (Euterpe oleracea) and rubber tree (Hevea brasiliensis) among other. A sample distribution for rosewood in the territory is shown in Figure 5.
\nGeographic distribution for rosewood (Aniba rosaeodora) in the Brazilian Amazon [21].
Few of the biological assets of Amazonian biodiversity are known, others are being researched for their nutritional, structural, biochemical and market properties, to become products of future use.
\nA good example of this transition in the area of food is the açaí fruit of the Euterpe oleracea palm, widely and historically consumed only by local populations until the 1990s. From then on, it gained the world for its nutritional and functional qualities and its flavor, even with the operational difficulties of being a fresh, minimally processed fruit transported frozen from the vicinity of the forest to consumer markets elsewhere in Brazil and abroad (e.g., to the US and Japan) [18]. Its botanical genus (Euterpe) bears the name of one of the nine muses of Greek mythology, daughter of Zeus, who represents pleasure and happiness, as many consumers of açaí pulp may well attest.
\nLike açaí, many of the Amazonian biodiversity foods are traditionally consumed by the local population, with marked flavors and excellent nutritional properties, as well as functional foods and nutraceuticals in many cases. Camu-camu (Myrciaria dubia (HBK) McVaugh), for example, has 4 times more vitamin C than acerola [22]; murici (Byrsonima crassifolia (L.) Rich.), has excellent antioxidant properties [23], as well as açaí, that reached global markets. In addition to antioxidant activity and being a source of five types of carotenes, taperebá (Spondias mombin L.) is a rich source of vitamin A, at the rate of 100 g of fruit corresponding to more than 37% of the daily needs of the vitamin [24]. Besides the well-known Brazil nut (Bertholletia excelsa), which is already a nut consumed worldwide for a long time, there are many other fruits and seeds of the Amazon with potential to gain new markets, such as cumaru-ferro (Dipteryx odorata); cupuaçu (Theobroma grandiflorum); uxi (Endopleura uchi (Huber) Cuatrecasas); graviola (Annona muricata L.); patauá (Oenocarpus bataua Mart.); guaraná (Paullinia cupana); priprioca (Cyperus articulatus L.); and bacuri (Platonia insignis), among many others.
\nThe raw materials of Amazonian biodiversity are used in the industry of essences and oils to make cosmetic and perfumery products. As an example, the cumaru-ferro (Dipteryx odorata) fermented seeds produce an essential and industrial oil, while coumarin (coumarinic anhydride), which is an aromatic essence used as a narcotic and stimulant [25]. This oil is also used as a fixative in the perfumery industry [26]. Another example is andiroba (Carapa guianensis) available in the market in the form of essential oil, with anti-inflammatory, moisturizing, healing properties [27], being also sold for especially sensitive skin care cosmetics [28].
\nAçaí has also been studied and is used far beyond food: in the cosmetics sector its oil has properties for skin nutrition, revitalization and hydration, it contains omega 6, it is an antioxidant agent rich in polyphenols indicated for the formulation of anti-aging products [29, 30]. The anthocyanin present in large quantities in the açaí pulp was used in an application as a natural marker for teeth bacterial plaque [31] with large potential markets. In another development, nanoparticles of açaí oil are used to treat cancerous lesions [32]. Proving that applications of biodiversity raw materials tend to be innumerable, especially when combined with modern technological tools and cutting-edge research, a natural plastic was developed from açaí, with polyurethane produced from the seeds [33]. Discarding the abundant açaí berry seeds is a potential environmental problem in the pulp for food production cycle. The development of a plastic from the seeds also shows the possibilities of using by-products of a production chain in other associated chains for an even more efficient bio-economy with minimized externalities.
\nOther examples of uses of bio-composites are ucuuba (Virola surinamensis) from which a patented [34] butter is produced, which is capable of providing a matte effect in the skin. From the leaves and branches of the pau-rosa (Aniba rosaeodora Duckei), the linalool compound is extracted [35] which is one of the traditional components of the classic Channel No. 5 perfume. Currently, the following products of the Amazonian biodiversity for diversified products are on the market for cosmetics applications: Babaçu (Orbignya oleifera) oil, Buriti (Mauritia flexuosa) oil, Brazil nut (Bertholletia excelsa) oil, Copaíba (Copaífera officinalis) oil, Passionflower (Passiflora edulis) oil, Urucum (Bixa orellana) oil, Patauá (Oenocarpus bataua) oil, Pequi (Caryocar brasiliense) oil, Bacuri (Platonia insignis) oil, Cupuaçu (Theobroma grandiflorum) oil, Murumuru (Astrocaryum murumuru) oil and Ucuúba (Virola surinamensis) butter.
\nResearch in the medical field confirms the value of many indigenous traditional medicines and goes beyond, with its own and advanced research methods [36]. As an example, we can mention the chichuá (Maytenus guianensis Klotzsch ex Reissek) that presents anti-leishmaniosis [37] and anti-microbial [38] compounds; guaraná (Paullinia cupana) with its properties for the treatment of Alzheimer’s disease [39], priprioca (Cyperus articulatus L.) with anticonvulsant properties [40], babaçu (Orbignya phalerata) with a cicatrizing compound [41], sacaca (Croton cajucara Benth.) with hypoglycemic properties [42] and as ulcer healing [43], pracaxi (Pentaclethra macroloba Willd.) with anti-hemorrhagic activity [44] and natural larvicide [45], in addition to estoraque (Ocimum micranthum Willd.) with its antifungal [46] and antioxidant [47] properties.
\nQuercetin is a flavonoid that has the ability to suppress free radicals and thereby help preserve the brain and heart, keep the immune system active, protect the body against cancer, and act to prevent diseases, especially neurodegenerative diseases such as Alzheimer’s disease [48]. Quercetin, present in many foods but in low concentrations, is obtained from the natural purification process of the fava d’anta (Dimorphandra mollis Benth) [49]. And the uncera (cat’s claw) (Uncaria tomentosa and Uncaria guianensis) and is largely used in the pharmaceutical industry [50]. Pilocarpine, an alkaloid with extensive use in ophthalmology [51], is extracted from jaborandi (Pilocarpus microphyllus Stapf ex Holm). These are many other examples of species already studied that integrate or can integrate local production chains in the production of drugs and phytotherapeutics.
\nBut the biological assets also have application in industry, with emphasis on endophytic fungi (Coniochaeta lignaria, for example) with the capacity to degrade lignin in the cell walls of plant cells, with great potential for the bioenergy industry [52].
\nAnother study with phytosterols isolated from endophytic fungus (Colletotrichum gloeosporioides), an Amazon fungus, offers potential sources of novel natural products for exploitation in medicine, agriculture and the pharmaceutical industry [53]. Microorganisms are an attractive source of new therapeutic compounds, they serve the ultimate readily renewable, and inexhaustible source of novel structures bearing pharmaceutical potential [54].
\nState-of-the-art research can unveil new and surprising uses even for forest assets that have been exploited for a long time. For instance, that is the case for natural rubber (Hevea brasiliensis). When combined with nanoclay composites using biomechanical technology, it results in an advanced material to be utilized as artificial skin (Biocure)—a patented active material that induces the formation of new blood vessels (angiogenesis) and new tissues (neoformation) on the surface on which it is applied [55]. Latex and clay compounds have also been developed to manufacture high-tech tire (run cooler, thus increasing tire durability and fuel economy), anti-rust coatings, tennis balls, gloves and masks [55].
\nThe biodiversity products of the Amazonian flora follow well-defined paths between the origins of the raw material, to its processed form for final consumption or to be reprocessed into components for very high specialty products. The value-added paths of biodiversity products involve multiple steps and social and business actors, varying according to the nature of the raw material, the products to be processed and the location of the harvesting and processing regions. As a general rule, the production of the raw material, which may be fruit, seed, sap, or other part or component of the plants occurs in the rural environment. They may come from primitive areas of natural forest or managed agroforestry systems (SAF), such as natural forests with extensive extractive species and intercropped planted forests.
\nThe rural area is home to communities where the first basic stages of preparation of the material collected or harvested for subsequent supply occur, such as cleaning, threshing, drying and other low-tech processes. Logistic processes such as the transport of the material from the collection and production sites to the pre-processing sites, storage and shipment to the processing centers also occur in the rural domain. In every aspect of this beginning of the value chain, there are opportunities for individual, family, cooperative or business based on local entrepreneurship.
\nAfter pre-processing, the materials are taken by boat or truck to companies or cooperative facilities in the Amazon or in another region in Brazil or in other Amazonian countries (e.g., Bolivia) where most or the entire product’s actual processing takes place, in facilities with varying degrees of automation. From there it is ready for consumption, locally or in markets elsewhere in Brazil or abroad. Based on a comprehensive study we conducted with value chains of five plant species, we developed a conceptual diagram that represents the main places, environments and activities carried out throughout the whole transformation cycles, from inputs origin to final consumption, as shown in Figure 6.
\nConceptual diagram of the location of the basic stages of value chains of Amazonian biodiversity products. Solid lines mean the last stage of a product in the value chain [21].
Not all paths shown in Figure 6 have fair remuneration in the value adding they represent. A 2005 study for cumaru (Dipteryx odorata) value chain in the State of Pará, Brazil, illustrates the problem [56]. The markup was 75.0% for the intermediary, 166.7% for wholesale companies in towns nearer production areas, and 233.3% for the wholesale companies from Belém, the State capital. The total markup from the beginning to the end of the market chain was approximately 500%. The price of the nut ranged from R$3.00 per kg for the collectors to R$18.00 per kg for the wholesale companies. It was observed that the exporting companies, which generated unequal gains within the chain, imposed the major additions to the product price. There were approximately 2700 families involved in cumaru nuts collection, exported mainly to Japan, France, Germany and China.
\nAnother evidence of such imbalance in the value sharing was revealed by our study of five value chains. While Brazil nut (Bertholletia excelsa) seeds, mostly from manual forest extraction, come from dozens of places along the Amazon basin, the value aggregation of such yields takes place only on just a few locations furnished with processing plants, as shown in Figure 7.
\nDifferences between the many places where Brazil nut (Bertholletia excelsa) is collect in the forest (left map) and the few places where there is value aggregation of it (right map), in the Brazilian Amazon, found in a sample survey [21].
Recent corporate social responsibility efforts focused on purchasing biodiversity products from communities or cooperatives have generated more balanced and fair-trade relations, as with the operations of a range of forest products purchased by the Natura company and açaí purchased by the Sambazon company. However, the typical market distortions in the values paid to the extractivist-producer by intermediaries still has to be resolved.
\nAgroforestry systems (SAF—Sistema Agroflorestal) are agricultural crops intercropped with tree species, used to restore forests and recover degraded areas. The SAF technology overcomes terrain limitations, minimizes degradation risks inherent in agricultural activity and optimizes the achieved productivity. There is a reduction both in soil fertility losses and pest attacks. The use of trees is fundamental for the recovery of ecological functions, since it allows the reestablishment of much of the relationships between plants and animals. The tree components are inserted as a strategy to combat erosion and the contribution of organic matter, restoring soil fertility. Two successful tropical agroforestry projects illustrative of this system in the Amazon are the CAMTA cooperative [57] in Tomé Açu, in the state of Pará and the RECA cooperative [58] in Abunã, in the state of Rondônia.
\nWith the advancement of consumer markets, technologies and business models, new business development opportunities have emerged from the products of Amazon biodiversity. Four examples of this innovative entrepreneurship model were selected to demonstrate the combination of technology and corporate social responsibility for the generation and fair distribution of benefits to all links and actors of value chains. Two of the examples illustrate production companies and the other two examples show companies that developed digital platforms to increase efficiency in transactions and traceability of biodiversity products.
\nThe first example is the Tahuamanu company, a Bolivian producer of Brazil nut products, which illustrates the case of an Amazonian company that innovated by applying relatively low-end technologies, to all links of the Brazil nut productive chain, reflected in tremendous increases in productivity and benefits also to collectors at the base of the value chain. The 2016 severe El Niño-related drought in many parts of the Amazon may have wreaked havoc to the Brazil nut production that supplies the company. It is reported a 70% drop in harvest in 2017, responsible for laying off over 300 employees from his Cobija processing plants [59]. This unprecedented fall in production raise the question of the potential impact of climate change on the new development paradigm for the Amazon.
\nThe second example is the NATURA cosmetics company and its bio-industrial operations. It is probably the most successful case of exploration Amazon biodiversity assets within the most desirable parameters of socio-environmental excellence. Natura has developed a network of suppliers of raw materials from Amazon biodiversity that organizes production of almost 3000 families across the region. It supports training programs and community empowerment toward sustainability. The example of the ucuuba butter shows how the combination of innovative R&D and training communities in sustainable exploitation can deliver good results. Ucuuba trees were used as timber for broom sticks and that was accelerating risks of tree extinction. Butter was developed out of the ucuuba seeds and that new product found its way in cosmetics of high added-value. Floodplain communities of the Marajó Island were trained to collect and pre-process the seeds for sale to Natura and to other companies which also process ucuuba butter. The net profit of those operations for those families is three times larger per year as compared to the only once income for felling the tree. Natura is also promoting the bio-industrialization in the Amazon itself. It opened the Ecopark, an industrial complex in Benevides, near Belém, state of Pará.
\nThe third example is the FLORAUP digital platform that shows how information technology can be used to foster direct connection between local producers, from their remote locations in the forest, with potential buyers of their Amazon biodiversity products. After 1 year on air, the platform has only 57 registries, perhaps due to the relatively low digital connectivity of remote communities across the Amazon.
\nFinally, the fourth example is ORIGENS BRASIL, a production chain tracking digital platform. The platform allows anybody to know instantly the origin of the product that contains assets of Amazonian biodiversity since its raw material harvesting, its history and actors involved in the production. This is done simply by pointing a smartphone to the product packaging, which is equipped with a QR Code that accesses a remote live database. If one assumes that responsible consumers are an accelerating trend, such traceability platforms are in dire need for the Amazon.
\nNatural products developed on a sustainable basis have a long history in the Amazon since the rubber boom years. An increasing demand for these products for traditional and innovative uses in the food, cosmetics, perfumery and pharmaceutical industries has promoted new business opportunities in the Brazilian Amazon. As part of this trend, advances in biotechnology research have demonstrated a key role in expanding this potential, thus boosting the value chains that have as one of the main attributes the bio-industries focused on the processing of forest raw materials into biodiversity products.
\nThis research evaluated 25 enterprises that markets non-timber products of Amazonian biodiversity. The sample encompasses a range of segments, types, sizes and bio-assets processed. From international corporations with more than 100 years in the market of extracting the finest Amazonian essences, to innovative indigenous entrepreneurship of collecting and selling forest’s native species seeds in large amounts to support much needed reforestation efforts elsewhere.
\nThese industries deliver a vast array of products: It ranges from an exfoliating agent of açaí seed (Beraca company) to a powder form of the same fruit for energy drinks (Yerbalatina Phytoactives and 100% Amazônia companies). The Amazon-based bio-industry is also well-defined and consolidated in the supplying chains of oils and essences. As early as 1921, the essential oil extracted from the pau-rosa (Aniba rosaeodora) wood, a native tree from the Amazon, which is rich in the aromatic compound linalool, was the main ingredient of the famous French perfume Chanel n° 5 [35]. From them on, the supplying of the finest and unique ingredients from the Amazon biodiversity thrived, adopting, mostly, adequate standards for social and environmental sustainability, which was not always the case with Pau-Rosa. Today, extracts of cumaru are present in the most famous and popular fragrances (Givaudan company) and the ingredients market for the cosmetics industry is supplied with essential oils of priprioca (Laszlo Aromaterapia & Aromatologia companies), pracaxi (Amazon Forest Trading company); copaiba (IFF—International Flavors & Fragrances company) and andiroba (Amazonoil company), among many other.
\nAnother sector that has shown significant growth is the food, functional food and nutraceutical industries (e.g., Sambazon, Tahuamanu companies). Companies in this sector tap in the healthy food market and, by applying relatively low-end technologies, have put Amazon bio-actives available worldwide at anyone’s table. As a rule of thumb, most sectors have benefited from the adoption of newer and accessible technologies in their processing facilities. From Brazil nuts micro-factories for peeling seeds (COOPERACRE cooperative) to agrosilviculture producer’s cooperatives focused on traditional bio-industries (CAMTA, RECA cooperatives).
\nIn our study, we analyzed many products offered by the Amazon traditional bio-industries based on two defining axis: the amount of technology involved in the making of their products and the degree to which they are closer or further to their original state as furnished by Nature. It was a qualitative analysis and it shows status classes for these products. The diagram in Figure 8 shows the result of this qualitative analysis.
\nDiagram depicting status classes for Amazon bio-industry products based on the amount of technology involved in their making and the degree to which they are closer or further to their original raw material state as furnished by nature [21].
As it might be expected, values such as environmental sustainability, social development and fair-trade are a matter of concern for virtually all operations, to a greater or lesser extent, from small chestnut cooperatives to the giants of the essences and cosmetics sector. Nevertheless, there are reports of large traditional bio-industry operations that required botanical resources at large scales that have driven transformation in the supplying of natural asset, once coming from extractivism or agroforestry systems, into an asset generated from monocultures in the agroindustry’s usual patterns. It also disrupted traditional handmade extractive processes [60]. Accommodating increasing demands for bio-products with limitations inherent to Nature’s carrying capacity and traditional and local people culture, needs and potentials for insertion into new economic development paradigm is an imperative challenge for a real sustainable Amazon development strategy.
\nThe industrial sector transforming biodiversity assets into available consumables act in the interface between biodiversity, biotechnology and bio-industry, which involves a complex system of partnerships between companies, universities, research institutes, official financial agencies, organized communities and cooperatives inside and outside the Amazon region.
\nThe Amazonia Third Way initiative is conceived as a disruptive social and technological transformation toward a sustainable Amazonian development path. It calls for ‘an Amazon-specific Fourth Industrial Revolution innovation (4IR) “ecosystem”. This system must be able to rapidly prototype and scale innovations that apply a combination of advanced digital, biological, and material technologies to the Amazon’s renewable natural resources, biomimetic assets, environmental services, and biodiverse molecules and materials’ [2].
\nIn support of socioeconomic development, systemic innovations will also apply to enhancing biodiversity-based value chains. Ideally, these would shape a unique ‘Amazon-brand’ able to conquer global markets [61, 62, 63].
\nThe Amazonia Third Way Initiative promotes in-depth research on alternative pathways for sustainably developing the Amazon territory, in harmony with the twenty-first century’s Zeitgeist. Forests in the Amazon are the result of evolution over millions of years. Nature has developed a wide variety of biological assets, which include metabolic pathways, and genes of life on land, in aquatic ecosystems, and in their natural products—both, chemical and material—in conjunction with biomimetic assets, that is, the functions and processes used by nature.
\n4IR technologies increasingly harness these assets across many industries from pharmaceutics to energy, food, cosmetics, materials and mobility. Indeed, they are making profits, but to date these profits have not been channeled back to conserve the Amazon and to support the custodians of nature—indigenous and traditional communities—and also urban population in the region.
\nWithin a proper legal and ethical framework, the Amazonia Third Way Initiative offers unprecedented opportunities to local populations to develop a vibrant, socially inclusive ‘standing-forest, flowing-river’ green economy. By harnessing nature’s value through physical, digital and biological technologies of the 4th Industrial Revolution, we can simultaneously protect the Amazon ecosystems and their traditional custodians.
\nThe region is still largely disconnected from the main centers of technological innovation dealing with 4IR technologies and the advanced bio-economy. The Amazonia Third Way Initiative is conceived as a multi-level path toward a new inclusive bio-economy, combining a highly innovative, entrepreneurial and technological economy with the re-valuation of non-timber forest products and industries with low-end technologies.
\nThe conceptual framework for the Third Way follows the overall structure of Figure 9 for the determinants of sustainable pathways for the Amazon.
\nDeterminants of sustainable pathways for the Amazon. The Amazonia third way initiative seeks ‘to add value to the heart of the forest’ by promoting a novel sustainable development paradigm based upon harnessing biological and biomimetic assets of Amazon biodiversity.
At the broader level, first we need to understand the nature of the socioeconomic and political drivers accounting for the rapid transformation of the Amazon in the last 50 years and the consequences of the resource-intensive development policies in action in contrast with the view of forest preservation and setting aside large tracts for conservation.
\nAs mentioned before, the Third Way Initiative is not one more attempt to reconcile resource-intensive development with conservation. Instead, it will seek to implement the twenty-first century paradigm of knowledge societies to Amazon realities through research and development, entrepreneurship, twenty-first century skills and education, and fit for purpose sustainable development policies toward a standing forests-flowing rivers inclusive bio-economy.
\nSecond, we deal with solution spaces, recognizing that an important effort has been done to identify and diagnose the risks to the Amazon of the current development actions and policies, including their fragilities. We are in urgent need to find feasible solutions of a different nature: driven by communities and by an entrepreneurial revolution powered by the Fourth Industrial Revolution and not only by powerful legacies, assisted by altogether more sustainable policies based on knowledge, be it scientific/technological or traditional.
\nThird, we discuss in more detail the role of some key enablers and catalysts to jumpstart sustainable pathways for the Amazon in two categories, those to enable a biodiversity-based development, namely research, development and innovation; harnessing the Fourth Industrial Revolution technologies to unlock the economic value of nature; and conducive regulatory framework; and those necessary to implement such novel paradigm, agroforestry systems; innovative entrepreneurship; bio-industries; product-based and knowledge-based value chains.
\nWithin the Amazonia Third Way initiative, an approach has been developed to operationalize the principles and practices that will allow a proposed paradigm shift for Amazon sustainable development. It defines seven interconnected realms: (1) the existing natural knowledge; (2) the ability for learning from nature; (3) the capacity to applying biodiversity-based knowledge to human needs; (4) the capacity to producing biodiversity-based goods and solutions; (5) the insertion of biodiversity-originated products on a local-to-global bio-economy; (6) the fair sharing of socioeconomic benefits and life quality improvement for all; and (7) the rising of an Amazon Biome intrinsic valuing. With the advancements of 4th Industrial Revolution (4IR) technologies and its wide accessibility, we identified ways it can interact and make feasible a game-changing realization of such realms. We call ‘Amazonia 4.0’ the prospects of realization of these seven elements by means of technological accessibility and resources, and market transformation made available by the 4IR.
\nThe existing Natural knowledge is an initial condition of the system; it does not depend on any human technology. It is a source of information we inherited from evolutionary processes, occurring associated with 3.7 billion years old life on Earth. The A3W initiative targets to keep it going its course, valorizing it in many ways.
\nLearning from Nature is inherent to humans ever since we became a species (Homo sapiens) as a part of the Natural system. Ancient and traditional knowledge come greatly from observing and interacting with the natural elements. As we evolve, we became more apt to understand Nature’s intrinsic knowledge with the building of science and its instruments. With 4IR technologies, which include biotechnology, advanced computing, genomics, nanosciences, materials science and advanced sensor platforms, we can learn from Nature in a depth and such fast pace never imagined before.
\nApplying knowledge from Nature to human needs is the next natural consequence. This is the realm of invention and innovation. 4IR technologies can boost invention and prototyping of new products and solutions. More than just facilitating invention, it creates demand for new solutions, advanced materials and innovative products.
\nOnce a new biodiversity-based product or solution is developed, producing it in varying scales is the next outcome. It may utilize biodiversity inputs directly on its making or can only be sourced from biodiversity knowledge. To carryout industrial operation in the Amazon has been always a challenging, if not impossible, operation. With the changes brought by 4IR technologies and market demands, industrial equipment became smarter, lighter and customizable. It became possible to have plenty of electrical solar-powered energy in the forest, with equipment connected with satellite internet and local crews trained with virtual and augmented reality, for example. With 4IR technologies, including advanced sensors and AI, it is possible to control more precisely the use of natural resources to prevent possible negative impacts.
\nInsertion of biodiversity-originated products on a local-to-global bio-economy is a key for driving wide interest in conserving the bio-assets. Different than the traditional model of supplying commodities for further processing and generating value away from its origins, 4IR technologies and new manufacturing paradigm eases and redefines the possibilities to produce in close association with the local people on local environments, yet reaching global markets. Complicated logistic typical of a vast forest territory can be easily offset using self-flying cargo drones, for example.
\nFair sharing of socioeconomic benefits and life quality improvement for all involved, including forest stakeholders and final consumers can be levered by 4IR technologies and social changes brought by the technological revolution. With distributed ledger technologies like blockchain and holochain, we propose the creation of the Amazon BioBank. It is a framework for attributing value to many instances of Amazon socio-biodiversity. Biological assets, biomimetic insights and discoveries, traditional knowledge, local people forest skills and other sources of resources will be registered in the Amazon BioBank digital platform through holochain distributed ledger technology [64]. The Amazon BioBank share common principles with the Earth Bank of Codes [65].
\nAside from any specific technology, the ultimate, long-term result of these chain of events and realizations would be the rising of a socially shared Amazon Biome intrinsic value. The social valuing of Nature and its knowledge as an end in itself is an ideal state of relationship between humans and other elements of the natural system. By becoming acquainted and perceiving many times actual benefit from products and solution based on the Amazon biodiversity, made available by the chain of events depicted above, one can realize the value of the tropical forest. As a utilitarian value first, that over time may crystalize as core life, intrinsic value, forming the personal and social foundations to hold attitudes and behaviors that imply, support and demand conserving the Amazon Biome.
\nThe ‘innovation ecosystems’ proposed in the Amazonia Third Way initiative are creative-productive arrangements based on the Amazon 4.0 principles that synergistically align several ‘ignition powers’ for a novel Amazon bio-economy. Major research laboratories and universities are knowledge centers on biodiversity. Processes, molecules and genetic information with potential for diverse uses are discovered on daily basis. Start-ups are companies that specialize in rapidly transforming knowledge into business that tends to transform traditional consumer and service markets. Prospects for the industries with Internet of Things, or 4.0, announce new products to be created with computational tools, to be ‘uploaded’ and produced at any scale. Inventors and new businesses can idealize customized or niche-specific products, which are done automatically, even overnight. A dynamically well-developed and structured environment for locally rooted associations of (1) knowledge, (2) business and (3) production form the ‘innovation ecosystems’. They are a way for transforming the biological wealth of the Amazon into economic wealth, locally anchored, with social benefits for communities and sustainable mechanisms for conservation of the forest.
\nTo begin to walk down the Third Way we need, above all, capacity development.
\nAs results of the long-standing Program to Protect the Rainforests of Brazil (PPG-7) show, the lack of entrepreneurial skills has stood in the way of developing a non-timber bio-economy in the Amazon. Only with field-based knowledge and supporting academic curricula can tap into the Amazon’s biological and biomimetic assets, and the mainstreaming of a standing forest-flowing river, biodiversity-based bio-economy be achieved. To do that, we propose the development of a capacity program ‘Amazon Creative Labs’ (ACL). The program is designed to promote technical, technological and entrepreneurial capacity development focused on non-timber products of the Amazon biodiversity, with training events carried out directly at local communities and towns throughout Amazon region.
\nWe propose the launching of Amazon Creative Labs (ACLs)—laboratories for innovative experimentation set up throughout Amazonia. They will provide intensive training linked to local potentials to generate a virtuous insertion on bio-economy-related new opportunities. Typically, Creative Labs will be located in smaller communities, villages and towns, assembled on tents or on floating platforms packed with state-of-the-art equipment and technology for both, wide audience learning processes and core value chain local development.
\nAmazon Creative Labs will enable development of small-scale innovation ecosystems for co-design, co-development and co-creation of solutions and applications, serving as an effective interface with the knowledge and practices of the Amazon people.
\nThe Amazon Creative Labs will operationalize sustainable ‘Solution Spaces’ (see Figure 1). It is of critical importance that the Labs be community oriented, joining technology and traditional knowledge, and designed to contribute toward a strong local and regional economy.
\nThe Labs will promote capacity development activities focused on a number of products of Amazon biodiversity illustrative of an array of bio-economic and even bio-artistic applications, such as food, nutraceuticals, cosmetics, fragrances, pharmaceuticals, industrial oils, art crafts, bio-art, biomimicry, etc. Training activities can enable local communities to gather more information on the natural resources available to them, including the use of high-end technologies such as, genome sequencing.
\nThe exposure to 4IR technologies will allow innovative concepts to emerge. With the assistance of technology experts on the one hand, and entrepreneurship specialists on the other, groups of participants from Amazonian communities, villages and towns will be invited to develop new applications and to prototype (at least digitally) such innovations. The Labs’ creative environment will bring 4IR concepts like mass customization, democratized invention and smart & autonomous factories, powered by Industrial IoT, to a meaningful level with practical outcomes accessible at planned local and regional clusters of custom-sized processing and manufacturing plants.
\nAlongside communities—forest people, riverine communities and agroforestry farmers—young undergraduate or just graduated students interested in creating sustainable biodiversity-based businesses in the Amazon will be engaged. The expectation is that such ‘on the ground’ collaboration will give rise to new partnerships.
\nThe Amazon Creative Labs design includes solar photovoltaic panels, convertors and batteries, for steady power supplying, and connection to broadband satellite internet. These features will allow digital, internet-connected equipment to work for prototyping potential applications of new products and processes. These infrastructures, operating in remote regions of the Amazon, are also proof of concept of how the newest available and accessible technologies can reach and benefit the whole spectrum of the social pyramid, from their everyday life to new work opportunities.
\nACLs also include a focus on the realm of biomimetic, that is, the functions, processes and mechanisms of living organisms that, once learned, can provide insights and solutions for engineering new technologies and innovative products. They also leverage applications, including the high-end of genetic resources and genomics; prototype innovative processing of materials through the diverse links of value chains—raw materials, intermediate products, all the way to finished products.
\nTo illustrate the potential of ACLs, we designed the three following conceptual examples of applications, based on currently available technologies and equipment. A final design should incorporate new technological solutions specifically tailored for solving implementation and scaling challenges and include consultation with local communities for accessing their specific needs, priorities and potentials.
\nA line of Amazon Creative Labs will deal with value chains feed by inputs from local biodiversity and an example of that is themed after nutraceutical Cupulate, a chocolate made from the seeds of Amazon fruit Cupuaçu, instead of cacao. From forest picking to creating a final product that combines basic Cupulate with other products of very high nutritional value, the lab also includes utilizing a 3D food printer for unique chocolate designs and precise dosage of the added natural micronutrients. A by-product of Cupulate-making is cupuaçu pulp, which is then freeze-dried in a value chain of its own. Heavy-lift electric-powered drones can help overcome logistics challenges the region poses, by easily and quickly taking loads of nutraceutical cupulate sculptures and bars to a nearby gateway.
\nAnother example of ACLs focus is the Brazil Nuts value chain, known for the discrepancies between its higher cost for consumers and the low remuneration local people who harvest it from the forest receive. To change this, in one end, the ACLs will target extractivism issues, like processes precariousness that halts productivity and seeds’ price, with accessible technological resources including GIS mapping, micro-controlled sensors arrays (for health safety on seed’s harvesting and storing) and comprehensive traceability systems (origin and processes). At the same time, ACLs will carry out further locally based nut processing, using equipment that extracts oil and flour, by-products with greater trading value. With top technical education and processes precisely controlled with the aid of computers, sensors and biotechnological checks for sanitary standards, it becomes possible to output export-grade quality products strait from the forest vicinities. Those inputs also allow bringing to small villages the manufacture of even more processed products targeted to the natural cosmetics and nutraceuticals markets.
\nAnother line of ACLs will tackle the potential of making Amazon local inhabitants aware of the genetic value of biodiversity and to take part in genome sequencing projects. The lab will take participants into a knowledge journey departing from the biodiversity that can be seen all the way to the microscopic and nanoscopic structures of it, and to the grasping of the molecular coding of life. To achieve this, the Lab will make use of optical and portable electron scanning microscopes and virtual and augmented reality gear, furnished with contents to experience and understand organic chemistry complex structures. At the end, participants will carry out actual DNA sequencing through ultra-portable genome sequencers, allowing for registering genomes of species and benefiting from the provisions of benefit sharing of the Nagoya Protocol of Access and Benefit Sharing (ABS).
\nSystemic risks to the maintenance of the Amazon forest due to the synergistic combination of the main human drivers of change—namely regional climate change due to both deforestation and global warming, and augmented forest vulnerability due to fires—poses an urgent challenge to avoid an irreversible threshold being transgressed that would threaten to turn over 50% of the forest in degraded savannas in the second half of this century [2].
\nThe natural resource-intensive mode of development (the Second Way) is the dominant mode of development and receives generous government subsidies for its continued advancement. Investments in conservation, forest restoration and a sustainable economy in the global tropics of about $20 billion annually receive less than 3% of total investments. The bulk of investments (around $770 billion annually) goes to the expansion of commodities frontier of cattle, grains, oil palm [66] and also to road, energy and mining infrastructure, which are also key drivers of deforestation [67]. One more detrimental effect of such path is the increasing rural violence in the Amazon. Brazil has the highest number of assassinated rural and environmental leaders since 2015, with more than 140 killings, mostly in the Amazon [68].
\nIt is becoming crystal clear that trying to reconcile resource-intensive development with conservation is not leading to lasting and permanent solutions. Deforestation rates are still very high and do not show a tendency to go down near zero and rural violence is on the rise. Social inequalities in the Amazon remain high and are not improving at a fast pace at least to bring social indicators to the national averages of the Amazonian countries. Imposing strict conservation to protect large swathes of the forest has had clear successes over the last decades in the Amazon—about 50% of the Amazon forest is under some kind of protection. However, that in itself does not guarantee protection forever for tropical forests and eventually may affect the livelihoods of local population as is the case documented for Madagascar [69] who may bear a high cost for forest conservation.
\nThe Amazon Third Way Initiative seeks to demonstrate the urgent need for a conceptual, educational and entrepreneurial revolution—a revolution based on knowledge, traditional and scientific. The current economy of meat, grain and timber in the Brazilian Amazon is less than $10 billion a year. The economy associated to biological assets of Amazon biodiversity in a few industries (food, cosmetics, oils, etc.) is already worth 30% of that and distributes income in fairer ways and benefits more of the local population. However, that is a tiny portion of the potential of a sustainable economy hidden in the biological and biomimetic assets of Amazon biodiversity that the Amazon Third Way initiative attempts to address and give visibility to. We will be estimating the real hidden economic value of these assets in a next phase of the initiative.
\nThe Amazon forest is not a void of human presence. Diverse communities live all over the region. Even some communities of new settlers of the 1970s and 1980s have looked to find ways of generating income in agroforestry systems. There is rich traditional knowledge in many of indigenous and caboclo communities. Supporting the diversity of communities and economic pathways for a standing forest-flowing rivers economy is mandatory.
\nFrom a more general standpoint, sustainable development pathways based on natural resources exploitation should in principle put the local populations as priority. That is not the case for the Amazon currently (low HDI and other social indicators). Therefore, the Third Way Initiative also proposes that new sustainable paradigms have the development policy as a central tenet. The sustainable economy should first and utmost be means of wellbeing to the Amazonian people. That is not the case of the Second Way, where the Amazon is seen important for intensive resource exploitation for the Amazonian countries as a whole and taxation of the resource wealth should redistribute benefits as public services for all in the Amazon. However, a regressing taxation system does not realize that.
\nThe Amazon has a number of good examples of biology laboratories and a number of entrepreneurship initiatives that beyond economic development target social responsibility and deployment of sustainable biodiversity value chains. They are true pioneers into the new era of sustainability. However, they are as yet a small minority. They may even accrue national and international visibility and are role models, but in critically insufficient numbers to create momentum economically and socially to give clout to the rupture needed to put Amazon on a different track.
\nThe new model must rely on these existing good examples, on the diversities of forest communities across the Amazon, on state-of-the art knowledge generations laboratories and innovative entrepreneurship and build up from there.
\nIn due course, one has to build up momentum for enhancing the policies that are necessary to uplift the Third Way; investment in zero-deforestation value chains; reducing the enormous subsidies for commodities that drive deforestation; but as importantly invest in knowledge generation through a network of advanced biology laboratories in the Amazon, in Amazonian Countries and internationally in association with private R&D labs and science-based start-ups and creation of innovation ecosystems throughout the regions. That is a pre-requisite to the development of local next generation bio-industries in towns and cities of the future.
\nBy attracting venture capital and productive investments both for R&D and for industries, the political interest in the Third Way will rise in the eyes of governments to a tipping point in which government investments and subsidies will start to flow to this other type of economy, even on the absence of visionary governments that would see the potential of a new Amazon bio-economy and would design the pathways to reach it.
\nThe implications of harnessing the Fourth Industrial Revolution to unlock the economic value of the Amazon’s biological and biomimetic assets for governments, start-ups, corporations and R&D centers are profound. Partnerships among public and private R&D innovation labs to create a number of hubs of innovation throughout the region is necessary. This would accelerate new research and development leading to new products and innovations relevant for many industries locally and worldwide. Amazonian countries with immensely valuable natural assets would have an additional source of income to help protect these resources and support indigenous and traditional communities. These funds would create a new incentive on the part of communities and governments to protect rather than destroy natural habitats. The interest in understanding and sustainably using our biological and biomimetic assets could propel a new era of scientific exploration of life on the planet. Large new markets for sustainably sourced innovation could be created. Technology companies and start-ups seeking to demonstrate compliance with the Nagoya Protocol could be certified, through the transparency that distributed ledger technology offers.
\nIn sum, development policy in the Amazon has historically taken two pathways. The first embraces nature conservation and protects large swathes of territory from any human activity. The second approach has focused on conversion or degradation of forests for the production of agricultural commodities like meat and soya or tropical timber at the forest frontier, and also mineral commodities and the build-out of massive hydropower generation capacity. These uses together have been historically responsible for the massive deforestation of the Amazon.
\nThere is, however, a Third Way within reach in which we aggressively embrace high-tech innovation and look at the Amazon as a tremendous source of biological and biomimetic assets that can provide new, innovative products and services for current and new markets. System-level change in the Amazon as proposed cannot be executed single-handedly. On the contrary, we are proposing collaboration with leading public, private, academic and philanthropic actors for the journey ahead, engaging Indigenous and traditional communities across Amazonian countries, uniting the best capabilities of regulators, R&D centers, universities, technology start-ups and visionary companies all over the world.
\nThe Amazonia Third Way can be the most effective Land Use Change Planning policy for the Amazon because it is fully based on a standing forest-flowing river bio-economy. If successful, this new development model can be applied to all tropical regions helping to preserve the Earth’s great biological diversity. We have an important choice to make. The future of the Amazon and its impact on the planet lie so clearly in the balance. Time is not on our side, but we can still choose the Third Way.
\nThis work has been supported by the National Institute of Science and Technology for Climate Change via CNPq Grant Number 573797/2008-0 and FAPESP Grant Number 2008/57719-9 and additional financial support by the Climate and Land Use Alliance (CLUA) and Moore Foundation. We express our thanks to Juan Carlos Castilla-Rubio and Luciana Castilla for their contributions to the development of the Amazon Third Way Initiative.
\nIntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:1683},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"qngrRaqGuveqFgrcChoyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1178",title:"Electrophysiology",slug:"electrophysiology",parent:{title:"Neurophysiology",slug:"neurophysiology"},numberOfBooks:2,numberOfAuthorsAndEditors:108,numberOfWosCitations:84,numberOfCrossrefCitations:34,numberOfDimensionsCitations:106,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"electrophysiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"543",title:"Amyotrophic Lateral Sclerosis",subtitle:null,isOpenForSubmission:!1,hash:"1a986185a49802e1e3beaf6cdc6dde8d",slug:"amyotrophic-lateral-sclerosis",bookSignature:"Martin H. Maurer",coverURL:"https://cdn.intechopen.com/books/images_new/543.jpg",editedByType:"Edited by",editors:[{id:"95060",title:"Prof.",name:"Martin Henrik",middleName:"H.",surname:"Maurer",slug:"martin-henrik-maurer",fullName:"Martin Henrik Maurer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"26540",doi:"10.5772/30897",title:"Protein Aggregates in Pathological Inclusions of Amyotrophic Lateral Sclerosis",slug:"protein-aggregates-in-pathological-inclusions-of-amyotrophic-lateral-sclerosis",totalDownloads:2190,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Yoshiaki Furukawa",authors:[{id:"84665",title:"Prof.",name:"Yoshiaki",middleName:null,surname:"Furukawa",slug:"yoshiaki-furukawa",fullName:"Yoshiaki Furukawa"}]},{id:"26529",doi:"10.5772/32384",title:"Dynamic Meta-Analysis as a Therapeutic Prediction Tool for Amyotrophic Lateral Sclerosis",slug:"dynamic-meta-analysis-as-a-therapeutic-prediction-tool-for-amyotrophic-lateral-sclerosis",totalDownloads:1851,totalCrossrefCites:1,totalDimensionsCites:13,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Cassie S. Mitchell and Robert H. Lee",authors:[{id:"91289",title:"Dr.",name:"Cassie",middleName:null,surname:"Mitchell",slug:"cassie-mitchell",fullName:"Cassie Mitchell"}]},{id:"26543",doi:"10.5772/30341",title:"Innate Immunity in ALS",slug:"innate-immunity-in-als",totalDownloads:1882,totalCrossrefCites:0,totalDimensionsCites:8,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"John D. Lee, Jia Y. Lee, Stephen M. Taylor, Peter G. Noakes and Trent M. Woodruff",authors:[{id:"82094",title:"Dr.",name:"Trent",middleName:null,surname:"Woodruff",slug:"trent-woodruff",fullName:"Trent Woodruff"},{id:"91937",title:"Mr.",name:"John",middleName:null,surname:"Lee",slug:"john-lee",fullName:"John Lee"},{id:"91938",title:"Ms.",name:"Jia",middleName:null,surname:"Lee",slug:"jia-lee",fullName:"Jia Lee"},{id:"91939",title:"Prof.",name:"Stephen",middleName:null,surname:"Taylor",slug:"stephen-taylor",fullName:"Stephen Taylor"},{id:"91941",title:"Dr.",name:"Peter",middleName:null,surname:"Noakes",slug:"peter-noakes",fullName:"Peter Noakes"}]}],mostDownloadedChaptersLast30Days:[{id:"26527",title:"Amyotrophic Lateral Sclerosis: An Introduction to Treatment and Trials",slug:"amyotrophic-lateral-sclerosis-an-introduction-to-treatment-and-trials",totalDownloads:5458,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Martin H. Maurer",authors:[{id:"95060",title:"Prof.",name:"Martin Henrik",middleName:"H.",surname:"Maurer",slug:"martin-henrik-maurer",fullName:"Martin Henrik Maurer"}]},{id:"26540",title:"Protein Aggregates in Pathological Inclusions of Amyotrophic Lateral Sclerosis",slug:"protein-aggregates-in-pathological-inclusions-of-amyotrophic-lateral-sclerosis",totalDownloads:2190,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Yoshiaki Furukawa",authors:[{id:"84665",title:"Prof.",name:"Yoshiaki",middleName:null,surname:"Furukawa",slug:"yoshiaki-furukawa",fullName:"Yoshiaki Furukawa"}]},{id:"26534",title:"Role of Mitochondrial Dysfunction in Motor Neuron Degeneration in ALS",slug:"role-of-mitochondrial-dysfunction-in-motor-neuron-degeneration-in-als",totalDownloads:2245,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Luz Diana Santa-Cruz, Uri Nimrod Ramírez-Jarquín and Ricardo Tapia",authors:[{id:"86426",title:"Prof.",name:"Ricardo",middleName:null,surname:"Tapia",slug:"ricardo-tapia",fullName:"Ricardo Tapia"}]},{id:"26548",title:"Genetics of Familial Amyotrophic Lateral Sclerosis",slug:"genetics-of-familial-als",totalDownloads:2666,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Emily F. Goodall, Joanna J. Bury, Johnathan Cooper-Knock, Pamela J. Shaw and Janine Kirby",authors:[{id:"90305",title:"Dr.",name:"Janine",middleName:null,surname:"Kirby",slug:"janine-kirby",fullName:"Janine Kirby"},{id:"91729",title:"Dr.",name:"Johnathan",middleName:null,surname:"Cooper-Knock",slug:"johnathan-cooper-knock",fullName:"Johnathan Cooper-Knock"},{id:"91731",title:"MSc.",name:"Joanna",middleName:null,surname:"Bury",slug:"joanna-bury",fullName:"Joanna Bury"},{id:"91733",title:"Dr.",name:"Emily",middleName:null,surname:"Goodall",slug:"emily-goodall",fullName:"Emily Goodall"},{id:"91737",title:"Prof.",name:"Pamela",middleName:null,surname:"Shaw",slug:"pamela-shaw",fullName:"Pamela Shaw"}]},{id:"68369",title:"Cerebral Spectral Perturbation during Upper Limb Diagonal Movements",slug:"cerebral-spectral-perturbation-during-upper-limb-diagonal-movements",totalDownloads:337,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Fabio Marson, Patrizio Paoletti, Stefano Lasaponara, Joseph Glicksohn, Antonio De Fano and Tal Dotan Ben-Soussan",authors:[{id:"191040",title:"Ph.D.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan"},{id:"195042",title:"Prof.",name:"Joseph",middleName:null,surname:"Glicksohn",slug:"joseph-glicksohn",fullName:"Joseph Glicksohn"},{id:"309442",title:"Dr.",name:"Fabio",middleName:null,surname:"Marson",slug:"fabio-marson",fullName:"Fabio Marson"},{id:"309443",title:"Dr.",name:"Patrizio",middleName:null,surname:"Paoletti",slug:"patrizio-paoletti",fullName:"Patrizio Paoletti"},{id:"309444",title:"Dr.",name:"Stefano",middleName:null,surname:"Lasaponara",slug:"stefano-lasaponara",fullName:"Stefano Lasaponara"},{id:"309445",title:"Dr.",name:"Antonio",middleName:null,surname:"De Fano",slug:"antonio-de-fano",fullName:"Antonio De Fano"}]},{id:"26535",title:"Role of Neuronal Mitochondrial Metabolic Phenotype in Pathogenesis of ALS",slug:"role-of-neuronal-mitochondrial-metabolic-phenotype-in-pathogenesis-of-als",totalDownloads:1852,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Alexander Panov, Nury Steuerwald, Valentin Vavilin, Svetlana Dambinova and Herbert L. Bonkovsky",authors:[{id:"82483",title:"Dr.",name:"Alexander",middleName:"V.",surname:"Panov",slug:"alexander-panov",fullName:"Alexander Panov"},{id:"127580",title:"Dr.",name:"Herbert",middleName:null,surname:"Bonkovsky",slug:"herbert-bonkovsky",fullName:"Herbert Bonkovsky"}]},{id:"68413",title:"Correlations of Gait Phase Kinematics and Cortical EEG: Modelling Human Gait with Data from Sensors",slug:"correlations-of-gait-phase-kinematics-and-cortical-eeg-modelling-human-gait-with-data-from-sensors",totalDownloads:148,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Chaitanya Nutakki, Sandeep Bodda and Shyam Diwakar",authors:[{id:"71863",title:"Dr.",name:"Shyam",middleName:null,surname:"Diwakar",slug:"shyam-diwakar",fullName:"Shyam Diwakar"},{id:"300655",title:"Mr.",name:"Chaitanya",middleName:null,surname:"Nutakki",slug:"chaitanya-nutakki",fullName:"Chaitanya Nutakki"},{id:"300656",title:"Mr.",name:"Sandeep",middleName:null,surname:"Bodda",slug:"sandeep-bodda",fullName:"Sandeep Bodda"}]},{id:"70077",title:"Computer Simulations of Hippocampal Mossy Fiber Cleft Zinc Movements",slug:"computer-simulations-of-hippocampal-mossy-fiber-cleft-zinc-movements",totalDownloads:159,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Johnattan C.S. Freitas, João N. Miraldo, Carlos Manuel M. Matias, Fernando D.S. Sampaio dos Aidos, Paulo J. Mendes, José C. Dionísio, Rosa M. Santos, Luís M. Rosário, Rosa M. Quinta-Ferreira and Emília Quinta-Ferreira",authors:[{id:"308359",title:"Dr.",name:"Emília",middleName:null,surname:"Quinta-Ferreira",slug:"emilia-quinta-ferreira",fullName:"Emília Quinta-Ferreira"},{id:"308361",title:"Dr.",name:"Carlos",middleName:null,surname:"Matias",slug:"carlos-matias",fullName:"Carlos Matias"},{id:"311289",title:"Mr.",name:"Johnattan C.S.",middleName:null,surname:"Freitas",slug:"johnattan-c.s.-freitas",fullName:"Johnattan C.S. Freitas"},{id:"311290",title:"Dr.",name:"Fernando D.S,",middleName:null,surname:"Sampaio Dos Aidos",slug:"fernando-d.s-sampaio-dos-aidos",fullName:"Fernando D.S, Sampaio Dos Aidos"},{id:"311291",title:"Dr.",name:"Paulo J.",middleName:null,surname:"Mendes",slug:"paulo-j.-mendes",fullName:"Paulo J. Mendes"},{id:"311292",title:"Dr.",name:"José C.",middleName:null,surname:"Dionísio",slug:"jose-c.-dionisio",fullName:"José C. Dionísio"},{id:"311293",title:"Dr.",name:"Rosa M.",middleName:null,surname:"Santos",slug:"rosa-m.-santos",fullName:"Rosa M. Santos"},{id:"311294",title:"Dr.",name:"Luís M.",middleName:null,surname:"Rosário",slug:"luis-m.-rosario",fullName:"Luís M. Rosário"},{id:"311295",title:"Dr.",name:"Rosa M.",middleName:null,surname:"Quinta-Ferreira",slug:"rosa-m.-quinta-ferreira",fullName:"Rosa M. Quinta-Ferreira"},{id:"311296",title:"Mr.",name:"João N.",middleName:null,surname:"Miraldo",slug:"joao-n.-miraldo",fullName:"João N. Miraldo"}]},{id:"26529",title:"Dynamic Meta-Analysis as a Therapeutic Prediction Tool for Amyotrophic Lateral Sclerosis",slug:"dynamic-meta-analysis-as-a-therapeutic-prediction-tool-for-amyotrophic-lateral-sclerosis",totalDownloads:1851,totalCrossrefCites:1,totalDimensionsCites:13,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Cassie S. Mitchell and Robert H. Lee",authors:[{id:"91289",title:"Dr.",name:"Cassie",middleName:null,surname:"Mitchell",slug:"cassie-mitchell",fullName:"Cassie Mitchell"}]},{id:"26531",title:"Advantages and Pitfalls in Experimental Models Of ALS",slug:"advantages-and-pitfalls-in-experimental-models-of-als",totalDownloads:1977,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Marina Boido, Elisa Buschini, Antonio Piras, Giada Spigolon, Valeria Valsecchi, Letizia Mazzini and Alessandro Vercelli",authors:[{id:"86826",title:"Prof.",name:"Alessandro",middleName:null,surname:"Vercelli",slug:"alessandro-vercelli",fullName:"Alessandro Vercelli"},{id:"91887",title:"MSc",name:"Marina",middleName:null,surname:"Boido",slug:"marina-boido",fullName:"Marina Boido"},{id:"91890",title:"Dr.",name:"Elisa",middleName:null,surname:"Buschini",slug:"elisa-buschini",fullName:"Elisa Buschini"},{id:"91891",title:"Dr.",name:"Giada",middleName:null,surname:"Spigolon",slug:"giada-spigolon",fullName:"Giada Spigolon"},{id:"91892",title:"Dr.",name:"Antonio",middleName:null,surname:"Piras",slug:"antonio-piras",fullName:"Antonio Piras"},{id:"91893",title:"Dr.",name:"Valeria",middleName:null,surname:"Valsecchi",slug:"valeria-valsecchi",fullName:"Valeria Valsecchi"},{id:"125841",title:"Dr.",name:"Letizia",middleName:null,surname:"Mazzini",slug:"letizia-mazzini",fullName:"Letizia Mazzini"}]}],onlineFirstChaptersFilter:{topicSlug:"electrophysiology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/101268/edward-nketiah-amponsah",hash:"",query:{},params:{id:"101268",slug:"edward-nketiah-amponsah"},fullPath:"/profiles/101268/edward-nketiah-amponsah",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()