\r\n\t
",isbn:"978-1-80355-463-1",printIsbn:"978-1-80355-462-4",pdfIsbn:"978-1-80355-464-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"0c1bf8695b453c7d16f51eb4ec3c3ae6",bookSignature:"Dr. Redmond R. Shamshiri and Dr. Sanaz Shafian",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11343.jpg",keywords:"Digital Farming, Wireless Sensors, Internet-of-Things, Digital Twin, Cloud Computing, Big Data Analysis, Data Labeling, Data Sharing, Agriculture 4.0, Precision Technology, E-agriculture, Automated Farms",numberOfDownloads:37,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 10th 2021",dateEndSecondStepPublish:"November 18th 2021",dateEndThirdStepPublish:"January 17th 2022",dateEndFourthStepPublish:"April 7th 2022",dateEndFifthStepPublish:"June 6th 2022",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Shamshiri is a Member of the International Society of Precision Agriculture and a Member of the American Society of Agricultural and Biological Engineering. He is a scientist at the Leibniz-Institut für Agrartechnik und Bioökonomie working toward digitization of agriculture for food security.",coeditorOneBiosketch:"Sanaz is an Assistant Professor of Smart Farming at Virginia Tech University. Prior to this, she was an assistant professor at the University of Idaho. Her expertise lies in using advanced technologies and methodologies for economically and environmentally sustainable crops and trees monitoring and management. She integrates satellite/drone images and AI to develop methodologies for environmental monitoring, crop modeling, and water, and nutrient conservation.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri",profilePictureURL:"https://mts.intechopen.com/storage/users/203413/images/system/203413.png",biography:"Dr. Redmond R. Shamshiri holds a Ph.D. in agricultural automation with a focus on control systems and dynamics. He is a scientist at the Leibniz-Institut für Agrartechnik und Bioökonomie working toward digitization of agriculture for food security. His main research fields include simulation and modeling for closed-field plant production systems, LPWAN sensors, wireless control, and autonomous navigation. His work has appeared in over 100 publications, including peer-reviewed journal papers, book chapters, and conference proceedings. He is a member of the Adaptive AgroTech Consultancy Network and serves as a section editor and reviewer for various high-ranking journals in the field of smart farming.",institutionString:"Leibniz Institute of Agricultural Engineering and Bio-economy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Leibniz Institute for Agricultural Engineering Potsdam-Bornim",institutionURL:null,country:{name:"Germany"}}}],coeditorOne:{id:"429704",title:"Dr.",name:"Sanaz",middleName:null,surname:"Shafian",slug:"sanaz-shafian",fullName:"Sanaz Shafian",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003CPbhJQAT/Profile_Picture_1629955207151",biography:"Sanaz is an Assistant Professor of Smart Farming at Virginia Tech University. Prior to this she was assistant professor at University of Idaho. Her expertise lies in remote sensing research, with a focus on using advanced technologies and methodologies for economically and environmentally sustainable crops and trees monitoring and management. She integrates satellite/drone images and AI to develop methodologies for environmental monitoring, crop modeling and water and nutrient conservation and she has published widely on these topics. She has been involved in several USDA projects. With University of Idaho, she led an educational and outreach project to initiate Precision Agriculture certificate. Sanaz is currently working on two agriculture-related projects, one mapping invasive plants in temperate forest and evaluate forest health in Virginia and another looking at developing smart tool for early detection of soybean diseases.",institutionString:"Virginia Tech",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"80738",title:"Neutron-Gamma Analysis of Soil for Digital Agriculture",slug:"neutron-gamma-analysis-of-soil-for-digital-agriculture",totalDownloads:37,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"441704",firstName:"Ana",lastName:"Javor",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/441704/images/20009_n.jpg",email:"ana.j@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors, and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10499",title:"Next-Generation Greenhouses for Food Security",subtitle:null,isOpenForSubmission:!1,hash:"456f82c97eafad5734cd36c48e167781",slug:"next-generation-greenhouses-for-food-security",bookSignature:"Redmond R. Shamshiri",coverURL:"https://cdn.intechopen.com/books/images_new/10499.jpg",editedByType:"Edited by",editors:[{id:"203413",title:"Dr.",name:"Redmond R.",surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44153",title:"Regulation of Autophagy by Short Chain Fatty Acids in Colon Cancer Cells",doi:"10.5772/54999",slug:"regulation-of-autophagy-by-short-chain-fatty-acids-in-colon-cancer-cells",body:'Short chains fatty (SCFAs) acids are organic fatty acids that are the major products of bacterial fermentation of undigested dietary fiber and resistant starch in the colon. Propionate, acetate and butyrate are the main SCFAs produced from fermentation and serve as fuel for colonocytes. SCFAs serve as regulators of intracellular pH, cell volume, and other functions associated with ion transport. Moreover, SCFAs act as regulators of proliferation, differentiation and gene expression. Our recent studies reported that SCFAs promote autophagy in colon cancer cells. In this chapter, the regulation of autophagy by short chain fatty acids in colon cancer cells will be discussed in details including the mechanism of action.
Short chain fatty acids are organic fatty acids with 1 to 6 carbon atoms and the major products of bacterial fermentation in the human large intestine. Those are mostly derived from polysaccharides, oligosaccharides, proteins, peptides and glycoproteins precursors by anaerobic microorganisms [1]. Diets high in fiber, resistant starches and complex carbohydrates lead to an increase in the levels of SCFAs. The principal SCFA involved in mammalian physiology are acetate c2, propionate c3 and butyrate c4. Formate, valerate, caproate, lactate and succinate are other fermentation products which are produced but to a lesser extent [2]. The scope of this chapter will be limited to propionate, butyrate and acetate.
In the colon, short chain fatty acids are absorbed at the same time as sodium and water absorption. Two mechanisms of absorption have been proposed. During
Nomenclature of short chain fatty acids (SCFAs). Different SCFAs (acetate, propionate and butyrate) are illustrated in this figure.
Diet has a considerable influence on the risk of colon cancer. A diet high in fat has been considered to promote colon cancer while increased fiber and complex carbohydrates in the diet may protect against colon cancer. Butyrate is believed to be mostly responsible for the tumor inhibitory effects of dietary fiber. Sodium butyrate is known to be an effective inducer of cell differentiation. Colorectal cancer cells treated with sodium butyrate showed a more differentiated cell state [5, 6]. It is believed that the protective effect of dietary fibers is associated with butyrate production in the colon which possibly decreases the occurrence of neoplasia in colonocytes. For example, in reference [7], fibers associated with high butyrate were protective against colon cancer. Patients with familial polyposis (FAP) syndrome develop hundreds to thousands of begin tumors of the colon, some of which will progress to colon cancer if not removed. These FAP patients produced less butyrate than healthy controls and patients without polyps. All the studies suggest that butyrate has a protective effect against colon cancer. In the next section, different mechanisms of action of short chain fatty acids on colon cancer will be discussed.
Different mechanisms of action has been proposed through which sodium butyrate regulate different genes to exert an inhibitory effect on colon cancer development. Sodium butyrate induces growth inhibition in colon cancer cells by promoting histone hyperacetylation and induction of the cell cycle inhibitor p21 [8]. Other short chain fatty acids such as propionate and valerate were also shown to inhibit cell tumor cells but to a lesser extent than butyrate. However for acetate, no effects were observed on cell proliferation when it was used at a concentration of 20 mM [9]. Cells other than colonocytes, mainly smooth muscle cells are also present in the colon. The effect of SCFAs on colon smooth muscle cells was quiet different. Sodium butyrate promotes the proliferation of smooth muscle cells. Propionate also promotes colon smooth muscle cells proliferation to a lesser extent than butyrate while acetate had no effects [9]. The cell growth inhibitory effect of butyrate on colon cancer cells is attributed to its ability to induce histone hyperacetylation through inhibition of histone deacetylase (HDAC). Histone hyperacetylation usually results in relaxation of chromatin, thus making DNA more accessible to transcription factors. For example in reference [10], the cell cycle inhibitor p21 gene was increased and involved in the butyrate effect on colon cancer cell proliferation. The promoter region of p21 was shown to harbor butyrate-responsive elements. Upon butyrate treatment, p21 was induced due to HDAC inhibition resulting in G1 phase arrest [9, 11-13].
Mechanism of inhibition of colon cancer cells by short chain fatty acids. Short chain fatty acids, particularly butyrate can inhibit colon cancer by different mechanisms. In this figure, treatment of colon cancer cells with butyrate leads to the activation of the cycle inhibitor p21, followed by cell cycle arrest at G1 phase and induction of apoptosis. Moreover, SCFAs treatment can promote the inhibition of histone deacetylase, leading to histone hyperacetylation and availability of chromatin structure for binding by different transcription factors. Both histone hyperacetylation and cell cycle protein p21 inhibit colon cancer growth.
Sodium butyrate also inhibits colon cancer cell invasion by activating tissue inhibitor matrix metalloproteinase (TIM) 1- and 2, thus inhibiting the activity of metalloproteinases (MMPs). Furthermore, sodium butyrate reduces the adherence of colon cancer cells to the basement membrane protein laminin substrate via fibronection or type IV collagen resulting in the inhibition of cancer growth. Inflammatory cytokines such as IL-4 and TNF-α also play a role in the inhibitory role of butyrate in colon cancer [14]. G-protein coupled receptors are also found to play a role on colon cancer and their role will be discussed in the next section.
Other mechanisms used by short chain fatty acids to inhibit colon cancer carcinogenesis. Treatment with SCFAs can inhibit the destruction of the basement membrane through the stimulation of the inhibitor of metalloproteinases (TIM). TIM will inhibit metalloproteinases and prevent them from destroying the basement membrane. SCFAs also inhibit the adherence of colon cancer cells to the basement membrane by reducing fibronection of type IV collagen levels.
G-protein coupled receptors (GPCRs) consist of a large and diverse family of proteins that mainly transduce extracellular stimuli to intracellular signals. GPRC family is among the largest and more diverse family of proteins in the mammalian genome and contain 7 spanning membrane helixes, an extracellular N-terminus and an intracellular C-terminus. GPCRs can be coupled by at least 18 Gα which forms a heterodimer with Gβ subunits, which have at least 5 types, and Gγ subunit, of which there are at least 11 types. Over 800 GPCRs have been identified in the human genome. The family of GPCR protein is activated upon binding of a ligand or agonist on the extracellular N-terminus that leads to a conformational change and activation of the G-protein heterodimer. At least 50 GPCRs have unknown ligands and are referred as orphans. Depending on the type of GPCRs that is being activated, diverse downstream signaling will be activated.GPRCs respond to different stimuli such as light, neurotransmitters, amino acids, hormones and activate different signaling pathways [15, 16].
Recently, short chain fatty acids (acetate, propionate and butyrate) were reported as ligands for two orphan GPRCs, GPR41 and GPR43. GPR43 is expressed in immune cells whereas GPR41 is present in blood vessel endothelial cells, particularly in adipose tissue with significant expression also in immune cells and endothelial cells of other tissues [17]. Both GPR41 and GPR43 are expressed in colonic mucosa suggesting their role in the normal development or functions of the colon tissue [16]. A study by Tang and al. revealed more information on the function of GPR43 in colon cancer. Immunohistochemistry showed a reduction of GPR43 in human colon cancers compared to normal human colon tissues. No epigenetic changes such as promoter hypermethylation or chromatin compaction due to histone deacetylation (HDAC) were found responsible for the repression or silencing of GPR43 in colon cancer. In order to determine the function of GPR43 in colon cancer, GPR43 was restored in colon cancer cells. Treatment of those GPR43 expressing cells with short chain fatty acids propionate and butyrate rendered the cells more sensitive, caused cell death and promoted cell cycle arrest at Go/G1 phase. The study suggested that loss of GPR43 expression may contribute to colon cancer development and progression [18]. In the next section, the role of short chain fatty acids in the fate of colon cancer cells will be discussed.
Mechanism of GPR43 role as a tumor suppressor in colon cancer. Treatment of colon cancer cells with SCFAs (propionate) results in binding of the GPR43 on the extracellular surface. This leads to the activation of intracellular downstream signaling such as increase in cell cycle protein p21 and CDK1/2 while cyclin D3 is increased resulting in cell cycle arrest at Go/G1 phase. Propionate treatment also stimulates different caspases which activates apoptosis and death of colon cancer cells.
Short chain fatty acids were initially reported to induce apoptosis (type I programmed cell death) in colon cancer. Treatment of colon cancer cells with butyrate inhibited cell proliferation, promoted apoptosis in 79% of cells through the activation of caspase-3 and the degradation of PARP [19] [20]. Recently, SCFAs, particularly propionate was reported to induce autophagy as evidenced by an increased LC3 punctuates formation and upregulation of LAMP-2 [21]. In this section, the regulation of autophagy by short chain fatty acids will be discussed. The mechanisms involved will be discussed in details, including the signaling pathways involved.
In autophagy studies, it is very well established that the mammalian target of rapamycin (mTOR) negatively regulates autophagy. The autophosphorylation at Ser2481 is regarded as an indicator of its catalytic activity. Post propionate treatment of colon cancer cells HCT116, a strong time dependent reduction in the phosphorylation state at Ser2481 was observed, while there were no changes in the total mTORC levels. Another key downstream effector of mTOR, p70S6K, whose phosphorylation status at Thr389 reflects mTOR activity, whereas phosphorylation at Thr421/Ser424 is thought to activate p70S6K was also performed. Following propionate treatment, a reduced phosphorylation of p70S6K at Thr389 was observed by 7 h confirming that downregulation of the mTOR signaling pathway is a mechanism for propionate to induce autophagy. The group then hypothesized that propionate must induce mTOR signaling from the inhibition of PI3/Akt pathway, which was shown to activate mTOR in response to the introduction of nutrient and growth factors. However, no changes in the phosphorylation state of Akt at S473 or Thr308 or the total Akt were observed post propionate treatment. Another pathway which acts upstream of the mTOR pathway, the AMP-activated protein kinase (AMPK) [22], an inhibitor of the mTOR protein and a sensor of cellular bioenergetics, was significantly activated.
Interestingly, propionate mediated AMPK activation caused a decrease in ATP levels in colon cancer cells due to a breach of the mitochondrial membrane potential. In more details, propionate depolarized the mitochondrial membrane, which was shown using mitotracker deep red, a dye that stains the mitochondria in live cells and accumulates in proportion to the membrane potential. The proportion of mitochondria with lower fluorescence intensity, which represents the depolarized mitochondria, was increased post propionate treatment in a dose- and time dependent manner in the colon cancer cells treated. The study in references [21, 23] demonstrated that propionate causes mitochondrial defect leading to ATP depletion and release of reactive oxygen species (ROS). Excessive ROS levels have been attributed to induction of autophagy. The defective mitochondria post treatment is removed by a selective autophagy process known as mitophagy. Mitophagy will be discussed in the next section and how it is regulated in colon cancer cells post propionate treatment.
Mitochondria are cells organelles that primarily produce ATP via oxidative phosphorylation in the inner membrane of the mitochondria. During changes in the environment, ATP synthesis can be disrupted leading to the production of reactive oxygen species (ROS) and release of proteins to promote cell death. Several pathologies have impaired mitochondria, oxidative stress, accumulation of protein aggregates and autophagic stress. Oxidative stress can lead to the nonspecific modification of proteins and contributes to protein aggregation. Interestingly, the cell can adopt its own defense mechanism against aberrant mitochondria, which can be harmful to the cell [24]. This mechanism termed mitophagy was first observed in mammalian cells by early electron microscopy studies, where increased mitochondrial sequestration was identified in lysosomes following stimulation of hepatocytes catabolism with glucagon [25]. This selective autophagy process is characterized by the removal of excess or damaged mitochondria in order to prevent activation of apoptotic cell death [26]. Mitophagy has been shown to play a role during cellular quality control. For instance, in yeast and in mammalian cells, mitophagy is preceded by mitochondrial fission, which divides elongated mitochondria into pieces of manageable size for encapsulation and also quality control of segregation of damaged mitochondrial material for selective removal by mitophagy. Another process, mitochondrial fusion, occurs every 5 to 20 minutes and was shown to reduce mitochondrial depolarization in two cell lines (COS7 and INS1). Mitochondrial fission, fusion or mitophagy are all important for mitochondrial homeostasis [27]. Mitophagy has also been shown to be required for steady-state turnover of mitochondria, for the adjustment of mitochondrion numbers to changing metabolic requirements and during specialized developmental stages in mammalians cells such as during red blood cell differentiation [25]. Some important proteins such as ULK1 and ULK2 (two Atg1 homologues), Parkinson’s disease genes α-synuclein, parkin, PINK1 and DJ-1 are all involved in mitophagy. During the selection of mitochondria for mitophagy, mitochondrial components of the cell are identified by partner cytosolic proteins such as Parkin or Nix that bind to the surface and tag it for degradation [24-26].
Treatment of colon cancers cells HCT116 with propionate resulted in reduced staining intensity of mitochondria and an increased colocalization between mitochondria and punctuates GFP-LC3. COXIV, a mitochondrial marker was also reduced and was localized as defective mitochondria by autolysosomes. An ubiquitin-binding protein-p62, a protein that interacts with LC3 and regulates autophagosome formation, significantly colocalized with mitochondrial COXIV. Flow cytometry analysis showed that most of colon cancer cells treated with propionate showed a reduced Mito Tracker Deep Red staining and enhanced GFP-LC3 fluorescence. Addition of chloroquine, an inhibitor of autophagic degradation, dramatically increased the accumulation of defective mitochondria. All the experiments performed in HCT116 colon cancer cells post treatment suggest that propionate triggers mitophagy. This mitophagy selectively targets mitochondria with a depolorized membrane potential [21, 23].
Mechanisms of mitophagy and representation of proposed role of short chain fatty acids on mitochondria. Treatment of colon cancer cells with SCFAs depolarizes and damages the mitochondria. Reduced mitochondrial membrane potential leads to the accumulation of phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and recruitment of the E3 ubiquitin ligase Parkin to mitochondria. Parkin, then promotes the ubiquitination of proteins in the mitochondrial membrane, which targets the damaged mitochondrion for removal by an autophagasome.
Interestingly, treatment of HCT116 cells with propionate altered the lipid metabolism. Lipids play an important role in cell structure and metabolism. Post treatment with propionate, the expression of fatty acid synthase, the enzyme that catalyzes the synthesis of long chain-fatty acids (LCFAs) from acetyl-CoA (ACC) and malonyl-CoA, was reduced. Furthermore, GSK-3β, which inhibits endergonic glycogen synthesis by phosphorylation and activation of glycogen synthase, was also downregulated. AMPK kinase, which was increased post propionate treatment further phosphorylates and inhibit acetyl-CoA, thus de novo lipid synthesis. The inactivation of ACC by AMPK mediates the increase in mitochondrial import and oxidation of LCFAs, resulting in the generation of ATP.
Energy deprivation can stimulate mitochondrial biogenesis in skeletal muscle in an AMPK-dependent manner. When the effects of propionate treatment in mitochondrial biogenesis were investigated, the mRNA levels of nuclear gene mitochondrial transcription factor A (Tfam) and mitochondrial transcription factor B (mtTFB) were stimulated, peaking at 8.5 and 11.5 h respectively, before returning to the initial pre-stimulatory levels. Other transcription factors related to heme biosynthesis and mitochondria biogenesis named nuclear respiratory factors-1 and 2 (NRF-1 and NRF-2) and polymerase gamma (pol-γ) expression were also stimulated at the mRNA level in colon cancer cells after propionate treatment. On the other hand, peroxisome proliferator activated receptor-γ was reduced. Moreover, an increase in mitochondria complex subunits and increase in Mitotracker greem FM fluorescence also indicated and confirmed that HCT116 cells adapt to propionate-induced ATP depletion by downregulating anabolic processes such as glycogen and lipid synthesis, while stimulating mitochondrial biogenesis in an attempt to resume cellular energy homeostatis [21, 23].
Autophagy and apoptosis are two programmed-cell deaths that may be interconnected and even simultaneously regulated by the same trigger in tumor cells. During apoptosis, cells are destroyed as an end result of caspase mediated destruction of the cellular structure. There exist two core pathways inducing apoptosis: the extrinsic and intrinsic pathways. The extrinsinc pathway is triggered by the Fas death receptor (DR), which depends on the combination of FasL and Fas. The other process, the intrinsic pathway leads to apoptosis upon sensing of an extracellular stimuli or intracellular signal that renders the mitochondrial membrane permeable and releases cytochrome c [28-31].
Molecular pathways leading to cancer can cross-talk. Autophagy and apoptosis can particularly act as partners to induce cell death in a coordinated or cooperative fashion. Although both can be triggered by common upstream signals, this will have different effects on the cell fate. For instance, autophagy can function as a double edged sword to either promote or inhibit cell death. In most cases, inhibition of autophagy leads to an increase susceptibility to apoptotic stimuli [29]. For instance when colon cancer cells were treated with propionate, [21] found that the induction of autophagy has a protective effect on HCT116 cells. SCFAs were previously shown to induce caspase-3-mediated apoptosis. Cotreatment of colon cancer cells (HCT116 and SW480) with 3-methyladenine (3-MA), an inhibitor of autophagy, significantly reduced the percentage of GFP-LC3 formation. However, 12 h after the initiation of treatment of propionate/3MA, the number of apoptotic cells increased as indicated by the high annexin-V staining. Western blot analysis also revealed increased cleavages of the pro-apoptotic cascapase-7 and executioner caspase-3, which are all critical mediators of the mitochondrial events of apoptosis in cells treated with propionate/3MA compared to nontreated group. Addition of another inhibitor of autophagy, chloroquine, enhanced apoptosis in HCT116 cells, especially at the later stages of treatment. Since depletion of AMPKα using shRNA was also shown to mimic the effects of autophagy silencing,colon cancer cells depleted of the AMPKα were also treated with propionate. AMPKα depleted cells showed a more significant cytotoxicity post propionate treatment. Further depletion of autophagy by knocking down ATG5 expression, an important protein required for autophagy, reduced the ability of propionate to induce GFP-LC3 punctae formation, indicating successful depletion. This inhibition of autophagy also confirmed the protective role of autophagy in colon cancer cells post treatment with the short chain fatty acid, propionate. All the findings by [21, 23] suggested that autophagy confers a protective role in propionate-mediated cell death in colon cancer cell.
Proposed model for regulation of autophagy by short chain fatty acids in colon cancer cells. Treatment of colon cancer cells with short chain fatty acids increases ROS levels, lowers the mitochondrial membrane potential and ATP levels. This results in a reduction of cellular energy and defects in mitochondria. As a result, downstream signaling pathway AMPK is activated while mTOR is inhibited and resulting in the activation of autophagy. At the same time, defective mitochondria is removed by a process known as mitophagy in order to rescue the cells from apoptosis and cell death. The activation of autophagy has a protective role on the cell as it prevents cell death.
Short chain fatty acids are the major by-products of bacterial fermentation of undigested fibers in the colon. Short chain fatty acids, particularly propionate has been shown to promote differentiation, growth arrest and apoptosis in colon cancer cells. Furthermore, SCFAs can promote autophagy to retard mitochondrial defect stimulated apoptosis. Although the in vitro studies demonstrated a role of short chain fatty acids in promoting autophagy and protecting the cells from apoptotic death, the relevance of this finding has yet to be investigated in vivo. Moreover, cotreatment of colon cancer cells with SCFAs and chloloroquine, an inhibitor of autophagy may be an effective therapy approach to be investigated.
Soil is an essential a neighborhood of the common habitat. It’s pretty much as significant as plants, creatures, rocks, landforms, loch and waterways. It is a living space for a genuine scope of living beings. It goes about as stream control for water and synthetic substances between the environment and along these lines the world, and furthermore both as a source and store for gases (like oxygen and carbon dioxide) inside the climate. Soils do not simply influence characteristic cycles yet additionally record human exercises both at this and inside the past.
Soil is dynamic organically and a permeable medium that has created inside the highest layer of Earth’s covering. Soil is one of the corpus foundations of life on Earth, which might be a supply of water and supplements, as a mechanism for the filtration and breakdown of squanders, and as a functioning member inside the cycling of carbon and different components through the environment accessible universally. It’s gotten from enduring cycles driven by natural, climatic, geologic, and geographical impacts.
Soil is the linkage between the different ecosystems like biosphere, atmosphere, and hydrosphere. So, the soils are fundamental in the preservation of environmental quality at local, regional, and worldwide level. For example, its buffering capacity contributes to water quality, since the ability to act as a sink for contaminants can have an important role in controlling the negative impacts of pollution on other environment. Researchers are trying to develop and model different bioremediation techniques; however, there is no single bioremediation technique that treats all types of contamination and to restore polluted environments. Bioremediation is a natural process, which relies on bacteria, fungi, and plants to remove, reduce, degrade, or immobilize environmental pollutants from soil and water, thus restoring contaminated sites to a relatively clean nontoxic environment [1].
It is now recognized that, soil is considered a vital resource, and due to its slow formation, it can be considered nonrenewable. Moreover, it has impacts on environmental, economic, and cultural activities. These techniques are environmentally friendly and cost effective features are the major advantages of bioremediation compared to both chemical and physical methods of remediation. Thus far, several good definitions have been given to bioremediation, with particular emphasis on one of the processes.
Soil contamination is that the decrease inside the efficiency of soil in light of the presence of soil toxins. Soil toxins adversely affect the actual substance and organic properties of the dirt and decrease its profitability. Pesticides, composts, natural excrement, synthetic substances, radioactive squanders, disposed of food, garments, cowhide merchandise, plastics, paper, bottles, tins-jars and cadavers all contribute towards causing soil contamination. Synthetic substances like iron lead mercury, copper, zinc, cadmium, aluminum, cyanides, acids and soluble bases and so on are available in modern squanders and arrive at the dirt either straightforwardly with water or in a roundabout way through air. (for example through corrosive downpour).
Soil contamination can cause contamination if harmful synthetics drain into groundwater, or whenever sullied spillover arrives at streams, lakes, or seas. Soil additionally normally adds to contamination by delivering unstable mixtures into the environment. Nitrogen escapes through alkali volatilization and denitrification. The disintegration of natural materials in soil can deliver sulfur dioxide and other sulfur compounds, causing corrosive downpour. Substantial metals and other possibly poisonous components are the principal genuine soil toxins in sewage. Sewage slop contains substantial metals and, whenever applied over and again or in huge sums, the treated soil may gather weighty metals and thus it become incapable to try and support blossoms.
Agricultural processes contribute to soil pollution. For increasing increase crop yield fertilizers are used which also cause pollution that impacts soil quality. Use of pesticides also harms plants and animals by contaminating the soil, these chemicals get deep inside the soil and poison the ground water system and runoff of these chemicals by rain and irrigation also contaminate the local water system and causes eutrophication of fresh water body. Phosphate is the main contributor to eutrophication its high concentration promotes Cyanobacteria and Algae growth which ultimately reduces dissolved oxygen in water [2].
Most of the pollution is caused by industrial waste products and improper disposal of waste contaminates the soil with harmful chemicals. These pollutants affect plant and animal species and local water supplies and drinking water. On the other hand toxic fumes from the regulated landfills contain chemicals that can fall back to the earth in the form of acid rain and can damage the soil profile. Industrial activities like leads to acidification of soil and contamination due to the disposal of industrial waste, heavy metals, toxic chemicals, dumping oil and fuel, etc.
Human activities can lead to soil pollution directly and indirectly. For example improper drainage and increase run-off contaminates the nearby land areas or streams. Unorganized disposal of trash breaks down into the soil and it deposits in a number of chemical and pollutants into the soil. These may again seep into groundwater or wash away in local water system and excess waste deposition increases the presence of bacteria in the soil which leads to the generation of methane gas from decomposition activities by bacteria contributing to global warming and poor air quality. It also creates foul odors and can impact quality of life [3].
Acid rain primarily caused by Sulfur dioxide (SO2), oxides of nitrogen and ozone to some extent. Acid rain is caused when pollutants present in the air mixes up with the rain and fall back on the ground. Sulfuric and nitric acid solutions cause acidity in rainwater. Acid rain decreases the pH of the soil, causing its acidity to increase, which decreases the level of important nutrients found in the soil [4]. Soils low in cation exchange capacity and base saturation are the most sensitive to acid precipitation [5].
Some of natural event also can be the cause of soil pollution like earthquakes, landslides, hurricanes, and flood. These natural disasters cause transpose to the composition of soil which leads to the contamination. For example weathering of naturally occurring sulphide-bearing rock make mineralized zones of arsenopyrite (gossans), Most of these minerals present a high spatial variability and many of them can be found in higher concentrations in deeper layers. However, As is slightly bioaccessible if getting from natural sources [6]. Soils and rocks are also natural sources of the radioactive gas Radon (Rn). High natural radioactivity is common in acidic igneous rocks, mainly in feldspar-rich rocks and illite-rich rocks.
However, There are other numerous of ways of soil contamination, for example, • Seepage from a landfill • Discharge of mechanical waste into the dirt • Percolation of defiled water into the dirt • Rupture of underground stockpiling tanks • Excess utilization of pesticides, herbicides or compost • Solid waste drainage • The most well-known synthetics associated with causing soil contamination are: • Petroleum hydrocarbons • Heavy metals • Solvents Soil contamination happens when these synthetic substances hold fast to the dirt, either from being straightforwardly spilled onto the dirt or through contact with soil that has effectively been tainted.
Impacts of soil pollution are not confined to soil and its biota but are carried over to every aspect of the environment and affect every organism from the earthworm to humans. Some of adverse effects are as follows:
Since we are dependent on the land for our food, pollution from the soil is transferred to us in this manner. Bioaccumulation of toxins occurs in our bodies, causing chronic poisoning, and leading to various diseases. Reproductive health, birth and developmental defects, neurologic effects, malnutrition, and mutations in the cells of the body leading to cancers; all these are on the increase today [7]. Considering direct impact of soil on human health because inhalation of polluted soil which have vaporized and contamination of it. Crops and plants grown on polluted soil absorb much of the pollution and then pass these on to us [8]. This could explain the sudden surge in small and terminal illnesses. Long term exposure to such soil can affect the genetic make-up of the body, causing congenital illnesses and can be carcinogenic, due to this congenital disorder or other chronic health problem created that cannot be cured easily. For example leukemia disease which is associated with higher concentration of benzene and its exposure is chronic to human health. Due to high concentration of mercury and cyclodienes, induce sufficient concentration of PCBs and cyclodienes can damage Kidney and liver toxicity. Carbamates and organophosphates can cause Neurological disorders. Arsenic, asbestos or dioxins, cause cancer and lower IQ caused by lead or arsenic, bone diseases through lead, fluoride or cadmium In fact, it can sicken the livestock to a considerable extent and cause food poisoning over a long period of time. The soil pollution can even lead to widespread famines if the plants are unable to grow in it.
Contamination of soil can affect the ecological balance. Plants are mostly unable to adapt to the abrupt changes in the chemistry of the soil and this affects the microorganisms which are found in soil. This Substantial change causes soil disintegration. Enormous plots of land become infertile; unfit to help any life on it. Indeed, even the plants that do develop on these terrains will retain the poisons and move to the natural way of life. The natural equilibrium of any framework gets influenced because of the inescapable tainting of the soil. Most plants cannot adjust when the science of the soil changes so fundamentally in a brief timeframe. Growths and microbes found in the dirt that dilemma it together start to decrease, which makes an extra issue of soil disintegration. The fruitfulness gradually reduces, making land inadmissible for horticulture and any neighborhood vegetation to endure. The soil contamination makes enormous plots of land become dangerous to wellbeing. In contrast to deserts, which are appropriate for its local vegetation, such land cannot uphold most types of life.
Poisonous residue ascends from landfills alongside foul scent, contaminates the air and makes unfriendly impacts individuals who live close to them.
The poisonous synthetics present in the dirt can diminish soil fertility and subsequently decline in the dirt yield. The defiled soil is then used to deliver leafy foods which needs quality supplements and may contain some harmful substance to cause genuine medical conditions in individuals burning-through them.
Huge heaps of decline and trash being open unloaded and littered over a space ruins the serenity of the scene. The emanation of harmful and foul gases from landfills dirties the climate and causes genuine consequences for wellbeing of certain individuals. The horrendous smell makes burden others.
The passing of many soil living beings (for example night crawlers, creepy crawlies and microorganisms) in the dirt can prompt modification in soil structure. Aside from that, it could likewise compel their hunters to move to different spots looking for food.
Soil contamination can prompt the absence of biodiversity in an environment. The existence of bird, creepy crawly, well evolved creature and reptile species that live in the dirt can get influenced by contamination. The dirt is a significant environment.
When it downpours, surface run-off conveys debased soil into water sources causing water contamination. Toxins can likewise penetrate down to debase ground water. The defiled water is subsequently unsuitable for both creature and human utilization. It will likewise influence amphibian daily routine since the living beings that experience in these water bodies will discover their living spaces inhabitable.
Remediation means to get rid of an issue and if it is associated with taking care of an ecological issue like soil and groundwater contamination is called bio-remediation. Bioremediation is a mechanism which utilizes the living microorganisms to reduce natural contaminations or to anticipate contamination [9]. It is an evolution towards elimination of toxins from the climate in this way reestablishing the first characteristic environmental factors and forestalling further contamination. Bioremediation also can be a permanent in situ solution for contamination instead of simply translocating the problem. Remediation of heavy metals, metalloids, or other inorganic pollutants from soil or water can be done by this technique [10]. It is a cost-effective, efficient, novel, eco-friendly, and solar-driven technology with good public acceptance as compared with other engineering techniques.
Ex-situ bioremediation.
In-situ bioremediation.
Ex-situ as name suggests its mean to remove contamination mat to a remote treatment location. This classification is not much popular because it involves the big task of excavating polluted soil and transports it to offsite. The basic principal of ex situ remediation is to introducing the correct soil oxygen, moisture and nutrient conditions on offsite [11]. However, Ex situ bioremediation process poses a hazard to spreading contamination or risking an accidental spill during transport [12]. There are two technique classes can be applied explained bellow.
This technique involves the process of combining contaminated soil with water and other additives in a large bio-reactor and mixed to keep the indigenous micro-organisms in contact with the contaminants. Essential nutrients, oxygen are added and the conditions in the bio-reactor are ensured at optimum environment for the micro-organisms to degrade the contaminants. After completion of the treatment, the water is removed from the solids -wastewater is disposed and further treated if still contaminated. Slurry-phase is a relatively rapid process compared to other biological treatment processes specifically for contaminated clays [13].
Solid phase treatment use to treats soils in above-ground treatment area. This area equipped with collection systems to check the contaminants from escaping the treatment. The parameters like moisture, heat, nutrients, and oxygen are controlled to enhance rate of degradation. Solid-phase systems are simple to process and maintain in spite of, it require a large amount of space and more time of treatment than slurry-phase processes. This treatment can be achieved by following techniques [14].
This technique basically stimulates biodegradation through indigenous microorganisms and facilitate aerobic degradation of contaminates. It is done by a simple methodology technique in which contaminated soil is excavated and spread over a prepared bed and regularly until pollutants are degraded. For promoting the growth of the indigenous species some nutrients and minerals are also added.
This biodegradation technique used for the remediation of excavated soil contaminated with petroleum contents. Soil biopiles also known as biocells. This technology involves the accumulation of contaminated soil into piles and the stimulation of microbial activity either aerobically or by adding nutrients, minerals or moisture [13]. A typical height of biopiles can be three and ten feet. This technology also uses oxygen as a method to stimulate bacterial growth. Biopiles are aerated by forcing air to move by injection through perforated piping placed throughout the pile [14].
Composting involves mixing the contaminated soil with a biomass such as straw, hay, or corncobs which make it suitable to deliver the optimum levels of air and water to the microorganisms. Composting involves the locating of the contaminated soil in treatment vessels and it is mixed there for aeration. Window composting a type of composting process in which the soil is placed in long piles named as windows and mixed by tractors regularly. A ratio of 75% contaminated soil to 25% compost use for composting. This ratio is depending on the variability of soil type, contaminants level and characteristics. Compost remediation is known as a faster remediation because it can remediate in weeks [15].
Bioremediation process is done at the contamination site defines the in-situ method. In situ is the preferred bioremediation method, as it requires less mechanical efforts to eliminates spreading contaminants and prevent the spread of pollutant through transportation or pumping away to other treatment locations.
In situ bioremediation are biological processes which include microorganisms metabolize organic contaminants to inorganic material, such as carbon dioxide, methane, water and inorganic salts. This process can be achieved either in natural or engineered conditions [16].
Intrinsic bioremediation is a process for converting environmental pollutants degrades to non-toxic forms through the immanent abilities of naturally occurring microbial population at the site. This process is usually employed in underground places as such underground petroleum tanks. Intrinsic bioremediation manages the innate capabilities of naturally occurring microbial communities to degrade environmental pollutants without modified or taking any engineering steps to accelerate the process [11]. This technique deals with stimulation of indigenous microbial population by feeding them nutrients and oxygen to increase their metabolic activity.
As the name suggested this technique involves the introduction of specific microorganism to the contaminated site. Engineered in situ bioremediation accelerates the degradation process by enhancing the physicochemical conditions to increase the growth of microorganism.
Bio-venting is an in situ remediation technique that uses microorganisms to degrade organic constituents adsorbed on soils [17]. This technique involves regulated stimulation of airflow for increasing oxygen to unsaturated zone for enhances the bioremediation, by increasing activities of indigenous microbes. In the process of bio-venting, amendments are done by adding nutrients and moisture to increase bioremediation to achieve microbial transformation of pollutants to a nontoxic state. This technique has gained popularity among other in situ bioremediation techniques especially in restoring sites polluted with light spilled petroleum products. Bioventing primarily use for the degradation of adsorbed fuel residuals, and also can use in the degradation of volatile organic compounds (VOCs) through biologically active soil.
Bioslurping technique is the combination of bioventing and vacuum-enhanced pumping of soil and groundwater remediation by indirect provision of oxygen and stimulation of contaminant biodegradation [18]. This technique uses a “slurp” that extends into the free product layer, which draws up liquids (free products and soil gas) from this layer in a manner similar to that of how a straw draws liquid from any vessel. The bioslurping system is constituted by a well connected to an adjustable length called “slurp tube” is installed, and this slurp tube, connected to a vacuum pump, which is lowered into the light non-aqueous phase liquids (LNAPL) layer, and pumping begins to remove free product along with some groundwater. The vacuum-induced negative pressure zone in the well promotes LNAPL flow towards the well and also draws LNAPL trapped in small pore spaces above the water table. This technique used to remediate soils contaminated with volatile and semi-volatile organic compounds
Biosparging is basically a biological approach which removes the aromatic compounds contamination like benzene, toluene, ethylbenzene, xylene and neptthalene from an area. This process involves the loading of specific aerobic bacteria to break down the mineral oil and aromatic compounds into simpler and useful form. This technique is similar to bioventing where air is incorporate into soil subsurface to stimulate microbial activities to enhance pollutant removal from polluted sites. In biosparging air is injected at the saturated zone, which can cause upward movement of volatile organic compounds to the unsaturated zone to promote biodegradation [19]. There are two major factors which affect the biosparging process namely:
Soil permeability (which determines pollutant bioavailability to microorganisms)
Pollutant biodegradability
Bioaugmentation is arrangement to enrich the existing microorganism population and make it more effective in reducing the level of contamination. This technique refers to the addition of organic culture to the contaminated soil and make environment of the site similar to a bioreactor. There are two common options can be used one is addition of a pre-adapted pure bacterial strain and second is addition of a pre-adapted consortium to the contaminated site. Bioaugmentation is mainly used in oil contaminated site for bioremediation. Bioaugmentation is a low-cost method in comparision of other methods of treating wastewater and soil contamination [20].
The direct use of green plants and their associated microorganisms to stabilize or reduce contamination in soils, sludges, sediments, surface water, or ground water is defined as Phytoremediation. This technique depends on the use of plant interactions (physical, biochemical, biological, chemical and microbiological) to contaminated sites to mitigate the toxic effects of pollutants. It is an alternative technology that can be used along with or in place of mechanical conventional clean-up technologies that often require high capital inputs and are energy intensive. Area with low concentrations of contaminants over large cleanup areas and at shallow depths presents especially favorable conditions for phytoremediation. Depending on pollutant type (elemental or organic), there are several mechanisms (accumulation or extraction, degradation, filtration, stabilization and volatilization) involved in phytoremediation [21]. Elemental pollutants (toxic heavy metals and radionuclides) are mostly removed by extraction, transformation and sequestration.
The phytostabilization process involves plants which established and function primarily to accumulate metals into tissues of root or aid in their precipitation in the root zone. This technique is based on the chemical stabilization of heavy metals using various non-organic and/or organic soil additives in connection with adequately chosen plant species [22]. Species which will be resistant to specific conditions present in the soil, such as low pH and high concentrations of heavy metals, ought to be selecting. Phytostabilization reduces the mobility of contaminants, and help to minimize the risk, of inorganic contaminants within the site. This technology does not generate contaminated secondary waste that needs further treatment. This technique basically limits the bioavailability of heavy metals and to restore adequate soil quality.
Phytoextraction is a phytoremediation technique that uses plants to uptake and removes metals and other contaminants from soil or water [22]. This technology can be used to reduce both organic and inorganic pollutants from the soil, water and the air as well. This technology seems to be similar as solar driven pumps which can extract and concentrate certain elements from their environment. This should be achieved at a lower cost than any alternate technology as it only requires the identification and planting of such plant which possess the ability of hyperaccumulation. The ability to accumulate heavy metals varies significantly between species and between cultivars within a species [23].
Phytovolatilization, employs the plant-mediated uptake of contaminants and transforms them into volatile compounds, and subsequently releases these compounds in the atmosphere. In this technique plant absorbs organic pollutants an water while growing it travels from root to other parts of the plants as same or in an altered form due to its metabolic and transpiration pull.
Phytofiltration technique is manly use to treat contaminated water. This technique involves, high metal-accumulating plants which function as biofilters, and it can be also effective in sequestering metals from polluted waters [24]. In this technique the polluteded water is either collected from a waste site or brought to the plants, or the plants are planted in the contaminated area, where the roots take up the waste water and the dissolved contaminants [25]. Many plant species naturally uptake heavy metals and other contaminant due to this it is a cost effective procedure for remediation.
Phytodegradation technique refers to the degradation of organic contaminants through the enzymatic activates of plants. The plant releases enzymes from roots, or through metabolic activities within plant tissues. In phytodegradation organic contaminants are taken up by roots and metabolized in plant tissues to less toxic substances [26]. Phytodegradation process can degrade hydrophobic organic contaminants more efficiently.
Mycoremediation is a technique of using fungus as a bioremediator. This biotechniques uses particular fungi that release enzymes which can degrade several pollutants and found to be promising strategies in the removal of contaminant with in a site. Mycoremediation is an efficient and economical technique as well [27].
Bioremediation is an effective technique available to clean up contaminated sites. The idea of bioremediation has a long history. However, other applications are relatively new and many other applications are emerging or being developed. This process can be aerobic or anaerobic depending on the microorganisms and the electron acceptors available. This process may be natural (intrinsic bioremediation) or it may be enhanced by man (engineered bioremediation). Several remediation approaches, particularly physical systems, involve the treatment of aqueous phase pollutants and, here, the distinction between soil and groundwater is of limited practical significance. Remediation approaches aimed primarily at treating or containing groundwater within ‘geological’ materials will be mentioned only briefly, whereas those commonly used for dual purposes will be considered in more detail. These technologies offer an efficient and cost effective way to treat contaminated ground water and soil.
There are other common methods of preventing soil pollution include reforestation and recycling of waste materials. De forestation often leads to erosion of the soil, which leads to soil pollution due to the loss of fertility of the soil. Thus, reforestation is an effective method of preventing soil pollution. In addition, reducing the volume of refuse or waste in landfills by recycling materials such as plastics, papers and various other materials is another effective and common method of preventing the phenomenon of soil pollution.
Overall study suggested that Pollution is a threat to our health and damages the environment and damage to soils which affects the ability to grow crops. Bioremediation can help to reduce and remove the pollution and to provide clean water, air and healthy soils for future generations. The bioremediation process is completely natural process with very less harmful side effects. It carried out in situ for most applications which do not require dangerous transport. It creates relatively few harmful byproducts. Bioremediation is way cheaper than most remediation methods because it does not require substantial equipment or labor.
The Internet has irrevocably changed the dynamics of scholarly communication and publishing. Consequently, we find it necessary to indicate, unambiguously, our definition of what we consider to be a published scientific work.
",metaTitle:"Prior Publication Policy",metaDescription:"Prior Publication Policy",metaKeywords:null,canonicalURL:"/page/prior-publication-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\\n\\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\\n\\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\\n\\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\\n\\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\\n\\n1. CONFERENCE PAPERS & PRESENTATIONS
\\n\\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\\n\\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\\n\\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\\n\\n2. NEWSPAPER & MAGAZINE ARTICLES
\\n\\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\\n\\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\\n\\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\\n\\n3. GREY LITERATURE
\\n\\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\\n\\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\\n\\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\\n\\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\\n\\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\\n\\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\\n\\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\\n\\nFor more information on this policy please contact permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-03-20
\\n"}]'},components:[{type:"htmlEditorComponent",content:'A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\n\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\n\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\n\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\n\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\n\n1. CONFERENCE PAPERS & PRESENTATIONS
\n\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\n\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\n\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\n\n2. NEWSPAPER & MAGAZINE ARTICLES
\n\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\n\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\n\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\n\n3. GREY LITERATURE
\n\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\n\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\n\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\n\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\n\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\n\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\n\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\n\nFor more information on this policy please contact permissions@intechopen.com.
\n\nPolicy last updated: 2017-03-20
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"6"},books:[{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12214",title:"Phagocytosis",subtitle:null,isOpenForSubmission:!0,hash:"79d7747d6e3aa6a3623ab710a7634588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12214.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12216",title:"Cell Proliferation",subtitle:null,isOpenForSubmission:!0,hash:"d5e37e8c90c4c6cb33c25d4445574ac0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12216.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12217",title:"Protein Interactions",subtitle:null,isOpenForSubmission:!0,hash:"8514f8e3d3dd0e22e87b0c4c84a6cc3a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12217.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12218",title:"Phytochemicals",subtitle:null,isOpenForSubmission:!0,hash:"8cb2e6bb3d9c717bb8dc44e35ed774c2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12218.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12174",title:"Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!0,hash:"5922df051a2033c98d2edfb31dd84f8c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12174.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12177",title:"Epigenetics",subtitle:null,isOpenForSubmission:!0,hash:"185b00910074e8beeedd2276900a911a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12177.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12310",title:"Advances in Transcriptome Analysis",subtitle:null,isOpenForSubmission:!0,hash:"9b0d98cf9a47e93524dbaa2eedbbcf46",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12310.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12332",title:"Resveratrol - Recent Advances, Application, and Therapeutic Potential",subtitle:null,isOpenForSubmission:!0,hash:"3b7fe05be184ecb8d7d79fda19259829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12332.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12333",title:"Alkaloids",subtitle:null,isOpenForSubmission:!0,hash:"50ba29b67f4b54e2e38088c223b35305",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12333.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12368",title:"Histones",subtitle:null,isOpenForSubmission:!0,hash:"b6890021008f436dcc47bf04c8e57b34",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12368.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12369",title:"Ubiquitin",subtitle:null,isOpenForSubmission:!0,hash:"5a82dedbd96e152e777bd10a244e5d57",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12369.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:46},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:14},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:107},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:12},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1170",title:"Crystallography",slug:"nanotechnology-and-nanomaterials-material-science-crystallography",parent:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:27,numberOfWosCitations:40,numberOfCrossrefCitations:24,numberOfDimensionsCitations:55,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1170",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9205",title:"Electron Crystallography",subtitle:null,isOpenForSubmission:!1,hash:"9185ce16fc6f5756cf55fe6082f09fab",slug:"electron-crystallography",bookSignature:"Devinder Singh and Simona Condurache-Bota",coverURL:"https://cdn.intechopen.com/books/images_new/9205.jpg",editedByType:"Edited by",editors:[{id:"184180",title:"Dr.",name:"Devinder",middleName:null,surname:"Singh",slug:"devinder-singh",fullName:"Devinder Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8506",title:"Some Aspects of Diamonds in Scientific Research and High Technology",subtitle:null,isOpenForSubmission:!1,hash:"7ab81202ec11afae75334956029ebd31",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",bookSignature:"Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/8506.jpg",editedByType:"Edited by",editors:[{id:"21254",title:"Mr.",name:"Evgeniy",middleName:null,surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6638",title:"Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals",subtitle:null,isOpenForSubmission:!1,hash:"e174b9329a7cb36d22d4e14768667ac4",slug:"handbook-of-stillinger-weber-potential-parameters-for-two-dimensional-atomic-crystals",bookSignature:"Jin-Wu Jiang and Yu-Ping Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/6638.jpg",editedByType:"Authored by",editors:[{id:"228449",title:"Dr.",name:"Jin-Wu",middleName:null,surname:"Jiang",slug:"jin-wu-jiang",fullName:"Jin-Wu Jiang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"57994",doi:"10.5772/intechopen.71929",title:"Parameterization of Stillinger-Weber Potential for Two- Dimensional Atomic Crystals",slug:"parameterization-of-stillinger-weber-potential-for-two-dimensional-atomic-crystals",totalDownloads:1775,totalCrossrefCites:18,totalDimensionsCites:37,abstract:"We parametrize the Stillinger-Weber potential for 156 two-dimensional atomic crystals (TDACs). Parameters for the Stillinger-Weber potential are obtained from the valence force field (VFF) model following the analytic approach (Nanotechnology. 2015;26:315706), in which the valence force constants are determined by the phonon spectrum. The Stillinger-Weber potential is an efficient nonlinear interaction and is applicable for numerical simulations of nonlinear physical or mechanical processes. The supplemental resources for all simulations in the present work are available online in http://jiangjinwu.org/sw, including a Fortran code to generate crystals’ structures, files for molecular dynamics simulations using LAMMPS, files for phonon calculations with the Stillinger-Weber potential using GULP, and files for phonon calculations with the valence force field model using GULP.",book:{id:"6638",slug:"handbook-of-stillinger-weber-potential-parameters-for-two-dimensional-atomic-crystals",title:"Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals",fullTitle:"Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals"},signatures:"Jin-Wu Jiang and Yu-Ping Zhou",authors:[{id:"228449",title:"Dr.",name:"Jin-Wu",middleName:null,surname:"Jiang",slug:"jin-wu-jiang",fullName:"Jin-Wu Jiang"}]},{id:"71414",doi:"10.5772/intechopen.91281",title:"Micro-/Nano-Structuring in Stainless Steels by Metal Forming and Materials Processing",slug:"micro-nano-structuring-in-stainless-steels-by-metal-forming-and-materials-processing",totalDownloads:667,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"Austenitic stainless steel type AISI304 sheets and plates as well as fine-grained type AISI316 (FGSS316) substrates and wires were employed as a work material in the intense rolling, the piercing and the plasma nitriding. AISI304 sheet after intense rolling had textured microstructure in the rolling direction. Crystallographic state changed itself to have distorted polycrystalline state along the shearing plane by piercing, with the strain induced phase transformation. FGSS316 substrates were plasma nitrided at 623 K for 14.4 ks to have two-phase fine nanostructure with the average grain size of 100 nm as a surface layer with the thickness of 30 μm. FGSS316 wires were also plasma nitrided at the same conditions to form the nitrided surface down to the depth of 30 μm. This nitrided wire was further uniaxially loaded in tensile to attain more homogeneously nitrided surface nano-structure and to form the austenitic and martensitic fiber structure aligned in the tensile direction. Each crystallographic structure intrinsic to metals and metallic alloys was tailored to have preferable micro−/nano-structured cells by metal forming and nitrogen supersaturation. The crystallographic change by metal forming in a priori and posterior to nitriding was discussed to find out a new way for materials design.",book:{id:"9205",slug:"electron-crystallography",title:"Electron Crystallography",fullTitle:"Electron Crystallography"},signatures:"Tatsuhiko Aizawa, Tomomi Shiratori and Takafumi Komatsu",authors:[{id:"251217",title:"Prof.",name:"Tatsuhiko",middleName:null,surname:"Aizawa",slug:"tatsuhiko-aizawa",fullName:"Tatsuhiko Aizawa"},{id:"312068",title:"Dr.",name:"Takafumi",middleName:null,surname:"Komatsu",slug:"takafumi-komatsu",fullName:"Takafumi Komatsu"},{id:"313724",title:"Prof.",name:"Tomomi",middleName:null,surname:"Shiratori",slug:"tomomi-shiratori",fullName:"Tomomi Shiratori"}]},{id:"67682",doi:"10.5772/intechopen.86865",title:"Simulation of Diamond Surface Chemistry: Reactivity and Properties",slug:"simulation-of-diamond-surface-chemistry-reactivity-and-properties",totalDownloads:910,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The diamond material possesses very attractive properties, such as superior electronic properties (when doped), in addition to a controllable surface termination. During the process of diamond synthesis, the resulting chemical properties will depend not only on the adsorbed species but also on the type of substitutional doping element. The combination of adsorbate and dopant will thus have the ability to influence both the chemical and electronic properties of a diamond surface. All resulting (and interesting) properties of doped and terminated diamond surfaces make it clear that these types of material modifications are very important for a variety of applications that are based on photoactivated chemical processes. Theoretical modeling has been shown to act as an important scientific tool in explaining and predicting experimental results. Simulation of the dependence of, e.g. surface termination and doping on diamond material properties, is expected to give important information about various surface electronic properties (like photo-induced surface electrochemistry).",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"Karin Larsson",authors:[{id:"292193",title:"Prof.",name:"Karin",middleName:null,surname:"Larsson",slug:"karin-larsson",fullName:"Karin Larsson"}]},{id:"66249",doi:"10.5772/intechopen.85349",title:"Development, Properties, and Applications of CVD Diamond-Based Heat Sinks",slug:"development-properties-and-applications-of-cvd-diamond-based-heat-sinks",totalDownloads:1068,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Heat sink is an essential component to nanoelectronics, microelectronics, and optoelectronics applications because it allows the thermal management of devices such as integrated circuits (ICs), microelectromechanical systems (MEMSs), and graphic unit processing. There are different materials being employed for heat sink production. Among them, diamond has stood out due to its excellent chemical and physical properties. This book chapter focuses on the development, properties, and applications of CVD diamond heat sinks. It covers the basic concepts of heat conduction applied to CVD diamond as a heat sink material and its production as freestanding CVD wafers of polycrystalline CVD diamond, since the literature about this topic is extensive, giving the reader a comprehensive overview. We will comprise the use and potential widening of applications of in CVD diamond heat sink technology, providing the reader with a substantial background at the current development of solutions and new frontiers in the practical use of CVD diamond thermal management devices.",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"José Vieira da Silva Neto, Mariana Amorim Fraga and Vladimir Jesus Trava-Airoldi",authors:[{id:"285413",title:"M.Sc.",name:"José",middleName:null,surname:"Vieira",slug:"jose-vieira",fullName:"José Vieira"},{id:"285414",title:"Dr.",name:"Mariana Amorim",middleName:null,surname:"Fraga",slug:"mariana-amorim-fraga",fullName:"Mariana Amorim Fraga"},{id:"285416",title:"Dr.",name:"Vladimir Jesus",middleName:null,surname:"Trava-Airoldi",slug:"vladimir-jesus-trava-airoldi",fullName:"Vladimir Jesus Trava-Airoldi"}]},{id:"70230",doi:"10.5772/intechopen.90237",title:"Empires: The Nonlocal Properties of Quasicrystals",slug:"empires-the-nonlocal-properties-of-quasicrystals",totalDownloads:1069,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"In quasicrystals, any given local patch—called an emperor—forces at all distances the existence of accompanying tiles—called the empire—revealing thus their inherent nonlocality. In this chapter, we review and compare the methods currently used for generating the empires, with a focus on the cut-and-project method, which can be generalized to calculate empires for any quasicrystals that are projections of cubic lattices. Projections of non-cubic lattices are more restrictive and some modifications to the cut-and-project method must be made in order to correctly compute the tilings and their empires. Interactions between empires have been modeled in a game-of-life approach governed by nonlocal rules and will be discussed in 2D and 3D quasicrystals. These nonlocal properties and the consequent dynamical evolution have many applications in quasicrystals research, and we will explore the connections with current material science experimental research.",book:{id:"9205",slug:"electron-crystallography",title:"Electron Crystallography",fullTitle:"Electron Crystallography"},signatures:"Fang Fang, Sinziana Paduroiu, Dugan Hammock and Klee Irwin",authors:[{id:"302431",title:"Dr.",name:"Fang",middleName:null,surname:"Fang",slug:"fang-fang",fullName:"Fang Fang"},{id:"302434",title:"Dr.",name:"Sinziana",middleName:null,surname:"Paduroiu",slug:"sinziana-paduroiu",fullName:"Sinziana Paduroiu"},{id:"302436",title:"MSc.",name:"Dugan",middleName:null,surname:"Hammock",slug:"dugan-hammock",fullName:"Dugan Hammock"},{id:"308562",title:"Mr.",name:"Klee",middleName:null,surname:"Irwin",slug:"klee-irwin",fullName:"Klee Irwin"}]}],mostDownloadedChaptersLast30Days:[{id:"70590",title:"Strongly Fluorescent Heterocyclic Molecule: Crystallography, 3D Hydrogen-Bonded, Fluorescence Study and QTAIM/TD-DFT/MESP Theoretical Analysis",slug:"strongly-fluorescent-heterocyclic-molecule-crystallography-3d-hydrogen-bonded-fluorescence-study-and",totalDownloads:499,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter we explored the fluorescence properties of the title compound 1–10 phenanthroline hydrate (phh), {(C12N2H8)·H2O}. The structure of phh is stabilized by strong as well as weak intermolecular interactions in the crystal. These interactions O▬H⋯O, O▬H⋯N, C▬H⋯O and C▬H⋯N hold the crystal structure in a three-dimensional network. Optical analysis (fluorescence) was performed on the test compound. The measurements in solvents of different polarities were carried out at ambient temperature (298 K). These results prompted us to investigate some photoluminescence applications for heterocyclic compounds as the sensing of blue-light luminescent materials. The time-dependent density functional theory (TD-DFT) calculations were performed on this compound, with the purpose to identify the origin of absorption and emission band, the nature of the electronic transitions. The atoms in molecules (AIM) theory and orbital analysis and molecular electrostatic potential (MESP) were applied to analyze the electron densities, their properties and the energy diagram of the molecular orbitals. The AIM and MESP analysis have been applied for part B of phh to demonstrate that the O1W▬H11W⋯N1B type of interaction has the strongest hydrogen bond.",book:{id:"9205",slug:"electron-crystallography",title:"Electron Crystallography",fullTitle:"Electron Crystallography"},signatures:"Ouahida Zeghouan, Seifeddine Sellami and Mohamed AbdEsselem Dems",authors:[{id:"308001",title:"Dr.",name:"Ouahida",middleName:null,surname:"Zeghouan",slug:"ouahida-zeghouan",fullName:"Ouahida Zeghouan"}]},{id:"68159",title:"Significance of Diamond as a Cutting Tool in Ultra-Precision Machining Process",slug:"significance-of-diamond-as-a-cutting-tool-in-ultra-precision-machining-process",totalDownloads:888,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter focuses on the purpose of using diamond as a cutting tool in various ultra-precision machining applications. The complicated structures such as resin and ceramic mold used for making optical lenses are machined by the diamond tool to improve the precision of the finished product. It is difficult to machine hard and brittle materials such as glasses, ceramics, and composites with the assistance of diamond tool due to the complexity in the aspheric surfaces. Moreover, the tool wear is a major problem in machining these hard materials to a fine dimensional accuracy and tolerances. The microscopic defect forms at the cutting edge lead to the damage of the surface finish of the workpiece material. Therefore, the discussions are associated with the achievement of machining hard materials using a diamond tool in ultra-precision applications.",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"P. Suya Prem Anand",authors:[{id:"285029",title:"Dr.",name:"Suya Prem",middleName:null,surname:"Anand P",slug:"suya-prem-anand-p",fullName:"Suya Prem Anand P"}]},{id:"67682",title:"Simulation of Diamond Surface Chemistry: Reactivity and Properties",slug:"simulation-of-diamond-surface-chemistry-reactivity-and-properties",totalDownloads:910,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The diamond material possesses very attractive properties, such as superior electronic properties (when doped), in addition to a controllable surface termination. During the process of diamond synthesis, the resulting chemical properties will depend not only on the adsorbed species but also on the type of substitutional doping element. The combination of adsorbate and dopant will thus have the ability to influence both the chemical and electronic properties of a diamond surface. All resulting (and interesting) properties of doped and terminated diamond surfaces make it clear that these types of material modifications are very important for a variety of applications that are based on photoactivated chemical processes. Theoretical modeling has been shown to act as an important scientific tool in explaining and predicting experimental results. Simulation of the dependence of, e.g. surface termination and doping on diamond material properties, is expected to give important information about various surface electronic properties (like photo-induced surface electrochemistry).",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"Karin Larsson",authors:[{id:"292193",title:"Prof.",name:"Karin",middleName:null,surname:"Larsson",slug:"karin-larsson",fullName:"Karin Larsson"}]},{id:"67995",title:"Polycrystalline Diamond Characterisations for High End Technologies",slug:"polycrystalline-diamond-characterisations-for-high-end-technologies",totalDownloads:865,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Characterisations of polycrystalline diamond (PCD) coatings have routinely been done over the past three decades of diamond research, but there is less number of reports on some of its very unique properties. For example, diamond is the hardest known material and, in probing such hard surfaces with any indenter tip, it may lead to damage of the instrument. Due to such chances of experimental accidents, researchers have performed very few attempts in evaluating the mechanical properties of PCDs. In the present work, some of these very special properties of diamond that are less reported in the literature are being re-investigated. PCDs were characterised by photoluminescence (PL), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and X-ray diffraction (XRD) techniques. The diamond surface was also polished to bring the as-grown micron level of surface roughness (detrimental for wear application) down to few hundreds of nanometer. The tribological properties of such polished and smooth surfaces were found to be appropriate for wear protective coating application. This chapter revisits some of the unreported issues in the synthesis and characterisation of PCD coatings grown on Si wafer by the innovative 915 MHz microwave plasma chemical vapour deposition (MPCVD) technique.",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"Awadesh Kumar Mallik",authors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}]},{id:"66249",title:"Development, Properties, and Applications of CVD Diamond-Based Heat Sinks",slug:"development-properties-and-applications-of-cvd-diamond-based-heat-sinks",totalDownloads:1068,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Heat sink is an essential component to nanoelectronics, microelectronics, and optoelectronics applications because it allows the thermal management of devices such as integrated circuits (ICs), microelectromechanical systems (MEMSs), and graphic unit processing. There are different materials being employed for heat sink production. Among them, diamond has stood out due to its excellent chemical and physical properties. This book chapter focuses on the development, properties, and applications of CVD diamond heat sinks. It covers the basic concepts of heat conduction applied to CVD diamond as a heat sink material and its production as freestanding CVD wafers of polycrystalline CVD diamond, since the literature about this topic is extensive, giving the reader a comprehensive overview. We will comprise the use and potential widening of applications of in CVD diamond heat sink technology, providing the reader with a substantial background at the current development of solutions and new frontiers in the practical use of CVD diamond thermal management devices.",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"José Vieira da Silva Neto, Mariana Amorim Fraga and Vladimir Jesus Trava-Airoldi",authors:[{id:"285413",title:"M.Sc.",name:"José",middleName:null,surname:"Vieira",slug:"jose-vieira",fullName:"José Vieira"},{id:"285414",title:"Dr.",name:"Mariana Amorim",middleName:null,surname:"Fraga",slug:"mariana-amorim-fraga",fullName:"Mariana Amorim Fraga"},{id:"285416",title:"Dr.",name:"Vladimir Jesus",middleName:null,surname:"Trava-Airoldi",slug:"vladimir-jesus-trava-airoldi",fullName:"Vladimir Jesus Trava-Airoldi"}]}],onlineFirstChaptersFilter:{topicId:"1170",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:9,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{}},subseries:{item:{id:"27",type:"subseries",title:"Multi-Agent Systems",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:96,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79450",title:"Identification of Biomarkers Associated with Cancer Using Integrated Bioinformatic Analysis",doi:"10.5772/intechopen.101432",signatures:"Arpana Parihar, Shivani Malviya and Raju Khan",slug:"identification-of-biomarkers-associated-with-cancer-using-integrated-bioinformatic-analysis",totalDownloads:156,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/44153",hash:"",query:{},params:{id:"44153"},fullPath:"/chapters/44153",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()