Various ROS and corresponding neutralizing antioxidants
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"9373",leadTitle:null,fullTitle:"Engineering Failure Analysis",title:"Engineering Failure Analysis",subtitle:null,reviewType:"peer-reviewed",abstract:"Chapter contents include information on: Stress analysis – strengths and limitations of traditional theoretical approaches to FRP laminate design against failure; stress corrosion cracking behavior of materials; failure analysis and durability issues.",isbn:"978-1-78985-946-1",printIsbn:"978-1-78985-945-4",pdfIsbn:"978-1-78923-829-7",doi:"10.5772/intechopen.84666",price:119,priceEur:129,priceUsd:155,slug:"engineering-failure-analysis",numberOfPages:198,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"c9ba52779a6412cacf546d387eb932f3",bookSignature:"Kary Thanapalan",publishedDate:"May 6th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9373.jpg",numberOfDownloads:8051,numberOfWosCitations:2,numberOfCrossrefCitations:9,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:14,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:25,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 18th 2019",dateEndSecondStepPublish:"June 11th 2019",dateEndThirdStepPublish:"August 10th 2019",dateEndFourthStepPublish:"October 29th 2019",dateEndFifthStepPublish:"December 28th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"219186",title:"Dr.",name:"Kary",middleName:null,surname:"Thanapalan",slug:"kary-thanapalan",fullName:"Kary Thanapalan",profilePictureURL:"https://mts.intechopen.com/storage/users/219186/images/system/219186.jpeg",biography:"Dr. Kary Thanapalan received the B.Eng. (Hons) degree in control engineering from City University London, UK. Later he received the Ph.D. degree in aerospace control systems from the University of Liverpool, UK, and then conducted his research and development activities in various capacities. He has managed complete project from product concept design and development to production and resolving issues at each stage. He is currently working as a Senior Lecturer and Head of Research in Mechanical Engineering at the University of South Wales, UK. He is a leading researcher in the field of energy, control & automation, system engineering and material sciences . He has published over 80 research papers in peer reviewed international journals and refereed international conferences. He is a chartered engineer and a member of IET (CEng, MIET), and Member of the IAENG. He is also a Senior Fellow of the Higher Education Academy (SFHEA).",institutionString:"University of South Wales",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of South Wales",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"828",title:"Reliability Engineering",slug:"reliability-engineering"}],chapters:[{id:"69584",title:"Strengths and Limitations of Traditional Theoretical Approaches to FRP Laminate Design against Failure",doi:"10.5772/intechopen.89729",slug:"strengths-and-limitations-of-traditional-theoretical-approaches-to-frp-laminate-design-against-failu",totalDownloads:971,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:0,abstract:"The strength of Fiber Reinforced Plastic laminated structures is strongly dependent on the stacking sequence of the laminate, and consequently the fiber orientations of the individual laminae (also referred to as layers or plies). Classical Lamination Theory (CLT) is a theoretical tool providing the strain and stress distribution in a laminate based on its stacking sequence and material properties. On the other hand, first ply, and consequent ply failure can be approximated with interactive failure criteria, such as the Tsai-Hill and Tsai-Wu. Technological advances often require material alternatives to metallic structures, and FRPs constitute optimum solutions to such selections. However, these structures are no longer just plain laminates with unidirectional fibers in their laminae, they include geometric discontinuities allowing ease of assembly. Such discontinuities become stress concentration regions, which require extra attention upon design against failure. This chapter discusses the extent to which the traditional analysis of FRP failure, using CLT and interactive failure criteria is adequate in structures with discontinuities, and suggests extra analysis steps to be considered when designing against failure in the area of the discontinuity.",signatures:"Roselita Fragoudakis",downloadPdfUrl:"/chapter/pdf-download/69584",previewPdfUrl:"/chapter/pdf-preview/69584",authors:[{id:"220155",title:"Dr.",name:"Roselita",surname:"Fragoudakis",slug:"roselita-fragoudakis",fullName:"Roselita Fragoudakis"}],corrections:null},{id:"70508",title:"Propagating Stress-Strain Curve Variability in Multi-Material Problems: Temperature-Dependent Material Tests to Plasticity Models to Structural Failure Predictions",doi:"10.5772/intechopen.90357",slug:"propagating-stress-strain-curve-variability-in-multi-material-problems-temperature-dependent-materia",totalDownloads:717,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"This chapter presents a practical methodology for characterizing and propagating the effects of temperature-dependent material strength and failure-criteria variability to structural model predictions. The application involves a cylindrical canister (“can”) heated and pressurized to failure. Temperature dependence and material sample-to-sample stochastic variability are inferred from very limited experimental data of a few replicate uniaxial tension tests at each of seven temperatures spanning the 800°C temperature excursion experienced by the can, for each of several stainless steel alloys that make up the can. The load-displacement curves from the material tests are used to determine effective temperature-dependent stress-strain relationships in ductile-metal plasticity models used in can-level model predictions. Particularly challenging aspects of the problem are the appropriate inference, representation, and propagation of temperature dependence and material stochastic variability from just a few experimental data curves at a few temperatures (as sparse discrete realizations or samples from a random field of temperature-dependent stress-strain behavior), for multiple such materials involved in the problem. Currently unique methods are demonstrated that are relatively simple and effective.",signatures:"Vicente Romero, Amalia Black, George Orient and Bonnie Antoun",downloadPdfUrl:"/chapter/pdf-download/70508",previewPdfUrl:"/chapter/pdf-preview/70508",authors:[{id:"312069",title:"Dr.",name:"Vicente",surname:"Romero",slug:"vicente-romero",fullName:"Vicente Romero"},{id:"312072",title:"Dr.",name:"Amalia",surname:"Black",slug:"amalia-black",fullName:"Amalia Black"},{id:"312073",title:"Dr.",name:"George",surname:"Orient",slug:"george-orient",fullName:"George Orient"},{id:"312074",title:"Dr.",name:"Bonnie",surname:"Antoun",slug:"bonnie-antoun",fullName:"Bonnie Antoun"}],corrections:null},{id:"70962",title:"Stress Corrosion Cracking Behavior of Materials",doi:"10.5772/intechopen.90893",slug:"stress-corrosion-cracking-behavior-of-materials",totalDownloads:1327,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Stress corrosion cracking is a phenomenon associated with a combination of tensile stress, corrosive environment and, in some cases, a metallurgical condition that causes the component to premature failures. The fractures are often sudden and catastrophic, which may occur after a short period of design life and a stress level much lower than the yield stress. It can also occur after several years of satisfactory services due to operating errors and changing process conditions. Two classic cases of stress corrosion cracking are seasonal cracking of brass in ammoniacal environment and sensitization and stress corrosion cracking of stainless steels in existence of chlorides, caustic, and polythionic acid. Presence of crack and other defects on the material surfaces accelerates the fracture processes. Therefore, when designing components, the role of imperfections and aggressive agents together must be taken into account. The fracture mechanic introduces a material characteristic namely fracture toughness or \n\n\nK\nISCC\n\n=\nσ\n\nπa\n\n\n\n\n=\n\n\n\n\n\nσ\n\n\nπ\na\n\n\n\n\n\n, which properly describes the fracture behavior of materials in such conditions. The main objective in writing of this chapter is to present scientific findings and relevant engineering practice involving this phenomenon.",signatures:"Alireza Khalifeh",downloadPdfUrl:"/chapter/pdf-download/70962",previewPdfUrl:"/chapter/pdf-preview/70962",authors:[{id:"251415",title:"Dr.",name:"Alireza",surname:"Khalifeh",slug:"alireza-khalifeh",fullName:"Alireza Khalifeh"}],corrections:null},{id:"69147",title:"The Position and Function of Macroscopic Analysis in the Failure Analysis of Railway Fasteners",doi:"10.5772/intechopen.89262",slug:"the-position-and-function-of-macroscopic-analysis-in-the-failure-analysis-of-railway-fasteners",totalDownloads:860,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Macroscopic analysis plays an important role in failure analysis, which cannot be replaced by other analyzing methods. In recent years, with the development of characterization techniques, more and more engineers and technicians rely on the advanced analytical testing methods in the process of failure analysis, ignoring the methods and means of macroscopic analysis. This can easily lead to some wrong judgments. Therefore, this chapter will combine with the cases to explain the position and role of macroanalysis in the failure analysis of rail fastening clips and to offer references for engineers and technicians in relevant fields.",signatures:"Guodong Cui, Shuaijiang Yan, Chengsong Zhang, Dazhi Chen and Chuan Yang",downloadPdfUrl:"/chapter/pdf-download/69147",previewPdfUrl:"/chapter/pdf-preview/69147",authors:[{id:"300022",title:"Dr.",name:"Guodong",surname:"Cui",slug:"guodong-cui",fullName:"Guodong Cui"},{id:"302915",title:"Mr.",name:"Shuaijiang",surname:"Yan",slug:"shuaijiang-yan",fullName:"Shuaijiang Yan"},{id:"302917",title:"Dr.",name:"Chengsong",surname:"Zhang",slug:"chengsong-zhang",fullName:"Chengsong Zhang"},{id:"302919",title:"Prof.",name:"Chuan",surname:"Yang",slug:"chuan-yang",fullName:"Chuan Yang"},{id:"309194",title:"Dr.",name:"Dazhi",surname:"Chen",slug:"dazhi-chen",fullName:"Dazhi Chen"}],corrections:null},{id:"70888",title:"Fracture Behavior of Solid-State Welded Joints",doi:"10.5772/intechopen.90908",slug:"fracture-behavior-of-solid-state-welded-joints",totalDownloads:590,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The nature of the fractured surface gives information about the type of failure. This chapter focuses on the study of the fractured surfaces. Solid-state welding processes, such as friction welding, friction stir welding, and laser welding, have been used for welding dissimilar joints in recent times. Different combinations of materials and different welding conditions give rise to changes in the morphology of the fractured surfaces. Material combinations that have been chosen in this study are industrially useful combinations such as titanium-stainless steel and aluminum-copper. An attempt has been made to study the fractured interfaces, mainly using scanning electron microscope (SEM). In order to achieve this objective, case studies have been made use of.",signatures:"Dattaguru Ananthapadmanaban and K. Arun Vasantha Geethan",downloadPdfUrl:"/chapter/pdf-download/70888",previewPdfUrl:"/chapter/pdf-preview/70888",authors:[{id:"263076",title:"Dr.",name:"Anantha",surname:"Padmanaban D",slug:"anantha-padmanaban-d",fullName:"Anantha Padmanaban D"}],corrections:null},{id:"70296",title:"An Effective Approach for Turbine Hot Component Failure Analysis",doi:"10.5772/intechopen.90385",slug:"an-effective-approach-for-turbine-hot-component-failure-analysis",totalDownloads:927,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"One advantage of computational fluid dynamics (CFD) is its ability to reveal the physics or nature of practical engineering problems in detail, allowing engineers and scientists to develop rigorous, effective, and efficient solutions. In this chapter, an effective approach to investigate gas turbine hot component failure is demonstrated, and the mid-span cracking of nozzle guide vanes (NGVs) is used as an example. It is a two-step approach. In the first step, a 60° combustor sector with simplified NGVs and thermocouples attached is simulated; and in the second step, NGV sectors are simulated, where each NGV sector is comprised of one high-fidelity probe NGV and several dummy NGVs. The former identifies the NGV having the highest thermodynamic load and provides the inlet boundary conditions for the latter. The CFD analysis successfully identified the root causes of the NGV damage pattern and mid-span cracking, i.e., the hot streaks from the combustor and inadequate internal cooling.",signatures:"Lei-Yong Jiang and Prakash Patnaik",downloadPdfUrl:"/chapter/pdf-download/70296",previewPdfUrl:"/chapter/pdf-preview/70296",authors:[{id:"197918",title:"Dr.",name:"Lei-Yong",surname:"Jiang",slug:"lei-yong-jiang",fullName:"Lei-Yong Jiang"},{id:"241284",title:"Dr.",name:"Prakash",surname:"Patnaik",slug:"prakash-patnaik",fullName:"Prakash Patnaik"}],corrections:null},{id:"69547",title:"A Wear Analysis Carried On Connecting Rod Bearings From Internal Combustion Engines",doi:"10.5772/intechopen.89263",slug:"a-wear-analysis-carried-on-connecting-rod-bearings-from-internal-combustion-engines",totalDownloads:599,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In the present work, an analysis was carried out to know the wear modes present in connecting rod bearings from internal combustion engines. These mechanical elements were selected since they are exposed to different engineering failures such as incorrect assembly, severe loads, extreme temperatures, inadequate conditions, and loss of lubricity. In this particular case, the bearings that were selected had a service life of approximately 8 years. Different techniques such as SEM and optical microscopy, EDS analysis, hardness testing, and surface profilometry were used to characterize the unworn and worn bearings. Wear mechanisms such as sliding wear (scoring), fatigue wear with cracks where torn out material was clearly observed, discoloration areas, and two- and three-body abrasion wear (rubbing marks) were identified on the bearing surfaces.",signatures:"Juan Rodrigo Laguna-Camacho, Silvia M. Sánchez-Yáñez, Gabriel Juárez-Morales, Maria I. Cruz-Orduña, Luz M. Ramos-González, Cristóbal Cortez-Domínguez, Roberto L. Cabrera-Santiago and Javier Calderón-Sánchez",downloadPdfUrl:"/chapter/pdf-download/69547",previewPdfUrl:"/chapter/pdf-preview/69547",authors:[{id:"181726",title:"Dr.",name:"Juan Rodrigo",surname:"Laguna Camacho",slug:"juan-rodrigo-laguna-camacho",fullName:"Juan Rodrigo Laguna Camacho"},{id:"303317",title:"Ms.",name:"Silvia Marina",surname:"Sánchez-Yañez",slug:"silvia-marina-sanchez-yanez",fullName:"Silvia Marina Sánchez-Yañez"},{id:"303318",title:"Dr.",name:"Maria Ines",surname:"Cruz-Orduña",slug:"maria-ines-cruz-orduna",fullName:"Maria Ines Cruz-Orduña"},{id:"303319",title:"MSc.",name:"Gabriel",surname:"Juárez-Morales",slug:"gabriel-juarez-morales",fullName:"Gabriel Juárez-Morales"},{id:"303358",title:"MSc.",name:"Luz Maria",surname:"Ramos-Gonzalez",slug:"luz-maria-ramos-gonzalez",fullName:"Luz Maria Ramos-Gonzalez"},{id:"307659",title:"MSc.",name:"Cristóbal",surname:"Cortez-Domínguez",slug:"cristobal-cortez-dominguez",fullName:"Cristóbal Cortez-Domínguez"},{id:"307660",title:"Mr.",name:"Roberto",surname:"Cabrera-Santiago",slug:"roberto-cabrera-santiago",fullName:"Roberto Cabrera-Santiago"},{id:"307661",title:"MSc.",name:"Javier",surname:"Calderón-Sánchez",slug:"javier-calderon-sanchez",fullName:"Javier Calderón-Sánchez"}],corrections:null},{id:"69595",title:"Technological Control on the Heredity of Operational Quality Parameters",doi:"10.5772/intechopen.89471",slug:"technological-control-on-the-heredity-of-operational-quality-parameters",totalDownloads:575,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Technological heredity of operational properties in the processes of manufacturing, operation, and restoration of machine parts is proposed to describe the graph reflecting the coefficients of transmission and mutual influence of physical, mechanical, and geometric parameters. The technological control methods of the heredity of operational properties of parts are considered, including the following: measuring parameters of the most critical parts; determining technological heredity mechanisms on the basis of transfer coefficients and mutual influence of operational properties; analyzing technological barriers during intensive effects of energy flows; and developing measures for controlling technological processes. The technological heredity of the operational quality parameters in the process of recovery and processing of the bearing journals and cams, as well as wearing of the camshaft working surfaces over admissible limits are considered. According to the findings, it is recommended: to control the deformation of the part after machining operations; to eliminate the editing operation after heat treatment; to use a combination of methods and a combination of technological effects in recovering the part surfaces with wear exceeding the maximum permissible values. The need for surfacing and subsequent tempering processes to ensure consistently high physicomechanical properties of coating materials and strictly regulate the modes of surface finishing is noted.",signatures:"Alexey G. Kolmakov, Mikhail L. Kheifetz, Nikolay L. Gretskiy and Gennady B. Prement",downloadPdfUrl:"/chapter/pdf-download/69595",previewPdfUrl:"/chapter/pdf-preview/69595",authors:[{id:"307821",title:"Dr.",name:"Alexey G.",surname:"Kolmakov",slug:"alexey-g.-kolmakov",fullName:"Alexey G. Kolmakov"},{id:"307826",title:"Dr.",name:"Michail L.",surname:"Kheifetz",slug:"michail-l.-kheifetz",fullName:"Michail L. Kheifetz"}],corrections:null},{id:"69543",title:"Novel Antifouling and Self-Healing Eco-Friendly Coatings for Marine Applications Enhancing the Performance of Commercial Marine Paints",doi:"10.5772/intechopen.89261",slug:"novel-antifouling-and-self-healing-eco-friendly-coatings-for-marine-applications-enhancing-the-perfo",totalDownloads:664,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Nanocontainers of the type CuO and CeMo were filled with bromosphaerol and 8-hydroxyquinoline, respectively, and incorporated into commercial marine paints. The generated paints with nanotechnology perform better in laboratory tests with respect to fouling and corrosion and test carried out via painting commercial ship traveling across the Adriatic Sea for a year than the currently used commercial paints. This is another application of nanotechnology that will someday find a commercial application. Since copper oxide is used for the current commercial paints and bromosphaerol is a natural biocide, there will be no need to pass the expensive approvals to use these antifoulants.",signatures:"George Kordas",downloadPdfUrl:"/chapter/pdf-download/69543",previewPdfUrl:"/chapter/pdf-preview/69543",authors:[{id:"306484",title:"Emeritus Prof.",name:"George",surname:"Kordas",slug:"george-kordas",fullName:"George Kordas"}],corrections:null},{id:"68229",title:"Durability Issue for the Emperor Fasiladas Royal Palace in Gondar (Ethiopia)",doi:"10.5772/intechopen.88248",slug:"durability-issue-for-the-emperor-fasiladas-royal-palace-in-gondar-ethiopia-",totalDownloads:827,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The Royal Enclosure is the remains of a fortress-city in Gondar, Ethiopia. It was founded in the 17th century by Emperor Fasiladas and was the home of Ethiopia’s emperors. Its unique architecture shows diverse influences including Nubian styles. The site was inscribed as a UNESCO World Heritage Site in 1979. Ghebbi is an Amharic word for a compound or enclosure. Due to climate conditions and human activities, the Royal palace is affected by severe structural damage. Presently almost some portion of the palace are under maintenance by mortar pointing to avoid negative effects of rainfall and other durability issue and temporary scaffolding to prevent from collapse of vulnerable structures. An analysis of damage of the palace is presented, based on weathering processes and structural conditions, as preliminary tool to detect and implement urgent and medium/long-term protection strategies for the conservation of the monuments. The chapter describes the major durability issue of the historical palace and determines the cause of the present durability problem and then recommends the possible remedial measure to alleviate the prolonged durability issue. The analysis was conducted by visual inspection and X-ray diffraction characterization methods. The chapter discusses the results obtained from the analysis of the mortar sample of the historical palace.",signatures:"Eskinder Desta Shumuye and Gashaw Assefa Bezabih",downloadPdfUrl:"/chapter/pdf-download/68229",previewPdfUrl:"/chapter/pdf-preview/68229",authors:[{id:"299397",title:"Dr.",name:"Eskinder",surname:"Shumuye",slug:"eskinder-shumuye",fullName:"Eskinder Shumuye"},{id:"299422",title:"M.Sc.",name:"Gashaw",surname:"Assefa",slug:"gashaw-assefa",fullName:"Gashaw Assefa"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6024",title:"System Reliability",subtitle:null,isOpenForSubmission:!1,hash:"5cf0113f60979705f5b0b0ea0bac3028",slug:"system-reliability",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/6024.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5720",title:"Failure Analysis and Prevention",subtitle:null,isOpenForSubmission:!1,hash:"f79dd2c5b85e97fc2d94924ff4931bb1",slug:"failure-analysis-and-prevention",bookSignature:"Aidy Ali",coverURL:"https://cdn.intechopen.com/books/images_new/5720.jpg",editedByType:"Edited by",editors:[{id:"13626",title:"Prof.",name:"Aidy",surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5317",title:"Concise Reliability for Engineers",subtitle:null,isOpenForSubmission:!1,hash:"8dd29c0cfec89eb0c272c374e903b3da",slug:"concise-reliability-for-engineers",bookSignature:"Jaroslav Mencik",coverURL:"https://cdn.intechopen.com/books/images_new/5317.jpg",editedByType:"Authored by",editors:[{id:"142710",title:"Prof.",name:"Jaroslav",surname:"Menčík",slug:"jaroslav-mencik",fullName:"Jaroslav Menčík"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"6197",title:"System of System Failures",subtitle:null,isOpenForSubmission:!1,hash:"4ff73e8bf2376a39046fe3b26e18da0e",slug:"system-of-system-failures",bookSignature:"Takafumi Nakamura",coverURL:"https://cdn.intechopen.com/books/images_new/6197.jpg",editedByType:"Edited by",editors:[{id:"206988",title:"Dr.",name:"Takafumi",surname:"Nakamura",slug:"takafumi-nakamura",fullName:"Takafumi Nakamura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10384",title:"Practical Applications in Reliability Engineering",subtitle:null,isOpenForSubmission:!1,hash:"377d3c041a06cfcfc99bd906fdbbbf46",slug:"practical-applications-in-reliability-engineering",bookSignature:"Muhammad Zubair",coverURL:"https://cdn.intechopen.com/books/images_new/10384.jpg",editedByType:"Edited by",editors:[{id:"320007",title:"Associate Prof.",name:"Muhammad",surname:"Zubair",slug:"muhammad-zubair",fullName:"Muhammad Zubair"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7687",title:"Reliability and Maintenance",subtitle:"An Overview of Cases",isOpenForSubmission:!1,hash:"14790fdcb395faea44e1351e45cb20a5",slug:"reliability-and-maintenance-an-overview-of-cases",bookSignature:"Leo Kounis",coverURL:"https://cdn.intechopen.com/books/images_new/7687.jpg",editedByType:"Edited by",editors:[{id:"111582",title:"Dr.",name:"Leo",surname:"Kounis",slug:"leo-kounis",fullName:"Leo Kounis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"76505",slug:"corrigendum-the-ghanaian-flora-as-a-potential-source-of-anthelmintic-and-anti-schistosomal-agents",title:"Corrigendum: The Ghanaian Flora as a Potential Source of Anthelmintic and Anti-Schistosomal Agents",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/76505.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/76505",previewPdfUrl:"/chapter/pdf-preview/76505",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/76505",risUrl:"/chapter/ris/76505",chapter:{id:"76353",slug:"the-ghanaian-flora-as-a-potential-source-of-anthelmintic-and-anti-schistosomal-agents",signatures:"Evelyn Asante-Kwatia, Abraham Yeboah Mensah, Lord Gyimah and Arnold Donkor Forkuo",dateSubmitted:"February 24th 2021",dateReviewed:"March 25th 2021",datePrePublished:"April 20th 2021",datePublished:"May 11th 2022",book:{id:"10356",title:"Natural Medicinal Plants",subtitle:null,fullTitle:"Natural Medicinal Plants",slug:"natural-medicinal-plants",publishedDate:"May 11th 2022",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"217045",title:"Dr.",name:"Arnold Forkuo",middleName:null,surname:"Donkor",fullName:"Arnold Forkuo Donkor",slug:"arnold-forkuo-donkor",email:"forkuo3@gmail.com",position:null,institution:null},{id:"303360",title:"Dr.",name:"Evelyn",middleName:null,surname:"Asante-Kwatia",fullName:"Evelyn Asante-Kwatia",slug:"evelyn-asante-kwatia",email:"emireku@yahoo.com",position:null,institution:null},{id:"309974",title:"Prof.",name:"Abraham Yeboah",middleName:null,surname:"Mensah",fullName:"Abraham Yeboah Mensah",slug:"abraham-yeboah-mensah",email:"aymensah@yahoo.com",position:null,institution:{name:"Kwame Nkrumah University of Science and Technology",institutionURL:null,country:{name:"Ghana"}}},{id:"347910",title:"Mr.",name:"Lord",middleName:null,surname:"Gyimah",fullName:"Lord Gyimah",slug:"lord-gyimah",email:"lordgyimah36@gmail.com",position:null,institution:{name:"Kwame Nkrumah University of Science and Technology",institutionURL:null,country:{name:"Ghana"}}}]}},chapter:{id:"76353",slug:"the-ghanaian-flora-as-a-potential-source-of-anthelmintic-and-anti-schistosomal-agents",signatures:"Evelyn Asante-Kwatia, Abraham Yeboah Mensah, Lord Gyimah and Arnold Donkor Forkuo",dateSubmitted:"February 24th 2021",dateReviewed:"March 25th 2021",datePrePublished:"April 20th 2021",datePublished:"May 11th 2022",book:{id:"10356",title:"Natural Medicinal Plants",subtitle:null,fullTitle:"Natural Medicinal Plants",slug:"natural-medicinal-plants",publishedDate:"May 11th 2022",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"217045",title:"Dr.",name:"Arnold Forkuo",middleName:null,surname:"Donkor",fullName:"Arnold Forkuo Donkor",slug:"arnold-forkuo-donkor",email:"forkuo3@gmail.com",position:null,institution:null},{id:"303360",title:"Dr.",name:"Evelyn",middleName:null,surname:"Asante-Kwatia",fullName:"Evelyn Asante-Kwatia",slug:"evelyn-asante-kwatia",email:"emireku@yahoo.com",position:null,institution:null},{id:"309974",title:"Prof.",name:"Abraham Yeboah",middleName:null,surname:"Mensah",fullName:"Abraham Yeboah Mensah",slug:"abraham-yeboah-mensah",email:"aymensah@yahoo.com",position:null,institution:{name:"Kwame Nkrumah University of Science and Technology",institutionURL:null,country:{name:"Ghana"}}},{id:"347910",title:"Mr.",name:"Lord",middleName:null,surname:"Gyimah",fullName:"Lord Gyimah",slug:"lord-gyimah",email:"lordgyimah36@gmail.com",position:null,institution:{name:"Kwame Nkrumah University of Science and Technology",institutionURL:null,country:{name:"Ghana"}}}]},book:{id:"10356",title:"Natural Medicinal Plants",subtitle:null,fullTitle:"Natural Medicinal Plants",slug:"natural-medicinal-plants",publishedDate:"May 11th 2022",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11044",leadTitle:null,title:"Dysphagia - New Advances",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tDysphagia affects 1 in 25 individuals annually in the United States. Broadly we classify dysphagia into 2 main categories: oropharyngeal dysphagia and esophageal dysphagia. Oropharyngeal dysphagia is generally caused by neuromuscular problems, oropharyngeal tumors, radiation injury, cricopharyngeal achalasia and Zenker’s diverticulum. Esophageal dysphagia is generally due to gastrointestinal reflux disease, eosinophilic esophagitis, foreign body impaction, esophageal dysmotility, benign and malignant esophageal tumors and strictures. The etiology of dysphagia has changed over the years. Nowadays, we are seeing more and more patients with eosinophilic esophagitis presenting as acute dysphagia with food bolus impaction. We are also getting a considerable number of patients with dysphagia secondary to esophagogastric junction outflow obstruction (EGJOO) which could be idiopathic or secondary to prior fundoplication, migrated gastric band or sleeve gastrectomy. More and more patients with achalasia are now being treated by peroral endoscopic myotomy.
\r\n\tI am proposing this book to discuss the different aspects of oropharyngeal and esophageal dysphagia, particularly the current management strategies.
During normal metabolic functions, highly reactive compounds called free radicals are generated in the body; however, they may also be introduced from the environment. These molecules are inherently unstable as they possess lone pair of electrons and hence become highly reactive. They react with cellular molecules such as proteins, lipids and carbohydrates, and denature them. As a result of this, vital cellular structures and functions are lost and ultimately resulting in various pathological conditions.
Antioxidant enzymes are capable of stabilizing, or deactivating free radicals before they attack cellular components. They act by reducing the energy of the free radicals or by giving up some of their electrons for its use, thereby causing it to become stable. In addition, they may also interrupt with the oxidizing chain reaction to minimize the damage caused by free radicals. For the past decade, countless studies have been devoted to the beneficial effects of antioxidant enzymes. It has been found that a substantial link exists between free radicals and more than sixty different health conditions, including the aging process, cancer, diabetes, Alzheimer’s disease, strokes, heart attacks and atherosclerosis. By reducing exposure to free radicals and increasing the intake of antioxidant enzyme rich foods or antioxidant enzyme supplements, our body’s potential to reducing the risk of free radical related health problems is made more palpable [1]. Antioxidant enzymes are, therefore, absolutely critical for maintaining optimal cellular and systemic health and well being. This chapter reviews the pathophysiological role of some of the important enzymes involved in free radical scavenging with their clinical applications.
Free radicals are electrically charged molecules, i.e., they have an unpaired electron, which causes them to seek out and capture electrons from other substances in order to neutralize themselves. Although the initial attack causes the free radical to become neutralized, another free radical is formed in the process, causing a chain reaction to occur. And until subsequent free radicals are deactivated, thousands of free radical reactions can occur within seconds of the initial reaction.
The ability of the cell to utilize oxygen has provided humans with the benefit of metabolizing fats, proteins, and carbohydrates for energy; however, it does not come without cost. Oxygen is a highly reactive atom that is capable of becoming part of potentially damaging molecules commonly called free radical or reactive oxygen species (ROS). About 5% or more of the inhaled O2 is converted to ROS such as superoxide, hydrogen peroxide, and hydroxyl radicals by univalent reduction of O2.[2] Thus cells under aerobic condition are always threatened with the insult of ROS, which however are efficiently taken care of by the highly powerful antioxidant systems of the cell without any untoward effect. This antioxidant system includes, antioxidant enzymes (e.g., SOD, GPx and reductase, CAT, etc.), nutrient-derived antioxidants (e.g., ascorbic acid, tocopherols and tocotrienols, carotenoids, glutathione and lipoic acid), metal binding proteins (e.g., ferritin, lactoferrin, albumin, and ceruloplasmin) and numerous other antioxidant phytonutrients present in a wide variety of plant foods. Whenever the balance between ROS production and antioxidant defence is lost, ‘oxidative stress’ results which through a series of events deregulates the cellular functions leading to various pathological conditions.[3,4]
Reactive oxygen species (ROS) is a term that encompasses all highly reactive, oxygen containing molecules, including free radicals. Types of ROS include the hydroxyl radical, the superoxide anion radical, hydrogen peroxide, singlet oxygen, nitric oxide radical, hypochlorite radical, and various lipid peroxides. All are capable of reacting with membrane lipids, nucleic acids, proteins and enzymes, and other small molecules, resulting in cellular damage. ROS are generated by a number of pathways. Most of the oxidants produced by cells occur as:
A consequence of normal aerobic metabolism: approximately 90% of the oxygen utilized by the cell is consumed by the mitochondrial electron transport system.
Oxidative burst from phagocytes (white blood cells) as part of the mechanism by which bacteria and viruses are killed, and by which foreign proteins (antigens) are denatured.
Xenobiotic metabolism, i.e., detoxification of toxic substances.
Consequently, things like vigorous exercise, which accelerates cellular metabolism; chronic inflammation, infections, and other illnesses; exposure to allergens and the presence of “leaky gut” syndrome; and exposure to drugs or toxins such as cigarette smoke, pollution, pesticides, and insecticides may all contribute to an increase in the body’s oxidant load.
Although O2 can behave like a radical (a diradical) owing to presence of two unpaired electrons of parallel spin, it does not exhibit extreme reactivity due to quantum mechanical restrictions. Its electronic structure result in formation of water by reduction with four electrons, i.e.:
In the sequential univalent process by which O2 undergoes reduction, several reactive intermediates are formed, such as superoxide (O2-), hydrogen peroxide (H2O2), and the extremely reactive hydroxy radical (°OH): collectively termed as the reactive oxygen species, the process can be represented as:
For the production of O2-, normally the tendency of univalent reduction of O2 in respiring cells is restricted by cytochrome oxidase of the mitochondrial electron transport chain, which reduces O2 by four electrons to H2O without releasing either O2- or H2O2. However, O2- is invariably produced in respiring cells. This is due to the probable leak of single electron at the specific site of the mitochondrial electron transport chain, resulting in the appropriate single electron reduction of oxygen to O2-. When the electron transport chain is highly reduced, and the respiratory rate is dependent on ADP availability; leakage of electrons at the ubisemiquinone and ubiquinone sites increases so as to result in production of O2- and H2O2.
For the production of H2O2, peroxisomal oxidases and flavoprotein, as well as D-amino acid oxidase, L-hydroxy acid oxidase, and fatty acyl oxidase participate. Cytochrome P-450, P-450 reductase and cytochrome b-5 reductase in the endoplasmic reticulum under certain conditions generate O2-, and H2O2. During their catalytic cycles, likewise, the catalytic cycle of xanthine oxidase has emerged as important source of O2- and H2O2 in a number of different tissue injuries.
Finally, for the production of ºOH, except during abnormal exposure to ionization radiation, generation of ºOH in vivo requires the presence of trace amount of H2O2 and Fe2+ salt forms ºOH, as given following Fenton reaction: [2]
Reactive oxygen species can attack vital cell components like polyunsaturated fatty acids, proteins, and nucleic acids. To a lesser extent, carbohydrates are also the targets of ROS. These reactions can alter intrinsic membrane properties like fluidity, ion transport, loss of enzyme activity, protein synthesis, DNA damage; ultimately resulting in cell death (fig.01).[2]
Damage to cells caused by free radicals is believed to play a central role in various human disorders like rheumatoid arthritis, hemorrhagic shock, cardiovascular disease, cystic fibrosis, metabolic disorders, neurodegenerative disease, gastrointestinal ulcerogenesis, and AIDS. Some specific examples of ROS mediated disease are Alzheimer’s disease, Parkinson’s disease, oxidative modification of low-density lipoprotein in atherosclerosis, cancer, Down’s syndrome, and ischemic reperfusion injury in different tissues including heart, brain, kidney, liver, and gastrointestinal tract. Among these, role of ROS in atherosclerosis and ischemic injury in heart and brain studied extensively. [2,3]
An overall picture of the metabolism of ROS and the mechanism of oxidative tissue damage leading to pathological conditions
To protect the cells and organ systems of the body against reactive oxygen species (ROS), humans have evolved a highly sophisticated and complex antioxidant protection system. It involves a variety of components, both endogenous and exogenous in origin, that function interactively and synergistically to neutralize free radicals (Table 1)[5] These components include:
Endogenous Antioxidants
Bilirubin
Thiols, e.g., glutathione, lipoic acid, N-acetyl cysteine
NADPH and NADH
Ubiquinone (coenzyme Q10)
Uric acid
Enzymes:
copper/zinc and manganese-dependent superoxide dismutase
iron-dependent catalase
selenium-dependent glutathione peroxidase
Dietary Antioxidants
Vitamin C
Vitamin E
Beta carotene and other carotenoids and oxycarotenoids, e.g., lycopene and lutein
Polyphenols, e.g., flavonoids, flavones, flavonol’s, and Proanthocyanidins
Metal Binding Proteins
Albumin (copper)
Ceruloplasmin (copper)
Metallothionein (copper)
Ferritin (iron)
Myoglobin (iron)
Transferrin (iron)
Hydroxyl radical | Vitamin C, Glutathione Flavonoids, Lipoic acid |
Superoxide radical | Vitamin C, Glutathione, Flavonoids, SOD |
Hydrogen peroxide | Vitamin C, Glutathione, beta carotene, Vitamin-E, flavonoids, lipoic acid |
Lipid peroxides | Beta-carotene, Vitamin-E, Ubiquinone, flavonoids, Glutathione peroxidase |
Various ROS and corresponding neutralizing antioxidants
Defence mechanisms against free radical-induced oxidative damage include the following:
catalytic removal of free radicals and reactive species by factors such as CAT, SOD, GPx and thiol-specific antioxidants;
binding of proteins (e.g., transferrin, metallothionein, haptoglobins, caeroplasmin) to pro-oxidant metal ions, such as iron and copper;
protection against macromolecular damage by proteins such as stress or heat shock proteins; and
reduction of free radicals by electron donors, such as GSH, vitamin E (α- tocopherol), vitamin C (ascorbic acid), bilirubin, and uric acid [6]\n\t\t\t\t\t
Animal CAT are heme-containing enzymes that convert hydrogen peroxide (H2O2) to water and O2, and they are largely localized in subcellular organelles such as peroxisomes. Mitochondria and the endoplasmic reticulum contain little CAT. Thus, intracellular H2O2 cannot be eliminated unless it diffuses to the peroxisomes [6]. GSH-Px removes H2O2 by coupling its reduction with the oxidation of GSH. GSH-Px can also reduce other peroxides, such as fatty acid hydro peroxides. These enzymes are present in the cytoplasm at millimolar concentrations and also present in the mitochondrial matrix. Most animal tissues contain both CAT and GSH-Px activity.
SODs are metal-containing proteins that catalyze the removal of superoxide, generating water peroxide as a final product of the dismutation. Three isoforms have been identified, and they all are present in all eukaryotic cells. The copper-zinc SOD isoform is present in the cytoplasm, nucleus, and plasma. On the other hand, the manganese SOD isoform is primarily located in mitochondria.
Dietary micronutrients also contribute to the antioxidant defence system. These include β - carotene, vitamin C, and vitamin E (the vitamin E family comprises both tocopherols and tocotrienols, with α- tocopherol being the predominant and most active form). Water-soluble molecules, such as vitamin C, are potent radical scavenging agents in the aqueous phase of the cytoplasm, whereas lipid soluble forms, such as vitamin E and β- carotene, act as antioxidants within lipid environments. Selenium, copper, zinc, and manganese are also important elements, since they act as cofactors for antioxidant enzymes. Selenium is considered particularly important in protecting the lipid environment against oxidative injury, as it serves as a cofactor for GSH-Px [6–8].\n\t\t\t
The most abundant cellular antioxidant is the tripeptide, GSH(l-L-γ-glutamyl-l-cysteinyl glycine). GSH is synthesized in two steps. First, γ-glutamyl cysteine synthetase (γ-GCS) forms a γ-peptide bond between glutamic acid and cysteine, and then GSH synthetase adds glycine. GSH prevents the oxidation of protein thiol groups, either directly by reacting with reactive species or indirectly through glutathione transferases [6-8].
Antioxidants are of different types so that they might be available for action when and where they are needed. They are natural (enzymes antioxidants and metal carrier proteins in the body), scavenging or chain breaking (like vitamin A, C, beta-carotene, etc.), pharmacologic antioxidants and others. Antioxidant compounds must be up’’ (converted) in the process of neutralizing free radicals. Therefore, one must continually produce more of the antioxidants in the body or ingest them either in diet or by supply mentation. The repair enzymes that can regrate some antioxidants are SOD, GPx, glutathione reductase (GR), CAT and the other metalloenzymes.
SOD, CAT, and GPx constitute a mutually supportive team of defence against ROS. While SOD lowers the steady-state level of O2-, catalase and peroxidases do the same for H2O2.\n\t\t\t
In addition to dietary antioxidants, the body relies on several endogenous defence mechanisms to help protect against free radical-induced cell damage. The antioxidant enzymes – GPx, heme peroxidase, CAT, and SOD – metabolize oxidative toxic intermediates and require micronutrient cofactors such as selenium, iron, copper, zinc, and manganese for optimum catalytic activity. Glutathione, an important water-soluble antioxidant, is synthesized from the amino acids glycine, glutamate, and cysteine. Glutathione directly quenches ROS such as lipid peroxides, and also plays a major role in xenobiotic metabolism. Exposure of the liver to xenobiotic substances induces oxidative reactions through the up regulation of detoxification enzymes, i.e., cytochrome P-450 mixed-function oxidase. When an individual is exposed to high levels of xenobiotics, more glutathione is utilized for conjugation (a key step in the body’s detoxification process) making it less available to serve as an antioxidant. Research suggests that glutathione and vitamin C work interactively to quench free radicals and that they have a sparing effect upon each other. Lipoic acid, yet another important endogenous antioxidant, categorized as a “thiol” or “biothiol,” is a sulphur-containing molecule that is known for its involvement in the reaction that catalyzes the oxidative decarboxylation of alpha-keto acids, such as pyruvate and alphaketoglutarate, in the Krebs cycle. Lipoic acid and its reduced form, dihydrolipoic acid (DHLA), are capable of quenching free radicals in both lipid and aqueous domains and as such has been called a “universal antioxidant.” Lipoic acid may also exert its antioxidant effect by cheating with pro-oxidant metals. Research further suggests that lipoic acid has a sparing effect on other antioxidants. Animal studies have demonstrated supplemental lipoic acid to protect against the symptoms of vitamin E or vitamin C deficiency.
In 1967 biochemist Irwin Fridovitch of Duke University and Joe McCord discovered the antioxidant enzyme SOD, which provides an important means of cellular defence against free radical damage. This breakthrough caused medical scientists to begin to look seriously at free radicals. In most cases the process is automatically controlled and the number of free radicals does not become dangerously high. Fortunately, the body has, throughout the course of millions of years of evaluation become accustomed to coping with free radicals and has evolved various schemes for doing this [3].
SOD (EC 1.15.1.1) is the antioxidant enzyme that catalysed the dismutation of the highly reactive superoxide anion to O2 and to the less reactive species H2O2. Peroxide can be destroyed by CAT or GPX reactions [9-11].
In humans, there are three forms of SOD: cytosolic Cu/Zn-SOD, mitochondrial Mn-SOD, and extracellular SOD (EC-SOD) [12,13]. SOD destroys O2- by successive oxidation and reduction of the transition metal ion at the active site in a Ping Pong type mechanism with remarkably high reaction rates [14]. All types of SOD bind single charged anions such as azide and fluoride, but distinct differences have been noted in the susceptibilities of Fe-, Mn- or Cu/Zn-SODs. Cu/Zn-SOD is competitively inhibited by N3-, CN-\n\t\t\t\t[15], and by F- [16].
Mn-SOD is a homotetramer (96 kDa) containing one manganese atom per subunit those cycles from Mn (III) to Mn (II) and back to Mn (III) during the two step dismutation of superoxide [17]. The respiratory chain in mitochondria is a major source of oxygen radicals. Mn-SOD has been shown to be greatly induced and depressed by cytokines, but is only moderately influenced by oxidants [17]. Inactivation of recombinant human mitochondrial Mn- SOD by peroxynitrite is caused by nitration of a specific tyrosine residue [18].
The biological importance of Mn-SOD is demonstrated among others by the following observations: (a) inactivation of Mn-SOD genes in
Cu/Zn-SOD (SOD-1) is another type of enzymes that has been conserved throughout evolution. These enzymes have two identical subunits of about 32 kDa, although a monomeric structure can be found in a high protein concentration from
Cu/Zn-SOD is believed to play a major role in the first line of antioxidant defence. Calves that were fed milk supplemented with 25 ppm Cu and 100 ppm Zn showed a stronger immune response and a higher SOD activity [30]. Other recent reports involving SOD knock-outs have revealed that Mn- SOD is essential for life whereas Cu/Zn-SOD is not. Cu/Zn-SOD knock-out mice appear normal and exhibit differences only after traumatic injury, whereas Mn-SOD knockouts do not survive past 3 weeks of age [31]. Among various human tissues Mn-SOD contents were roughly one-half as large as the Cu/Zn-SOD contents [31]. Extracellular superoxide dismutase (EC-SOD) is a secretory, tetrameric, copper and zinc containing glycoprotein; with a high affinity for certain glycosaminoglycans such as heparin and heparin sulphate. EC-SOD was found in the interstitial spaces of tissues and also in extracellular fluids, accounting for the majority of the SOD activity in plasma, lymph, and synovial fluid. EC-SOD is not induced by its substrate or by other oxidants and its regulation in mammalian tissues primarily occurs in a manner coordinated by cytokines, rather than as a response of individual cells to oxidants [32].
This enzyme has been known to promote the rejuvenation and repair of cells, while reducing the damages caused by free radicals. SOD is found in our skin and it is essential in order for our body to generate adequate amounts of skin-building cells called fibroblasts. Among the common natural sources of SOD are cabbage, Brussels sprouts, wheat grass, barley grass and broccoli. SOD plays a significant role in preventing the development of the Lou Gehrig’s disease, also known as Amyotrophic Lateral Sclerosis (ALS). This kind of illness can lead to death because it affects the nerve cells in the spinal cord and the brain. Apart from that, this enzyme is also used for treatment of inflammatory diseases, burn injuries, prostate problems, arthritis, corneal ulcer, and reversing the long term effects of radiation and smoke exposure. Additionally, if superoxide dismutase is made into a lotion and applied to the skin, it will prevent the formation of wrinkles. It will also heal wounds, reduce the appearance of scars, and lighten skin pigmentation that has been caused by UV rays.
SOD is also known to help carry nitric oxide into our hair follicles. This is beneficial for people who are experiencing premature hair loss due to a genetic predisposition or free radicals. Because this enzyme is a very potent antioxidant, SOD combats the effects of free radicals that are causing hair follicles to die. Since nitric oxide relaxes the blood vessels and allows more blood to circulate to the hair follicles and SOD helps to remove the free radicals, hair loss can be prevented and even reversed. Taking dietary supplements that provide an adequate supply of Superoxide dismutase will be helpful in maintaining overall well being and health because it protects our entire body from the harmful effects of free radicals.
Catalase (CAT) is an enzyme responsible for the degradation of hydrogen peroxide. It is a protective enzyme present in nearly all animal cells.
Specificity
The reaction of CAT occurs in two steps. A molecule of hydrogen peroxide oxidizes the heme to an oxyferryl species. A porphyrin cation radical is generated when one oxidation equivalent is removed from iron and one from the porphyrin ring. A second hydrogen peroxide molecule acts as a reducing agent to regenerate the resting state enzyme, producing a molecule of oxygen and water.
CAT (EC 1.11.1.6) is a tetrameric enzyme consisting of four identical tetrahedrally arranged subunits of 60 kDa that contains a single ferriprotoporphyrin group per subunit, and has a molecular mass of about 240 kDa [33]. CAT reacts very efficiently with H2O2 to form water and molecular oxygen; and with H donors (methanol, ethanol, formic acid, or phenols) with peroxidase activity.
In animals, hydrogen peroxide is detoxified by CAT and by GPX. CAT protects cells from hydrogen peroxide generated within them. Even though CAT is not essential for some cell types under normal conditions, it plays an important role in the acquisition of tolerance to oxidative stress in the adaptive response of cells. Survival of rats exposed to 100% oxygen was increased when liposome’s containing SOD and CAT were injected intravenously before and during the exposure [34]. The increased sensitivity of transfected CAT-enriched cells to some drugs and oxidants is attributed to the property of CAT in cells to prevent the drug-induced consumption of O2 either for destroying H2O2 to oxygen or for direct interaction with the drug [35].
CAT is used in the food industry for removing hydrogen peroxide from milk prior to cheese production. Another use is in food wrappers where it prevents food from oxidizing CAT is also used in the textile industry, removing hydrogen peroxide from fabrics to make sure the material is peroxide-free. A minor use is in contact lens hygiene - a few lens-cleaning products disinfect the lens using a hydrogen peroxide solution; a solution containing CAT is then used to decompose the hydrogen peroxide before the lens is used again. Recently, CAT has also begun to be used in the aesthetics industry. Several mask treatments combine the enzyme with hydrogen peroxide on the face with the intent of increasing cellular oxygenation in the upper layers of the epidermis.
Glutathione peroxidase (GPx) is an enzyme that is responsible for protecting cells from damage due to free radicals like hydrogen and lipid peroxides.
The GPx (EC 1.11.1.19) contains a single selenocysteine selenocysteine (Sec) residue in each of the four identical subunits, which is essential for enzyme activity [36]. GPX (80 kDa) catalyses the reduction of hydro peroxides using GSH, thereby protecting mammalian cells against oxidative damage. In fact, glutathione metabolism is one of the most essential antioxidative defence mechanisms.
There are five GPx isoenzymes found in mammals. Although their expression is ubiquitous, the levels of each isoform vary depending on the tissue type. Cytosolic and mitochondrial glutathione peroxidase (cGPX or GPX1) reduces fatty acid hydroperoxides and H202 at the expense of glutathione. GPX1 and the phospholipid hydroperoxide glutathione peroxidase (PHGPX or GPX4) are found in most tissues. GPX4 is located in both the cytosol and the membrane fraction. PHGPX can directly reduce the phospholipid hydroperoxides, fatty acid hydroperoxides, and cholesterol hydroperoxides that are produced in peroxidized membranes and oxidized lipoproteins [37]. GPX1 is predominantly present in erythrocytes, kidney, and liver, and GPX4 is highly expressed in renal epithelial cells and testes. Cytosolic GPX2 or GPX-G1, and extracellular GPX3 or GPX-P is poorly detected in most tissues except for the gastrointestinal tract and kidney, respectively. Recently, a new member, GPX5, expressed specifically in mouse epididymis, is interestingly selenium-independent [38]. Although GPX shares the substrate, H2O2, with CAT, it alone can react effectively with lipid and other organic hydroperoxides, being the major source of protection against low levels of oxidant stress.
This is one of the most important enzymes in the body with antioxidant properties. Levels of GPx in the body are closely linked with that of glutathione, the master antioxidant. Glutathione (GHS for short) is a tripeptide that not only protects the cells against ill effects of pollution; it is also acts as your body’s immune system boosters. It is present in high concentrations in the cells and plays a pivotal role in maintaining them in reduced state lest they suffer damage by oxidation (from free radicals). The role as antioxidant is particularly important for brain as it is very sensitive to presence of free radicals. Combination of certain antioxidants like glutathione, vitamin C and E, selenium and glutathione peroxidase are very powerful in helping the body fight against the free radicals. GSH ensures that the red blood cells remain intact and protect the white blood cells (which are responsible for immunity). Glutathione is found in vegetables and fruit, but cooking will significantly reduce its potency. Taking it as a supplement is a good idea.
Chronic Inflammation: Chronic inflammatory diseases such as rheumatoid arthritis are self-perpetuated by the free radicals released by neutrophils. Both corticosteroids and non-steroids anti inflammatory drugs interfere with formation of free radicals and interrupt the disease process.
Acute Inflammation: At the inflammatory site, activated macrophages produce free radicals. Respiratory burst and increased activity of NADPH oxidase are seen in macrophages and neutrophils.
Respiratory Diseases: Breathing of 100 % oxygen for more than 24 hr produces destruction of endothelium and lung edema. This is due to the release of free radicals by activated neutrophils [39].
In premature newborn infants, prolonged exposure to high oxygen concentration is responsible for bronchopulmonary dysplasia. Adult respiratory distress syndrome (ARDS) is characterized by pulmonary edema. ARDS is produced when neutrophils are recruited to lungs which subsequently release free radicals.
Cigarette smoking enhances the emphysema in alpha-1 protease inhibitor deficiency. Cigarette smoke contains free radicals. Soot attracts neutrophils to the site which releases more free radicals. Thus, there is more elastase and less protease inhibitor, leading to lung damage.
Diseases of the Eye: Retrolental fibroplasia or retinopathy of prematurity is a condition seen in premature infants treated with pure oxygen for a long time. It is caused by free radicals, causing thromboxane release, sustained vascular contracture and cellular injury. Cataract formation is related with ageing process. Cataract is partly due to photochemical generation of free radicals. Tissues of the eye, including the lens, have high concentration of free radical scavenging enzymes.
Shock Related Injury: Release of free radicals from phagocytes damage membranes by lipid peroxidation. They release leucotrienes from platelets and proteases from macrophages. All these factors cause increased vascular permeability, resulting in tissue edema. Anti-oxidants have a protective effect.
Arthrosclerosis and Myocardial Infraction: Low density lipoproteins (LDL) promote atherosclerosis. They are deposited under the endothelial cells, which undergo oxidation by free radicals released from endothelial cells. This attracts macrophages. Macrophages are them converted into foam cells. This initiates the atherosclerotic plaque formation. Alpha tocopherol offers some protective effect.
Peptic Ulcer: Peptic ulcer is produced by erosion of gastric mucosa by hydrochloric acid. It is shown that superoxide anions are involved in the formation of ulcer. Helicobacter pylori infection perpetuates the disease. This infection potentiates the macrophage oxidative burst leading to tissue destruction.
Skin Diseases: due to inborn defects, porphyrins accumulate in the skin. Exposure of sunlight will lead to erythema and eruptions in the patients. Sunlight acting on porphyrins produces singlet oxygen, which trigger inflammatory reaction, leading to the above symptoms. Certain plant products, called psoralens are administered in the treatment of psoriasis and leukoderma. When the drugs is applied over the affected skin and then irradiated by UV light, singlet oxygen produced with clinical benefit.
Cancer Treatment [39]: Free radicals contribute to cancer development because of their mutagenic property. Free radicals produce DNA damage, and accumulated damages lead to somatic mutations and malignancy. Cancer is treated by radiotherapy. Irrational produces reactive oxygen species in the cells which trigger the cell death. To increase the therapeutic effect of radiation, radio-sensitisers are administered, which increase the production of ROS.
Dietary Antioxidants
Vitamin C, vitamin E, and beta-carotene are among the most widely studied dietary antioxidants. Vitamin C is considered the most important water-soluble antioxidant in extracellular fluids. It is capable of neutralizing ROS in the aqueous phase before lipid peroxidation is initiated. Vitamin E, a major lipid-soluble antioxidant, is the most effective chain-breaking antioxidant within the cell membrane where it protects membrane fatty acids from lipid peroxidation. Vitamin C has been cited as being capable of regenerating vitamin E.
Beta-carotene and other carotenoids are also believed to provide antioxidant protection to lipid-rich tissues. Research suggests beta-carotene may work synergistically with vitamin E. A diet that is excessively low in fat may negatively affect beta carotene and vitamin E absorption, as well as other fat-soluble nutrients. Fruits and vegetables are major sources of vitamin C and carotenoids, while whole grains and high quality, properly extracted and protected vegetable oils are major sources of vitamin E. [5]
Phytonutrients
A number of other dietary antioxidant substances exist beyond the traditional vitamins discussed above. Many plant-derived substances, collectively termed “phytonutrients,” or “phytochemicals,” are becoming increasingly known for their antioxidant activity. Phenolic compounds such as flavonoids are ubiquitous within the plant kingdom: approximately 3,000 flavonoid substances have been described. In plants, flavonoids serve as protectors against a wide variety of environmental stresses while, in humans, flavonoids appear to function as “biological response modifiers.” Flavonoids have been demonstrated to have anti-inflammatory, antiallergenic, anti-viral, anti-aging, and anti-carcinogenic activity. The broad therapeutic effects of flavonoids can be largely attributed to their antioxidant properties. In addition to an antioxidant effect, flavonoid compounds may exert protection against heart disease through the inhibition of cyclooxygenase and lipoxygenase activities in platelets and macrophages. [5]
Oxidative stress plays a major role in the pathogenic of many disorders including aging, cancer, diabetes, alzheimer’s, strokes, viral infections (that cause airway epithelial inflammation), neurodegenerative processes (including cell death, motor neuron diseases and axonal injury) and infraction, and brain edema. Antioxidant enzyme plays an important role in protecting oxidative injury to the body. One of the therapeutic approach by which these disorders can be prevented is to increase the levels of these enzymes (SOD, CAT, GPx etc.) in the body by interventions which may include increases intake of dietary supplements rich in antioxidants/antioxidant enzymes and regular exercise.
Poverty is an issue that is still a concern in most countries of the world. It is a complex phenomenon and covers many dimensions and is closely related to human and social behavior [1]. It is estimated that over 1.2 billion people around the world are in a state of poverty in which 26% are categorized as low national income, 58% with moderate national income, and 17% as medium high national income [2]. Poverty in many countries also tends to be concentrated in rural areas than in the city. According to [3], more than three quarters of poor society members are those who live in rural areas. The poor are expected to continue to live in rural areas for several decades. The issue of poverty is giving a signal to all parties to continue efforts to eradicate poverty.
Globally, aggressive efforts to eradicate poverty can be viewed through the implementation of the Millennium Development Goals (MDGs) which involves 15 years of duration since year 2000. The implementation of the MDGs are aimed at eradicating poverty, aimed at eight goals, namely eradicating extreme poverty and hunger; achieving universal basic education; achieving gender equality and empower women; reducing the rate of children’s mortality; improving the health state of mothers; preventing human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS), malaria, and other diseases; ensuring the preservation and sustainability of nature; and promoting global cooperation. Report of [4] showed greater success in eradicating poverty in the last 15 years. According to the report:
Since 1990, the number of people who live in the conditions of extreme poor has been reduced by 50% worldwide.
The proportion of individuals who do not have sufficient nutrients has been reduced by almost 50% worldwide.
School admission rates in the developing region has reached 91% and increasing number of female students compared to 15 years ago.
Promising efforts against HIV/AIDS, malaria, and tuberculosis.
The rate of deaths of children under 5 years old has been reduced more than half, and the death of mothers has declined by 45% in the whole world.
Presently, efforts to eradicate poverty continued through the implementation of Sustainable Development Goals (SDG). SDG has established the eradication of all forms of poverty in the society. In the year 2030, all individuals are targeted to not suffer any form of poverty where people strive to live with a minimum of USD$1.25 per day. In addition to that, some of the goals were also determined, that is:
Eradicate extreme poverty for all people everywhere
Reduce at least by half the proportion of men, women, and children of all ages living in poverty according to the dimensions determined by respective nation
Implement nationally appropriate social protection systems and measures for all, including the poor, and by 2030 achieve substantial coverage of the poor and the vulnerable
Ensure that the poor and vulnerable have equal access to economic resources, as well as access to basic services, ownership, and control over land and other ownership.
Building the resilience of the poor toward vulnerability.
Implementation of policies and programs that can eliminate multi-dimensional poverty.
Establish a strong framework at national, regional, and international level that addresses development strategies for poverty alleviation.
In the Malaysian context, the reduction of poverty rates is strongly contributed by the policy implementation by the government, through four major policies, namely New Economic Policy (NEP) (1970–1990), the National Development Policy (NDP) (1990–2000), National Vision Policy (NVP) (2001–2010), New Economic Model (MBE) (2010), and Shared Prosperity Vision (SPV 2030). Malaysia has managed to reduce the rate of poverty from 49.3% in the year 1970 to 0.4% in the year 2016 as in Table 1.
Year | Percentage (%) | ||
---|---|---|---|
Malaysia | Urban | Rural | |
1970 | 49.3 | 21.3 | 58.7 |
1976 | 37.7 | 15.4 | 45.7 |
1979 | 37.4 | 17.5 | 45.8 |
1984 | 20.7 | 8.5 | 27.3 |
1987 | 19.4 | 8.5 | 24.8 |
1989 | 16.5 | 7.1 | 21.1 |
1992 | 12.4 | 4.7 | 21.2 |
1995 | 8.7 | 3.6 | 14.9 |
1997 | 6.1 | 2.1 | 10.9 |
1999 | 8.5 | 3.3 | 14.8 |
2002 | 6.0 | 2.3 | 13.5 |
2004 | 5.7 | 2.5 | 11.9 |
2007 | 3.6 | 2.0 | 7.1 |
2009 | 3.8 | 1.7 | 8.4 |
2012 | 1.7 | 1.0 | 3.4 |
2014 | 0.6 | 0.3 | 1.6 |
2016 | 0.4 | 0.2 | 1.0 |
The national poverty rate in Malaysia has declined from 49.3% in the year 1970 to 0.6% the year 2014. Poverty analysis based on strata showed declining trend in the urban and rural areas. In the urban area, the rate continued to decline to 0.3 % in the year 2014 compared to 21.3% in 1970. The rural area exhibited the same declining trend from the year 1970 until the year 2014, but with a slight rise in 2009. Despite the decreasing trend in both areas, during the years from 1970 to 2017, the rate of poverty in rural areas remained higher than in the urban. The difference in the rate of poverty is pushing the government to focus its efforts to eradicate poverty in the rural areas.
Rural poverty eradication has been government’s priority because there are more than 36% of Malaysia’s population (10.34 million people population) living in rural areas [7]. Therefore, the efforts to eradicate rural poverty and develop the rural areas have been given priority by the government. Among the policies and programs that have been implemented are Rural Development Master Plan (PIPLB), Indigenous Development Strategic Planning, Rural Mega Uplifting Program (PLMLB), New Model for Rural Economy (MBELB), Rural Transformation Centers (RTC) and Government Transformation Program that involve Sustainable Village Program. Rural Development and Master Plan (PIPLB), Strategic Development Plan for Indigenous People, Mega Rural Uplift Program (PLMLB), New Rural Economy Model (MBELB), and National and Rural Transformation Programs.
Among the programs to eradicate extreme poverty was implemented through the Rural Mega Uplifting Program (PLMLB) is Agropolitan project. Since 2006 till 2007, a total of 44,000 people from extreme poverty have been identified in Malaysia. Four ministries, inclusive of the Ministry of Agriculture, the Ministry of Women, Family and Community Development and Ministry of Rural and Regional Development (MRRD) were responsible for eradicating poverty which involves 10,000 people from extreme poverty cluster. At the same time, the government established five development corridors namely the Northern Corridor Economic Region (NCER), East Coast Economic Region (ECER), Sabah Development Corridor (SDC), Sarawak Renewable Energy Corridor (SCORE), and Iskandar Malaysia (ISKANDAR). Through the implementation of the five corridors, 4400 individuals from extreme poverty were placed under the implementing agencies of the respective corridors. The remaining 5600 individuals coming from extreme poverty group were handed over to MRRD for poverty eradication planning and become a focus for participating in the Agropolitan program [8].
As of 2017, there were 11 projects under agropolitan programs which have been implemented and involved five states under the supervision of the Ministry of Rural Development Affairs and Regional Development (MRRD) [9]. According to the ministry, there are two successful agropolitan programs which are Gahai Agropolitan Programme, Lipis, Pahang and Batang Lupar Agropolitan Program, Sarawak. Based on the poverty index, namely Poverty Lines Income (PLI), all participants for both agropolitan programs have been classified as non-poor after joining the agropolitan programs which were implemented since 2007 [10].
Poverty is a system that associates certain factors and affects each other. This concept corresponds to poverty factors and turned to beginning points of the poverty vicious cycle and ultimately prevents the development process [11]. With regards to poverty, rural sectors and farming activities participation is considered as a trap of poverty for individuals. Individuals in the rural areas are engaged in low scale production activities that affected their income. This situation is described as a setback and as a barrier and a system which connects barriers and causing the poor to fall into vicious cycle. If left unattended continuously, this will cause the poor will not be able to get food, health, and education adequately. In addition, poverty will cause the poor to not being able change or raise the standard of living better than their parents. The situation is due to low income and poverty that is sustained from generation to another generation as depicted in Figure 1 that shows the poverty vicious cycle. At individual level, vicious cycle could be initiated by the poverty faced caused by failure to meet the nutritional diet requirement. Less nutritious diet intake ultimately affects health and the ability to work. Due to health issues, individuals are not able to work efficiently, and this leads to low productivity. The situation affects their ability to raise their income and thus continue to be in a state of poverty.
Individual poverty vicious cycle. Source: [
Poverty faced by individuals will also affect members of the family. Due to poverty, people are not able to provide sufficient and nutritious food to members of the family, particularly children, and will inhibit their mental growth. The study [12] found the lack of nutritious food affects children’s health and eventually will contribute to weakening education and contribute to the low education achievement. Failure to obtain education causes them to continue to be engaged in low-income activities and consequently remain to be in a poor situation.
Even though the Vicious Cycle Theory can explain the poverty faced by individuals is associated with poverty factors, there was some criticism of the theory. First, this theory does not explain in detail the concept of poverty and setback. Secondly, the theory does not consider the differences of poverty faced by every country, and thirdly, the theory discusses poverty in static and unchanged situation. The theory is also unable to give a detailed description on how to overcome the vicious poverty cycle.
Theoretical discussions on vicious poverty cycle shows poverty is a societal problem that involve multiple factors and difficult to overcome. However, attempts to solve it are necessary because failure to alleviate poverty will reflect bad impression on one’s society and nation. Gill [13] explained that a country cannot develop because of poverty. Therefore, the efforts to alleviate individuals from poverty should be given attention. According to the Organization for Economic Co-operation and Development (OECD) in [14] explained, there are five factors that allow a person to free oneself from poverty. These involve:
Economic ability which refers to the ability of the income, expenditure, and ownership of assets.
People’s ability referring to ability to obtain health, education, nutritious food, clean water, and safe place to stay.
Political ability that refers to the ability to get the legislature rights
Socio-cultural ability that refers to individuals’ ability to be involved in the community activities.
Protection ability that refers to the ability to deal with uncertain situation.
Matin and Hulme [15] discussed the perspective of materialism, which indicates individual is unable to meet the basic requirements due to (i) having low income to expend and (ii) shocks applied that caused the income of individuals to fall under the poverty line. In assisting this group, the government will conduct interventions such as micro-financing programs to increase individual income subsequently overcome poverty. Poverty eradication through this approach is called “poverty reduction” as the first step to increase household income (Figure 2).
Reduction of poverty is the first to raise higher revenues contents home. Source: [
In other situation, if shock happens unexpectedly, the situation is just temporary because it only affects the individual’s income to obtain food at a certain time. If government intervenes to help people improve their income, this approach refers to the poverty reduction as a “one-off” grant, which would reverse the household income to the previous level (Figure 3). Although this approach is simple, it still fails to help the poor. Consequently, there exists the need to promote an approach that emphasizes the multi-dimensional design complex programs (multi-sector and partnerships between organizations), to help the poor. Not only has it met the minimum of physical needs but also access to health, education, and other services.
Poverty reduction as a “one-off” grant that return household income to previous level. Source: [
Sachs [16] in his book “The End of Poverty” discusses that government intervention is important to increase the poor’s individual’s ability to get the poor out of the situation and able to increase savings and investment which are becoming the driving force to the accumulation of capital to move out of poverty. He said there is a correlation between economic activities, savings, capital investment, and increasing economic activities. Household uses income as a means for consumption, savings, and taxes. The government uses the tax for current spending and development expenses. Capital is generated by household savings and government expenses. Higher capital formation leads to economic growth, which in turn increases household income as a result of income growth. Capital assistance for projects would lead to capital accumulation, economic growth, and an income increase among the household members who receive benefits from the given assistance. In the context of this study, Vicious Poverty Cycle Theory describes the poverty situation faced by the extreme poor group. The extreme poor not only lack income but also basic needs such as housing, education, health, and other amenities. This poverty will continue to be inherited by their children to the next generation. The Agropolitan project was a government intervention to eradicate poverty to increase income (Figure 4).
The Agropolitan project is a government intervention to eradicate poverty to increase income. Source: Adapted from [
Agropolitan is a development alternative model which is also known as Region Klauster that was introduced in 1974 by an economist, John Friedman. Agropolitan is a development concept that prioritizes the development of much lower level and aims to improve the socio-economic community in rural area. Agropolitan development highlights network development between urban and rural areas [17, 18, 19, 20]. Agropolitan development prioritizes on micro-planning that involves specific target group, government, local research and development (R&D), and education institutions [21]. It is an integrated development involving complete physical and institutional infrastructure as well as optimal resource utilization. Besides, the economic farming and non-farming complement agropolitan development projects as agricultural town. Economic activities in the areas of the Agropolitan project is able to contribute to the region in addition to providing opportunities for employment in off-farm and non-farm and existing commercially available in the agropolitan area. Today, agropolitan has become the choice of several countries in planning rural development by the developing countries such as Indonesia, Nepal, and Malaysia [8, 22, 23].
Agropolitan is different when compared to conventional development models like Growth Pole Model. Conventional development model is “above to below approach” and give priority to competition than cooperation for development [24, 25]. Instead, agropolitan prioritizes planning and cooperation establishment starting from the bottom. Table 2 shows the agropolitan difference which is also known as Region Klauster and conventional development model namely, Pole Growth Model.
The agropolitan model is also known as the Klauster Regional Model which conducts economic activities that depend on the availability of resources in the development area. The agropolitan concept encouraged the development of side economies in the project area. In terms of urbanization, agropolitan development prioritizes a horizontal (decentralized) urbanization system that has major areas and is linked to the more interior areas. In view of planning, it is decentralized in nature prioritizing on diversifying the economic sectors.
The Agropolitan project is one of the government’s initiatives to eradicate poverty and also involves several districts in the state of Pahang, Malaysia. According to records, there are 11 agropolitan projects which were launched by the government under the Ministry of Rural and Regional Development (MRRD) until 2016, and Pahang have two agropolitan projects which are the Chemomoi Agropolitan Project and Gahai Agropolitan Project [10]. The implementation of Chemomoi Agropolitan still runs and ends in September 2016. While the process of development of the Gahai Agropolitan Project, Lipis, Pahang has stopped in 2012 and has shown results to participants through the income acquisition.
The selection of the Gahai Agropolitan Project, Lipis for this study is based on the following criteria:
Gahai Agropolitan Project has surpassed the development of more than 5 years and allows the impact study to be conducted.
Gahai Agropolitan Project is in Pahang, which is among the state with highest poverty rate (Malaysia 2015), and it is compatible with the objectives of the study in evaluating the impact of the Agropolitan project in eradicating poverty.
The selection of Gahai Agropolitan Project was proposed from the Ministry of Rural and Regional Development (MRRD) as it is an early established Agropolitan project and has showed good performance and exist necessity in evaluating the project.
Gahai Agropolitan Project, Lipis, Pahang encompasses the area of 238.76 hectares, which involves a total of 80 projects participants. Each participant of the project was selected from the extreme/hardcore poor group. The participants of the project were divided into two categories: 50 individuals with house placements and 30 individuals without placements. Although there are 80 registered participants of the Gahai Agropolitan Project, only 50 local participants are actively involved in economic activities and utilize the benefits of the development of economic components, physical components, and human capital components in the Gahai Agropolitan Project. While another 30% are registered participants but are not involved in economic activities, living in the Gahai Agropolitan Project area and they only receive an annual dividend from the Rubber Industry Smallholders Development Authority (RISDA). Gahai Agropolitan Project, Lipis is managed by the implementing agency, Rubber Industry Smallholders Development Authority (RISDA) which was entrusted by the Ministry of Rural and Regional Development (MRRD). The Gahai Agropolitan Project involves the development of economic, physical, and human capital components.
For the first component, economic activities involving primary and downstream activities contribute to participants’ income and thus help to increase the standard of living. Primary economic activities refer to the participation of participants in the Well-Being Farm (Ladang Sejahtera). Presently, 232.69 hectares of Well-Being Farm are planted with 117,940 trees and have been producing incomes in the form of wages and dividends. In addition to that, there are downstream activities that can contribute to the participant’s income, majority of them are from the extreme poverty group. This is evidenced by the increase in participants’ income. Before joining the Gahai Agropolitan Project, participants who are from the extreme poor were with an average income of RM400 a month. After participating in the Agropolitan project, participants receive income in the form of rubber tapping wage and dividends with an average income of RM1900 per month.
As of May 2015, a total of RM400,000 has been paid to participants as “Well-Being Farm” dividends. For downstream activities, host of bird’s nests are still active, which is managed by the Gahai Participants Cooperative (KOPEGA). The project involved initial cost totaling RM58,000 which was contributed by 80 agropolitan participants. The management cost for the project up till May 2015 was RM4,591 which focused on the maintenance and pest control. For bird’s nest marketing, it involves the sale of products such as bird’s nests and drinks. In 2014, the bird’s nest project was already producing output of 8.020 kg with an average price of RM1,200 per kilogram with total income of RM6,000.
Development of physical component also includes home, basic infrastructure, amenities, and business infrastructure. This physical component was provided by the implementing agencies during the project development. Basic infrastructure covering roads in settlements, Rural Water Supply (BALB), Rural Roads (JALB), Village Road Project (PJK), and drain and good drainage system. Besides that, the Gahai Agropolitan Project participants also enjoy the convenience of amenities such as the multi-purpose hall, place of worship, playground, and much more. In addition to the basic physical development, the project development also provided business infrastructure, namely booths, workshops, kiosks, and Small and Medium Enterprises (SMEs) infrastructure.
Besides the economic and physical components development, emphasis is also given to the human capital component. This component refers to the course preparation or training for pre-placement and post-placement. For pre-placement courses, the courses were conducted before participants enter the settlement or participate in agropolitan projects. The course was attended by the head of the households (KIR), and it was for the participants’ settlement only. Post-settlement course was conducted continuously after the inclusion of participants in the Agropolitan project. The course is not limited to head of households but also involve members of the house. The courses include on entrepreneurship, skills and technical, spirituality, and family well-being.
The analysis of this study include 50 participants of the Gahai Agropolitan Project who are actively involved in economic activities and utilize the benefits of the development of economic components, physical components, and human capital components in the Gahai Agropolitan Project. A total of 50 participants were defined as the study population. During the survey, only 45 participants of the Gahai Agropolitan Project were actively involved in providing feedback as sampling units. Despite not obtaining the entire project participants, 45 participants were sufficient to be used as a sample using simple random sampling technique. Sampling size is following to [26] if the total population is 50, a total of 44 samples are required, and for this study, it meets the number of samples to be analyzed.
Table 3 shows the percentage information regarding the profiles of participants of the Gahai Agropolitan Project. Participants’ profile shows that the majority of respondents (82.2%) are men and the remaining (17.8%) are female. The age breakdown showed participants aged between 46 and 50 years represented the highest (28.9%) followed by the participants aged between 36–40 years and 41–45 years with the same percentage (22.2%). Participants aged 56 years and over also participated but the percentage is small (11.1%). While participants aged 35 years and below are only 2.2% equivalent to one person.
Components | Conventional models Growth pole model | Agropolitan model Klauster Region |
---|---|---|
Basic sector | Large scale economic activities and management agencies outside economic activities (urban) | Economic activity depends on the availability of resources in the area and encourages the development of side economic activities in key areas. |
City system | Hierarchy, focused on a number of the population that are associated with the Region Centre Theory | Horizontal, containing the main and rural areas that have specialization and benefits |
Urban-rural relationship | Spreading the benefits of the urban to the rural area gives trickling effects mutually | Complex urban-rural relationship gives mutual impacts |
Planning | Based on top to bottom through the planners and implementers | Based on a decentralized system of planning, integration, and coordination of various sectors and activities for urban and rural areas |
Primary policy | Decentralized industry incentives: industrial estates, transportation, and communications | The variety of activities in agriculture, agro-industry, and manufacturing based on resources, city services, training, and network communication |
n = 45 | ||
---|---|---|
Note | Percentage (%) | Average |
Male | 82.2 | |
Female | 17.8 | |
46.22 | ||
35 years old and below | 2.2 | |
36–40 years old | 22.2 | |
41–45 years old | 22.2 | |
46–50 years old | 28.9 | |
51–55 years old | 11.1 | |
56 years old and above | 13.3 | |
Primary school/UPSR | 26.7 | |
Secondary school/PMR/SRP | 17.8 | |
Secondary school/SPM | 51.1 | |
STPM/certificate | 2.2 | |
Rubber tapper | 88.9 | |
Others | 11.1 | |
5.60 | ||
1–2 people | 11.1 | |
3–4 people | 26.7 | |
5–6 people | 44.4 | |
7–8 people | 13.3 | |
More than 9 people | 4.4 |
Research respondents.
Source: Gahai Fieldwork, 2017.
In terms of education, the study shows that the majority of participants, (51.1%) successfully obtained mid-secondary level (Sijil Pelajaran Malaysia [SPM]) while 17.8% graduated with lower secondary (PMR/SRP). About 26.7% of respondents completed with only primary school education up to Primary 6. Even though the number of respondents with primary school education is quite high, most of these respondents are 50 years old and above. Regarding employment, the majority of participants (88.9%) are rubber tappers while the remaining 11.1% are employed in other types of occupation. For respondents who did not rubber tapping as main occupation, they still receive income from the rubber plantation activities which were paid in the form of dividends for their status as project participants. These dividends contribute to their household income.
The Agropolitan Project’s performance evaluation is based on income that is earned by the individual or group of extreme poor who participated in this project. It is compatible with the project’s main objectives which is eradicating poverty among the participants through an increase in income. For the case study, the income of participants of the Agropolitan Project was analyzed using descriptive analysis and parametric analysis which is paired sample t-test. Descriptive analysis involves minimum value, maximum value, and participant’s average income. Besides that, the paired sample t-test is used to determine whether there is a significant change in participant’s income for before and after participating in the Project Agropolitan Gahai, Lipis. Furthermore, income analysis also applied Poverty Line Income (PLI) to determine the number of participants who are categorized as poor. The analysis using PLI provides the latest poverty situation for the Gahai Agropolitan Project participants.
Table 4 shows the participants monthly income before and after participating in the Gahai Agropolitan Project. The left side of Table 4 shows the income before participating in the Agropolitan project. The analysis shows the majority of respondents (75.5%) earn income of less than RM1, 000 which is below the poverty line income. There are 17.8% of participants earning incomes of between RM1001 and RM1500 and 4.4% have income of between RM1501 and RM2000. Only 2.2% of participants received income exceeding RM2, 000. The average monthly income of the participants before participating in the Gahai Agropolitan Project is RM920.22. This total income is almost similar to the national PLI.
n = 45 | |||
---|---|---|---|
Income | Percentage (%) | Income | Percentage (%) |
RM500 and below | 11.1 | RM500 and below | 0.0 |
RM501–RM1000 | 64.4 | RM501–RM1000 | 8.9 |
RM1001–RM1500 | 17.8 | RM1001–RM1500 | 31.1 |
RM1501–RM2000 | 4.4 | RM1501–RM2000 | 42.2 |
RM2000 and above | 2.2 | RM2000 and above | 17.8 |
Participants’ income before and after participating in Gahai Agropolitan Project.
Source: Field survey, 2017.
The right side of Table 4 also shows the participants income after participating in the Agropolitan Project. The value of the incomes is based on the respondents’ feedback on questions related to the monthly average income earned after participating in the project. The income analysis shows all participants of the Agropolitan project obtain incomes exceeding RM 500 a month. There are 8.9% of the participants of the project receiving incomes between RM501 and RM1000. Most of the respondents had income above PLI which is RM850. A total of 91.1% respondents earned incomes above RM1000. Details on the incomes amount show 31.1% of respondents earn incomes RM1001–RM1500, 42.2% earn incomes between RM1501–RM2000, and 17.8% earn more than RM2, 000 and above. Income comparison before and after participating the project shows a significant increment. The average monthly income of the participant after participating in the Gahai Agropolitan Project was RM1628.33. This average income is higher compared to monthly average income prior to joining the Gahai Agropolitan Project.
To further strengthen the analysis, the findings of an increase in a participant’s income for involvement in Gahai Agropolitan Project were analyzed using a parametric test, paired sample t-test. The test is carried out using the data of the participants’ income before and after participating in the project. Table 5 shows income differences before and after participating in the Agropolitan project. The analysis show significant differences to the participants’ income with a value of t = 8196 and the value of p = 0.000, indicating that there is a significant income difference before and after participating in the Agropolitan project. Participant’s income increased and significant differences were significant before and after participating in the Gahai Agropolitan Project.
Paired t-test | ||||
---|---|---|---|---|
Pair differences | t-value | Degree of freedom (df) | Significance (two sides) | |
Average income | Standard deviation | 8.190 | 44 | 0.000 |
718.01111 | 588.08925 |
Participants’ income difference before and after joining the Gahai Agropolitan Project.
Source: Field survey, 2017.
Table 6 shows the poverty analysis for the Gahai Agropolitan Project’s participants using the poverty line income (PLI). Based on the table above, the household is categorized poor should the household receive an income less than the poverty line. This case study applied PLI at a national level in 2014 for Peninsular Malaysia and rural area at RM 840. RM840 value means the households earning incomes less than this value is considered poor. Based on Table 6, 95.6% of the Agropolitan project participants are considered not poor, earning income exceeding RM840 per month. This income is derived from active involvement in the Well-Being Farm which was the main income source. However, there were still poor participants (4.4%). This PLI poverty analysis thus shows a good state whereby participants’ poverty could be addressed as 95.6% of participants have come out of poverty after joining the Gahai Agropolitan Project.
Category | Percentage (%) |
---|---|
Poor | 4.4 |
Not poor | 95.6 |
Gahai Agropolitan Project’s participants poverty based on the poverty line income (PLI).
The Agropolitan project implementation as a mechanism for poverty eradication in rural area is a precise effort to eradicate poverty and subsequently be able to break the Vicious Poverty Cycle. Agropolitan project development throughout Malaysia is a recognition of Malaysian government’s effort to improve socio-economic development and improve quality of life and ultimately eradicate poverty, especially in the rural areas. Toward this goal, responsible ministries and agencies, including state government, must have a mechanism in drawing up an effective program for ensuring the goals of the program can be achieved, thus providing positive impacts to participants. The Gahai Agropolitan Project case study has shown how its implementation can contribute to poverty eradication through increasing the participant’s income so that they are able to move out of poverty. In the long run, poverty among the participants and their second-generation households could be eradicated through improved human capital development involving improvement in education and health facilities and sustained by institutional support that would benefit the rural community as a whole.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"25"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:100},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"522",title:"Neural Network",slug:"computer-and-information-science-artificial-intelligence-neural-network",parent:{id:"87",title:"Artificial Intelligence",slug:"computer-and-information-science-artificial-intelligence"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:124,numberOfWosCitations:240,numberOfCrossrefCitations:199,numberOfDimensionsCitations:350,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"522",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8725",title:"Visual Object Tracking with Deep Neural Networks",subtitle:null,isOpenForSubmission:!1,hash:"e0ba384ed4b4e61f042d5147c97ab168",slug:"visual-object-tracking-with-deep-neural-networks",bookSignature:"Pier Luigi Mazzeo, Srinivasan Ramakrishnan and Paolo Spagnolo",coverURL:"https://cdn.intechopen.com/books/images_new/8725.jpg",editedByType:"Edited by",editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",middleName:null,surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6187",title:"Advanced Applications for Artificial Neural Networks",subtitle:null,isOpenForSubmission:!1,hash:"c7fb38ad3b189551aa9a91eaa3da04d1",slug:"advanced-applications-for-artificial-neural-networks",bookSignature:"Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/6187.jpg",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5127",title:"New Applications of Artificial Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"e1538fa08bb762c6c5de80b228c9324d",slug:"new-applications-of-artificial-intelligence",bookSignature:"Pedro Ponce, Arturo Molina Gutierrez and Jaime Rodriguez",coverURL:"https://cdn.intechopen.com/books/images_new/5127.jpg",editedByType:"Edited by",editors:[{id:"143594",title:"Dr.",name:"Pedro",middleName:null,surname:"Ponce",slug:"pedro-ponce",fullName:"Pedro Ponce"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2182",title:"Advances in Character Recognition",subtitle:null,isOpenForSubmission:!1,hash:"edc63da347b581b507d9fdc17e75ba44",slug:"advances-in-character-recognition",bookSignature:"Xiaoqing Ding",coverURL:"https://cdn.intechopen.com/books/images_new/2182.jpg",editedByType:"Edited by",editors:[{id:"21641",title:"Prof.",name:"Xiaoqing",middleName:null,surname:"Ding",slug:"xiaoqing-ding",fullName:"Xiaoqing Ding"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2284",title:"Real-World Applications of Genetic Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"6d5fc65bd034c0bc5384716fa643d336",slug:"real-world-applications-of-genetic-algorithms",bookSignature:"Olympia Roeva",coverURL:"https://cdn.intechopen.com/books/images_new/2284.jpg",editedByType:"Edited by",editors:[{id:"109273",title:"Dr.",name:"Olympia",middleName:null,surname:"Roeva",slug:"olympia-roeva",fullName:"Olympia Roeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2220",title:"Reinforcement Learning",subtitle:null,isOpenForSubmission:!1,hash:"8a1290de1769ec93ed92327f93a9a4bb",slug:"reinforcement_learning",bookSignature:"Cornelius Weber, Mark Elshaw and Norbert Michael Mayer",coverURL:"https://cdn.intechopen.com/books/images_new/2220.jpg",editedByType:"Edited by",editors:[{id:"130979",title:"Prof.",name:"Cornelius",middleName:null,surname:"Weber",slug:"cornelius-weber",fullName:"Cornelius Weber"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"30305",doi:"10.5772/36125",title:"Surrogate-Based Optimization",slug:"surrogate-based-optimization",totalDownloads:3919,totalCrossrefCites:47,totalDimensionsCites:78,abstract:null,book:{id:"2284",slug:"real-world-applications-of-genetic-algorithms",title:"Real-World Applications of Genetic Algorithms",fullTitle:"Real-World Applications of Genetic Algorithms"},signatures:"Zhong-Hua Han and Ke-Shi Zhang",authors:[{id:"33820",title:"Dr.",name:"Ke-Shi",middleName:null,surname:"Zhang",slug:"ke-shi-zhang",fullName:"Ke-Shi Zhang"},{id:"107162",title:"Prof.",name:"Zhong-Hua",middleName:null,surname:"Han",slug:"zhong-hua-han",fullName:"Zhong-Hua Han"}]},{id:"40722",doi:"10.5772/52009",title:"SVM Classifiers – Concepts and Applications to Character Recognition",slug:"svm-classifiers-concepts-and-applications-to-character-recognition",totalDownloads:3741,totalCrossrefCites:5,totalDimensionsCites:16,abstract:null,book:{id:"2182",slug:"advances-in-character-recognition",title:"Advances in Character Recognition",fullTitle:"Advances in Character Recognition"},signatures:"Antonio Carlos Gay Thome",authors:[{id:"147034",title:"PhD.",name:"Antonio Carlos",middleName:null,surname:"Thomé",slug:"antonio-carlos-thome",fullName:"Antonio Carlos Thomé"}]},{id:"684",doi:"10.5772/5286",title:"Reinforcement Learning for Building Environmental Control",slug:"reinforcement_learning_for_building_environmental_control",totalDownloads:4240,totalCrossrefCites:7,totalDimensionsCites:15,abstract:null,book:{id:"2220",slug:"reinforcement_learning",title:"Reinforcement Learning",fullTitle:"Reinforcement Learning"},signatures:"Konstantinos Dalamagkidis and Dionysia Kolokotsa",authors:null},{id:"57282",doi:"10.5772/intechopen.71039",title:"Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One",slug:"artificial-neural-networks-anns-for-spectral-interference-correction-using-a-large-size-spectrometer",totalDownloads:1535,totalCrossrefCites:6,totalDimensionsCites:13,abstract:"Artificial neural networks (ANNs) are evaluated for spectral interference correction using simulated and experimentally obtained spectral scans. Using the same data set (where possible), the predictive ability of shallow depth ANNs was validated against partial least squares (PLS, a traditional chemometrics method). Spectral interference (in the form of overlaps between spectral lines) is a key problem in large-size, long focal length inductively coupled plasma-optical emission spectrometry (ICP-OES). Unless corrected, spectral interference can be sufficiently severe to the point of preventing precise and accurate analytical determinations. In miniaturized, microplasma-based optical emission spectrometry with a portable, short focal length spectrometer (having poorer resolution than its large-size counterpart), spectral interference becomes even more severe. To correct it, we are evaluating use of deep learning ANNs. Details are provided in this chapter.",book:{id:"6187",slug:"advanced-applications-for-artificial-neural-networks",title:"Advanced Applications for Artificial Neural Networks",fullTitle:"Advanced Applications for Artificial Neural Networks"},signatures:"Z. Li, X. Zhang, G. A. Mohua and Vassili Karanassios",authors:[{id:"60925",title:"Prof.",name:"Vassili",middleName:null,surname:"Karanassios",slug:"vassili-karanassios",fullName:"Vassili Karanassios"}]},{id:"57304",doi:"10.5772/intechopen.70791",title:"Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model",slug:"data-assimilation-by-artificial-neural-networks-for-an-atmospheric-general-circulation-model",totalDownloads:1717,totalCrossrefCites:8,totalDimensionsCites:13,abstract:"Numerical weather prediction (NWP) uses atmospheric general circulation models (AGCMs) to predict weather based on current weather conditions. The process of entering observation data into mathematical model to generate the accurate initial conditions is called data assimilation (DA). It combines observations, forecasting, and filtering step. This paper presents an approach for employing artificial neural networks (NNs) to emulate the local ensemble transform Kalman filter (LETKF) as a method of data assimilation. This assimilation experiment tests the Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using synthetic observational data simulating localizations of meteorological balloons. For the data assimilation scheme, the supervised NN, the multilayer perceptrons (MLPs) networks are applied. After the training process, the method, forehead-calling MLP-DA, is seen as a function of data assimilation. The NNs were trained with data from first 3 months of 1982, 1983, and 1984. The experiment is performed for January 1985, one data assimilation cycle using MLP-DA with synthetic observations. The numerical results demonstrate the effectiveness of the NN technique for atmospheric data assimilation. The results of the NN analyses are very close to the results from the LETKF analyses, the differences of the monthly average of absolute temperature analyses are of order 10–2. The simulations show that the major advantage of using the MLP-DA is better computational performance, since the analyses have similar quality. The CPU-time cycle assimilation with MLP-DA analyses is 90 times faster than LETKF cycle assimilation with the mean analyses used to run the forecast experiment.",book:{id:"6187",slug:"advanced-applications-for-artificial-neural-networks",title:"Advanced Applications for Artificial Neural Networks",fullTitle:"Advanced Applications for Artificial Neural Networks"},signatures:"Rosangela Saher Cintra and Haroldo F. de Campos Velho",authors:[{id:"215748",title:"Dr.",name:"Rosangela",middleName:null,surname:"Cintra",slug:"rosangela-cintra",fullName:"Rosangela Cintra"},{id:"215753",title:"Dr.",name:"Haroldo",middleName:null,surname:"Campos Velho",slug:"haroldo-campos-velho",fullName:"Haroldo Campos Velho"}]}],mostDownloadedChaptersLast30Days:[{id:"50071",title:"Retrieval of Optical Constant and Particle Size Distribution of Particulate Media Using the PSO-Based Neural Network Algorithm",slug:"retrieval-of-optical-constant-and-particle-size-distribution-of-particulate-media-using-the-pso-base",totalDownloads:1982,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"An improved neural network algorithm was proposed and applied to the inverse radiative problems. A multi-strategy particle swarm optimization was applied to improve the performance of the back propagation multi-layer feed-forward neural network algorithm. Three commonly used particle size distribution (PSD) functions in a one-dimensional particle system were retrieved using the proposed algorithm. In addition, the optical constant was also estimated, and the measurement errors were considered. Results show that the proposed algorithm can be applied to the retrieval of PSDs and optical constant even with measurement errors. Finally, the proposed algorithm was applied to the simultaneous estimation of the PSDs and optical constant using the multi-wavelength and multi-thickness method.",book:{id:"5127",slug:"new-applications-of-artificial-intelligence",title:"New Applications of Artificial Intelligence",fullTitle:"New Applications of Artificial Intelligence"},signatures:"Hong Qi, Ya-Tao Ren, Jun-You Zhang, Li-Ming Ruan and He-Ping\nTan",authors:[{id:"177857",title:"Prof.",name:"Hong",middleName:null,surname:"Qi",slug:"hong-qi",fullName:"Hong Qi"}]},{id:"50870",title:"Fuzzy Logic Control of Switched Reluctance Motor Drives",slug:"fuzzy-logic-control-of-switched-reluctance-motor-drives",totalDownloads:2401,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"In this chapter, the electromechanical behavior of switched reluctance motor (SRM) is first modeled by analyzing the related nonlinear differential equations. In the model, the estimation of rotor speed is also considered. After modeling, the effects of torque ripple, radial force, and acoustic noise are investigated. As we know, torque ripple and acoustic noise are two of the main disadvantages of a switched reluctance motor. Thus, a fuzzy logic current compensator is proposed both for reducing the peak of radial force and for decreasing acoustic noise effects. In the parts that torque reduces, the fuzzy logic current compensator injects additional current for each phase current to overcome the torque ripple. Also, the fuzzy logic current compensator reduces speed estimation error. The speed estimation is carried out using a hybrid sliding mode observer which estimates the rotor position and speed for a wide speed range. These new approaches have been simulated using MATLAB/SIMULINK for a nonlinear model of switched reluctance motor. The simulation results indicate that proposed methods decrease the maximum radial force and the torque ripple while the maximum torque is preserved. Also, these results show that proposed methods will estimate the rotor position and speed with high precision for all speeds from near zero speeds up to rated speed. These procedures have the advantages of simple implementation on the every switched reluctance motor drive without extra hardware, low cost, high reliability, low vibration, and excellent performance at long term.",book:{id:"5127",slug:"new-applications-of-artificial-intelligence",title:"New Applications of Artificial Intelligence",fullTitle:"New Applications of Artificial Intelligence"},signatures:"M. Divandari and B. Rezaie",authors:[{id:"155417",title:"Dr.",name:"Mohammad",middleName:null,surname:"Divandari",slug:"mohammad-divandari",fullName:"Mohammad Divandari"}]},{id:"57042",title:"Gait Generation of Multilegged Robots by using Hardware Artificial Neural Networks",slug:"gait-generation-of-multilegged-robots-by-using-hardware-artificial-neural-networks",totalDownloads:1350,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Living organisms can act autonomously because biological neural networks process the environmental information in continuous time. Therefore, living organisms have inspired many applications of autonomous control to small-sized robots. In this chapter, a small-sized robot is controlled by a hardware artificial neural network (ANN) without software programs. Previously, the authors constructed a multilegged walking robot. The link mechanism of the limbs was designed to reduce the number of actuators. The current paper describes the basic characteristics of hardware ANNs that generate the gait for multilegged robots. The pulses emitted by the hardware ANN generate oscillating patterns of electrical activity. The pulse-type hardware ANN model has the basic features of a class II neuron model, which behaves like a resonator. Thus, gait generation by the hardware ANNs mimics the synchronization phenomena in biological neural networks. Consequently, our constructed hardware ANNs can generate multilegged robot gaits without requiring software programs.",book:{id:"6187",slug:"advanced-applications-for-artificial-neural-networks",title:"Advanced Applications for Artificial Neural Networks",fullTitle:"Advanced Applications for Artificial Neural Networks"},signatures:"Ken Saito, Masaya Ohara, Mizuki Abe, Minami Kaneko and Fumio\nUchikoba",authors:[{id:"157327",title:"Dr.",name:"Ken",middleName:null,surname:"Saito",slug:"ken-saito",fullName:"Ken Saito"},{id:"157328",title:"Dr.",name:"Minami",middleName:null,surname:"Kaneko",slug:"minami-kaneko",fullName:"Minami Kaneko"},{id:"157330",title:"Prof.",name:"Fumio",middleName:null,surname:"Uchikoba",slug:"fumio-uchikoba",fullName:"Fumio Uchikoba"},{id:"219934",title:"Mr.",name:"Masaya",middleName:null,surname:"Ohara",slug:"masaya-ohara",fullName:"Masaya Ohara"},{id:"219935",title:"BSc.",name:"Mizuki",middleName:null,surname:"Abe",slug:"mizuki-abe",fullName:"Mizuki Abe"}]},{id:"67472",title:"Object Re-Identification Based on Deep Learning",slug:"object-re-identification-based-on-deep-learning",totalDownloads:1361,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"With the explosive growth of video data and the rapid development of computer vision technology, more and more relevant technologies are applied in our real life, one of which is object re-identification (Re-ID) technology. Object Re-ID is currently concentrated in the field of person Re-ID and vehicle Re-ID, which is mainly used to realize the cross-vision tracking of person/vehicle and trajectory prediction. This chapter combines theory and practice to explain why the deep network can re-identify the object. To introduce the main technical route of object Re-ID, the examples of person/vehicle Re-ID are given, and the improvement points of existing object Re-ID research are described separately.",book:{id:"8725",slug:"visual-object-tracking-with-deep-neural-networks",title:"Visual Object Tracking with Deep Neural Networks",fullTitle:"Visual Object Tracking with Deep Neural Networks"},signatures:"Xiying Li and Zhihao Zhou",authors:null},{id:"56981",title:"Advanced Process Control",slug:"advanced-process-control",totalDownloads:1359,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The debutanizer column is an important unit operation in petroleum refining industries. The top product is liquefied petroleum gas and the bottom product is light naphtha. This system is difficult to handle. This is because due to its non-linear behavior, multivariable interaction and existence of numerous constraints on its manipulated variable. Neural network techniques have been increasingly used for a wide variety of applications. In this book, equation-based multi-input multi-output (MIMO) neural network has been proposed for multivariable control strategy to control the top and bottom temperatures of the column. The manipulated variables for column are reflux and reboiler flow rates, respectively. This neural network model are based on multivariable equation, instead of the normal black box structure. It has the advantage of being robust in nature while being easier to interpret in terms of its input-output variables. It has been employed for set point changes and disturbance changes. The results show that the neural network equation-based model for direct inverse and internal model approach performs better than the conventional proportional, integral and derivative (PID) controller.",book:{id:"6187",slug:"advanced-applications-for-artificial-neural-networks",title:"Advanced Applications for Artificial Neural Networks",fullTitle:"Advanced Applications for Artificial Neural Networks"},signatures:"Nasser Mohamed Ramli",authors:[{id:"209483",title:"Dr.",name:"Nasser",middleName:null,surname:"Mohamed Ramli",slug:"nasser-mohamed-ramli",fullName:"Nasser Mohamed Ramli"}]}],onlineFirstChaptersFilter:{topicId:"522",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:152,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"28",type:"subseries",title:"Animal Reproductive Biology and Technology",keywords:"Animal Reproduction, Artificial Insemination, Embryos, Cryopreservation, Conservation, Breeding, Epigenetics",scope:"The advances of knowledge on animal reproductive biology and technologies revolutionized livestock production. Artificial insemination, for example, was the first technology applied on a large scale, initially in dairy cattle and afterward applied to other species. Nowadays, embryo production and transfer are used commercially along with other technologies to modulate epigenetic regulation. Gene editing is also emerging as an innovative tool. This topic will discuss the potential use of these techniques, novel strategies, and lines of research in progress in the fields mentioned above.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Dr.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:null}]},onlineFirstChapters:{paginationCount:7,paginationItems:[{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:152,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78617",title:"Doppler Ultrasound in the Reproduction of Mares",doi:"10.5772/intechopen.98951",signatures:"Camila Silva Costa Ferreira and Rita de Cássia Lima Morais",slug:"doppler-ultrasound-in-the-reproduction-of-mares",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78202",title:"Stimulatory Effects of Androgens on Eel Primary Ovarian Development - from Phenotypes to Genotypes",doi:"10.5772/intechopen.99582",signatures:"Yung-Sen Huang and Chung-Yen Lin",slug:"stimulatory-effects-of-androgens-on-eel-primary-ovarian-development-from-phenotypes-to-genotypes",totalDownloads:141,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78116",title:"Embryo Transfer",doi:"10.5772/intechopen.99683",signatures:"Ștefan Gregore Ciornei",slug:"embryo-transfer",totalDownloads:264,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78077",title:"Cryopreservation and Its Application in Aquaculture",doi:"10.5772/intechopen.99629",signatures:"Judith Betsy C, Siva C and Stephen Sampath Kumar J",slug:"cryopreservation-and-its-application-in-aquaculture",totalDownloads:127,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},publishedBooks:{},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/39554",hash:"",query:{},params:{id:"39554"},fullPath:"/chapters/39554",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()