The 12 principles of green chemistry proposed by Anastas and Warner (based on [1]).
\r\n\tNatural hazards are potentially damaging physical events and phenomena, which may cause the loss of life, injury or human life disruption, property damage, social, economic, and political disruption, or environmental degradation.
\r\n\tNatural hazards can be divided into different groups: geological, hydro-meteorological, climatological, outer space, and biological hazards.
\r\n\tA disaster is a serious disruption of the normal functioning of a society causing widespread human, material, economic or environmental losses. A disaster results from the combination of hazards, conditions of vulnerability and insufficient capacity or measures to reduce the potential negative consequences of risk, and exposure.
\r\n\tEarthquakes, volcano eruptions, tsunamis, curst, suffusion, coast erosion, and landslides belong to geological hazards.
\r\n\tHydro-meteorological and climatological hazards are the most frequent causes of the disaster events among all natural hazards. The most common meteorological hazards are heavy rains, tornadoes, storms, hurricanes, droughts, tropical cyclones, rainstorm floods, heat waves, and low-temperature disasters.
\r\n\tA comparison of the loss events and fatalities shows that the regions with economically less-developed countries have more fatalities, but more rich countries have higher damage during disasters.
\r\n\tThe Book addresses principles, concepts and paradigms of environmental economics connected discipline, as well as operational terms, materials, tools, techniques, and methods including processes, procedures and implications.
\r\n\tThe Book equips professionals and others with a formal understanding of environmental economics topics. Clarifies the similarities or differences in fundamental concepts and principles in the discipline. Captures the wide range of expanding disciplinary activities under a single umbrella of environmental economics concept.
New chemistry is required to improve the economics of chemical manufacturing and to enhance the environmental protection. The green chemistry concept presents an attractive technology to chemists, researchers, and industrialists for innovative chemistry research and applications.
\nPrimarily, green chemistry is characterized as reduction of the environmental damage accompanied by the production of materials and respective minimization and proper disposal of wastes generated during different chemical processes. According to another definition, green chemistry is a new technique devoted to the synthesis, processing, and application of chemical materials in such manner as to minimize hazards to humankind and the environment.
\nNumerous new terms have been introduced associated with the concept of “green chemistry,” such as “eco-efficiency,” “sustainable chemistry,” “atom efficiency” or “atom economy,” “process intensification and integration,” “inherent safety,” “product life cycle analysis,” “ionic liquids,” “alternate feedstocks,” and “renewable energy sources.”
\nHence, there is an essential need to improve the synthetic and engineering chemistry either by environmental friendly starting materials or by properly designing novel synthesis routes that reduce the use and generation of toxic substances by using modern energy sources.
\nGreen chemistry is generally based on the 12 principles proposed by Anastas and Warner [1]. Nowadays, these 12 principles of green chemistry are considered the fundaments to contribute to sustainable development. The principles comprise instructions to implement new chemical products, new synthesis, and new processes as illustrated in Table 1.
\n1 | \nThe “better to prevent than to cure” principle It is beneficial to a priori prevent the generation of waste instead of later on treating and cleaning up waste | \n
2 | \nThe “atom economy” principle Synthetic production routes have to be planned in a way maximizing the incorporation of all the compounds used in the synthesis into the desired product | \n
3 | \nThe “less precarious chemical syntheses” principle Wherever feasible, such synthetic methods have to be aspired, which resort to and generate compounds of no or only insignificant noxiousness to the environment and human health | \n
4 | \nThe “designing safer chemicals” principle Chemicals should be developed in a way affecting their desired functionality, while, at the same time, considerably reducing their toxicity | \n
5 | \nThe “safer solvents and safer auxiliaries” principle Expenditure of auxiliary substances, such as solvents, separation agents, and others, should be avoided wherever possible; if not possible, harmless auxiliaries should be used | \n
6 | \nThe “design for energy efficiency” principle The environmental and economic impact of energy demands for chemical processes should be analyzed in terms of followed by optimizing the required energy input. Wherever practicable, chemical synthesis should be carried out under mild process conditions, hence, at ambient temperature and pressure | \n
7 | \nThe “renewable feedstocks” principle Whenever feasible in technological and economic terms, synthetic processes should resort to such raw materials and feedstocks, which are renewable rather than limited | \n
8 | \nThe “derivative reduction” principle Redundant derivatization, e.g., protection/deprotection, the use of blocking groups, or temporary modification of physical/chemical processes, requires additional reagents and often contributes to additional waste generation. Therefore, wherever possible, they should be avoided or reduced to a minimum | \n
9 | \nThe “catalysis” principle Generally, catalytic reagents are intrinsically superior to stoichiometric reagents; these catalysts should be as selective as possible | \n
10 | \nThe “degradation” principle Chemical products have to be designed in such a way that, at the end of their life span, they do not resist in the biosphere, but disintegrate into nontoxic degradation products | \n
11 | \nThe “real-time analysis for pollution prevention” principle Advanced analytical methods have to be developed, which permit the real-time, in-line process monitoring and control well before hazardous substances are generated | \n
12 | \nThe “accident prevention by inherently safer chemistry” principle Compounds and the compound’s formula applied in a chemical process should be chosen in a way minimizing the risk of chemical accidents, encompassing the release of chemicals, detonations, or fire formation | \n
The 12 principles of green chemistry proposed by Anastas and Warner (based on [1]).
This statement is one of the most popular guidelines in process optimization; it describes the ability of chemists to redesign chemical transformations in order to minimize the generation of hazardous waste as an important step toward pollution prevention. By preventing waste generation, the hazards associated with waste storage, transportation, and treatment could be minimized.
\nThis principle is easy to understand and easy to apply, and examples from both industry and academia have proven its significance, relevance, and feasibility. This pillar of green chemistry is still valid; however, we have to conceive it in a broader context, switching from a restricted interpretation of waste based on its quantity to a universal approach to deal with the topic “waste”: (1) We have to take waste’s multidimensional nature into account. (2) We need to move from a “quantity of waste per quantity of product” principle toward a principle addressing the “quantity of waste generated per function provided by the product.” In this context, we have to aim at making both quality and functionality of products superior. (3) Considering the entire life cycle of a product, we have to address the fact that not only the production process itself generates waste but, moreover, “end-of-life waste” accrues after the product’s life span or its consumption. This encompasses firstly the conversion of such materials up to now considered as waste into valuable products and, secondly, their recyclability.
\nGenerally, moving toward “zero-waste production” and “waste prevention” encompasses the modernization of industrial processes through clean production techniques. These techniques aim at the reduction of gaseous emissions, effluents, solid residues, and noise generation; generally, they are developed to contribute to the protection of climate and environment [2]. However, the most auspicious strategy to prevent waste generation would simply be not producing the desired product. In most scenarios, this will not be practicable; however, it might be reasonable to instead produce completely novel products, which display higher quality and longer durability. Lower quantities of such novel, superior products are sufficient to fulfill a desired function. An alternative approach is to avoid that the product can be transformed into precarious waste, e.g., by making plastics accessible toward biodegradation or by a priori switching toward biodegradable plastic instead of highly recalcitrant petrochemical plastics. According to these ideas, we need to fundamentally reconsider our understanding of waste as hazardous material that needs to be disposed by enhancing the status of waste to a valued resource, which can act as starting material for generation of new products [3].
\nAtom economy is a concept developed in the early 1990s to evaluate the efficacy of chemical conversions on an element-by-element basis [4]. In analogy to well-established yield calculations, the concept of “atom economy” is based on the ratio of the entire mass of atoms in the target product to the entire mass of atoms in the starting materials. One option to reduce waste generation is to plan such chemical transformations, which maximize the integration of all materials used in the process into the final product, resulting in a number of wasted atoms as low as possible. Hence, selecting such chemical conversion routes, which incorporate the major share of starting materials into desired products, displays higher efficiency and contributes to waste reduction. This concept is nowadays widely implemented in new routes to generate various organic compounds, e.g., such substances that are used in the biomedical and pharmaceutical field [5, 6, 7].
\nOne factor that is greatly speeding the incorporation of pollution prevention into industrial manufacturing processes is the development of green chemistry. According to an alternative definition, chemical synthesis methods should be designed in such a way to maximize the incorporation of different potentially hazardous materials, such as spinning precarious waste with cement and sand to produce improved paste used in construction applications [8, 9] or to incorporate radioactive wastes as immobilizing material to produce a safe stabilized form of waste [10, 11]. In a similar vein, combining recycled poly(ethylene terephthalate) (PET) waste with cement paste displays a viable strategy for immobilization of hazardous wastes, e.g., radioactive borates [12, 13].
\nIn synthetic organic chemistry, effecting a successful chemical transformation in a new way or with a new molecule or in a new order is what matters regarding the principles of green chemistry. Various researchers have clearly demonstrated the direct relation of toxicity and the associated hazards and risks allied with chemical reactions to the matrix of matter present in the reaction vessel. Generally, the holistic toxicity spectrum of products or processes, together with most other sustainability and green chemistry criteria, is highly impacted by the chemistry behind a process and the transformation contributing to a chemical synthesis chain. An exception is identified in such cases where a molecule is produced by purpose, which is designed to display toxicity and/or biologically activity. For example, this scenario is found in the case of various molecules synthesized for pharmaceutical or agricultural applications; such compounds exhibit toxicity and/or impact living organisms.
\nSelection of compounds and materials to be used to increase the efficacy of chemical transformations is a pivotal point in process development; chemists should dedicate increased attention to the decision on which materials to be put into reaction vessels. It is simple to disregard all the other materials and to dedicate all efforts exclusively to the chemosynthetic pathway, which provides us with the desired product. However, discounting all the other matter present in a production process ultimately results in a high price to be payed, and we finally have to get rid of this scenario. Sometimes, chemists actually produce hazardous molecules, and, therefore, the subsequent principle is dedicated to the design of molecules which are intrinsically safer in their nature [14].
\nChemical products should be designed to achieve their desired function with at the same time minimizing their toxicity. New products can be designed that are inherently safer, while highly effective for the target application. For example, the direct incorporation of radioactive spent liquid scintillation waste into cement combined with clay materials is considered an added value in the immobilization of the hazardous organic wastes in very cheap materials and natural clay to produce a safe stabilized product easy for handling, transformation, and disposal [15, 16].
\nThis principle promotes the use of safer solvents and auxiliaries. It is about any substances that do not directly contribute to the structure of the reaction product but are still necessary for the chemical reaction or process to occur. Mostly, reactions of organic compounds take place in liquid milieus, where the solvent acts in different ways: it can enable enhanced contact between the reactants, it can stabilize or destabilize generated intermediates, or it can influence transition states. In addition, the applied solvent also governs the selection of adequate downstream and regeneration processes and recycling or discarding techniques. By taking the ecological effect of chemical processes in consideration, innovative concepts for substitution of volatile organic solvents have become a great challenge in green chemistry. A green solvent should meet numerous criteria such as low toxicity, nonflammability, nonmutagenicity, nonvolatility, and widespread availability among others. Moreover, these green solvents have to be cheap and easy to handle and recycle [17, 18]. Prime examples are provided in the field of extractive recovery of microbial polyhydroxyalkanoate (PHA) biopolymers, typical intracellular storage materials, from biomass [19]. For this extraction process, which is typically carried out by the use of precarious halogenated solvents, one more and more resorts to less harmful greener solvents [20, 21, 22], or to new recovery methods which entirely do without any solvents [23].
\nUsually, energy is used to enhance the human life in important ways. The traditionally used energy sources like coal, oil, and gas are limited in supply, and their combustion releases greenhouse gases. For continuous improvement of life quality, both move toward renewable energy and design for energy efficiency are needed. Designing more efficient processes by choosing the most suitable technologies and unit operations has to go in parallel with selecting proper energy sources. Using an electric motor with energy sources generated from the sun and wind is more effective in ecological terms instead of using fossil fuels. How energy is converted to useful forms and where it gets lost are the most important questions for engineers and designers to help society use energy more effectively.
\nConsequently, green chemistry includes minimization of energy loss like mechanical friction, fluid drag, and unwanted heat transfer, by improving the layout and insulation of a refrigerator or designing lighter vehicles with enhanced aerodynamic characteristics and lower rolling resistance.
\nIn addition, when developing a new production process, the effect of geographical location of production plants has to be taken into account: ecological comparison of different production scenarios for the same product, in this case bioplastics, clearly demonstrates that different energy production technologies, resources for energy production, and the effect of available energy mixes in different countries become significant for the ecological footprint of a new process [24].
\nAccording to the principles of green chemistry, a raw material or feedstock should be renewable rather than depleting whenever technically and economically practicable. Using renewable resources like microbial or plant biomass, which are embedded into nature’s closed carbon cycle, represents a real option to prepare functional bioproducts in a sustainable way and to contribute to energetic transition.
\nIn the context of the Green Chemistry Principle #7, which addresses the renewable feedstock thematic, we nowadays witness a vast number of current multidisciplinary collaborations, involving the fields of, among others, agronomy, biochemical engineering, biotechnology, chemistry, microbiology, physics, toxicology, or engineering. These collaborations result in the development of next-generation fuels, polymers, and other materials pivotal for our today’s society based on renewable resources and characterized by low impact on health and environment. The current global dynamic of these developments indeed gives reason to optimism for the future [25]. Finding a method to convert raw wastes such as spinney waste fibers into a mortar composite stabilized material could be an excellent application of this principal of green chemistry [8, 9, 10, 11]. Whenever switching from fossil feedstocks to renewables, one has to consider that using renewable resources enlarges the process concept by incorporating resource provision, transportation, storage, and other aspects of logistics into the process design. Such a switch in feedstock provision, however, results in a fundamental change in the structure of processes, used technologies, and the economical concepts of industry and society [26].
\nMany processes could be designed in such a way to reduce the use of additional reagents and the resulting wastes. It is commonly necessary to synthesize a derivative of a compound containing groups which are not needed in the final product, but which allow the synthesis or purification steps to proceed more easily. However, these derivatives result in lower atom economy, since they introduce atoms that are not incorporated into the final product, but finally end up as waste; this is in conflict with the atom efficiency principle according to Table 1. For many reactions that have traditionally required protecting groups, chemists are currently devoting research efforts to finding alternatives that do without them [27].
\nCatalysis is the chemical reaction enabled or accelerated by a catalyst. According to Ostwald, catalysts are substances that speed up a reaction by enabling an energetically favored transition state between reactants, but which are not consumed by it and do not appear in the net reaction equation [28]. Catalysts play an essential role in our modern industrial economy, in our stewardship of the environment, and in all biological processes. Saleh and others found that iron and copper sulfate as catalysts improved the mechanism of oxidative degradation of cellulosic wastes using 35% hydrogen peroxide. High weight reduction up to 95.2% in the presence of copper sulfate and 87.8% in the presence of ferrous sulfate was reported [8, 29, 30]. Recently, synthesis of nano-catalysts of specific size and shape was developed to allow facile movement of materials in the reacting phase and the control over morphology of nanostructures to tailor their physical and chemical properties. Nano-catalyst systems encompassing a paramagnetic core allow rapid and selective chemical transformations with excellent product yield coupled with the ease of catalyst separation and recovery [31].
\nTalking about catalysis, it is nowadays indispensable to spend some words on the topic biocatalysis; hence, the application of enzymes as highly selective and active catalysts produced by Mother Nature. Not only do enzymes carry out the desired reactions under mild conditions of temperature and pressure, which is analogous to the above-discussed energy efficiency principle. Moreover, they are predestined to drive reactions of renewable materials (analogy to the renewable feedstock principle) and, in some cases, even enable reactions that are not accessible by using traditional catalysts, such as the generation of some enantio-pure products [32]. In addition, biocatalysts in a free or immobilized form are to an increasing extent applied for bioremediation, hence, the mitigation of pollutants from the ecosphere [33, 34].
\nIn the context of catalysis, microwave-driven chemical reaction for organic chemistry is an emerging field to drastically reduce reaction times from days to only seconds. During the last decades, this technique has matured from a laboratory shenanigan to a well-established technology, now already industrially applied [35].
\nOne of the most important objectives of green chemistry is maximizing the production with minimizing unwanted by-products. Designing of products and processes that display reduced impact on humans and the environment, such as creating sustainable mortar composite that could be considered as an value-added product suitable for various applications as inert matrix for immobilization of some low and intermediate levels of radioactive wastes, decorative tiles, building bricks, and light concrete, is reported. In this case, highly reactive hydroxyl radicals react with the organic moieties of the spinning fiber wastes either by subtracting ions of hydrogen or by addition to the unsaturated site to yield organic radicals, which are readily oxidized by oxygen. Therefore, the end products of the degradation process were only carbon dioxide and water [8, 9, 10, 11].
\nWith advancements in chemistry, the production of numerous toxic chemicals is a serious problem for the environment. One of the basic concepts of green chemistry is familiar to pollution prevention practitioners. Less hazardous materials in chemical formulations and reducing waste formation have been sounded for many years. Consequently, green chemistry aims at eliminating the usage and generation of hazardous substances by designing better manufacturing processes for chemical materials with minimum waste production by real-time monitoring of running processes. This consequently enables a timely intervention right before waste or toxins are generated [36].
\nIt is of outstanding importance to avoid highly reactive chemicals that could potentially cause accidents during the reaction. Substance and the form of a substance used in a chemical process should be chosen in such a way to minimize the potential for chemical accidents, including toxin releases, explosions, and fire formation. For example, the most abundant solution medium, water, could accidentally cause an explosion by flowing into a tank containing methyl isocyanate gas, releasing a large amount of methyl isocyanate into the surrounding area. Other well-known materials, which undergo reactions of often disastrous outcome with water, are found among alkali metals. If an alternative reaction had been developed that did not use this reagent, the risk of explosion even causing death would have been minimized.
\nIntrinsically, safe chemistry can also be carried out in flow mode, using tubular microreactors with reaction channels of tiny diameter. Such flow chemistry approaches drastically reduce the reaction volume, the reaction time, and catalyst requirement, intensifies the processes by boosting the space/time yield, opens new process windows in terms of extreme temperature and pressure conditions to be applied, and, moreover, even allows to carry out highly dangerous reactions in a safe way [37, 38]. In addition, the application of flow chemistry in microreactors also displays a strategy to overcome classical drawbacks of microwave-driven processes, such as the restricted penetration depth of microwaves into absorbing media [39, 40].
\nBiodiversity is the planet’s greatest asset [1]. Anthropocene-induced species loss is estimated at up to 10,000 times the rate of natural extinction, in which Hui et al. [1] argue agriculture, next to overfishing, industrialisation and urbanisation, plays a considerable role. Humans rely heavily on ecosystem services, which include cleaning air and water, stabilising weather, maintaining soil fertility, dissipating waste, controlling pests, pollinating crops, generating power and discovering new antibodies, and providing food, timber, cloth, medicine, minerals and industrial materials such as coal, oil, gas, rubber, plastics, and chemicals [1]. Humans have never contributed to such flows, but have always made use of them, today at a rate, where such ecosystem services are less likely to be available indefinitely.
\nPlanetary boundaries, a concept developed by Rockström et al. [2], which identifies safe operating spaces within earth systems, such as climate stability, fresh water, land system change, ocean acidification, phosphate and nitrogen biochemical flows and biosphere integrity, are integral parts of the ecosystem services and represent our planet’s limits in supplying such services within the principles of our planet’s carrying capacity. To sustain humanity, we need to manage its biosphere within that carrying capacity, to maintain such services, and avoid regime shifts, mass extinction or repeating boom-bust patterns of earlier civilisations which were unable to manage their natural resources and regional carrying capacities [1].
\nOf Rockström’s et al. [2] and Steffen’s et al. [3] eight planetary boundaries, agriculture is by far the biggest contributor to defined limits of five of the boundaries; fresh water use, climate change, change in nitrogen and phosphate bio-chemical flows, land-use change as well as biodiversity loss. Agriculture also contributes up to 30% of CO2 emissions to climate change [4, 5] and is, due to feedback loops from nitrogen and phosphate bio-chemical flows and deforestation, also a great contributor to biodiversity loss [2, 3].
\nNelson et al. [6] suggest that due to climate change, global agricultural output is likely to decline between 10 and 15% in the next 60–70 years and even up to 50% in drier regions of Africa. Compared to the rest of the continent, arguably, much of South African (SA) agricultural land is located within such dry regions. With predicted changes, SA might need to consider whether its conventional farming (CvF) systems are appropriate going forward, while on the other hand evidence shows that alternatives, more sustainable farming systems such as CA, are comparably more climate resilient [7, 8, 9]. Arguments that farmers should adapt to such production systems in order to mitigate an output reducing impact due to climate change are weighing in more and more.
\nLow tillage, a form of CA regularly practiced in KwaZulu-Natal (~60%) and the Western Cape (>70%), indicates that in two provinces good headway has been made in favour of CA; yet finds little to no adoption in other provinces [10]. CA is based on three principles, no-till, crop rotation, and cover crops (residue retention) to increase both soil organic matter, aggregate stability and water holding capacity, while reducing soil bulk density, erosion, carbon emission and exposure to drought and ultimately increased yield [11]. With rain-fed crops in dry climates, CA can significantly increases productivity [12]. Pittelkow et al. [12] also argue that this indicates that CA will play an important role in mitigating the impacts of climate change. Therefore, CA is one of many farming practices farmers can adopt to farm with less environmental impact, while preparing for climate change.
\nMidgley et al. [13] argue that while South Africa’s National Development Plan has identified agriculture as a primary economic objective, although not explicit, it is biased towards large scale, commercial and CvF practices, such as tillage and monoculture. South Africa’s Integrated Growth and Development Plan [14], as well as the Agricultural Policy Action Plan [15], on the other hand, promote equitable growth and sustainable use of resources.
\nFood security is defined as having access to food of nutritional value at all times [16]. In this article we argued that CvF in a world of climate change poses a risk to food security, while a focus on more sustainable farming practices such as CA uses less water, requires less nitrogen and phosphate, sequesters CO2 and diversifies the ecosystems of farmland, with the ability to decrease soil erosion, increase soil life and fertility and other ecosystem services to the benefits of a farmer’s long-term profitability [11, 13, 17, 18]. Its uptake, however, remains low in SA. We argue that CA has an important role to play in a transition and show why, from evidence of our research, CA does not find support from SA food value chains.
\nThis leads to questions such as: why CA adoption rate remains low; what role agricultural VCPs can play to promote CA; and what institutions, policies, and VCPs are responsible for hindrances to adoption? What limitations do VCPs themselves experience in potentially supporting CA, and how do feedback loops in existing business models of VCP block a transition to CA?
\nOur study was undertaken as an ethnographic based research exploring business cultures and morals using qualitative semi-structured interviews. The questions for the research participants (VCPs) were not directed at any commodity in particular; however, because we also questioned silo owners and millers of maize, answers of some VCP often hinged around maize, also a main crop type in South Africa [19]. The choice of businesses interviewed was based on their involvement in the food value chain and their general size and importance they played and impact they had in their respective industries. Because of the sensitivity of the topic the interviewer needed to let go of any presumptions and assumed a less critical and more supportive attitude to attain more unbiased responses from the participant.
\nThe interviews were then transcribed to attain primary qualitative data. For the coding and categorising, we used grounded theory as an inductive systematic methodology typically used in social sciences to analyse qualitative data and give it conceptual structure through categorisation of general themes emerging from the data [20, 21, 22, 23].
\nPreceding the analysis and results of the research data, we reviewed literature to assess existing knowledge around the challenges facing existing economic and ecological farming systems and relate it back to CA.
\nConventional agricultural systems, particularly practiced in the developed world, produce vast amounts of food, yet they come at a significant cost to the environment. While the situation is complex, the details are often not acknowledged; in the following we outline high level important aspects that challenge the long term economic, social, and ecological sustainability of CvF and then show what alternatives exist that could replace CvF practices.
\nCovering 1/3rd of the planet’s surface [24] agriculture has resulted in disturbed ecosystems [25, 26, 27], land degradation [28], loss of biodiversity [29, 30, 31], leaching fertiliser, nitrification of groundwater, eutrophication of above groundwater ecosystems, coastal dead zones [26, 32], small organism mortality [33, 34], and biological resistance build-up against agrochemicals [35, 36, 37]. Modern industrialised agriculture and overgrazing are blamed for destroying a third of the planet’s topsoil within 40 years, adding 10 million hectares every year to the toll of soil erosion [38] which is 100 times faster than naturally occurs [39].
\nWe deploy 2½ million tons of pesticides and fungicides annually and nevertheless lose 40% of crops globally to pests, diseases and weeds [40], while its use is also responsible for over 40,000 human deaths and 3–5 million cases of pesticide poisoning every year [41]. At no time in history has agriculture had such a high impact on the environment than in the last 100 years [25, 42, 43, 44].
\nAgriculture globally occupies 13 times more land than any other Anthropocene land use [24] and is arguably the biggest contributor to biodiversity loss and altogether the greatest human impact on our “planetary boundaries” [2]. Seventy percent of all freshwater globally is used for agriculture [41], while in SA it is estimated to be 63% [45] with no surplus for future development [46]. Agriculture is energy-hungry, emitting up to 25% of global CO2 [5, 47, 48, 49], while the USA uses 17% of all its energy to get food through the value chains onto its tables [50]: that is 1000–1500% more energy than what the food itself contains in the form of energy [48, 49].
\nFood-related health issues, like diabetes in industrialised countries [25], keep growing, as the nutritional value of fruits and vegetables dwindle [51, 52, 53] and are less present in conventional farmed produce than in organic produce [54]. Nutritional losses continue to occur during processing and storage, typical for industrialised food systems [55, 56, 57].
\n“The roots of this crisis lie in the preceding decades of excess…” says the global financier George Soros and “…for 25 years the West has been consuming more than we have been producing…living beyond our means” Australian Prime Minister in the Sydney Morning Herald July 25th 2009 [58]. Consumption and growth cannot continue ad infinitum on a finite planet [59]. However, our entire economic model is based on growth funded by debt [60, 61], and as unlikely as economic growth can continue indefinitely, growing debt by civil society, businesses, and government, will also find its limits. A bubble is likely to burst once planetary boundaries and ecosystem services [62, 63], needed to fuel the growth, reach their limits.
\nCA practiced with LEI, in combination with cover crops, has the ability to harvest atmospheric nutrients, build soil organic matter, increase soil life, loosen soil, increase water holding capacity and aggregate stability, reduce soil compaction, reduce erosion, recharge the water reservoir, improve water quality, reduce nutrient leaching, and increase pest, disease, drought resilience, and CO2 sequestration [64, 65, 66, 67, 68, 69, 70, 71]. A favourable argument in using cover crops as part of CA is the financial viability with increased crop yields and decrease input costs [65, 72, 73].
\nThe yield gap between CvF and organic farming (as another sustainable production system with many parallels to CA), especially with proper diversification practices, is 8–9% smaller than originally estimated [74]. Using 1 ton less synthetic nitrogen fertiliser in organic farming saves the equivalent of 5.2–7.6 tons of carbon emissions [75]. Organic fertiliser in Ethiopia have increased yield by 2–3 times, outperforming inorganic fertilisers [76]. In the US, organic farming achieves comparable yields, but are 28–34% better during droughts [7, 8, 9].
\nConventional tillage increases soil-based CO2 respiration and has almost 14 times the carbon emission than no-till [77]; additionally exacerbated by warming global temperatures [78, 79], adding up to 50Pg of soil carbon emissions for the Anthropocene, due to tillage [80]. Organic agriculture uses 2–7 times less energy than conventional agriculture [81, 82] and sequesters 5–15% of greenhouse gas emissions [83, 84]. Tropical agro-forestry systems can sequester between 4 and 6 ton/ha of carbon annually [85, 86, 87]. Coghlan [88] even argues that trees planted by local farmers in the Sahel can push back the desert.
\nA study in Europe has shown that organic farms support more birds, butterflies, beetles, bats and wild flowers than conventional farms, while biodynamic farms have higher levels of soil fertility than organic farms and considerably higher than conventional farms [89, 90].
\nWhile we see clear benefits to more sustainable farming practices, such as CA, penetration in South Africa remains low and highly variable between provinces [11], the question remains, why are we not seeing CA products in retail shelves more regularly, or why, when CA poses less risk, do financial institutions not promote CA?
\nThe findings of this research are concluded from data collected through interviews with some of the largest agricultural VCPs in South Africa, trying to assess if there are blockages inhibiting CA produce from penetrating the market on a broader scale, and if there is potential scalability of CA produce through these value chains. The following narrative details the results of our interviews.
\nThe benefits for banks to promote CA to farmers is to end up being less exposed to risk themselves; a capital exposure risk due to drought, potentially exacerbated by climate change. We interviewed four of the largest banks in South Africa, all of whom have been supplying credit to commercial farmers for decades. We asked them whether they had CA tailored products with reduced premiums for farmers because of less perceived risk. Almost all interviewed banks responded in one way or another, saying that they fundamentally did not get involved with production-based decisions around farm practices, such as CA. Three banks argued that these were decisions farmers needed to make for themselves, and as one bank put it, banks would otherwise be in conflict with lender’s liability principles.
\nAll of the four banks argued that good production practices for a farmer automatically showed up in production output benefits and a better balance sheet, which in turn would result in a lower risk profile for a farm and in turn, result in a cheaper credit with better premiums. The argument that this might take years for farmers to achieve was generally responded to that that was the nature of farming. One bank confirmed their view that a production method changeover, specifically to CA, would more likely result in an initial increase in cost and reduction in yield, before any yield increases could be observed and benefits would reflect on the balance sheet for farmers to attain better premiums.
\nSubsequently none of the banks supplied a product that would give farmer credits with reduced premiums should a farmer convert to CA. Only one of the interviewed banks was aware of research that evidenced that CA was a less risky production method, especially in times of drought. Two of the banks stated they would not plan for a specific product for farmers that would entice them to do CA if research were to evidence CA was actually a less risky production method. In contrast the other two banks indicated that they would think about making CA part of the funding application decision or create a product that would have less ‘hurdles’ during credit approval process, if research showed CA did reduce risk.
\nAll four banks, however, agreed that if CA mitigated risk, it would in any event ultimately reflect on the financial track record and performance over time and subsequently reduce their risk profile, in turn again reducing the premiums these farmers would have to pay. However, a credit offer always remains a decision based on analysing every farm’s risk profile, individually.
\nInsurers are first and foremost exposed to hail and then to drought. Insurers’ willingness to take on climate risk on behalf of the farmers makes them also susceptible to the farming practices of the farmer, particularly where new machinery and farming principles such as CA have the ability to reduce drought risk and risk of exposure for insurances. The benefits for insurers to promote CA to farmers is not only about reducing risk of capital exposure to drought, but also other climate change risks and the impact of pests and diseases. With a lower risk premiums insurers charge could be less, which would add economic benefit to the farmers and speed up adoption of CA and a transition to more sustainable farming practices.
\nWe interviewed three of the largest insurers, who together cover around 80–90% of the market in South Africa. None of them had a product tailored to accommodate farmers that farmed with CA practices, or a product that supported the adoption of CA, and none of them indicated that they were thinking of having such a product in future.
\nWhen confronted with the questions whether they knew about research that evidenced that CA resulted in more climate resilience and less water stress the insurers argued, similar to banks, that their business model with the way the calculations were done for pricing policy premiums, would automatically benefit those farmers who chose good farming practices that gave consistent yield and had the ability to decrease risk of crop loss at the same time. For example, a farmer that could consistently show stable historic yields, even during draught or ‘environmental shocks’ would automatically get a cost benefit on the premium of the policy, than a farmer that had bumper yields in good years, but suffered great losses during droughts.
\nOne insurer said, the principle of insurance hinges around good practice, no matter if you use CvF practices or CA practices. Good practice reflects in the historic records, which they would use to price the premium. However, to attain such benefit the track record and historic proof needed to be in place and that would take a few years before reflecting as a better guarantee against crop loss or as a better price on the policy, or both. Farmers who made use of a lot of fertiliser, yet did not look after their soils, this insurer said, might well be likely to show more yield than CA farmers in bumper years, but were also much more likely to suffer greater losses during challenging years. Another insurer said that a well-developed underwriting process would pick up such fluctuation risks and subsequently price more expensively.
\nWhen asked whether they as insurer would think about developing products to entice the farmer to take the route of CA and get a better premium without needing to wait many years to benefit, all three interviewed insurers were not thinking of developing such products, nor seemed in favour of it. It would not work with their underwriting principles one insurer argued. One of the few risk mitigating tools they had, this interviewee said, was to work with some form of proof of historical data; you could unfortunately not insure just on a promise that something might happen.
\nAll three of the interviewed insurers knew, or had read something about CA being able to reduce risk by being more climate resilient and building soil structure that would enhance the ability of soil to retain more water. However, to one of the insurers drought was less of a risk than crop loss due to hail and for hail CA had no solution. The interviewee said that they were less exposed to drought, as only after germination would their insurance kick in, and because germination would mitigate a large portion of risk the exposure to drought was less risky than hail. For example, if a farmer has not planted because of low rainfall, or the seed has not emerged because of low rainfall, there will not even be a policy in place to claim against, because the policy is only triggered after the seed has emerged. Because their exposure to drought was so low, getting farmers to farm CA would only have a very small effect on their business in any event, not validating the effort to develop a product targeted at supporting CA.
\nAnother insurer challenged the notion that farmers actually understood the relationship between CA, soil organic matter, the ability to store more soil moisture and what that meant for their crops being more climate resilient. To this insurer, the one farmer he knew only wanted to do CA because of the no-till aspect, which saved fuel and was less capital intensive. This farmer was less thinking about CA benefits on future yields being at less risk due to climate change but was more interested in reducing costs.
\nThe interviewed traders and food processors package maize and maize starch products into end consumables that they sell to supermarkets. Consumers’ choice in front of retail shelves influences their brand and supporting a procurement of CA produce could attach a sense of sustainability to their brand and grow an awareness amongst their consumers that their brand is ecologically just and fair to the planet’s recourse base. The question is if this is a valid and sufficient argument for the traders to get farmers to supply them more CA farmed produce. We interviewed two large traders and food processors in South Africa that were also owned silos and milling operations of maize. Due to their large product profile, their answers considered a wide range of products.
\nThe term CA generally confused both traders as they were not sure how it related to organic and GMO-free farming practices. In contrast to banks that have dedicated agricultural business units with knowledgeable staff, the traders usually purchased produce from other traders and cooperatives, without needing to understand production methods. After explaining CA in a bit more in detail, the interviewee’s answers were more cantered around general sustainability including responses around organic and GMO-free produce. The general topic though was still in line with CA principles.
\nBecause the two interviewed traders were buying from other traders, silo owners, and co-operatives, they had no control over what was in the silos from which they attained their maize, or what portion of the maize in a silo was from CA practices. One trader said they would not keep GMO maize separate, even if they had access to it, as they used about 300,000 tons of maize a month and keeping anything separate in their storage, in such type of bulk environments, would not make sense, specifically for South Africa where 70% of maize is farmed as GMO maize. This trader mostly bought from silo owners, other traders and co-ops, and other than during harvest, in order to fill their own silos, they would not buy directly from farmers.
\nThe same trader said that if he had a farmer that farmed using CA, or was GMO-free, it would be just too small for him to go and collect a 100 tons, which is three truck loads, while they are looking for at least, between 3000 and 5000 tons to fill a silo. This trader claimed that such small quantities would not be viable within their system, where they would have to thoroughly clean an entire mill or alternately install a whole new mill for R120m. This miller did not foresee any change happening in the near future for them, and the second trader said he could not honestly comment on whether there was a trend amongst farmers to go GMO-free or CA, as they were too detached from farmers to comment.
\nBoth traders also perceived that there was no demand for CA, GMO-free or organic, and subsequently there was no strategy within their companies to attain certain products or create product ranges that were either GMO-free, organic or farmed with CA practices. One trader confirmed that there was merely demand for GMO-free maize from an insignificant part of the population, a mostly health conscious upper-class society, who at the same time, he criticised, did not understand GMO. There was also no pressure on them from the market side supplied more GMO-free or CA produce. One trader said that they were processing huge volumes and that the odd packet of organic maize, organic flour, non-gluten flour, or GMO-free sold in Woolworths were of such small quantities that they were sourced from completely different channels and producers, rigged to supply such a niche market, which was not theirs to serve.
\nBoth traders agreed that for them as big millers, it was not feasible to separately mill and brand for a potential small volume of GMO-free, CA, or organic demand. While one trader believed that this situation would not change for them in the near future, the second trader said that they would switch over to GMO-free, once the majority of farmers did so as well and reliable volumes and batches could be processed in that way. However, in contrast to GMO-free, CA was not at all on the radar for them, as the market did not understand what it meant, and the demand was not there.
\nAround the question of how government could get involved with creating a supportive framework for CA, both responded very similarly in that open market principles of supply and demand should prevail and government should not interfere with legislation or policy. One of the traders said that they did not want a duty on maize, as it existed with wheat, especially where the duty funds disappear and are not invested back into agriculture. This interview participant said that if ever government were to think about a maize duty on such a large staple, it should be used to flow back to agriculture to change the farmers’ minds to do CA. One trader responded that government should be careful not to ‘play’ around with the basic food needs of a nation, and should let free market forces of supply and demand regulate the food supply.
\nSimilar to traders, were supermarkets to support CA through preferential procurement could likely attach a sense of sustainability to their brand and grow also an awareness amongst their consumers for being ecologically just and fair to the planet’s recourse base. The question arises whether this is a valid and sufficient argument for retailers, who compared to traders have a direct engagement with end consumers, to encourage farmers to use CA.
\nWe interviewed three major retailers in South Africa, all of whom had some form of sustainably farmed produce on their shelves already. The interview was conducted with senior employees of these organisations who were responsible for, or involved with, the purchasing of farm produce. During the interview, the respondents tended to focus their answers more around sustainably farmed products than specifically CA produce. The retailers, as became clear, have not been confronted with CA produce specifically, but usually with a host of differently and sustainably farmed produce, ranging from organic to low carbon etc.
\nThe retailers did not have dedicated shelves that sold CA produce, as most of them had for organic products; they would either be on the same shelf and branded differently or altogether placed somewhere else. None of the retailers had CA farmed maize in their portfolio, and when asked whether they would buy CA produce if it were readily available, two of the three retailers would probably purchase CA products if there were a demand for CA produce. One retailer said it would be pointless to buy it, if the consumer did not understand what it was. To that retailer, the average consumers was more likely to understand, or have heard about GMO-free or organic produce, but not CA produce.
\nAll three retailers agreed that there was very little understanding from the consumer side about CA, and that it was unlikely to change in future. The retailers said that a lot more education would need to take place for the average consumers to understand CA, or even organic farming, and until then, the demand is low and is likely to stay low.
\nHowever, one retailer said that it saw CA practices amongst farmers increasing, independent from market demand. They could see it, for example, through produce like sweet corn, with very successful farmers doing no-till sweet corn. To them, the increase in CA seemed likely, and it would be driven from the farmer side, as the benefits of CA were for the farmer and less for the consumer, at least at this stage.
\nIf asked whether they would focus specific product ranges on organic, or sustainably farmed produce, the answers varied between the retailers. Although not specifically focussing on product ranges, one retailer had bad experiences of organic produce and subsequently had more grocery line products like olive oil and biscuits that were organic than fresh produce, which they had tested unsuccessfully a few years earlier. This was related to an inconsistency in supply and price premiums of 25–30% for organic produce which consumers were not prepared to pay. The second retailer said that they also did not have any specific focus on organic or sustainably farmed product ranges, but that they had a wide range of produce and groceries, with a slightly stronger hold on organic fruit and vegetables.
\nThe third retailer had a very high turnover with one specific fruit and because it was as a high-volume product it was fairly easy to maintain the flow of this organic certified product. Through their programme, they said they would try to get as much sustainable produce as they could, and although it was not easy, the whole idea of the programme was to start making farmers think more about how they were farming.
\nFor most retailers, the consumers understood organic farming, but not CA and responded with an unwillingness to start branding another sustainable production method and to educate the consumers. One retailer suggested a softer approach to building a stronger base for sustainability was a better way, than to go out and brand a host of sustainable production methods, it would confuse the consumers.
\nThis retailer also argued that the consumer is often very indifferent to whether produce is farmed in a sustainable manner or not. This retailer argued that their own internal research showed that they could, for example, have tomatoes come from a producer that farmed according to their sustainability programme and another that did not and selling the tomatoes at the same price did not make the consumer chose the sustainably-farmed produce more. The retailer reiterated that it is mostly a benefit to the farmer to farm more sustainably, as many of their suppliers farmed their produce less expensively than those who did not farm sustainably.
\nFrom both the grounded theory used to analyse the qualitative interview data and the qualitative data collected we have generated Table 1. There are four major themes that we could identify using coding principles of grounded theory and Table 1 shows for each of those themes how each of the VCPs is positioned against a theme.
\n\n | Do you have a CA product? | \nDo you plan for a future CA product? | \nDo consumers demand CA? | \nWhat are you inclined to support? | \n||||
---|---|---|---|---|---|---|---|---|
\n | Yes | \nNo | \nYes | \nNo | \nYes | \nNo | \nCA | \nOrganic | \n
Banks (4) | \n0.0% | \n100.0% | \n25.0% | \n75.0% | \nn.a. | \nn.a. | \nn.a. | \nn.a. | \n
Insurers (3) | \n0.0% | \n100.0% | \n0.0% | \n100.0% | \nn.a. | \nn.a. | \nn.a. | \nn.a. | \n
Traders (2) | \n0.0% | \n100.0% | \n0.0% | \n100.0% | \n0.0% | \n100.0% | \n0.0% | \n100.0% | \n
Retailers (3) | \n0.0% | \n100.0% | \n0.0% | \n100.0% | \n0.0% | \n100.0% | \n0.0% | \n100.0% | \n
Total | \n0.0% | \n100.0% | \n6.3% | \n93.8% | \n0.0% | \n100.0% | \n0.0% | \n100.0% | \n
Summary of responses around CA (sample sizes in brackets).
While some retailers supported organic products, none of the VCP had any form of products which supported CA and with exception to one bank, next to none of the VCP were thinking of or prepared to develop products related to CA. This notion also closely relates to the last column on the right, where all retailers and traders indicated that if they were to choose to support either organic or CA, they would support organic because it is an established brand. In other words, no one was prepared to engage in establishing another brand around CA.
\nBoth retailers and traders also indicated that it is very unlikely that any of their clients would demand CA farmed produce as they were also very unlikely to understand what CA was about in first place. Across the board of all interviewed VCPs there was very little support for CA or to drive a change to more CA farming practices.
\nGenerally, there was a broad confusion amongst all respondents around what CA meant, and how that related to organics and GMO. Even a retailer that was well versed in the procurement of foods from more sustainable farming practices was not sure what was meant with CA. Many interviewees believed a lot of consumer education efforts would need to happen before they could drive CA from a marketing perspective.
\nWhile the retailers did have sustainable products like organic, branding a second sustainability label did not make sense and therefore they also did not put pressure on traders and millers to supply them with CA products. The opinion amongst the retailers and traders was that maize was purchased from other traders, cooperatives and silo owners, where there was no control over the separation of CA maize and non-CA maize. The traders agreed that it would be cumbersome and expensive to try to keep CA maize separate, and it would only ever work if most farmers were to switch over to CA farming.
\nThe feeling from one trader was that generally, government should not get involved in regulating the market, as it did with the duty on wheat. If, however, any duty was to be imposed, the funds from such a duty could be used to fund agriculture and be used to possibly support CA through extension for example. On the discussion of GMO-free products, the traders would not change their operations or invest heavily for a small consumer group perceived to have ‘upper-class angst’. The retailers also showed an unwillingness to start branding another sustainable method next to organic produce, which by now only a few consumers understood.
\nThe feeling amongst the banks was that they do not get involved with what is fundamentally a farm production level decision which was to be made by the farmer himself. In any event, lender’s liability principles would not allow them to dictate any form of farming operations when giving a credit. Banks argued that if CA mitigated risk, it would automatically show on a farmer’s balance sheet, and subsequently affect the risk profile and credibility of the farmer to his benefit; although most respondents agreed that it would take years for a farmer to see such benefits reflecting on his credit profile. While one bank was sure to create a product that in future would assist farmers converting to CA, two more hinted that there was the possibility of a future product that assisted farmers going CA and supported them through a potential initial cash-dip, if CA research proved to be less risky and more productive for farming in the South African context. Policy could therefore support more research into CA benefits for individual regions of South Africa.
\nAll the interviewed insurers seemed to know about research that evidenced that CA resulted in more climate resilience and less water stress. Similar to banks the insurers argued that by the nature of their business model and the way in which the underwriting process works, calculating policy premiums, farmers would automatically benefit if they chose better farming practices that resulted in more consistent yields with decreased risk of crop loss. None of the insurers were also supporting the notion of developing a future product that supported CA. Because mitigating risk is the insurer’s business, they would not insure a new system based on a promise that it might mitigate drought in years to come. For one insurer drought risk was a small exposure and therefore drought risk mitigation was for them less high on the agenda.
\nBecause, as argued above, there is an attractive financial argument in favour of CA, farmers are likely inclined to take up CA as a farming practice for their own future financial benefits. With less ‘draught risky’ farming practices this in turn would position these more favourably in front of financial institutions such as banks and insurers. Yet such a transition would be driven by the farmer and not VCP or policy, in contrast, because almost all VCP showed little interest in developing CA targeting products, a policy driving CA support through the VCPs would likely yield little impact.
\nBased on our findings a key implication is that government policy concerning CA should endeavour to provide an enabling environment for the future uptake of CA. We suggest that a slow process of change is the route that policy should take, with key aspects focussing on policy enabling training and capacity development of farmers, through field extension and agricultural schools, to adopt CA. Because CA is also a cheaper production system and needs less external inputs, focus should be on smallholder farmers who mostly struggle with access to external inputs.
\nOver time, a policy that favourably supports CA would grow the farming user base; and in doing so end-consumers would automatically get access on a broader base to more sustainably farmed products without any system change in the value chain, in which the value chain participants have clearly indicated not to drive CA as a system.
\nWe have argued that CvF practices have high external input costs and a substantial impact on natural ecosystems, ecosystem services, soil erosion, and CO2 emissions. These are results of a conventional industrial agricultural complex that also dominates the modern South African agricultural food value chain. We have argued that more sustainable farming practices such as CA are more climate resilient and supply more nutritional value, both of which favourably impact long term food security.
\nWe have raised the question whether South Africa’s current food system has the ability to sustain long-term food security and if changes in the existing food value chain complex would be able to drive a transition into a more sustainable and food secure alternative such as CA.
\nFrom the research data we can conclude that none of the respondents had a product that supported CA and the general inclination of most interviewed was not particularly in favour to support CA through new product development in their respective institutions. Mostly it was argued that it would either interfere with their specific business-client integrity, or it would not fit into their specific business model or alternatively be too difficult to sell to the end consumer, who understood organic but not CA. The traders argued that with the large volumes and silos they worked in, keeping CA produce separate would be very costly.
\nFor the respondents from the financial institutions CA had the potential to mitigate risk, however in the eyes of most of the respondents there was yet not enough evidence to prove solid risk mitigation. Therefore, they argued, it would be better for them to rely on the existing business model and underwriting process, which would feedback a preferential pricing to a farmer automatically, were he able to use a production system that reduced risk. Subsequently the development of new products to drive the support of CA would not be required. Of the 12 respondents only one indicated that it would develop a product in future that would specifically support the adoption of CA on farmer side. Most retailers and traders indicated that if they were to drive anything sustainable they would support organic which was already an established ‘sustainability’ brand and needed far less effort to communicate to end consumers.
\nWe can conclude that South Africa’s VCPs are neither a support network today, nor will they be one tomorrow; therefore they are not a potential channel to drive a transition. However, while the VCPs were generally supportive of sustainable production methods (such as CA), from an operational perspective and from within their existing business models, VCPs are unlikely become initiators of a sustainable transition driven by CA supportive products. For policy purposes we may deduct that efforts for a transition and required training of farmers would need to focus on education rather than enforcing policy on value chains and their existing business models.
\nThis is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"10013",title:"Geothermal Energy",subtitle:null,isOpenForSubmission:!0,hash:"a5f5277a1c0616ce6b35f4b44a4cac7a",slug:null,bookSignature:"Dr. Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/10013.jpg",editedByType:null,editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10374",title:"Advances in Micro- and Nanofluidics",subtitle:null,isOpenForSubmission:!0,hash:"b7ba9cab862a9bca2fc9f9ee72ba5eec",slug:null,bookSignature:"Prof. S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10374.jpg",editedByType:null,editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10376",title:"Adaptive Filtering - Recent Advances and Practical Implementation",subtitle:null,isOpenForSubmission:!0,hash:"143698bdab370da4f6c14ddf8624488c",slug:null,bookSignature:"Prof. Wenping Cao and Dr. Qian Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/10376.jpg",editedByType:null,editors:[{id:"174154",title:"Prof.",name:"Wenping",surname:"Cao",slug:"wenping-cao",fullName:"Wenping Cao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10377",title:"Electric Power Conversion",subtitle:null,isOpenForSubmission:!0,hash:"9f41084eff07323bda451cd5c77dfaaf",slug:null,bookSignature:"Prof. Majid Nayeripour and Dr. Eberhard Waffenschmidt",coverURL:"https://cdn.intechopen.com/books/images_new/10377.jpg",editedByType:null,editors:[{id:"66929",title:"Prof.",name:"Majid",surname:"Nayeripour",slug:"majid-nayeripour",fullName:"Majid Nayeripour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10383",title:"Vibration Control of Structures",subtitle:null,isOpenForSubmission:!0,hash:"912cb4cb6d5960e126cb843ddb4e001a",slug:null,bookSignature:"Dr. Said Elias Rahimi",coverURL:"https://cdn.intechopen.com/books/images_new/10383.jpg",editedByType:null,editors:[{id:"307861",title:"Dr.",name:"Said Elias",surname:"Rahimi",slug:"said-elias-rahimi",fullName:"Said Elias Rahimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10491",title:"Anaerobic Digestion in Natural and Built Environments",subtitle:null,isOpenForSubmission:!0,hash:"082ec753a05d6c7ed8cc5559e7dac432",slug:null,bookSignature:"Dr. Anna Sikora and Dr. Anna Detman",coverURL:"https://cdn.intechopen.com/books/images_new/10491.jpg",editedByType:null,editors:[{id:"146985",title:"Dr.",name:"Anna",surname:"Sikora",slug:"anna-sikora",fullName:"Anna Sikora"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10495",title:"Insights Into Global Engineering Education After the Birth of Industry 5.0",subtitle:null,isOpenForSubmission:!0,hash:"e83ddb1aa8017926d0635bbe8a90feca",slug:null,bookSignature:"Dr.Ing. Montaha Bouezzeddine",coverURL:"https://cdn.intechopen.com/books/images_new/10495.jpg",editedByType:null,editors:[{id:"313464",title:"Dr.Ing.",name:"Montaha",surname:"Bouezzeddine",slug:"montaha-bouezzeddine",fullName:"Montaha Bouezzeddine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10506",title:"Liquid Metals",subtitle:null,isOpenForSubmission:!0,hash:"a1c30d83631953e1c8905554d937bb10",slug:null,bookSignature:"Dr. Samson Jerold Samuel Chelladurai, Dr. S. Gnanasekaran and Dr. Suresh Mayilswamy",coverURL:"https://cdn.intechopen.com/books/images_new/10506.jpg",editedByType:null,editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10573",title:"Fluid-Structure Interaction",subtitle:null,isOpenForSubmission:!0,hash:"3950d1f9c82160d23bc594d00ec2ffbb",slug:null,bookSignature:"Dr. Khaled Ghaedi",coverURL:"https://cdn.intechopen.com/books/images_new/10573.jpg",editedByType:null,editors:[{id:"190572",title:"Dr.",name:"Khaled",surname:"Ghaedi",slug:"khaled-ghaedi",fullName:"Khaled Ghaedi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:27},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"665",title:"Hydrological Disaster",slug:"hydrological-disaster",parent:{title:"Natural Disaster",slug:"natural-disaster"},numberOfBooks:4,numberOfAuthorsAndEditors:60,numberOfWosCitations:8,numberOfCrossrefCitations:13,numberOfDimensionsCitations:37,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"hydrological-disaster",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8979",title:"Tsunami",subtitle:"Damage Assessment and Medical Triage",isOpenForSubmission:!1,hash:"6c1406cbfe8404151d13f3d7236d38fa",slug:"tsunami-damage-assessment-and-medical-triage",bookSignature:"Mohammad Mokhtari",coverURL:"https://cdn.intechopen.com/books/images_new/8979.jpg",editedByType:"Edited by",editors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9983",title:"Flood Impact Mitigation and Resilience Enhancement",subtitle:null,isOpenForSubmission:!1,hash:"ce1f62165377d01892a7c7f1b17e43c9",slug:"flood-impact-mitigation-and-resilience-enhancement",bookSignature:"Guangwei Huang",coverURL:"https://cdn.intechopen.com/books/images_new/9983.jpg",editedByType:"Edited by",editors:[{id:"262657",title:"Prof.",name:"Guangwei",middleName:null,surname:"Huang",slug:"guangwei-huang",fullName:"Guangwei Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6018",title:"Flood Risk Management",subtitle:null,isOpenForSubmission:!1,hash:"e1c40b989aeffdd119ee3876621fa35d",slug:"flood-risk-management",bookSignature:"Theodore Hromadka and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/6018.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore",middleName:null,surname:"Hromadka",slug:"theodore-hromadka",fullName:"Theodore Hromadka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3507",title:"Natural Disasters",subtitle:"Multifaceted Aspects in Management and Impact Assessment",isOpenForSubmission:!1,hash:"3608e266119f43880a9067fc25deaa4c",slug:"natural-disasters-multifaceted-aspects-in-management-and-impact-assessment",bookSignature:"Olga Petrucci",coverURL:"https://cdn.intechopen.com/books/images_new/3507.jpg",editedByType:"Edited by",editors:[{id:"76678",title:"Dr.",name:"Olga",middleName:null,surname:"Petrucci",slug:"olga-petrucci",fullName:"Olga Petrucci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"55645",doi:"10.5772/intechopen.68677",title:"Strategies for Testing the Impact of Natural Flood Risk Management Measures",slug:"strategies-for-testing-the-impact-of-natural-flood-risk-management-measures",totalDownloads:1269,totalCrossrefCites:1,totalDimensionsCites:8,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Barry Hankin, Peter Metcalfe, David Johnson, Nick A. Chappell,\nTrevor Page, Iain Craigen, Rob Lamb and Keith Beven",authors:[{id:"203276",title:"Dr.",name:"Barry",middleName:null,surname:"Hankin",slug:"barry-hankin",fullName:"Barry Hankin"}]},{id:"55735",doi:"10.5772/intechopen.69139",title:"Understanding Flood Risk Management in Asia: Concepts and Challenges",slug:"understanding-flood-risk-management-in-asia-concepts-and-challenges",totalDownloads:1433,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Saleem Ashraf, Muhammad Luqman, Muhammad Iftikhar, Ijaz\nAshraf and Zakaria Yousaf Hassan",authors:[{id:"202027",title:"Dr.",name:"Muhammad Saleem",middleName:null,surname:"Ashraf",slug:"muhammad-saleem-ashraf",fullName:"Muhammad Saleem Ashraf"}]},{id:"55369",doi:"10.5772/intechopen.68924",title:"One- and Two-Dimensional Hydrological Modelling and Their Uncertainties",slug:"one-and-two-dimensional-hydrological-modelling-and-their-uncertainties",totalDownloads:1887,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Mohd Talha Anees, Khiruddin Abdullah, Mohd Nawawi Mohd\nNordin, Nik Norulaini Nik Ab Rahman, Muhammad Izzuddin Syakir\nand Mohd. Omar Abdul Kadir",authors:[{id:"11196",title:"Dr.",name:"Khiruddin",middleName:null,surname:"Abdullah",slug:"khiruddin-abdullah",fullName:"Khiruddin Abdullah"},{id:"151303",title:"Prof.",name:"Nik Norulaini",middleName:null,surname:"Ab Rahman",slug:"nik-norulaini-ab-rahman",fullName:"Nik Norulaini Ab Rahman"},{id:"151344",title:"Prof.",name:"Mohd Omar",middleName:null,surname:"Ab Kadir",slug:"mohd-omar-ab-kadir",fullName:"Mohd Omar Ab Kadir"},{id:"201647",title:"Mr.",name:"Mohd Talha",middleName:null,surname:"Anees",slug:"mohd-talha-anees",fullName:"Mohd Talha Anees"},{id:"203217",title:"Prof.",name:"Mohd Nawawi",middleName:null,surname:"Mohd Nordin",slug:"mohd-nawawi-mohd-nordin",fullName:"Mohd Nawawi Mohd Nordin"},{id:"203218",title:"Dr.",name:"Muhammad Izzuddin",middleName:null,surname:"Syakir Ishak",slug:"muhammad-izzuddin-syakir-ishak",fullName:"Muhammad Izzuddin Syakir Ishak"}]}],mostDownloadedChaptersLast30Days:[{id:"74250",title:"Introductory Chapter: The Lessons Learned from Past Tsunamis and Todays Practice",slug:"introductory-chapter-the-lessons-learned-from-past-tsunamis-and-todays-practice",totalDownloads:106,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tsunami-damage-assessment-and-medical-triage",title:"Tsunami",fullTitle:"Tsunami - Damage Assessment and Medical Triage"},signatures:"Mohammad Mokhtari",authors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}]},{id:"55369",title:"One- and Two-Dimensional Hydrological Modelling and Their Uncertainties",slug:"one-and-two-dimensional-hydrological-modelling-and-their-uncertainties",totalDownloads:1887,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Mohd Talha Anees, Khiruddin Abdullah, Mohd Nawawi Mohd\nNordin, Nik Norulaini Nik Ab Rahman, Muhammad Izzuddin Syakir\nand Mohd. Omar Abdul Kadir",authors:[{id:"11196",title:"Dr.",name:"Khiruddin",middleName:null,surname:"Abdullah",slug:"khiruddin-abdullah",fullName:"Khiruddin Abdullah"},{id:"151303",title:"Prof.",name:"Nik Norulaini",middleName:null,surname:"Ab Rahman",slug:"nik-norulaini-ab-rahman",fullName:"Nik Norulaini Ab Rahman"},{id:"151344",title:"Prof.",name:"Mohd Omar",middleName:null,surname:"Ab Kadir",slug:"mohd-omar-ab-kadir",fullName:"Mohd Omar Ab Kadir"},{id:"201647",title:"Mr.",name:"Mohd Talha",middleName:null,surname:"Anees",slug:"mohd-talha-anees",fullName:"Mohd Talha Anees"},{id:"203217",title:"Prof.",name:"Mohd Nawawi",middleName:null,surname:"Mohd Nordin",slug:"mohd-nawawi-mohd-nordin",fullName:"Mohd Nawawi Mohd Nordin"},{id:"203218",title:"Dr.",name:"Muhammad Izzuddin",middleName:null,surname:"Syakir Ishak",slug:"muhammad-izzuddin-syakir-ishak",fullName:"Muhammad Izzuddin Syakir Ishak"}]},{id:"55645",title:"Strategies for Testing the Impact of Natural Flood Risk Management Measures",slug:"strategies-for-testing-the-impact-of-natural-flood-risk-management-measures",totalDownloads:1269,totalCrossrefCites:1,totalDimensionsCites:8,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Barry Hankin, Peter Metcalfe, David Johnson, Nick A. Chappell,\nTrevor Page, Iain Craigen, Rob Lamb and Keith Beven",authors:[{id:"203276",title:"Dr.",name:"Barry",middleName:null,surname:"Hankin",slug:"barry-hankin",fullName:"Barry Hankin"}]},{id:"55139",title:"Estimating Flood Quantiles on the Basis of Multi-Event Rainfall Simulation",slug:"estimating-flood-quantiles-on-the-basis-of-multi-event-rainfall-simulation",totalDownloads:757,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Elżbieta Jarosińska and Katarzyna Pierzga",authors:[{id:"202772",title:"Ph.D.",name:"Elżbieta",middleName:null,surname:"Jarosińska",slug:"elzbieta-jarosinska",fullName:"Elżbieta Jarosińska"},{id:"202833",title:"MSc.",name:"Katarzyna",middleName:null,surname:"Pierzga",slug:"katarzyna-pierzga",fullName:"Katarzyna Pierzga"}]},{id:"71247",title:"Dealing with Local Tsunami on Pakistan Coast",slug:"dealing-with-local-tsunami-on-pakistan-coast",totalDownloads:117,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tsunami-damage-assessment-and-medical-triage",title:"Tsunami",fullTitle:"Tsunami - Damage Assessment and Medical Triage"},signatures:"Ghazala Naeem",authors:[{id:"193736",title:"Ms.",name:"Ghazala",middleName:null,surname:"Naeem",slug:"ghazala-naeem",fullName:"Ghazala Naeem"}]},{id:"72104",title:"Fundamentals of Volunteered Geographic Information in Disaster Management Related to Floods",slug:"fundamentals-of-volunteered-geographic-information-in-disaster-management-related-to-floods",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-impact-mitigation-and-resilience-enhancement",title:"Flood Impact Mitigation and Resilience Enhancement",fullTitle:"Flood Impact Mitigation and Resilience Enhancement"},signatures:"Stathis G. Arapostathis",authors:null},{id:"56346",title:"An Additive Statistical Modeling Approach to the Analysis of Transport Infrastructure Flood Risk-Based Resilience",slug:"an-additive-statistical-modeling-approach-to-the-analysis-of-transport-infrastructure-flood-risk-bas",totalDownloads:851,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Mohammad Mojtahedi, Sidney Newton and Faham Tahmasebinia",authors:[{id:"193947",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mojtahedi",slug:"mohammad-mojtahedi",fullName:"Mohammad Mojtahedi"},{id:"200222",title:"Dr.",name:"Sidney",middleName:null,surname:"Newton",slug:"sidney-newton",fullName:"Sidney Newton"},{id:"200223",title:"Dr.",name:"Faham",middleName:null,surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}]},{id:"71287",title:"The Risk of Tsunamis in Mexico",slug:"the-risk-of-tsunamis-in-mexico",totalDownloads:53,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tsunami-damage-assessment-and-medical-triage",title:"Tsunami",fullTitle:"Tsunami - Damage Assessment and Medical Triage"},signatures:"Jaime Santos-Reyes and Tatiana Gouzeva",authors:[{id:"285299",title:"Dr.",name:"Tatiana",middleName:null,surname:"Gouzeva",slug:"tatiana-gouzeva",fullName:"Tatiana Gouzeva"}]},{id:"55628",title:"Flood Risk Mapping in the Amazon",slug:"flood-risk-mapping-in-the-amazon",totalDownloads:1094,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Milena Marília Nogueira de Andrade, Iris Celeste Nascimento\nBandeira, Dianne Danielle Farias Fonseca, Paulo Eduardo Silva\nBezerra, Ádanna de Souza Andrade and Rodrigo Silva de Oliveira",authors:[{id:"203296",title:"Dr.",name:"Milena",middleName:"Marília Nogueira De",surname:"Andrade",slug:"milena-andrade",fullName:"Milena Andrade"},{id:"203302",title:"MSc.",name:"Iris Celeste Nascimento",middleName:null,surname:"Bandeira",slug:"iris-celeste-nascimento-bandeira",fullName:"Iris Celeste Nascimento Bandeira"},{id:"203352",title:"Mr.",name:"Paulo Eduardo Silva",middleName:null,surname:"Bezerra",slug:"paulo-eduardo-silva-bezerra",fullName:"Paulo Eduardo Silva Bezerra"},{id:"203353",title:"Mrs.",name:"Ádanna",middleName:null,surname:"Andrade",slug:"adanna-andrade",fullName:"Ádanna Andrade"},{id:"203354",title:"Mr.",name:"Rodrigo",middleName:null,surname:"Oliveira",slug:"rodrigo-oliveira",fullName:"Rodrigo Oliveira"},{id:"203421",title:"Mrs.",name:"Dianne",middleName:null,surname:"Fonseca",slug:"dianne-fonseca",fullName:"Dianne Fonseca"}]},{id:"55735",title:"Understanding Flood Risk Management in Asia: Concepts and Challenges",slug:"understanding-flood-risk-management-in-asia-concepts-and-challenges",totalDownloads:1433,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Saleem Ashraf, Muhammad Luqman, Muhammad Iftikhar, Ijaz\nAshraf and Zakaria Yousaf Hassan",authors:[{id:"202027",title:"Dr.",name:"Muhammad Saleem",middleName:null,surname:"Ashraf",slug:"muhammad-saleem-ashraf",fullName:"Muhammad Saleem Ashraf"}]}],onlineFirstChaptersFilter:{topicSlug:"hydrological-disaster",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/ionic-liquids-new-aspects-for-the-future",hash:"",query:{},params:{book:"ionic-liquids-new-aspects-for-the-future"},fullPath:"/books/ionic-liquids-new-aspects-for-the-future",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()