Design parameters and values for experiment.
\r\n\tThe contents of the book will be written by multiple authors and edited by experts in the field.
",isbn:"978-1-78985-096-3",printIsbn:"978-1-78985-095-6",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"372053f50e624aa8f1e2269abb0a246d",bookSignature:"Prof. Andrew J Manning",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7746.jpg",keywords:"Sediment types, Deposition / erosion, Lagoon types, Defining characteristics, Hydrodynamics / turbulence, Tidal effects, Species diversity, Sustainability , Socio-economic effects, Sustainable waterway management, Lagoon responses, Case study examples",numberOfDownloads:536,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 5th 2019",dateEndSecondStepPublish:"February 26th 2019",dateEndThirdStepPublish:"April 27th 2019",dateEndFourthStepPublish:"July 16th 2019",dateEndFifthStepPublish:"September 14th 2019",remainingDaysToSecondStep:"9 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,editors:[{id:"23008",title:"Prof.",name:"Andrew",middleName:"J",surname:"Manning",slug:"andrew-manning",fullName:"Andrew Manning",profilePictureURL:"https://mts.intechopen.com/storage/users/23008/images/system/23008.jpeg",biography:"Professor Andrew J. Manning is a Principal Scientist (Rank Grade 9) in the Coasts & Oceans Group at HR Wallingford (UK) and has over 23 years of scientific research experience (in both industry and academia) examining natural turbulent flow dynamics, fine-grained sediment transport processes, and assessing how these interact, (including both field studies and controlled laboratory flume simulations). Andrew also lectures in Coastal & Shelf Physical Oceanography at the University of Plymouth (UK). Internationally, Andrew has been appointed Visiting Professor at four Universities (Hull, UK; Delaware, USA; Florida, USA; Stanford, USA), and is a highly published and world-renowned scientist in the field of depositional sedimentary flocculation processes. Andrew has contributed to more than 90 peer-reviewed publications in marine science, of which more than 50 have been published in international scientific journals, plus over 140 articles in refereed international conference proceedings, and currently has an H-index of 23. He supervises graduates, postgraduates and doctoral students focusing on a range of research topics in marine science. Andrew has led numerous research projects investigating sediment dynamics in aquatic environments around the world with locations including: estuaries, tidal lagoons, river deltas, salt marshes, intertidal, coastal waters, and shelf seas.",institutionString:"HR Wallingford",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"HR Wallingford",institutionURL:null,country:{name:"United Kingdom"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:[{id:"67398",title:"Pollution Issues in Coastal Lagoons in the Gulf of Mexico",slug:"pollution-issues-in-coastal-lagoons-in-the-gulf-of-mexico",totalDownloads:115,totalCrossrefCites:0,authors:[null]},{id:"68934",title:"Environmental Monitoring of Water Quality as a Planning and Management Tool: A Case Study of the Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil",slug:"environmental-monitoring-of-water-quality-as-a-planning-and-management-tool-a-case-study-of-the-rodr",totalDownloads:58,totalCrossrefCites:0,authors:[null]},{id:"67761",title:"A GIS-Based Approach for Determining Potential Runoff Coefficient and Runoff Depth for the Indian River Lagoon, Florida, USA",slug:"a-gis-based-approach-for-determining-potential-runoff-coefficient-and-runoff-depth-for-the-indian-ri",totalDownloads:183,totalCrossrefCites:0,authors:[null]},{id:"68510",title:"Hypersaline Lagoons from Chile, the Southern Edge of the World",slug:"hypersaline-lagoons-from-chile-the-southern-edge-of-the-world",totalDownloads:57,totalCrossrefCites:0,authors:[null]},{id:"69785",title:"Process-Based Statistical Models Predict Dynamic Estuarine Salinity",slug:"process-based-statistical-models-predict-dynamic-estuarine-salinity",totalDownloads:16,totalCrossrefCites:0,authors:[null]},{id:"68885",title:"Lagoons Reefs of Alacranes Reef and Chinchorro Bank: Ocean Reef of Mexican Atlantic",slug:"lagoons-reefs-of-alacranes-reef-and-chinchorro-bank-ocean-reef-of-mexican-atlantic",totalDownloads:32,totalCrossrefCites:0,authors:[null]},{id:"68286",title:"Subtropical Coastal Lagoon from Southern Brazil: Environmental Conditions and Phytobenthic Community Structure",slug:"subtropical-coastal-lagoon-from-southern-brazil-environmental-conditions-and-phytobenthic-community-",totalDownloads:76,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"286446",firstName:"Sara",lastName:"Bacvarova",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/286446/images/8491_n.jpg",email:"sara.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"304",title:"Sediment Transport in Aquatic Environments",subtitle:null,isOpenForSubmission:!1,hash:"0eb11af1d03ad494253c41e1d3c998e9",slug:"sediment-transport-in-aquatic-environments",bookSignature:"Andrew J. Manning",coverURL:"https://cdn.intechopen.com/books/images_new/304.jpg",editedByType:"Edited by",editors:[{id:"23008",title:"Prof.",name:"Andrew",surname:"Manning",slug:"andrew-manning",fullName:"Andrew Manning"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3100",title:"Sediment Transport",subtitle:"Processes and Their Modelling Applications",isOpenForSubmission:!1,hash:"a1aae9d236b0fa1150b6bc2a98fd0ce0",slug:"sediment-transport-processes-and-their-modelling-applications",bookSignature:"Andrew J. Manning",coverURL:"https://cdn.intechopen.com/books/images_new/3100.jpg",editedByType:"Edited by",editors:[{id:"23008",title:"Prof.",name:"Andrew",surname:"Manning",slug:"andrew-manning",fullName:"Andrew Manning"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5219",title:"Greenhouse Gases",subtitle:"Selected Case Studies",isOpenForSubmission:!1,hash:"edf0ad164729f5ce157c34f9978fcc61",slug:"greenhouse-gases-selected-case-studies",bookSignature:"Andrew J. Manning",coverURL:"https://cdn.intechopen.com/books/images_new/5219.jpg",editedByType:"Edited by",editors:[{id:"23008",title:"Prof.",name:"Andrew",surname:"Manning",slug:"andrew-manning",fullName:"Andrew Manning"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60514",title:"Inductive Power Transfer for Electric Vehicles Using Gallium Nitride Power Transistors",doi:"10.5772/intechopen.76057",slug:"inductive-power-transfer-for-electric-vehicles-using-gallium-nitride-power-transistors",body:'\nDevelopment of battery technology and advancement of power electronics has allowed EVs to gain popularity in the recent years, with strong boost to greener environment.
\nFrom an environmental conservation perspective, EVs demonstrate benefits above conventional Internal Combustion Engines (ICE) vehicles. EVs provide the energy efficient solution to conventional ICE, with energy efficiencies going as high as 62% compared to 21% for internal combustion vehicles. Pollution due to EVs is lesser as it does not produce emission unlike ICE [1]. Another push for in EVs is the performance benefits. Electric motors have smoother operations and quieter than ICE, while having stronger accelerations, and lesser maintenance [2].
\nHowever, there are some battery related challenges facing EVs. Due to limited charge holding capacity of Li-ion batteries, the driving range of EVs are limited compared to ICE vehicles, being able to only travel one-third or half the distance of an ICE vehicle [2]. In addition, the battery charging time is time consuming, with a full charge taking about 4–8 h and fast charge about 30 min compared to 5 min for an ICE vehicle [3]. Despite having higher charge carrying capacity compared to other battery materials, Li-ion batteries for EVs are still very big and bulky. They are expensive and need replacement during the car’s lifetime [3, 4].
\nInductive Power Transfer (IPT) is the method of wirelessly transferring power. The system for static wireless charging is as shown in Figure 1. AC power is drawn from the grid into the system. This power is rectified using a diode bridge to supply a DC voltage. This is followed by a Power Factor Correction (PFC) stage to improve the power factor and step up the voltage to 380 V. The DC input voltage is supplied into an inverter, which converts it in high frequency AC so that power can be transmitted by primary coil to the secondary coil using IPT. The secondary coil will take in the HF AC power and rectify it using the SiC diode bridge into a DC voltage for vehicle charging. IPT for EVs provide a convenience and safety for the user [5, 6]. This system is weatherproof and difficult to vandalism like a plug-in station [4].
\nStatic wireless charging.
However, there are challenges facing wireless charging, such as low efficiency compared to plug-in chargers [4]. This is overcome by using wide bandgap semiconductor materials such as GaN, which is attracting attention for enabling high efficiency, high power density converters [7], rectifiers [8] and inverters [9, 10]. The material properties of GaN such as high critical field, electron mobility and saturation velocity [11] push the boundaries of power electronics performance such as efficiency, power density, reliability and cost [12].
\nThe remainder of the chapter is organized as follows. Section 2 will compare various gate driving methods for driving the GaN GIT. This is followed by Section 3 which will explain the design considerations for apply the GaN GIT in WPT applications. Finally, Section 4 contains experiment results that demonstrate the advantages of using GaN in IPT.
\nAmong the various enhancement mode GaN, Gate Injection Transistor (GIT) is one such technology, which is able to achieve normally off operation and high current driving capability [13]. The GaN GIT adopts p-GaN with recessed gate to achieve normally-off. The Hybrid Drain embedded in the GIT (HD-GIT) allows the device to overcome the current collapse [14].
\nSince the GaN GIT is a normally-off device, it can be driven by conventional gate drive methods like the R-type gate drive is shown in Figure 2a. Resistor RA1 facilitates the charging during turn on, while the path along RA2 forms the discharge path during turn off.
\nVarious gate drive methods: (a) the R-type and (b) the RC-type.
To capitalize on the switching performance of the GaN device, the RC-type gate drive method [15] is recommended. This gate drive strategy allows the driving of the GaN GIT’s gate at a higher voltage allowing faster slew rate. It produces negative gate voltage during turn off to prevent false turn-on, while using a unipolar supply voltage.
\nA single channel GaN GIT gate driver Integrated Circuit (IC) (AN34092B) utilizes a novel gate drive strategy to compare against existing gate drive methods is shown in [16]. The simplified gate drive circuit for the GaN GIT gate driver IC, AN34092B [17], is shown in Figure 3a. The gate driver IC has 3 output pins, namely OUT1, OUT2 and OUT3. OUT1’s purpose is to charge the GaN power transistor during turn ON phase and discharging the speed-up capacitor C1 during turn off. When the device is fully turned on, C1 will block current through OUT1.
\n(a) GaN GIT gate driver IC circuit and (b) gate driver timing diagram.
OUT2 will continue to supply an adjustable DC current of 2.5–25 mA during conduction phase. Integrated within the IC is an adjustable current source, which is able to provide a constant current during turn ON, that is important for the conductivity modulation of the GaN GIT. It also provides a low impedance path using the active miller clamp function.
\nOUT3 is responsible for the discharge path by pulling the gate to the negative voltage VEE. The turn off slew rate can be controlled using resistor R2. Another integrated function is a charge pump to provide the negative voltage, VEE, during turn OFF, which is adjustable using an external resistor.
\nPower density and efficiency are important metrics in power electronics. High slew rates allow high operating frequencies, which lead to higher power density due to smaller passive components. In addition, higher slew rates result in an improvement in the switching losses which result in higher efficiency.
\nThe general equation of VDS turn-on and turn-off slew rate is shown in Eqs. (1) and (2) respectively. The fall and rise in the drain-source voltage, VDS, occurs during the charging and discharging of the gate-drain charge, QGD, at the plateau voltage, Vpl. The ability to charge and discharge faster means higher slew rates for the power device.
\nBased on Eqs. (1) and (2), slew rates can be improved by controlling gate current or using a device with a small QGD. The high breakdown electric field of GaN material allows the GaN GIT to have smaller die size compared to Si power MOSFETs of similar breakdown voltage, which results in smaller parasitic capacitance and correspondingly smaller QGD. To control the charging and discharging of gate current, one can choose to control the value of the gate resistor or adjust the gate driver source and sink voltage.
\nTo protect the GaN GIT’s gate from damage, it is important to keep the gate pulse current and gate pulse charge below the absolute limit. However, controlling the turn-on gate current source through a single path like the R-type gate drive method limits the peak gate current, which is responsible for high slew rate performance. On the other hand, the GaN GIT driver IC and RC-type gate drive provide two current paths, a high current path during turn-on transients for high slew rate performance and a low current path to keep the GaN GIT in conduction. This is to prevent damaging the gate.
\nThe high current source path of the GaN GIT driver IC and RC-type gate driver comprises a resistor in series with a capacitor. When the power device is fully turned on, the capacitor will block current flow, protecting the gate of the GaN GIT. This allows the GaN GIT driver IC and RC-type gate driver to drive the GaN GIT at a higher supply voltage, resulting in a higher gate current and larger turn-on slew rate. This is supported by Eq. (1), which shows that a higher VDD increases slew rate.
\nFor RC circuit, turn-on slew rate is affected by negative voltage of the speed-up capacitor, CB1 on Figure 2b. The residue voltage in the capacitor CB1 will reduce the VDDB voltage used to charge the power device. The GaN GIT driver IC resolves this problem with a high speed discharge circuit to discharge C1. So when the gate driver charges the power device during, it is able to charge the GaN GIT gate from the full VDDB rail.
\nThe GaN GIT driver IC and RC type gate drive generates a negative voltage turn-off. The RC-type gate driver relies on the connection of the speed-up capacitor, CB1, to create a negative voltage during turn off. With reference to Figure 1b, during turn-on transition, the capacitor CB1 is charged up such that the left hand side is positive relative to the right hand side of CB1. During turn-off, the positive side of CB1 is connected to ground, GNDB, which presents a negative voltage at the gate. This negative voltage slowly decays as it is discharged through RB1 and RB2.
\nOn the other hand, the GaN GIT driver IC has a built in charge pump to generate an adjustable negative rail, VEE, from −3 to −5 V. According to Eq. (2), negative voltage turn-off allows larger gate discharging current leading to larger turn-off slew rates compared to R-type gate drive circuits, which discharge at 0 V.
\nCross conduction is a false turn-on mechanism that occurs when the high side device is turned on during dead time. When the high side device is turned on, the drain of the low side power transistor is pulled up, inducing a current across the gate-drain capacitor of the low side power device. This current causes a voltage across the gate-source pin of the power device as it flows through the gate resistor. Research showed slew rates and gate resistance [18] affects the induced gate voltage. For high slew rate power devices, these are practical challenges which need to be addressed. This work aims to reduce VGS spike voltage without sacrificing slew rate performance. There are various countermeasures to reduce the effects of cross conduction.
\nA common countermeasure using the R-type gate drive for cross conduction protection is to implement a low impedance discharge path through the Schottky barrier diode (DA1) in series with a small resistor (RA2) as shown in Figure 1a. During the turn off, this forms a very low impedance path, which sinks the induced current to GND. In this method, the slew rate is dependent on the cross conduction protection.
\nUnlike the R-type gate drive, which has only one output to sink the gate current, the GaN GIT driver IC has 2 gate sink paths. One path (OUT3) to control the GaN GIT gate discharge current to control the slew rate and another path (OUT2) for active miller clamp function, which implements low gate impedance during the cross conduction period and reduces gate ringing. This unique function allows slew rate control independent of the active miller clamp protection function.
\nImplementing a negative gate-source voltage during turn off creates a voltage buffer between VGS and Vth to prevent the GaN GIT from turning on when cross conduction occurs. The RC-type gate drive creates a negative voltage across the VGS during turn-off due to the change in polarity of the speed up capacitor CB1. On the other hand, the GaN GIT driver IC has built-in negative voltage rail to create this voltage buffer. These two methods are able to create a negative voltage rail with a unipolar voltage supply, which reduce cost.
\nThe driving methods are tested using a half bridge configuration based on Figures 2 and 3a as shown below in Table 1. The evaluation was conducted using 600 V, 10A SMD GaN GIT. R-type and RC-type gate drive were tested using SWEVB005-PGA26E19BA half bridge evaluation board (Figure 4a), while the GaN GIT gate driver IC (AN34092B) was tested using SWEVB008-PGA26E19BA half bridge evaluation board (Figure 4b). The purpose is to keep the parasitic inductance of the gate drive loop and power loop similar across the three evaluation setups.
\n\n | VDD (V) | \nVNegative | \nComponent 1 | \nComponent 2 | \nComponent 3 | \n
---|---|---|---|---|---|
R-type gate drive | \n5 | \nNil | \nRA1 = 51 Ω | \nRA2 = 1 Ω | \nDA1 = SBD | \n
RC-type gate drive | \n12 | \n−5 V | \nRB1 = 51 Ω | \nRB2 = 2700 Ω | \nCB1 = 1.2 nF | \n
GaN GIT gate driver IC | \n12 | \n−5 V | \nR1 = 51 Ω | \nR2 = 1 Ω | \nC1 = 120 pF | \n
Design parameters and values for experiment.
Experiment setup for (a) R-type and RC-type gate drive method and (b) GaN GIT gate driver IC.
Double pulse test was conducted with an inductive load and bus voltage of 400 V. It is tested for load currents at 2.5, 5, 7.5 and 10A. Since it is a half bridge circuit, the slew rates for the low side and high side GaN GIT are measured. The gate-source voltage of the low side is probed during high side test to study the cross conduction protection.
\nThe waveforms are taken at IDS = 10A and VDS = 400 V. The results for the VDS turn-on and turn-off slew rate were measured from 10 to 90% and waveforms are shown in Figure 5. From Figure 5, it is observed that the VGS is charged up slower for the R-type gate drive (Figure 5a) compared to the RC-type (Figure 5b) and GaN GIT gate driver (Figure 5c). This is because the RC-type and GaN GIT gate driver charge the gate up with VDD = 12 V, allowing more charge to be supplied compared to the R-type gate drive which have VDD = 5 V supply. Thus, results in a faster VDS slew rate.
\nDouble pulse waveform for (a) R-type, (b) RC-type and (c) GaN GIT gate driver during turn-off and for (d) R-type, (e) RC-type and (f) GaN GIT gate driver during turn-on.
With reference to Figure 5, it shows that VGS for the R-type gate drive (Figure 5d) is turned off at 0 V, while the RC-type (Figure 5e) and GaN GIT gate driver (Figure 5f) are turned off with a negative voltage. The negative voltage of the RC-type circuit is decaying to 0 V as the capacitor discharges while the GaN GIT gate driver is held at −5 V until the next turn on cycle.
\nThe results for the low side slew rates are shown in Figure 6, which illustrate the turn-on (Figure 6a) and turn-off (Figure 6b) slew rates. From Figure 6a, the GaN GIT has the highest turn-on slew rate (97 V/ns) followed by the RC-type (48 V/ns) and finally the R-type (26 V/ns). The gate drive resistor value, which is critical for turn-on slew rate, is fixed at 51 Ω for all three setups to make a fair comparison with the other gate drive methods.
\nSlew rate measurement results for (a) low side turn-on and (b) low side turn-off.
The RC-type and GaN GIT driver are clearly faster than R-type because they are driven at 12 V. GaN GIT driver is faster than the RC-type gate drive because of the discharging speed-up capacitor function and the choice of a smaller speed-up capacitor (C1 = 120 pF vs. CB1 = 1.2 nF). The reason for the larger capacitor for the RC-type gate drive is to increase the RC time constant to slow down the decay of the negative turn-off voltage.
\nThe turn-off slew rate results is depicted in Figure 6b. From the graph, it is shown that slew rate for RC-type and R-type are close, while GaN GIT driver IC outperforms them to achieve a maximum slew rate of 110 V/ns. While both RC-type and GaN GIT driver IC discharges the gate with negative voltage, the RC-gate drive method has a larger discharge resistance resulting in a slower turn-off slew rate. The R-type gate drive has a low resistance to GND, but discharges to GND instead to a negative voltage. The GaN GIT driver IC capitalizes on low impedance from gate to VEE and a negative voltage to achieve twice the slew rate.
\nThe high side slew rate is shown in Figure 7. Results are very similar to the low side results in Figure 6, except that the high side results are slightly faster. This is because of the probe capacitance loading on the VGS and VDS pin during low side test that slow down the slew rate measurement results.
\nSlew rate measurement results for (a) high side turn-on and (b) high side turn-off.
The low side VGS spike voltage occurs when high side is turned on is measured and plotted against the slew rates (according to Figure 7a) and shown in Figure 8. From the results, it shows that the GaN GIT gate driver has the lowest VGS spike voltage, despite higher slew rate operation than the other two methods. All three methods managed to keep this spike voltage below the threshold voltage of the GaN GIT.
\nCross conduction test.
A common Figure of Merit (FOM) adopted by power semiconductor devices is RonQg. This FOM accounts for the switching and conduction loss such that the lower the FOM, the better the performance. This is a representative of the technology [19]. A comparison of FOM among three state-of-the-art transistors using GaN, SiC and Si are compared and shown in Table 2.
\nMaterial | \nGaN | \nSi | \nSi | \nSiC | \nSiC | \n
Technology | \nGate Injection Transistor | \nMOSFET | \nSuper Junction MOSFET | \nMOSFET | \nMOSFET | \n
Breakdown voltage (V) | \n600 | \n600 | \n700 | \n650 | \n1200 | \n
Rated current (A) | \n15 | \n6 | \n18 | \n29 | \n40 | \n
Ron (mΩ) | \n65 | \n1000 | \n125 | \n120 | \n80 | \n
Qg (nC) | \n11 | \n33 | \n35 | \n61 | \n106 | \n
RonQg (nΩC) | \n0.715 | \n33 | \n4.38 | \n7.32 | \n8.48 | \n
FOM comparison between semiconductor devices.
GaN GIT has the lowest FOM due to the high critical field of GaN and the High Electron Mobility Transistor (HEMT) structure. The Si vertical MOSFET performs the worst with the highest FOM. This is followed by SiC MOSFETs which perform an order of magnitude better. It is shown that Si Super Junction MOSFETs being able to outperform SiC MOSFETs for RonQg. This is because the Super Junction technology is able to push beyond the theoretical limits of Si.
\nThe total losses in a half bridge circuit contains conduction loss, switching loss, ringing loss and dead time loss of the top and bottom power device and is shown in Eq. (3). The subscript top and bot respectively denote the top and bottom power device.
\nThe total conduction loss is shown in Eq. (4) and is influenced by the on-resistance, Ron, of the device and application requirements such as drain-source current, IDS, and duty, D. Switching loss, on the other hand, is frequency dependent as shown in Eq. (5). It is affected by the drain-source voltage, VDS, and current during the turn on (ton) and turn off (toff) switching transition. This shows the need for soft switching or fast slew rates for hard switching applications to reduce switching losses.
\nThe ringing loss is obtained from [20] and modified for GaN GIT as shown in Eq. (6). GaN GIT does not have Qrr but still has to discharge drain-source capacitor, CDS, which is represented by the drain source charge, Qoss. Ringing losses are proportionate to frequency and DC-link voltages, Vbulk. The turn on ringing loss are affected by the Qoss, while the turn off losses are affected by charges, QVpeak, due to the peak ringing voltage Vpeak. High slew rates and parasitic source drain inductances increase the peak voltage.
\nThe absence of reverse recovery diode implies that dead time, tSD, can be reduced. However, the GaN device will still experience a dead time loss according to Eq. (7). When a reverse current ISD flows through the device, it will have a voltage drop, VSD, during dead time that results in dead time loss.
\nDouble pulse switching characteristic test, using an inductive load circuit shown in Figure 9, is conducted to evaluate the performance of the GaN GIT under EV wireless charging conditions. The GaN GIT is evaluated based on the specifications of the design. The drain-source parameters of the device is tested based on a DC-link voltage of 400 V, with load current varying from 2.5 to 15A. The gate drive voltage is set at 12 V. The value of drain-source voltage/current overshoot, drain-source voltage slew rate and switching losses energy will be measured. The gate drive resistor R1 will be varied from 5.1 to 36 Ω. Figure 10 shows the waveforms at 400 V and 10A using R1 = 10 Ω.
\nExperimental setup for inductive load circuit for double pulse test.
Switching experimental results of 2-pulse test results: (a) turn-off transition for TO-220 GaN GIT and (b) turn-on transition for TO-220 GaN GIT.
Parasitic inductance in the gate drive loop should be small to improve the slew rate of the GaN device. One should consider reduction of the source and drain inductances along the power loop to reduce the VDS ringing. For realistic results, adopt a freewheeling diode that have a similar reverse recovery charge to the GaN GIT’s reverse conduction QDS.
\nThe turn-off and turn-on switching loss energy per cycle is shown in Figure 11. Reducing the gate drive resistor, R1, results in higher gate current, reducing rise and fall time and thus reducing switching losses. As load current increases, the switching loss also increase. These two observations agree with Eq. (5).
\nEvaluation results for switching energy per cycle: (a) turn-off switching energy and (b) turn-on switching energy.
The second factor for consideration is the drain-source voltage overshoot. Figure 12a and b shows the turn-off voltage peak and turn-on current peak respectively, with variation in the load current and the gate drive resistor. Voltage and current overshoot is directly proportional to load current. Reduction in the gate drive resistance increases the overshoot. From the evaluation results, it shows that the observed overshoot is below the absolute voltage and current rating and hence the device is safe.
\nEvaluation results for overshoot: (a) drain source voltage peak vs. absolute rating and (b) drain source current peak vs. absolute rating.
Finally, we will evaluate the slew rate results in Figure 13. Figure 13a illustrates the slew rate during the turn off transition. The slew rate increases as the gate drive resistance is reduced and achieves a maximum slew rate of 67 V/ns at 5 Ω. This work utilizes the GaN GIT with TO-220 package which has higher parasitic inductance compared to surface mount packages, resulting in slower slew rates.
\nEvaluation results for slew rate: (a) VDS slew rate during turn-off transition and (b) VDS slew rate during turn-on transition.
Figure 13b shows the turn on slew rate. Lower gate drive resistance causes higher slew rates while slew rates drop as load current increases. Due to parasitic inductance within the TO-220 package, a voltage drop is observed across the drain to source nodes when drain source current flows through it, affecting the slew rate measurement of VDS at low load (2.5 and 5A condition). Therefore, only higher load conditions (10 and 15A) are shown.
\nBased on the evaluation data, the choice of R1 should ensure low total switching energy and peak drain-source voltage. Although the 5 Ω results performed better, it has a slew rate above 50 V/ns. During the design, there were not many isolated half bridge gate drivers, which can handle high slew rate operations, characterized by the parameter called common mode transient immunity (CMTI). The highest CMTI was from ADuM3223 at 50 V/ns. Therefore, while 5 Ω had better evaluation results, we chose 10 Ω so that it can function within the limits of our isolated gate driver.
\nThe hardware for the solution is shown in Figure 14, comprising of a high frequency inverter, a pair of magnetically coupled coils, a high frequency rectifier on the secondary side and a resistor bank acting as a load. The system is tested from 80 to 150 mm. The input voltage to the inverter is 370VDC, which is the typical output voltage from the PFC stage. In order to ensure the inverter output current is below the current rating of the GaN GIT, the resistor load is set to 47 Ω at 80 mm and 11.5 Ω at 150 mm. This is because variation in coil gap affects the mutual inductance and hence affects the reflected load from the secondary side to the primary side.
\nWireless power transfer experiment setup.
The system efficiency from 80 to 150 mm is shown in Figure 15. The highest efficiency is obtained at 80 mm at 2.1 kW. As the coil gap increases, the efficiency falls as shown with the peak efficiency occurring at 90.4% at 150 mm. The reason for testing at 150 mm up to 1.5 kW is to operate the inverter below the absolute current limit of the 15A GaN GIT device.
\nExperimental results: efficiency vs. distance.
The efficiency breakdowns of each individual stages at 150 and 80 mm are shown in Figures 16 and 17 respectively. They are tested at an operating frequency 100 kHz. The high frequency inverter maintains its efficiency within the 97–98% region across the varying distances at 2 kW. The coil efficiency falls drastically as the coil gap increases. This is because the increase in distance results in a weaker coupling factor causing a higher secondary current and hence increases the copper loss in the coil. At 80 mm, the efficiency of the rectifier performs well. This is because the SiC diode forward voltage is small relative to output voltage. However, as coil gap increase, the secondary voltage drops, which makes the diode forward voltage loss more significant.
\nExperimental results: efficiency breakdown at 150 mm.
Experimental results: efficiency breakdown at 80 mm.
The waveform of the inverter output current (CH1), inverter output voltage (CH2), IPT output voltage (CH3) and IPT output current (CH4) at 80 mm distance, operating at 100 kHz is shown in Figure 18. The figure shows the zoom out version at 20 μs/div on the top and the zoom in image at 2 μs/div on the bottom.
\nExperimental results of inverter and coil channel 1: inverter output current, channel 2: inverter output voltage, channel 3: IPT output voltage, channel 4: IPT output current.
The next experiment compared efficiencies by varying the operating frequency from 100 kHz to 250 kHz at a 80 mm coil gap, evaluating the system up to 2 kW. Figure 19 illustrates the results and it shows a drop in system efficiency from 95.13 to 91.7% at 2 kW. This efficiency in the inverter fell due to switching losses at higher frequency operation. The IPT coils will experience higher AC resistance due to skin effect as the operating frequency increase by 2.5 times. The rectifier suffers from higher reverse recovery loss at higher frequencies.
\nExperimental results: efficiency vs. input power for varying frequencies.
A similar setup was made using a SiC based high frequency inverter. The efficiency comparison between the GaN based and SiC based system is illustrated in Figure 20. The GaN based system outperformed the SiC based system by 1% at 2 kW, which translates to 20 W less heat dissipated on the inverter. This was because of the lower on-resistance and gate charge of the GaN GIT, resulting in lower conduction and switching loss.
\nExperimental results: efficiency comparison between GaN and SiC.
In this work, a practical high efficiency wireless power transfer system for EV charging application is developed. The GaN GIT introduced is able to provide superior performance and system benefits. Gate drive strategies are introduced with performance evaluation showing that GaN GIT gate driver achieves high slew rate, while still providing protection from cross conduction. Application of GaN GIT is adopted to improve the efficiency of the inverter by optimizing the gate drive circuit. Experimental results prove the efficiency advantage of adopting GaN GIT in high frequency applications such as inductive power transfer for electric vehicle charging.
\nThe authors would like to acknowledge the funding support from NTU-A*STAR Silicon Technologies Centre of Excellence (Si-COE) under the program grant No. 11235100003. The authors would like to acknowledge the provision of GaN GIT samples and the financial support from Panasonic Industrial Devices Semiconductor Development Asia (PIDSCDA). The authors are grateful for the financial support provided by the Economic Development Board (EDB) of Singapore. We would like to express our appreciation to Energy Research Institute @ NTU (ERI@N) for providing the facilities and technical support for this project. Finally, the authors would like to express gratitude towards VIRTUS IC design center.
\nYou have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9362},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"158"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:34},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:74},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:38},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:137},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1},{group:"topic",caption:"Osteology",value:1414,count:1}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4392},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"396",title:"Molecular Genetics",slug:"genomics-molecular-genetics",parent:{title:"Genomics",slug:"genomics"},numberOfBooks:10,numberOfAuthorsAndEditors:200,numberOfWosCitations:35,numberOfCrossrefCitations:37,numberOfDimensionsCitations:75,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"genomics-molecular-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8029",title:"Transcriptome Analysis",subtitle:null,isOpenForSubmission:!1,hash:"19e7bd55dd90a5187ee806a307ef112d",slug:"transcriptome-analysis",bookSignature:"Miroslav Blumenberg",coverURL:"https://cdn.intechopen.com/books/images_new/8029.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6987",title:"Antisense Therapy",subtitle:null,isOpenForSubmission:!1,hash:"5d60550dc1e3afbb083fe61925b33caa",slug:"antisense-therapy",bookSignature:"Shashwat Sharad and Suman Kapur",coverURL:"https://cdn.intechopen.com/books/images_new/6987.jpg",editedByType:"Edited by",editors:[{id:"80113",title:"Dr.",name:"Shashwat",middleName:null,surname:"Sharad",slug:"shashwat-sharad",fullName:"Shashwat Sharad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7995",title:"Epigenetics",subtitle:null,isOpenForSubmission:!1,hash:"33c1f5868ce0c29fbde6eafdc50af702",slug:"epigenetics",bookSignature:"Rosaria Meccariello",coverURL:"https://cdn.intechopen.com/books/images_new/7995.jpg",editedByType:"Edited by",editors:[{id:"143980",title:"Prof.",name:"Rosaria",middleName:null,surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8605",title:"DNA Repair",subtitle:"An Update",isOpenForSubmission:!1,hash:"f32305a1299fabc5119b721f69cc97cb",slug:"dna-repair-an-update",bookSignature:"Maddalena Mognato",coverURL:"https://cdn.intechopen.com/books/images_new/8605.jpg",editedByType:"Edited by",editors:[{id:"41691",title:"Dr.",name:"Maddalena",middleName:null,surname:"Mognato",slug:"maddalena-mognato",fullName:"Maddalena Mognato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8891",title:"Gene Editing",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"25f0d7de56709fc0558c0bb8212a0d03",slug:"gene-editing-technologies-and-applications",bookSignature:"Yuan-Chuan Chen and Shiu-Jau Chen",coverURL:"https://cdn.intechopen.com/books/images_new/8891.jpg",editedByType:"Edited by",editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",middleName:null,surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7331",title:"Modulating Gene Expression",subtitle:"Abridging the RNAi and CRISPR-Cas9 Technologies",isOpenForSubmission:!1,hash:"436fdc4857ca5c7f496e439de1034b6b",slug:"modulating-gene-expression-abridging-the-rnai-and-crispr-cas9-technologies",bookSignature:"Aditi Singh and Mohammad W. Khan",coverURL:"https://cdn.intechopen.com/books/images_new/7331.jpg",editedByType:"Edited by",editors:[{id:"240724",title:"Dr.",name:"Aditi",middleName:null,surname:"Singh",slug:"aditi-singh",fullName:"Aditi Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6788",title:"In Vivo and Ex Vivo Gene Therapy for Inherited and Non-Inherited Disorders",subtitle:null,isOpenForSubmission:!1,hash:"8cc5d9c7226ec72dfaf15a41133b3d46",slug:"in-vivo-and-ex-vivo-gene-therapy-for-inherited-and-non-inherited-disorders",bookSignature:"Houria Bachtarzi",coverURL:"https://cdn.intechopen.com/books/images_new/6788.jpg",editedByType:"Edited by",editors:[{id:"178430",title:"Dr.",name:"Houria",middleName:null,surname:"Bachtarzi",slug:"houria-bachtarzi",fullName:"Houria Bachtarzi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1719",title:"Genetic Manipulation of DNA and Protein",subtitle:"Examples from Current Research",isOpenForSubmission:!1,hash:"204480b394b0ba9a43580a1e04d53c50",slug:"genetic-manipulation-of-dna-and-protein-examples-from-current-research",bookSignature:"David Figurski",coverURL:"https://cdn.intechopen.com/books/images_new/1719.jpg",editedByType:"Edited by",editors:[{id:"104812",title:"Dr.",name:"David",middleName:null,surname:"Figurski",slug:"david-figurski",fullName:"David Figurski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2748",title:"Functional Genomics",subtitle:null,isOpenForSubmission:!1,hash:"7bc4d180a8c0993b1c3e084aa4c47819",slug:"functional-genomics",bookSignature:"Germana Meroni and Francesca Petrera",coverURL:"https://cdn.intechopen.com/books/images_new/2748.jpg",editedByType:"Edited by",editors:[{id:"137670",title:"Dr.",name:"Germana",middleName:null,surname:"Meroni",slug:"germana-meroni",fullName:"Germana Meroni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1723",title:"DNA Methylation",subtitle:"From Genomics to Technology",isOpenForSubmission:!1,hash:"0b3809ec24719b565e1c788038b43870",slug:"dna-methylation-from-genomics-to-technology",bookSignature:"Tatiana Tatarinova and Owain Kerton",coverURL:"https://cdn.intechopen.com/books/images_new/1723.jpg",editedByType:"Edited by",editors:[{id:"95992",title:"Dr.",name:"Tatiana",middleName:"Valerievna",surname:"Tatarinova",slug:"tatiana-tatarinova",fullName:"Tatiana Tatarinova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"32799",doi:"10.5772/33525",title:"GC3 Biology in Eukaryotes and Prokaryotes",slug:"gc3-biology-in-eukaryotes-and-prokaryotes",totalDownloads:1207,totalCrossrefCites:6,totalDimensionsCites:12,book:{slug:"dna-methylation-from-genomics-to-technology",title:"DNA Methylation",fullTitle:"DNA Methylation - From Genomics to Technology"},signatures:"Eran Elhaik and Tatiana Tatarinova",authors:[{id:"95992",title:"Dr.",name:"Tatiana",middleName:"Valerievna",surname:"Tatarinova",slug:"tatiana-tatarinova",fullName:"Tatiana Tatarinova"},{id:"105570",title:"Dr.",name:"Eran",middleName:null,surname:"Elhaik",slug:"eran-elhaik",fullName:"Eran Elhaik"}]},{id:"42536",doi:"10.5772/35029",title:"Studying Cell Signal Transduction with Biomimetic Point Mutations",slug:"studying-cell-signal-transduction-with-biomimetic-point-mutations",totalDownloads:1656,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"genetic-manipulation-of-dna-and-protein-examples-from-current-research",title:"Genetic Manipulation of DNA and Protein",fullTitle:"Genetic Manipulation of DNA and Protein - Examples from Current Research"},signatures:"Nathan A. Sieracki and Yulia A. Komarova",authors:[{id:"102665",title:"Dr.",name:"Yulia",middleName:null,surname:"Komarova",slug:"yulia-komarova",fullName:"Yulia Komarova"},{id:"109090",title:"Dr.",name:"Nathan",middleName:"A.",surname:"Sieracki",slug:"nathan-sieracki",fullName:"Nathan Sieracki"}]},{id:"38873",doi:"10.5772/51016",title:"Medicago truncatula Functional Genomics - An Invaluable Resource for Studies on Agriculture Sustainability",slug:"medicago-truncatula-functional-genomics-an-invaluable-resource-for-studies-on-agriculture-sustainabi",totalDownloads:1321,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"functional-genomics",title:"Functional Genomics",fullTitle:"Functional Genomics"},signatures:"Francesco Panara, Ornella Calderini and Andrea Porceddu",authors:[{id:"141025",title:"Prof.",name:"Andrea",middleName:null,surname:"Porceddu",slug:"andrea-porceddu",fullName:"Andrea Porceddu"},{id:"143942",title:"Dr.",name:"Francesco",middleName:null,surname:"Panara",slug:"francesco-panara",fullName:"Francesco Panara"},{id:"143943",title:"Dr.",name:"Ornella",middleName:null,surname:"Calderini",slug:"ornella-calderini",fullName:"Ornella Calderini"}]}],mostDownloadedChaptersLast30Days:[{id:"66606",title:"Introductory Chapter: Transcriptome Analysis",slug:"introductory-chapter-transcriptome-analysis",totalDownloads:452,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"transcriptome-analysis",title:"Transcriptome Analysis",fullTitle:"Transcriptome Analysis"},signatures:"Miroslav Blumenberg",authors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}]},{id:"64492",title:"Antisense Oligonucleotides, A Novel Developing Targeting Therapy",slug:"antisense-oligonucleotides-a-novel-developing-targeting-therapy",totalDownloads:1043,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antisense-therapy",title:"Antisense Therapy",fullTitle:"Antisense Therapy"},signatures:"Sara Karaki, Clément Paris and Palma Rocchi",authors:[{id:"273516",title:"Dr.",name:"Palma",middleName:null,surname:"Rocchi",slug:"palma-rocchi",fullName:"Palma Rocchi"},{id:"275051",title:"Dr.",name:"Sara",middleName:null,surname:"Karaki",slug:"sara-karaki",fullName:"Sara Karaki"},{id:"282578",title:"Dr.",name:"Clement",middleName:null,surname:"Paris",slug:"clement-paris",fullName:"Clement Paris"}]},{id:"63557",title:"Molecular Identification of Genetically Modified Crops for Biosafety and Legitimacy of Transgenes",slug:"molecular-identification-of-genetically-modified-crops-for-biosafety-and-legitimacy-of-transgenes",totalDownloads:565,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"gene-editing-technologies-and-applications",title:"Gene Editing",fullTitle:"Gene Editing - Technologies and Applications"},signatures:"Shahid Nazir, Muhammad Zaffar Iqbal and Sajid-ur-Rahman",authors:null},{id:"65601",title:"Epigenetic Modifications in Plants under Abiotic Stress",slug:"epigenetic-modifications-in-plants-under-abiotic-stress",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"epigenetics",title:"Epigenetics",fullTitle:"Epigenetics"},signatures:"Garima Singroha and Pradeep Sharma",authors:[{id:"142882",title:"Dr.",name:"Pradeep",middleName:null,surname:"Sharma",slug:"pradeep-sharma",fullName:"Pradeep Sharma"},{id:"281215",title:"Dr.",name:"Garima",middleName:null,surname:"Singroha",slug:"garima-singroha",fullName:"Garima Singroha"}]},{id:"64396",title:"MiRNA-Based Therapeutics in Oncology, Realities, and Challenges",slug:"mirna-based-therapeutics-in-oncology-realities-and-challenges",totalDownloads:446,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antisense-therapy",title:"Antisense Therapy",fullTitle:"Antisense Therapy"},signatures:"Ovidiu Balacescu, Simona Visan, Oana Baldasici, Loredana Balacescu, Catalin Vlad and Patriciu Achimas-Cadariu",authors:[{id:"195763",title:"Ph.D.",name:"Ovidiu",middleName:null,surname:"Balacescu",slug:"ovidiu-balacescu",fullName:"Ovidiu Balacescu"},{id:"196758",title:"Dr.",name:"Loreadana",middleName:null,surname:"Balacescu",slug:"loreadana-balacescu",fullName:"Loreadana Balacescu"},{id:"196770",title:"Prof.",name:"Patriciu",middleName:null,surname:"Achimas",slug:"patriciu-achimas",fullName:"Patriciu Achimas"},{id:"269553",title:"MSc.",name:"Oana",middleName:null,surname:"Baldasici",slug:"oana-baldasici",fullName:"Oana Baldasici"},{id:"269554",title:"Dr.",name:"Simona",middleName:null,surname:"Visan",slug:"simona-visan",fullName:"Simona Visan"},{id:"279298",title:"Dr.",name:"Catalin",middleName:null,surname:"Vlad",slug:"catalin-vlad",fullName:"Catalin Vlad"}]},{id:"62988",title:"Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Disorders of Inherited and Non-Inherited Origin",slug:"adeno-associated-virus-aav-mediated-gene-therapy-for-disorders-of-inherited-and-non-inherited-origin",totalDownloads:754,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"in-vivo-and-ex-vivo-gene-therapy-for-inherited-and-non-inherited-disorders",title:"In Vivo and Ex Vivo Gene Therapy for Inherited and Non-Inherited Disorders",fullTitle:"In Vivo and Ex Vivo Gene Therapy for Inherited and Non-Inherited Disorders"},signatures:"Indu Rajapaksha, Peter Angus and Chandana Herath",authors:[{id:"245978",title:"Dr.",name:"Chandana",middleName:null,surname:"Herath",slug:"chandana-herath",fullName:"Chandana Herath"},{id:"248869",title:"Dr.",name:"Indu",middleName:null,surname:"Rajapaksha",slug:"indu-rajapaksha",fullName:"Indu Rajapaksha"},{id:"248870",title:"Prof.",name:"Peter",middleName:null,surname:"Angus",slug:"peter-angus",fullName:"Peter Angus"}]},{id:"63488",title:"Nontransformative Strategies for RNAi in Crop Protection",slug:"nontransformative-strategies-for-rnai-in-crop-protection",totalDownloads:806,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"modulating-gene-expression-abridging-the-rnai-and-crispr-cas9-technologies",title:"Modulating Gene Expression",fullTitle:"Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies"},signatures:"Deise Cagliari, Ericmar Avila dos Santos, Naymã Dias, Guy Smagghe\nand Moises Zotti",authors:null},{id:"67086",title:"Application and Development of CRISPR/Cas9 Technology in Pig Research",slug:"application-and-development-of-crispr-cas9-technology-in-pig-research",totalDownloads:499,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"gene-editing-technologies-and-applications",title:"Gene Editing",fullTitle:"Gene Editing - Technologies and Applications"},signatures:"Huafeng Lin, Qiudi Deng, Lili Li and Lei Shi",authors:null},{id:"64290",title:"Strand Displacement Amplification for Multiplex Detection of Nucleic Acids",slug:"strand-displacement-amplification-for-multiplex-detection-of-nucleic-acids",totalDownloads:823,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"modulating-gene-expression-abridging-the-rnai-and-crispr-cas9-technologies",title:"Modulating Gene Expression",fullTitle:"Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies"},signatures:"Lingwen Zeng, Omar Mukama, Xuewen Lu, Shilin Cao and Donghai\nLin",authors:null},{id:"68358",title:"Plant Comparative Transcriptomics Reveals Functional Mechanisms and Gene Regulatory Networks Involved in Anther Development and Male Sterility",slug:"plant-comparative-transcriptomics-reveals-functional-mechanisms-and-gene-regulatory-networks-involve",totalDownloads:177,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"transcriptome-analysis",title:"Transcriptome Analysis",fullTitle:"Transcriptome Analysis"},signatures:"Xiangyuan Wan and Ziwen Li",authors:null}],onlineFirstChaptersFilter:{topicSlug:"genomics-molecular-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"69509",title:"MicroRNAs in the Functional Defects of Skin Aging",slug:"micrornas-in-the-functional-defects-of-skin-aging",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.89689",book:{title:"Non-Coding RNAs"},signatures:"Fabien P. Chevalier, Julie Rorteau and Jérôme Lamartine"},{id:"69556",title:"Role of Virus-Encoded microRNAs in Avian Viral Diseases",slug:"role-of-virus-encoded-micrornas-in-avian-viral-diseases",totalDownloads:36,totalDimensionsCites:0,doi:"10.5772/intechopen.89688",book:{title:"Non-Coding RNAs"},signatures:"Venugopal Nair and Yongxiu Yao"},{id:"69180",title:"MicroRNA-335-5p and Gastrointestinal Tumors",slug:"microrna-335-5p-and-gastrointestinal-tumors",totalDownloads:244,totalDimensionsCites:0,doi:"10.5772/intechopen.88895",book:{title:"Non-Coding RNAs"},signatures:"Pablo M. Santoro, Alejandra Sandoval-Bórquez and Alejandro H. Corvalan"}],onlineFirstChaptersTotal:8},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:19},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"chapter.detail",path:"/books/disruptive-wide-bandgap-semiconductors-related-technologies-and-their-applications/inductive-power-transfer-for-electric-vehicles-using-gallium-nitride-power-transistors",hash:"",query:{},params:{book:"disruptive-wide-bandgap-semiconductors-related-technologies-and-their-applications",chapter:"inductive-power-transfer-for-electric-vehicles-using-gallium-nitride-power-transistors"},fullPath:"/books/disruptive-wide-bandgap-semiconductors-related-technologies-and-their-applications/inductive-power-transfer-for-electric-vehicles-using-gallium-nitride-power-transistors",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()