Parameters assessed in different regions of the world.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"2288",leadTitle:null,fullTitle:"Crude Oil Emulsions - Composition Stability and Characterization",title:"Crude Oil Emulsions",subtitle:"Composition Stability and Characterization",reviewType:"peer-reviewed",abstract:'Petroleum "black gold" is the most important nonrenewable source of energy. It is a complex mixture of different phases and components. Refining it provides a vast number of organic compounds, all of them of which are used to produce petroleum based products for numerous applications, from industry to medicine, from clothing to food industries. We can find petroleum based products all around us. This book deals with some important topics related to petroleum such as its chemical composition and stability. It is well-known that the chemical composition of crude oil differs according to the site of production, and its grade varies from waxy to asphaltenic crude. Both of them are refined to produce different products. The stability of crude oil on aging and transportation is governed by several factors and these factors are included within this book. Some new technologies for petroleum characterization are also introduced. This book is aimed at researchers, chemical engineers and people working within the petroleum industry.',isbn:null,printIsbn:"978-953-51-0220-5",pdfIsbn:"978-953-51-4336-9",doi:"10.5772/2677",price:119,priceEur:129,priceUsd:155,slug:"crude-oil-emulsions-composition-stability-and-characterization",numberOfPages:242,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"d237bdec7bb1475639149b044fac69f5",bookSignature:"Manar El-Sayed Abdel-Raouf",publishedDate:"March 2nd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2288.jpg",numberOfDownloads:77451,numberOfWosCitations:112,numberOfCrossrefCitations:58,numberOfCrossrefCitationsByBook:23,numberOfDimensionsCitations:126,numberOfDimensionsCitationsByBook:34,hasAltmetrics:1,numberOfTotalCitations:296,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 4th 2011",dateEndSecondStepPublish:"June 1st 2011",dateEndThirdStepPublish:"October 6th 2011",dateEndFourthStepPublish:"November 5th 2011",dateEndFifthStepPublish:"March 4th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"102626",title:"Prof.",name:"Manar El-Sayed",middleName:null,surname:"Abdel-Raouf",slug:"manar-el-sayed-abdel-raouf",fullName:"Manar El-Sayed Abdel-Raouf",profilePictureURL:"https://mts.intechopen.com/storage/users/102626/images/system/102626.jpg",biography:"Professor Manar Elsayed Abdel-Raouf is a Professor of Polymer Science at the Egyptian Petroleum Research Institute. Her main research interests are the modification and utilization of green polymers in different fields such as the production of renewable energy, wastewater treatment, and reduction or elimination of environmental pollution. She has published more than sixty research papers and review articles in reputed journals. She also has several book chapters to her credit. Prof. Manar is a reviewer, guest editor, and editorial board member for several international highly ranked journals. She is also the principal investigator for some national and international projects dealing with environmental issues.",institutionString:"Egyptian Petroleum Research Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Egyptian Petroleum Research Institute",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"702",title:"Petrochemical Engineering",slug:"engineering-chemical-engineering-petrochemical-engineering"}],chapters:[{id:"29875",title:"Asphaltenes – Problems and Solutions in E&P of Brazilian Crude Oils",doi:"10.5772/34699",slug:"asphaltenes-problems-and-solutions-in-e-p-of-brazilian-crude-oils",totalDownloads:6425,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Erika Chrisman, Viviane Lima and Príscila Menechini",downloadPdfUrl:"/chapter/pdf-download/29875",previewPdfUrl:"/chapter/pdf-preview/29875",authors:[{id:"101270",title:"Dr.",name:"Erika C.A. Nunes",surname:"Chrisman",slug:"erika-c.a.-nunes-chrisman",fullName:"Erika C.A. Nunes Chrisman"},{id:"110649",title:"MSc.",name:"Viviane",surname:"Lima",slug:"viviane-lima",fullName:"Viviane Lima"},{id:"110651",title:"MSc.",name:"Príscila",surname:"Menechini",slug:"priscila-menechini",fullName:"Príscila Menechini"}],corrections:null},{id:"29876",title:"Petroleum Asphaltenes",doi:"10.5772/35875",slug:"petroleum-asphaltenes",totalDownloads:14182,totalCrossrefCites:25,totalDimensionsCites:40,hasAltmetrics:0,abstract:null,signatures:"Lamia Goual",downloadPdfUrl:"/chapter/pdf-download/29876",previewPdfUrl:"/chapter/pdf-preview/29876",authors:[{id:"106226",title:"Dr.",name:"Lamia",surname:"Goual",slug:"lamia-goual",fullName:"Lamia Goual"}],corrections:null},{id:"29877",title:"Adsorption and Aggregation of Asphaltenes in Petroleum Dispersed Systems",doi:"10.5772/37323",slug:"adsorption-aggregation-relations-in-asphaltene-containing-dispersed-systems",totalDownloads:3167,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jamilia O. Safieva, Kristofer G. Paso, Ravilya Z. Safieva and Rustem Z. Syunyaev",downloadPdfUrl:"/chapter/pdf-download/29877",previewPdfUrl:"/chapter/pdf-preview/29877",authors:[{id:"112248",title:"Prof.",name:"Rustem",surname:"Syunyaev",slug:"rustem-syunyaev",fullName:"Rustem Syunyaev"},{id:"112292",title:"Prof.",name:"Ravilya",surname:"Safieva",slug:"ravilya-safieva",fullName:"Ravilya Safieva"},{id:"136691",title:"Dr.",name:"Jamilia",surname:"Safieva",slug:"jamilia-safieva",fullName:"Jamilia Safieva"},{id:"136692",title:"Dr.",name:"Kristofer",surname:"Paso",slug:"kristofer-paso",fullName:"Kristofer Paso"}],corrections:null},{id:"29878",title:"Natural Surfactants from Venezuelan Extra Heavy Crude Oil - Study of Interfacial and Structural Properties",doi:"10.5772/36108",slug:"natural-surfactants-from-venezuelan-extra-heavy-crude-oil-study-0f-interfacial-and-structural-proper",totalDownloads:2986,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"B. Borges",downloadPdfUrl:"/chapter/pdf-download/29878",previewPdfUrl:"/chapter/pdf-preview/29878",authors:[{id:"107097",title:"Prof.",name:"Belsay",surname:"Borges",slug:"belsay-borges",fullName:"Belsay Borges"}],corrections:null},{id:"29879",title:"Thermodynamic Models for the Prediction of Petroleum-Fluid Phase Behaviour",doi:"10.5772/35025",slug:"thermodynamic-models-for-the-prediction-of-petroleum-fluid-phase-behavior-",totalDownloads:6787,totalCrossrefCites:4,totalDimensionsCites:15,hasAltmetrics:1,abstract:null,signatures:"Romain Privat and Jean-Noël Jaubert",downloadPdfUrl:"/chapter/pdf-download/29879",previewPdfUrl:"/chapter/pdf-preview/29879",authors:[{id:"21249",title:"Prof.",name:"Jean-Noel",surname:"Jaubert",slug:"jean-noel-jaubert",fullName:"Jean-Noel Jaubert"},{id:"110843",title:"Dr.",name:"Romain",surname:"Privat",slug:"romain-privat",fullName:"Romain Privat"}],corrections:null},{id:"29880",title:"Analysis of Polar Components in Crude Oil by Ambient Mass Spectrometry",doi:"10.5772/36261",slug:"differentiation-of-crude-oils-by-ambient-ionization-mass-spectrometry",totalDownloads:4214,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Chu-Nian Cheng, Jia-Hong Lai, Min-Zong Huang, Jung-Nan Oung and Jentaie Shiea",downloadPdfUrl:"/chapter/pdf-download/29880",previewPdfUrl:"/chapter/pdf-preview/29880",authors:[{id:"107672",title:"Prof.",name:"Jentaie",surname:"Shiea",slug:"jentaie-shiea",fullName:"Jentaie Shiea"}],corrections:null},{id:"29881",title:"Determination of Metal Ions in Crude Oils",doi:"10.5772/36945",slug:"determination-of-metal-ions-in-crude-oils",totalDownloads:10545,totalCrossrefCites:13,totalDimensionsCites:29,hasAltmetrics:0,abstract:null,signatures:"M.Y. Khuhawar, M. Aslam Mirza and T.M. Jahangir",downloadPdfUrl:"/chapter/pdf-download/29881",previewPdfUrl:"/chapter/pdf-preview/29881",authors:[{id:"110537",title:"Prof.",name:"M.Y",surname:"Khuhawar",slug:"m.y-khuhawar",fullName:"M.Y Khuhawar"}],corrections:null},{id:"29882",title:"Crude Oil by EPR",doi:"10.5772/35602",slug:"crude-and-by-product-oils-by-epr",totalDownloads:2616,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Marilene Turini Piccinato, Carmen Luisa Barbosa Guedes and Eduardo Di Mauro",downloadPdfUrl:"/chapter/pdf-download/29882",previewPdfUrl:"/chapter/pdf-preview/29882",authors:[{id:"37458",title:"Associate Prof.",name:"Carmen Luisa",surname:"Guedes",slug:"carmen-luisa-guedes",fullName:"Carmen Luisa Guedes"},{id:"105129",title:"Dr.",name:"Eduardo",surname:"Di Mauro",slug:"eduardo-di-mauro",fullName:"Eduardo Di Mauro"},{id:"131608",title:"Dr.",name:"Marilene",surname:"Turini Piccinato",slug:"marilene-turini-piccinato",fullName:"Marilene Turini Piccinato"}],corrections:null},{id:"29883",title:"Effects of Crude Oil Contaminated Water on the Environment",doi:"10.5772/36105",slug:"biological-effects-of-water-soluble-fraction-of-crude-oil-on-aquatic-environment",totalDownloads:8822,totalCrossrefCites:3,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Noyo Edema",downloadPdfUrl:"/chapter/pdf-download/29883",previewPdfUrl:"/chapter/pdf-preview/29883",authors:[{id:"107091",title:"Dr.",name:"Noyo",surname:"Edema",slug:"noyo-edema",fullName:"Noyo Edema"}],corrections:null},{id:"29884",title:"Factors Affecting the Stability of Crude Oil Emulsions",doi:"10.5772/35018",slug:"factors-affecting-the-stability-of-crude-oil-emulsions",totalDownloads:12272,totalCrossrefCites:6,totalDimensionsCites:17,hasAltmetrics:0,abstract:null,signatures:"Manar El-Sayed Abdel-Raouf",downloadPdfUrl:"/chapter/pdf-download/29884",previewPdfUrl:"/chapter/pdf-preview/29884",authors:[{id:"102626",title:"Prof.",name:"Manar El-Sayed",surname:"Abdel-Raouf",slug:"manar-el-sayed-abdel-raouf",fullName:"Manar El-Sayed Abdel-Raouf"}],corrections:null},{id:"29885",title:"Tailored Polymer Additives for Wax (Paraffin) Crystal Control",doi:"10.5772/36359",slug:"tailored-polymer-additives-for-wax-paraffin-crystal-control",totalDownloads:5438,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Aurel Radulescu, Lewis J. Fetters and Dieter Richter",downloadPdfUrl:"/chapter/pdf-download/29885",previewPdfUrl:"/chapter/pdf-preview/29885",authors:[{id:"107981",title:"Dr.",name:"Aurel",surname:"Radulescu",slug:"aurel-radulescu",fullName:"Aurel Radulescu"},{id:"137367",title:"Dr.",name:"Lewis J.",surname:"Fetters",slug:"lewis-j.-fetters",fullName:"Lewis J. Fetters"},{id:"137368",title:"Prof.",name:"Dieter",surname:"Richter",slug:"dieter-richter",fullName:"Dieter Richter"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1604",title:"Advances in Chemical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"88084d0ed8f82a4ec50ed554de9f0036",slug:"advances-in-chemical-engineering",bookSignature:"Zeeshan Nawaz and Shahid Naveed",coverURL:"https://cdn.intechopen.com/books/images_new/1604.jpg",editedByType:"Edited by",editors:[{id:"15484",title:"Dr",name:"Zeeshan",surname:"Nawaz",slug:"zeeshan-nawaz",fullName:"Zeeshan Nawaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2873",title:"Hydrogen Storage",subtitle:null,isOpenForSubmission:!1,hash:"5636fb7f125524c17e174c9cf62c8363",slug:"hydrogen-storage",bookSignature:"Jianjun Liu",coverURL:"https://cdn.intechopen.com/books/images_new/2873.jpg",editedByType:"Edited by",editors:[{id:"145203",title:"Prof.",name:"Jianjun",surname:"Liu",slug:"jianjun-liu",fullName:"Jianjun Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5143",title:"Chemical Enhanced Oil Recovery (cEOR)",subtitle:"a Practical Overview",isOpenForSubmission:!1,hash:"a0b7842ba790370b5485de1694611376",slug:"chemical-enhanced-oil-recovery-ceor-a-practical-overview",bookSignature:"Laura Romero-Zeron",coverURL:"https://cdn.intechopen.com/books/images_new/5143.jpg",editedByType:"Edited by",editors:[{id:"109465",title:"Dr.",name:"Laura",surname:"Romero-Zerón",slug:"laura-romero-zeron",fullName:"Laura Romero-Zerón"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6730",title:"Palm Oil",subtitle:null,isOpenForSubmission:!1,hash:"96d058f3abbc8d0660dcd56042a8ece8",slug:"palm-oil",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/6730.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7323",title:"Processing of Heavy Crude Oils",subtitle:"Challenges and Opportunities",isOpenForSubmission:!1,hash:"a019fb5c826a5049700528cfc505f0db",slug:"processing-of-heavy-crude-oils-challenges-and-opportunities",bookSignature:"Ramasamy Marappa Gounder",coverURL:"https://cdn.intechopen.com/books/images_new/7323.jpg",editedByType:"Edited by",editors:[{id:"209620",title:"Dr.",name:"Ramasamy",surname:"Marappa Gounder",slug:"ramasamy-marappa-gounder",fullName:"Ramasamy Marappa Gounder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4647",title:"Advanced Materials for Renewable Hydrogen Production, Storage and Utilization",subtitle:null,isOpenForSubmission:!1,hash:"2b798cc5c2b3f364c1322bed506499fd",slug:"advanced-materials-for-renewable-hydrogen-production-storage-and-utilization",bookSignature:"Jianjun Liu",coverURL:"https://cdn.intechopen.com/books/images_new/4647.jpg",editedByType:"Edited by",editors:[{id:"145203",title:"Prof.",name:"Jianjun",surname:"Liu",slug:"jianjun-liu",fullName:"Jianjun Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8448",title:"Glycerine Production and Transformation",subtitle:"An Innovative Platform for Sustainable Biorefinery and Energy",isOpenForSubmission:!1,hash:"63834d3e01c2550240908758fb0fbe34",slug:"glycerine-production-and-transformation-an-innovative-platform-for-sustainable-biorefinery-and-energy",bookSignature:"Marco Frediani, Mattia Bartoli and Luca Rosi",coverURL:"https://cdn.intechopen.com/books/images_new/8448.jpg",editedByType:"Edited by",editors:[{id:"53209",title:"Prof.",name:"Marco",surname:"Frediani",slug:"marco-frediani",fullName:"Marco Frediani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10159",title:"Swelling Elastomers in Petroleum Drilling and Development",subtitle:"Applications, Performance Analysis, and Material Modeling",isOpenForSubmission:!1,hash:"8cc0099da7f0fbf5572428795e43b796",slug:"swelling-elastomers-in-petroleum-drilling-and-development-applications-performance-analysis-and-material-modeling",bookSignature:"Sayyad Zahid Qamar, Maaz Akhtar and Tasneem Pervez",coverURL:"https://cdn.intechopen.com/books/images_new/10159.jpg",editedByType:"Authored by",editors:[{id:"21687",title:"Prof.",name:"Sayyad Zahid",surname:"Qamar",slug:"sayyad-zahid-qamar",fullName:"Sayyad Zahid Qamar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"7353",title:"Paraffin",subtitle:"an Overview",isOpenForSubmission:!1,hash:"37902d2ff0f7e495b628ab41622be6e4",slug:"paraffin-an-overview",bookSignature:"Fathi Samir Soliman",coverURL:"https://cdn.intechopen.com/books/images_new/7353.jpg",editedByType:"Edited by",editors:[{id:"270842",title:"Dr.",name:"Fathi Samir",surname:"Soliman",slug:"fathi-samir-soliman",fullName:"Fathi Samir Soliman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6829",title:"Petroleum Chemicals",subtitle:"Recent Insight",isOpenForSubmission:!1,hash:"058919afbb548d3448e70238b4637e84",slug:"petroleum-chemicals-recent-insight",bookSignature:"Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/6829.jpg",editedByType:"Edited by",editors:[{id:"92105",title:"Dr.",name:"Mansoor",surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72959",slug:"erratum-driving-control-technologies-of-new-high-efficient-motors",title:"Erratum - Driving Control Technologies of New High-Efficient Motors",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72959.pdf",downloadPdfUrl:"/chapter/pdf-download/72959",previewPdfUrl:"/chapter/pdf-preview/72959",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72959",risUrl:"/chapter/ris/72959",chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]}},chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]},book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11273",leadTitle:null,title:"Ankylosing Spondylitis",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tDuring the last years, there was intense research on Ankylosing Spondylitis (AS) and related disorders, which were found to have a strong association with the HLA-B27 allele. Further studies showed that 92% of the population variance is due to genetic factors, and only a fraction of AS genetics can be explained by the influence of HLA-B27. Updated information on the genomic and auto-immune knowledge on AS is an important component of this book, calling attention to markers of disease activity, possible pathways, and the interaction with the gut microbiome, which are a step forward in the knowledge of the pathophysiology of AS, providing markers which are targets for the more recent biologic therapies.
\r\n\tAn update on clinical manifestations, their assessment, monitoring, and imagiology, including peripheral arthritis, enthesopathy, and extra-articular findings, and, the differential diagnosis with other diseases which evolves with axial and peripheral calcifications will be provided.
\r\n\t
\r\n\tAn important component of this book must be dedicated to the more recent treatments namely with biologic therapies but focusing also on new small molecule inhibitors and experimental therapies.
Honey is a natural product produced by bees from the nectar of flowers which can be modified by their digestive enzymes (floral honey) or from living plant fluids and/or excretions of plant‐sucking insects (honeydew honey) [1].
\nFloral honey can be monofloral or polyfloral, depending on whether their production is derived from a single species or various species of plants, respectively. Polyfloral honey is universal, but monofloral honey can be produced by establishing hives where flowers of a particular plant species are dominant. Therefore, based on their peculiarity, unique flavors, and sometimes unique medicinal properties, monofloral honey has a higher commercial value. Manuka honey is an example of such type, which derives from two species of Leptospermum, and retail prices start at about $100/kg [2] due to its demonstrated health benefits [3]. In addition from the plant source, the commercial value and characteristics of the honey can also be based on insect source, as honey from stingless bees (e.g. Melipona beecheii) or honey from Apis mellifera, etc. exhibits different characteristics. Additionally, the absence of residues of contaminants may also play an important role in the international market, as in the case of Brazilian honey, which receives Organic Certification.
\nIn this scenario, a variety of honey samples with different characteristics, biological effects, and commercial values are found worldwide. Because of the value of different types of honey could vary more than 100‐fold, it is target for fraud. Reports have suggested the dilution of valued kinds of honey, such as from stingless bees, with low‐value honey.
\nBiological honey activities are derived from compounds that are present in this natural food. In general, honey is composed of approximately 200 substances, particularly with those belonging to the classes of sugars, amino acids, proteins, organic acids, flavonoids, phenolic acids, vitamins, minerals, and volatile compounds. The chemical composition of honey is intrinsically related to factors such as the geographic region of origin, present flowers in this region, species of bee that produced it, climatic conditions, processing conditions, handling and storage, and the storage time [4]. Thus, honey chemical composition from different botanical areas can vary, also leading to differences to their biological properties.
\nSeveral efforts have been made worldwide to develop protocols aiming the identification and evaluation honey quality. The literature presents many methodologies that are used to determine honey identification and quality control, and they are complementary. Among them, it could be named ascertain the entomological sources of honey by pollen identification with checking of the morphological pollen of flowers present in each honey sample and quantification of the same [5] and physical and chemical tests, i.e. determination of 5‐hydroxymethylfurfural (5‐HMF), which aims to assess whether it has been stored properly and determine whether it is fresh, the determination of free acidity and pH, which can be used for checking the tampering and deterioration, respectively.
\nAdditional or alternative methods to establish the plant source of an unknown honey have also been proposed through the genetic analysis of targeted gene regions isolated from honey. This technical approach was termed metabarcoding and it is gaining power because of increased access to high‐throughput sequencing platforms [6].
\nAccording to the Technical Regulations for Honey identity and Quality of the Ministry of Agriculture, Livestock and Supply (MAPA) in Brazil [7], honey samples must be characterized by physical and chemical tests, such as moisture determination, minerals (ash), acidity, reducing sugars, apparent sucrose, insoluble solids in water, diastase activity, and hydroxymethyl furfural (HMF). These tests will be discussed deeply in the next sections, especially demonstrating the fundaments and importance of each one to guarantee honey quality in Brazil. Regarding the tests required worldwide, a comparison among the different regulations is also depicted. Additional assessments, which are not comprised in Brazilian Regulations, are also reported, as the determination of metals and pollen identification. Finally, honey market worldwide is exposed.
\nThe standard for honey was established in 1981 by CODEX Alimentarius organized by the World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO) by delivering CODEX STAN 12‐19811 to contribute to the safety, quality, and fairness of the international honey trade (see the parameters in \nTable 1\n) [8].
\nParameter | \nCODEX Alimentarius [8] | \nBrazil (Instruction No. 11, of October 20, 2000) [7] | \nEurope (COUNCIL Directive 2001/110/EC of 20 December 2001) [10] | \nJapan [11] | \n
---|---|---|---|---|
Reducing sugars (fructose/glucose) | \nNot less than 60/100 g. Honeydew honey, blends of honeydew honey with blossom honey: not less than 45/100 g | \nFloral honey: minimum 65/100 g. Honeydew honey or mix of honeydew with floral honey: minimum 60/100 g | \nAt least 60/100 g. Honeydew and honeydew mixes with nectar honey at least 45/100 g | \nMaximum 60/100 g | \n
Moisture | \nNot more than 20%. Heather honey ( | \nMaximum 20/100 g | \nMaximum 20/100 g | \nMaximum 20/100 g | \n
Apparent sucrose | \nnot more than 5 g/100 g. Alfalfa ( | \nfloral honey: Maximum 6/100 g/Honeydew or mix of honeydew with floral honey: maximum 15/100 g | \nMaximum 5/100 g. \n | \nMaximum 5/100 g | \n
Solid insoluble in water | \nNot more than 0.1/100 g Pressed honey —not more than 0.5/100 g | \nMaximum 0.1/100 g, except pressed honey, which is tolerated up to 0.5 g/100 g, only on products packaged for its direct sale to the public | \nMaximum 0.1/100 g | \n– | \n
Electrical Conductivity | \n– | \n– | \nMaximum 0.8 mS/cm | \nMaximum 0.8 mS/cm | \n
Minerals (ash): | \nNot mentioned | \nMaximum 0.6/100 g. Honeydew or mix of honeydew with floral honey is tolerated up to 1.2/100 g | \nNot declared | \n– | \n
Pollen | \nNot mentioned | \nHoney must necessarily present pollen grain | \nNot declared | \n\n |
Acidity | \nNot mentioned | \nMaximum of 50 mEq/kg | \nMaximum of 50 mEq/kg | \nMaximum of 50 mEq/kg | \n
Diastase activity | \n– | \nAt least 8 on the scale of Göthe. Honey with a low‐enzyme content should present at least 3 diastase activity on the scale of Göthe, where the content of hydroxymethylfurfural does not exceed 15 mg/kg | \nAt least 8 on Schade scale. Honey with a low‐enzyme content should present at least 3 on Schade scale, where the content of hydroxymethylfurfural does not exceed 15 mg/kg | \n– | \n
Hydroxymethylfurfural | \nNot mentioned | \nUp to 60 mg/kg | \nLess than 40 mg/kg. But honey from tropical climate and blends of these honeys a maximum of 80 mg/kg is accepted | \nMaximum 50 mg/kg | \n
Additives | \nNot mentioned | \nAbsent | \nNot declared | \nAbsent | \n
Organic and inorganic contaminants | \nHoney shall be free from heavy metals in amounts which may represent a hazard to human health. The products covered by this Standard shall comply with those maximum levels for heavy metals established by the Codex Alimentarius Commission | \nOrganic and inorganic contaminants and their limits are established by MERCOSUL Technical Regulation | \nNot declared | \nDextrins: Absent Antibiotics: Absent High control regarding contaminants | \n
Observations | \nThe products covered by this standard shall comply with those maximum residue limits for honey established by the Codex Alimentarius Commission | \n\n | In Germany, additional analysis of pyrrolizidine alkaloids (PA). It must be 50 μg/kg High control regarding genetically modified organisms—GMO | \n\n |
Parameters assessed in different regions of the world.
In general, each region of the world may also adopt regulations with parameters that will be committed to their market requirements, as well as, local environment. A summary of some important regulations with parameters and limits around the world is also demonstrated in \nTable 1\n.
\nEach parameter will be further explored in next section. In this section, however, it is important to demonstrate that Brazil is a country that has its own characteristics of climate, flora, and great biodiversity. This characteristic combined with the presence of Africanized bees allows the production of honey with its own characteristics of taste, purity, quality, and originality.
\nIn Brazil, honey is a product regulated and supervised by the Ministry of Agriculture of Brazil, through the Federal Inspection Service (Serviço de Inspeção Federal—S.I.F) in accordance with Instruction No. 11, of October 20, 2000 [7, 9]. Because of the rustic characteristics of Africanized bees and richness of its flora, Brazilian honey has no residues of contaminants and is considered a high quality and pure honey which may be a product with Organic Certification.
\nThus, one can observe that each country may establish its own quality parameters and there is still much to be aligned regarding the parameters and methodologies of analysis as they have many differences. With differences in parameters and methodologies, different results for the same honey sample may apply, leading to difficult negotiations between companies.
\nIn order to study the potential of Brazilian honey market, it is interesting to evaluate the production/demand of the honey around the world, the characteristic of the business, as well as, the conditions of Brazilian honey, production, and circumstances that can influence in this scenario. It is important to remember that the market is something very flighty and then, problems in one country, which presents high involvement in this business, can directly affect and change all circumstances and perspectives.
\nIn this turn, it has been possible to observe a decrease in honey production in the US in last decades. Beehives in this country decreased from around 6 million in 1947 to 2740 million in 2016. This internal reduction in the production, from 250 million pounds in the early 1990s to approximately 178 million pounds in 2016, increased the demand for honey importation from other countries [12]. Colony collapse disorder (CCD) can be one of the reasons for the decrease in honeybee populations in the USA [13]. Despite the production reduction, honey consumption in the US has increased from approximately 400 million pounds in 2000 to approximately 450 million pounds yearly in last years. To maintain internal honey consumption, importation has increased from near 200 million pounds (in 2000) to 300 million pounds [14].
\nArgentina honey production was around 21 thousand tons in 1969, 110 thousand tons in 2005, and 80 thousand tons in 2013 [15]. This increase was mainly attributed to the clover plantation, since although the clover was planted to feed the cattle it gave a lot of nectar for honeybees to produce honey. Now it seems that honey production in Argentina was reduced due to the reduction of pasture and increase of soybeans, corn, and wheat plantations [16]. Only 8% of honey produced in Argentina is consumed in the internal market, making this country one of the biggest exporters of honey [17].
\nEurope produced about 372 thousand tons of honey in 2013, but it used to produce 309 thousand tons of honey in 1993. It is a great increase. But we have to understand better this market, as all of its self‐production honey is consumed in its internal market. Europe is also a big importer country, importing about 305 thousand tons of honey in 2013, but it also exports a lot, in the same year they exported 176 thousand tons of honey [15]. That means that they still consume a lot of imported honey, but they re‐export more than half of what they import with aggregated value. Europe is an important destination of Brazilian honey, especially because organic honey production is a very important point to be considered for these countries when importing honey, besides the absence of OGM pollen.
\nThe China honey production increased from 75 thousand tons in 1969 to 450 thousand tons in 2013, and in this meantime the exportation in this year reached 125 thousand tons. Therefore, the internal consumption was around 325 thousand tons [15]. This data demonstrate non only the high honey production, but also, the high honey consumption for this country. China is the biggest honey exporter (in quantity) in the exporting universe, ahead of Argentina, which is also an important exporter. However, Chinese honey suffered an EU embargo in 2003, because of residue and antibiotic contamination found in honey.
\nOn the other hand, after this Chinese honey embargo, Brazil has increased exportation. As previously mentioned, honey in Brazil is produced by Africanized bees, which are very strong bees, requiring no treatments with antibiotics or medicines. Therefore, Brazil presents the best bees for honey production [17]. In addition, Brazil has a great extension of territory, as well as rich flora and all resources to develop the bees [18] and honey production, without using antibiotics and pesticides, offering consequently a honey without contaminant residues.
\nMoreover, Brazilian honey production is mostly made in native areas, which also do not requires pesticides. Nevertheless, in 2006 Brazilian honey was banned from EU markets due to a lack of governmental Plan for Residues in honey [19], situation that was normalized in March 2008.
\nBrazil has the biggest extension of natural forest in the world and tropical weather in most of its area. That is about 300 million hectares of reserves, Indian territories and other protection areas for the biodiversity and rainforest, according to the IBGE. This allows Brazil to have the biggest organic honey potential production in the world [20]. Added to this huge area of natural forest, Brazil presented 6.9 million sq. km of eucalyptus planted area in 2014 [20]. In all areas of Brazil (north, south, southeast, northeast, and central west), eucalyptus can be cultivated. It is well known that eucalyptus plantation is very interesting for producing honey. It can be planted without chemical treatments allowing honey being produced as an organic area, producing also organic certified honey. Summing the area planted only for soybeans, coffee, cotton, orange, and sunflower in 2013 we can achieve an area of 100 thousand hectares (ha) as per IBGE [21]. Added to eucalyptus honey production and the other planted areas, it is important to consider that pollination services are rarely used in Brazil, and then, a large potential for increasing honey production could use this technique. Brazil has about 2.5 million bee colonies. Most of them are involved in honey production. Pollination is rarely used yet [22]. Brazilian honey productivity per hive is about 15 kg/colony/year. Comparing to Argentina with 35 kg/colony/hive [23], Australia with 118 kg/hive/year in average [24] and China 100 kg/hive/year, Brazilian beekeeping has much to grow [23]. It gives Brazil a possibility to increase honey production by using with techniques. Beekeeping in Brazil is very unprofessional. That is good, for one side, because no medicine, no antibiotic, and no special food is given to bees, maintaining the honey very natural. But productivity is low since it is very unprofessional yet. In the average, Brazil has a production of 30–40 thousand tons of honey yearly, since 2003 (\nFigures 1\n and \n2\n).
\nBrazilian honey production (tons). Data compiled for ABEMEL with information from: aliceweb.gov.br.
Brazilian honey production and exportation. Data compiled for ABEMEL with information from: aliceweb.gov.br.
Brazilian exports have started in 2003 with China’s honey embargo in the EU. Average honey exports are between 15 and 20 thousand tons yearly (\nFigures 2\n and \n3\n).
\nBrazilian honey exportation (tons). Data compiled for ABEMEL with information from: aliceweb.gov.br.
From the total honey produced, in 2014, 66% of it was exported. Brazil still has a very strong internal market for honey, however, with the price increase in last years because of intense exportation, internal Brazilian consumer is being suffering and then, the consumption can be reduced to a premium market only, i.e., consumers with a high‐quality life.
\nData have shown that honey consumption was 81 grams per capita in Brazil in 2014, an average really low comparing with other countries. Many programs are being conducted to distribute honey to governmental schools for the snack, but in the regular markets as drugstores and supermarkets consume is lower because of high pricing (\nFigure 4\n).
\nBrazilian honey per capita consumption (g)/year. Data compiled for ABEMEL with information from: aliceweb.gov.br.
In conclusion, Brazil has the biggest potential to produce organic honey in approximately 100 square ha and approx. 7 square km of eucalyptus area. The Africanized honey bee, the best bee, is very resistant and using few techniques we can double per hive productivity. We have a potential internal market that can absorb honey production in the case of international market unbalances. So, Brazil has the best potential to produce honey in the world with low risk. And can produce a very good and quality honey with organic certification.
\nMicroscopical analysis of pollen from bee products can offer several interesting information, as geographical source of the material (honey and propolis), botanical origin [25] and also can help about investigations involving contamination, yeast content (fermentation), dust, microscopic particles and others. In this last case, i.e. when the analysis is more complex and involve contamination investigation, this analysis is called palynological analysis [26].
\nGeographical origin and botanical source usually can be determined when pollen has not been completely removed by a technological process by filtration. Besides, in several countries pollen determination is not a requirement of quality; in Brazil, this point is requested by Normative Instruction no. 11, 2000 [7], and European Community is using a lot of morphological or DNA analysis in order to validate botanical or geographical source, besides OGM material (DNA analysis for this last one). Although this point is not a quality requirement for several countries, it can be used to confirm the geographical and botanical source, especially when some doubts appear. The pollen identification can be carried out using very simple and classical methods as microscopical morphological identification or using more advanced technologies as “DNA barcoding” [27]. The micromorphological analysis is very useful and the analysis can involve identification, as far as possible, of all pollen grains in the sediment, after properly preparation of the sample. The results can be expressed as an (i) estimate value, (ii) determination of frequency classes, and the (iii) count expressed in percentage. For the first case, it is necessary to count around 100 grains and elements correspondent, in the second, around 200–300 pollen grains, in this case, if the pollen is of only a few species, around 200 pollen grains is enough, and finally, in the last case, the presentation of the frequencies as percentage is possible counting around 1200 pollen grains, with two slides counted [25].
\nWhen the honey is classified according to plant source, the common name or botanical name is written with word “honey” (CODEX STAN 12‐1981) [8]. The MAPA use classical methods as the reference and the results are compared with the literature. The São Paulo’s state government has a databank with more than 17,000 slides, but the access it is only in loco (http://botanica.sp.gov.br/palinologia/palinologia‐colecao‐cientifica‐palinoteca/). Nevertheless, there is electronics databank available, as picture bank of Universidade de São Paulo (http://www.lea.esalq.usp.br/polen/) [28].
\nThe pollen analysis also used to classify the honey as monofloral or unifloral, when the dominance of pollen of a single plant species, the bifloral dominance of pollen of only two plant species and plurifloral or heterofloral with no dominance of pollen of any plant species. Dominant pollen occurs in honey sediments above 45%, at least 300 pollen grains counted. This kind of classification is commercially important because monofloral honey is the most valued since it keeps the same physicochemical and organoleptic characteristics [26].
\nDespite the facility of preparation of slides in the traditional method, the interpretations of results and time involved with pollen grain counting sometimes is a challenge, in this way molecular tools could be applied. The “DNA barcoding” could be used to identify source plants in the honey. In this method, a short sequence of the DNA of the standardized portions of the genome is used and the results are compared with a reference database, as the GenBank [27]. DNA markers, such as nuclear 18S rDNA, the plastid trnL gene, plasmid coding regions rbcL and matK, trnH‐psbA and ITS2, were used to test their ability to identify plant traces from different honey samples, and [27] suggested that the rbcL region and the trnH‐psbA spacer could be considered to establish the origin, quality, and safety of honey with DNA barcoding, since besides more studies are necessary the stakeholder was established. In order to exemplify the microscopically analysis of pollen in Brazilian honey samples, our group evaluated five samples, including two samples of orange honey, one sample of plurifloral honey, one of “cipó‐uva” honey, and a sample identified by beekeepers as “coffee” honey, that in fact is a plurifloral one, since only a very few amount of coffee pollen was found in the sample. \nFigure 5\n shows some pollen identified in the honey samples evaluated, and \nFigure 6\n shows the microscopical image of the pollen obtained in two increases 20 and 40×, usual way to count pollen grain on honey samples (for sample preparation, see [25]).
\n(A, B) Orange pollen,
Microscopical analysis of honey samples obtained from different geographic and botanical areas. (A, B) Plurifloral honey, (C, D) orange (
The honey chemical composition is intrinsically related to factors as bee species, geographical origin, flora, climate conditions, seasons, processing, manipulation, and storage conditions [4]. Brazil that presents a large biodiversity is able to offer several different types of honey, as shown in \nFigure 7\n, bees visiting “pau‐Brasil” flowers and “cipó‐uva” honey in the comb. As mentioned previously, in general, honey consists of approximately 200 substances including sugars, amino acids, proteins, organic acids, flavonoids, phenolic acids, volatile compounds, vitamins, minerals, pigments, wax, enzymes, pollen grains, and other phytochemicals [4, 29].
\n(A) Honeybees collecting nectar from “Pau‐Brasil” (
Quality control analyses are extremely important in the evaluation of origin, quality, adulteration, storage conditions, and contamination of honey. The physicochemical properties of a honey sample may provide important information about its biological and geographic origin [30]. Honey adulteration, mainly due to the addition of sugar derived from sugar cane, corn, and beet or even by providing sugar as a food source for bees, occurs due to its limited availability and high cost [31]. Suitable storage conditions are essential to ensure honey quality, as its chemical composition may change due to the thermal process, oxidation, and fermentation reactions [4]. Nowadays, the increasing use of pesticides in agriculture makes contamination of honey by its residues a public health issue [32].
\nTaking it into consideration, analytical methods are essential to provide reliable results. In the literature, there are several methodologies employed in honey quality control analyses, which are complementary for honey samples appreciation. In 1990, the International Honey Commission (IHC) was created with the goal to generate a new world honey standard. All employed honey analyses methods were then collaboratively tested and published as “Harmonised Methods of the European Honey Commission” [33]. Based on this fact, the EU Honey Directive and Codex Alimentarius Standards were revised for honey analyses. Since then, IHC continuously aims to improve and develop new analytical methods for honey analysis.
\nThe color of honey is an important quality parameter for commercialization as it is its first attractive attribute [4]. The color is directly related to its chemical composition, ash content, temperature of the hive, and it changes during storage time [34]. The main compounds related to the color of honey are phenolic compounds, pollen and mineral contents, which may vary widely according to its botanical and geographical origin [30]. During storage, the color of honey may change due to the fermentation process such as caramelization and Maillard reactions or due to the thermal process, which may change its chemical composition and consequently its color [35] or according the package used. To determine the color of honey, a photometer with direct readout in mm Pfund may be used. The Pfund scale compares an analytical standard scale of reference on the graduation of glycerin in order to provide repeatable and accurate results [30]. According to the Codex Alimentarius Committee on Sugars [8], color of honey may vary from nearly colorless to dark brown.
\nRegarding Brazilian honey color analysis, Sodré et al. [36] studying 36 honey samples from north coast of Bahia found predominance of the light amber color (75%) followed by amber color (16.6%) and in minor proportion, dark amber, extra light amber and extra white colors (with 2.8% each one). Moreti et al. [37] analyzed 52 samples of honey from several counties of Ceará state and found colors as water white (26.92%), white and extra white (17.31% each one), light amber (15.38%), extra light amber (11.54%), amber (9.61%), and dark amber (1.92%). \nFigure 8\n presents the different colors observed in only five samples studied here showing how different honey could be from Brazil especially because of the large biodiversity and extension of the country.
\nColor and botanical source according beekeepers about the samples used in this work, respectively, from left to right: Polifloral honey (Apiary Joel Souza, Altinópolis/São Paulo—batch 019400916) and orange (
The water content in honey samples varies according to botanical origin, climate conditions, processing techniques, and storage conditions [4]. Moisture influences honey’s properties such as viscosity, crystallization, solubilization, color, and flavor [38]. The moisture may increase during processing and storage time and should be evaluated since its increase makes honey more susceptible to the fermentation process [39]. Determination of moisture in honey samples can be performed employing a refractometric method, which is based on the increases of refractive index related to solid content, and so it is possible to determine indirectly moisture of honey. According to the Codex Alimentarius Committee on Sugar [8], the moisture content in honey should not exceed 20% [8].
\nSeveral authors described the moisture content found in Brazilian honey samples. Périco et al. [40] analyzed 30 samples from Toledo, Paraná and found values ranging from 8.7 ± 0.3 to 17.6 ± 6.8/100 g. In the Rio Grande do Norte, Soares et al. [41] analyzed 24 samples from 12 commercial points of Apodi, RN, and found higher values of moisture, ranging from 16.5 to 21.5/100 g. In turn, Paulino et al. [42] found similar values of moisture (15.2–20.33/100 g) when analyzed 13 samples from various cities of Ceará state. Some examples of moisture and parameters described are shown in \nTables 2\n and \n3\n.
\nParameter | \nRates | \nLocal (state) | \nReference | \n|
---|---|---|---|---|
Color | \nExtra white to dark amber | \nBahia Ceará | \n[36, 37] | \n|
Moisture (g/100 g) | \n15.2–20.33 16.5–21.5 8.7 ± 0.3–17.6 ± 6.8 | \nCeará Rio Grande do Norte Paraná | \n[40, 41, 42] | \n|
Ash content (%) | \n0.3 ± 0.10 0.17–0.20 0.01–0.41 0–1.34 | \nBahia Paraíba Ceará Ceará | \n[36, 42, 44, 46] | \n|
Electrical conductivity (μS/cm) | \n780.7 ± 302.70 192.00–798.67 179–198 120–750\n\n | \nBahia Ceará Ceará Ceará | \n[36, 46] [45] [42] | \n|
pH | \n3.77 ± 0.25 2.90–5.10; 2.30–5.00; 2.70–4.60 3.53–4.60 | \nBahia São Paulo Paraná | \n[36] [49] [40] | \n|
Free acidity (mEq/kg) | \n29.10 ± 7.04 12.50–55.00; 14.00–75.50; 14.00–57.00 26.73–126.77 | \nBahia São Paulo Rio Grande do Norte | \n[36, 41, 49] | \n|
Sugars (%) | \n\n 69.20 ± 1.82 78.84 ± 2.71 62.89–86.93 | \n\n 2.40 ± 1.42 2.71 ± 2.40 1.13–10.12 | \nBahia Ceará Rio Grande do Norte | \n[36, 41, 46] | \n
5‐HMF (mg/kg) | \n20.70 and 23.90 7.00–355.50 70.62–150.27 31.28 ± 0.2–581.4 ± 4.2 | \nParaíba Ceará Rio Grande do Norte Paraná | \n[40, 41, 42, 44] | \n|
Diastase (Gothe scale) | \n34.11 ± 8,41 5.30–43.39 1.10–38.50 | \nBahia Ceará São Paulo | \n[36, 46, 49] | \n
Presentation of results obtained with different geographic and floral honey found in Brazil.
Honey Physicochemical Parameters | \nPolifloral* | \nOrange* | \nCoffee* | \nOrange#\n | \n“Cipó‐uva”#\n | \n
---|---|---|---|---|---|
Aspect | \nHomogeneous, viscous liquid | \nHomogeneous, viscous liquid | \nHomogeneous, viscous liquid | \nHomogeneous, viscous liquid | \nHomogeneous, viscous liquid | \n
Color | \nDark amber | \nWhite, very clear yellow | \nYellow, clear | \nWhite, very clear yellow | \nWhite, very clear yellow | \n
Density (g/mL) | \n1.415 ± 0.00 | \n1.420 ± 0.00 | \n1.425 ± 0.00 | \n1.426 ± 0.00 | \n1.435 ± 0.00 | \n
Moisture (% w/w) | \n15.90 ± 0.00 | \n15.80 ± 0.00 | \n16.00 ± 0.00 | \n16.10 ± 0.00 | \n14.70 ± 0.00 | \n
Total ash (%w/w) | \n0.03 ± 0.03 | \n0.03 ± 0.03 | \n0.07 ± 0.03 | \n0.08 ± 0.03 | \n0.05 ± 0.01 | \n
pH determination | \n3.76 ± 0.01 | \n3.78 ± 0.01 | \n3.60 ± 0.01 | \n3.51 ± 0.01 | \n3.73 ± 0.01 | \n
Free acidity (%w/w) | \n0.19 ± 0.00 | \n0.15 ± 0.00 | \n0.19 ± 0.00 | \n0.16 ± 0.00 | \n0.18 ± 0.00 | \n
HMF determination** (mg/Kg) | \n55.2 ± 0.60 | \n12.1 ± 0.20 | \n16.5 ± 0.20 | \n28.3 ± 0.10 | \n32.2 ± 1.40 | \n
Insoluble material (%w/w) | \n0.05 ± 0.02 | \n0.00 ± 0.00 | \n0.02 ± 0.01 | \n0.00 ± 0.00 | \n0.01 ± 0.01 | \n
Reducing sugars (%w/w) | \n71.1 ± 0.60 | \n70.2 ± 0.60 | \n69.1 ± 0.60 | \n70.9 ± 0.70 | \n77.0 ± 1.80 | \n
Apparent sucrose (%w/w) | \n3.47 ± 0.43 | \n2.80 ± 0.02 | \n2.76 ± 0.02 | \n3.48 ± 0.03 | \n4.12 ± 0.37 | \n
Physical‐chemical analysis of different floral sources of Brazilian honeys (
*Gently donated by Apis Flora Company and #Baldoni Company.
**HMF was determined using spectrophotometry UV methodology.
Ash content and electrical conductivity are parameters mainly used to measure mineral content, which may be an indicative of environment pollution, the geographic and botanical origin of the honey [4, 39]. Mineral content is also associated with sensorial properties as color and flavor, which are important for honey commercialization [38]. Ash content provides important information about the quality of honey, as floral honey has lower ash content than honeydew honey [30]. Determination of ash content is performed by a gravimetric method [43]. The Codex Alimentarius Committee on Sugars [8] does not recommend a specific value for ash content. Electrical conductivity is related to the presence of ions, organic acids, and proteins in honey [4]. The determination of this parameter is based on the measure of the electrical resistance, which is reciprocal of the electrical conductivity [43]. According to the Codex Alimentarius Committee on Sugars [8], it is recommended a maximum value of 800 mS/cm for the electrical conductivity of honey samples.
\nPaulino et al. [42] found ash content in Brazilian honey ranging from 0 to 1.34%. According to Brazilian legislation, the ash content in blossom honey should be at maximum 0.6%, and at maximum 1.2% for honeydew honey [7]. Rodrigues‐Evangelista et al. [44] found values from 0.17 to 0.20% of ash when analyzed honey samples from Paraíba state. Sodré et al. [36], in turn, found an average of 0.3 ± 0.10% of ash content in honey from Bahia state. In another study, the same group found values ranging from 0.01 to 0.41% of the total ash.
\nBendini and Souza [45] analyzed 24 samples of blossom honey derived from cashew flowers from Ceará state and found electrical conductivity values from 179 a 198 μS/cm with an average of 187 ± 4.8 μS/cm. When 13 honey samples from Ceará state were analyzed by Paulino et al. [43], values ranging from 120 to 750 μS/cm were found. Sodré et al. [36] found an average of 780.7 ± 302.70 in 36 samples of bee honey from Bahia state and when honey samples from Ceará were analyzed by the same group, values between 192.00 and 798.67 μS/cm1 were found [46].
\nThe presence of organic acids in honey is responsible for its natural acid pH value. Determination of pH in honey samples is important to confirm its authenticity, as an addition of sugar in honey significantly increases pH values [47]. Free acidity is characterized by the presence of organic acids in equilibrium with their respective lactones, esters, and inorganic ions [29, 48]. It is a parameter used to evaluate honey deterioration, as fermentation of sugar into organic acids increases its value [30]. The determination of free acidity in honey is performed by a potentiometric titration method and the results are expressed in milliequivalents of acid per kg of honey [43]. The Codex Alimentarius Committee on Sugars [8] recommends a maximum value of 50 mEq/kg for free acidity in honey.
\nWhen 30 samples of honey from Paraná state were analyzed, Périco et al. [40] found pH values ranging from 3.53 to 4.60. Soares et al. [41] determined the acidity value in 24 bee honey samples from Apodi, Rio Grande do Norte and found results ranging from 26.73 to 126.77 mEq/kg. In turn, Sodré et al. [36] determined the pH and acidity value in 20 bee honey samples from Ceará state and their average were 3.77 ± 0.25 and 29.10 ± 7.04 mEq/kg, respectively. Marchini et al. [49] also analyzed the same parameters in 205 honey samples from different localities from São Paulo state and found pH values of 2.90–5.10 to eucalyptus honey, 2.30–5.00 to wild honey, 2.70–4.60 to orange honey, and acidity values of 12.5–55 mEq/kg of eucalyptus honey, 14–75.5 mEq/kg to wild honey, and 14–57 to orange honey.
\nSugars are intrinsically related to the flowers used by bees to produce honey, climate, and geographical conditions. Monosaccharides are the most common sugar in honey and fructose (38.5%) and glucose (31.0%) are the major sugars in honey [47]. The ratio of fructose and glucose in honey samples are used to evaluate the degree of crystallization of the honey sample [50]. Determinations of reducing sugars and apparent sucrose are based on a titrimetric method employing Fehling’s reagent. The method is a titration of a Fehling’s solution at boiling point by reducing sugars in honey using as indicator methylene blue [43]. Determination of the ratio of fructose and glucose may be performed by quantification of sugars in honey samples by GC methodology employing a sugar derivatization process or by HPLC methodology employing a refractive index detector or a pulsed amperometric detection [43, 51, 52]. The Codex Alimentarius on Sugars [8] stipulates that the minimum content of reducing sugars in floral honey is 60 /100 g.
\nIn 2003, Sodré et al. [36] found an average of 69.20 ± 1.82% of reducing sugars and 2.40 ± 1.42% of apparent sucrose. The same group analyzed in 2006, 20 samples from different regions of Ceará state and found 78.84 ± 2.71% of reducing sugars and 2.71 ± 2.40% of apparent sucrose. Soares et al. [41] found a reducing sugar content of 62.89–86.93% and apparent sucrose from 1.13 to 10.12% in 24 samples of 12 providers from Apodi, the Rio Grande do Norte.
\nSugars present in honey may alter during storage time due to nonenzymatic reactions such as Maillard reaction, caramelization, and sugar degradation [47]. The compound 5‐hydroxymethylfurfural (5‐HMF) is a decomposition product of monosaccharides present in honey. Factors such as temperature, heating, floral origin, pH, and storage conditions may significantly influence in 5‐HMF content [53]. Therefore, 5‐HMF content is a parameter used to determine the freshness of honey, as it is absent in fresh honey and its concentration increases during storage time [30]. Furthermore, high 5‐HMF content may indicate adulteration of honey by the addition of invert syrup [47]. Determination of 5‐HMF content may be performed employing a spectrophotometric method [43], or a chromatographic method by HPLC using calibration curves of 5‐HMF analytical standards to quantify this compound in honey [43, 53]. The Codex Alimentarius Committee on Sugars [8] stipulates 5‐HMF content at the maximum value of 40.00 mg/kg and, if honey is from a tropical region, accepts a maximum value of 80.00 mg/kg.
\nThe HMF values found in Brazilian honey are higher than those found in nontropical countries, as Paulino et al. [42] that encountered 7.00–355.50 mg/kg in 13 samples from several cities of Ceará. Périco et al. [40] also found high HMF values (31.28 ± 0.2 to 581.4 ± 4.2 mg/kg) when analyzed 30 samples from Toledo, Paraná, and Soares et al. [41] found values ranging from 70.62 to 150.27 mg/kg. When honey from two distinct regions (São João do Cariri and Areia, both in Paraíba state) were analyzed by Rodrigues‐Evangelista et al. [44], the HMF content was between 20.70 and 23.90 mg/kg.
\nDiastases are enzymes present in honey, which are sensitive to heat and consequently, may be used to evaluate honey overheating [47]. Therefore, the measure of diastase activity is an indicative of honey’s freshness and is useful to detect improper storage conditions [30]. Diastase activity may be also an indicative of honeybees fed artificially with glucose, as a diastase enzyme deficiency is observed in this case [54]. The determination of diastase activity is based on a spectrophotometric kinetic method, which measures the activity of diastasis enzymes present in honey, in order to monitor adulteration by the addition of sugar and evaluate storage time and conditions [4, 43]. For that, under specific conditions, the activity of diastase enzymes of honey is measured in a standard solution of starch. The Gothe unit is used to express diastase activity and is defined as the amount of enzyme which will convert 0.01 g of starch in 1 hour at 40°C [43]. The Codex Alimentarius Committee on Sugars [8] stipulates a minimum value of 8.00 Gothe; however, a minimum value of 3.00 Gothe is accepted for honey with low diastase activity if the 5‐HMF content is lower than 15 mg/kg.
\nThe diastase activity was determined in 20 samples of honey from Ceará state by Sodré et al. [36] and found an average of 34.11 ± 8.41 (in Gothe scale). Sodré et al. [36] analyzed 36 honey samples from Bahia and found the value between 5.30 and 43.39. Marchini et al. [49] analyzed 205 honey samples from different localities of São Paulo state and found values ranging from 1.10 to 38.50, with an average of 8.14 for orange honey, 15.77 for eucalyptus honey, and 17.32 for wild honey. For different floral sources, the authors found values ranging from 7.80 to 19.00.
\nIn complement to pollen microscopical analysis, physical‐chemical results for these Brazilian honey samples were conducted and which is presented below, where it is possible to demonstrate the identity and quality of some floral sources of Brazilian samples studied here.
\nCurrently, safe food is a major global public health concern, since food may be contaminated by pathogenic microorganisms, which can cause severe diarrhea or debilitating infections. Furthermore, microorganisms can be responsible for the spoilage of food. Besides the contamination by microorganisms, food may be contaminated by chemical substances, such as toxins, environmental pollutants, and heavy metals [55].
\nHoney has low susceptibility to the proliferation of microorganisms due to its physicochemical characteristics, such as antimicrobial substances, low moisture content (low water activity), low pH, and oxidation reduction potential, among others [56]. Therefore, its antimicrobial properties discourage the growth or persistence of many microorganisms. Nevertheless, honey may be contaminated by primary and secondary sources of microbial contamination. Primary sources, including pollen, nectar, digestive tracts of bees, dust, air, and soil, are difficult to control. Secondary sources of contamination (after‐harvest) include cross‐contamination, equipment, food handlers, among others, and may be controlled by good manufacturing practices. Regarding the harvesting method, honey samples harvested using modern methods (colony established in man‐made bees’ accommodation called hives) have lower yeast and bacterial counts than samples harvested using traditional methods (honey hunting, which use flame to destroy the insects and are used in honey bee colony established in wood logs), that is, modern methods are more hygienic and produce the better quality of honey. Furthermore, exposure of colony to fire also kills bees and hampers the process of cross‐pollination and may lead to consumption of the whole forest [57].
\nThe honey samples should be subjected to quality control tests to evaluate their physicochemical and microbiological parameters. Thus, it is possible to assess whether the results are within specifications and detect if there was an adulteration of honey. In Brazil, the Ministry of Agriculture, Livestock, and Supply (MAPA) published the Technical Regulation of Identity and Quality of Honey (Brazil, 2000), which describes that the analysis of contaminants should follow the Technical Regulation of the Southern Common Market (MERCOSUL or MERCOSUR). Regarding microbiological criteria, the document “MERCOSUL/GMC/RES n° 15/94” has the following technical specifications for honey: total coliforms/g: absence;
According to MAPA, microbiological methods recommended by the International Organization for Standardization (ISO) should be used [59]. The enumeration of coliforms is performed using the colony‐count technique (ISO 4832:2006) [60]. The total coliform group includes four genera:
The detection of
The enumeration of yeasts and molds, in its turn, is performed using the colony‐count technique according to ISO 21527‐2:2008, which specifies a method for the enumeration of viable xerophilic molds and osmophilic yeasts in products that have a water activity less than or equal to 0.95 [66]. Luiz et al. [65] evaluated Brazilian honey samples produced in several cities of the state of Minas Gerais (Southeast region), and the yeast and mold counts varied from <10.0 to 3.3 x 101 CFU/g, that is, all samples were according to Brazilian law. In another study by Schlabitz et al. [63] with honey samples from state of Rio Grande do Sul (South region of Brazil), the majority of samples (10 samples) were within specifications, since the enumeration of yeasts and molds varied from <1.0 x 101 to 8.0 x 101 CFU/g. However, two samples had values above 100 CFU/g:1.3 x 102 and 6.1 x 102 CFU/g, respectively. Several honey samples produced in the state of Ceará (Northeast region of Brazil) were evaluated by Santos and Oliveira [61]. The authors showed that the majority of samples were within specifications, since yeast and mold counts varied from < 10.0 to 6.0 x 101 CFU/g. Only one sample had a count above 100 CFU/g, since it had 1.8 × 102 CFU/g.
\nAlthough not required by Brazilian law, the detection of
Honey is traditionally consumed by humans for being considered a product of natural origin and healthy. However, honey and other bee products can also be a source of toxic substances, such as antibiotics, pesticides (insecticides, fungicides, herbicides, and bactericides), heavy metals, bacteria, and radioactive materials due to environmental pollution and misuse of beekeeping practices, for example, when these substances overdose in beehive treatments. Honey bees collect pollen and nectar from the flowers and then they may return to hives collecting significant amounts of toxic contaminants, therefore their hives and products can result contaminated with many different kinds of pollutants [69, 70]. Thus, the monitoring of contaminants in honey is necessary to warrant consumers’ safety.
\nThe presence of contaminants in bee products decreases its quality and it may carry serious health hazards, consequently, being a public health problem. Widely used in agricultural practices, pesticide residues have been shown to cause genetic mutations and cellular degradation and the presence of antibiotics might increase resistant human or animal’s pathogen [71].
\nThe pesticide residues may originate from the treatment of beehives with acaricides and organophosphorus pesticides (OPPs) in the control of Varroa jacobsoni and Ascosphaera apis. Indirect honey contamination can occur during pesticide application in agriculture also for wax moth and small hive beetle control. Pesticide application in crops can contaminate soil, air, water, and the flowers from which bees collect nectar for honey production [72, 73].
\nAnother source of contamination are the antibiotics such as tetracyclines, streptomycin, sulfonamides, and chloramphenicol used for the treatment of bee disease, migration from wax to honey, and also of some infestations such as Varroa destructor, Acarapis wood, and Paenibacillus larvae [69, 72].
\nThe determination of pesticide in food due to the low concentration, the distinct chemical properties, and the matrices complexity, requires sample preparation, purification, identification, and quantification of compounds. Therefore, honey is a complex matrix and this implies the need for effective clean‐up treatment before the analysis. Among the extraction methods commonly used in honey analysis are the typical clean‐up/extraction procedures, such as liquid‐liquid extraction (LLE) or solid‐phase extraction (SPE); however, they have the disadvantages of being expensive and using large amounts of organic solvents, which are generally toxic for the technician and can contaminate the environment and usually enable the extraction of analytes belonging to only one chemical class [32, 70]. Additionally, there are other extraction techniques, which have been employed to reduce a number of reagents and time spends on sample preparation, for example, supercritical fluid extraction (SFE), matrix solid phase dispersion (MSPD), solid phase microextraction (SPME), and stir bar sorptive extraction (SBSE). Besides the extraction and purification procedures, the choice of the separation/detection approach is of fundamental importance. The step of identification and quantification of pesticide residues in honey is based mainly on gas chromatography (GC) or high‐performance liquid chromatography (HPLC) techniques, both coupled with tandem mass spectrometric detection have shown great success in the multiresidue analysis of antibiotics and pesticides in honey [71].
\nRissato et al. [74] confirmed 48 pesticides of different classes (organohalogen, organophosphorus, organonitrogen, and pyrethroids) in low levels in Brazilian honey samples (Bauru, São Paulo, Brazil) by gas chromatography‐mass spectrometry (GC‐MS/MS). Nevertheless, malathion residues were detected in all the samples, in a high concentration, and it was attributed to pesticide application for dengue vector control in the area. A study realized by De Pinho et al. [73] showed that of the 11 honey samples from eight regions of the state of Minas Gerais (Brazil) analyzed only two presented chlorpyrifos and k‐cyhalothrin residues using liquid‐ liquid extraction with low‐temperature purification for pesticide residue analysis by gas chromatography. However, the concentrations obtained were below the maximum residue levels (MRLs) established for pesticides in foods products. The presence of these compounds was confirmed by mass spectrometry (GC‐MS).
\nAdditionally, Orso et al. [75] developed and validated a method for the simultaneous determination of 79 pesticides and 13 antibiotics for 43 honey samples from different regions of Rio Grande do Sul State, Brazil, among them are monofloral and multifloral honey. The pesticides and antibiotic residues were extracted using a water‐acetonitrile followed by a cleanup with dispersive solid phase (d‐SPE) and analyzed by UHPLC‐MS/MS. The results of the analysis demonstrated that 50% of the samples presented residues of one or more analytes in the samples. The maximum residue limit was not exceeded in any sample. Residues of insecticides and acaricides, fungicides, antimicrobials, and herbicide were found at concentrations below the MRLs, according to the limits established by National Program for Honey Residues Control established by the Brazilian Ministry of Agriculture (Brazil) for honey. Second, the authors, the residues found in honey samples are due to the proximity of the beehives with soybean, corn, or wheat crops, considering that bee realizes the pollination process, reaching large distances to collect nectar, water, and pollen of flowers.
\nThe bees are exposed to metals contained in pollen or nectar, it can to accumulate them and finally into the honey produced from it [76]. A number of different minerals and heavy metals in honey are largely dependent on the soil composition, as well as various types of floral plants [77]. Additionally, metal pollutants are discharged into the air, water, and soil through mining, agriculture practice, waste dump, coal burning, hydraulic fracturing to extract gas and oil, and industrial and municipal waste production. Agroecosystems fertilized with manures and biosolids can become contaminated with metals, and repeated fungicide application can cause the buildup of metals [78].
\nTrace metals such as sodium, potassium, calcium, iron, zinc, and copper can be considered essential for the biological metabolism of living organisms, when present in optimum concentrations are helpful. Other metals such as lead, cadmium, mercury, and aluminum are classified as microcontaminants of the environment, toxic or nonessential to living organisms, and at high concentrations can be even lethal, due to the inability of the heavy metal to be metabolized by the body, leading to accumulation in human or animal soft tissues without being fully inactivated or destroyed [77, 79]. In addition, the problems caused by heavy metals include headaches, metabolic abnormalities, respiratory disorders, nausea, vomiting, damage to the brain, kidney, nervous system, and red blood cells [77].
\nThe methods used to determine the chemical elements in honey are based on spectroscopy or spectrometry techniques (including flame emission photometry or spectrometry (FES), inductively coupled plasma optical emission spectrometry (ICP‐OES), inductively coupled plasma mass spectrometry (ICP‐MS), flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ET‐AAS), graphite furnace atomic absorption spectrometry (GF‐AAS), hydride generation‐atomic fluorescence spectrometry (HG‐AAS), ion chromatography EDTA titration) [77].
\nDe Andrade et al. [80] determined the trace elements, Pb, Cd, and Cr in 52 honey samples from eight different regions from the state of Paraná (Brazil), using slurry sampling and graphite furnace electrothermal atomic absorption spectrometry. The mean concentration of the elements followed the order Pb > Cr > Cd, but the study concluded that honey samples from Paraná have food security, as regular consumption of this product does not put risks to human health in terms of intake of this metallic species. Furthermore, Batista et al. [81] determined 42 chemical elements (toxic and essential elements) in Brazilian honey samples collected in different cities of Brazil (poli, orange, and sugarcane flowers) by the inductively coupled plasma mass spectrometry method. The authors observed that in general Brazilian honey presented higher mean concentrations for Ni, Mg, and Al and lower mean concentrations of Pb, Cd, and Cu. The mean values found for P, Zn, Mn, and Fe were very similar to those found in honey samples from other countries.
\nThus, the presence of pesticides and antibiotic residues and trace metals in honey is of interest for quality control and also as a bioindicator of environmental contamination. Therefore, these analyses are important to determine the nutritional value and also the potential effect of honey on human well‐being, and they can be called upon to ensure the general safety and purity of honey.
\nBesides the quality observed in physicochemical and microbiological parameters, the absence of pesticides, antibiotics, and residues in general, it is important to recognize that several Brazilian honeybee products were awarded in important fairs and competitions around the world. The awards varied since color, taste, and flavor until high technology involved. Considering honey, several awards were attributed to Brazilian Companies (\nFigure 9\n). A Company situated in the State of Santa Catarina was awarded during several Apimondia Conferences. The dark honey received Gold Medal in Australia in 2007. The varieties of Dark honey were also awarded Gold Medal in Ukraine in 2013, followed by a Bronze Medal for clear honey. In 2015, this same Brazilian company was awarded one gold medal, two silver medals, and one bronze medal, for two varieties of honey and two creamy kinds of honey, during Apimondia that was held in South Korea. Another company focused on bee derivative products situated at Campinas, in the State of São Paulo. The gourmet honey of this company was awarded for superior taste in ITQI, International Taste and Quality Institute from Brussels in 2016, besides this important recognition, the better taste was again attributed to this company in CONBRAPI, a Brazilian Conference, during the years 2012, 2014, and 2016, in Gramado/Rio Grande do Sul (RS), Belém/Pará (PA), and Fortaleza/Cerá (CE), respectively. These several awards can demonstrate the differences in taste, color, and flavor from Brazilian different geographical and botanical sources.
\nPhotographs presenting some important awards for honey and Propolis from Brazil, as a demonstration of the international recognition of the quality and (A) Prodapys’ representative, Mr. Célio Hercilio Marcos da Silva and Mr. Tarciano Santos da Silva, receiving four awards obtained for different types of Brazilian Honey in Apimondia 2015, Ukraine. (B) Baldoni’s representative, Mr. Gustavo Delfino Calomeni and Mr. Daniel Augusto Cavalcante, receiving Gourmet’s Honey award in Conbrapi conference that was held in Fortaleza, 2016. (C) Natucentro’s representative, Mr. Cezar Ramos Júnior, receiving award for best photography of Green Propolis being produced by bees, Apimondia 2016, Ukraine. (D) Essenciale’s owner, Nivia Alcici, receiving award for Gourmet Red Propolis wine, SIAL Innovation China, 2015; and finally (E) Dra. Andresa A. Berretta, from Apis Flora Indl. Coml. Ltda, receiving the second place for the development of a mucoadhesive gel containing propolis, Royal Academy of Engineering, Leaders in fellowship, London, 2015. All photographs were gently donated by the owners.
Brazilian propolis is also a very important honeybee product from Brazil, very recognized internationally, not only with several biological properties described but also considering the chemical differences of this type of propolis in comparison with the others found around the world, especially because of prenyl derivatives of p‐coumaric acids, such as Artepellin C. Some companies received awards for propolis products as an award for Technological Innovation at China SIAL Fair in 2015, with two Gourmet line products, “Duo propolis green and red wine extract” and “premium red propolis extract wine.” Another two medals were received with better photographs of bees collecting and producing green propolis, during Apimondia 2013 (Ukraine) and Apimondia 2015 (South Korea). And finally, a Brazilian Company situated at Ribeirão Preto, São Paulo state was selected for Royal Academy of Engineering Innovation Training because of the development of a mucoadhesive gel with propolis to treat vulvovaginal candidiasis. During the selection of the better project and presentation, Andresa A. Berretta was awarded the second place.
\nIn conclusion, it is possible to show that some little differences in quality parameters exist between different countries/regulations because it is related to the floral sources. Several techniques are now available for the most of the analysis required and the most recent methodologies usually are more sensible than the oldest. Several different types of honey can be found in Brazil because of large extension of the country and the important biodiversity of each region.\nThese differences directly affect the physical‐chemical quality and also the presence contaminants. In general, it is possible to show that Brazilian beekeepers can improve techniques to increase honey production and Brazilian honey is very well recognized around the world especially because of the absence of residues, pesticides, and heavy metals, offering an Organic Certified honey and with very especial and nice taste.
\nWe like to thank João Carlos Laforga Messas from Apidouro Comercial Importadora e Exportadora (Bebedouro, SP, Brazil), Nivia Alcici from Essenciale Propolis Company (Minas Gerais, Brazil), Tomohiko IE (Felipe) from Apis Brasil Company (Pindamonhangaba, SP, Brazil) for sending regulatory documentation of honey of several countries, Prof. Gustavo Goldman (FCFRP/USP) for microscopy facility, for the donators of the images and samples and also to the Brazilian Association of Honey Exporter, ABEMEL, Suelen Palma and Mr. Agenor Castagna for administrative assistance and financial resources for the publication of this chapter, respectively.
\nIn December 2019, the European Commission (EC) unveiled a plan to become the first climate-neutral organization worldwide by 2050. The so-called European Green Deal [1] is a roadmap for setting the sustainability and well-being of citizens at the center of policymaking and then turning climate and environmental challenges into opportunities across all policy areas. As it was created, the EU Green Deal is a commitment with sustainable development and a fundamental part of the EC strategy to undertake the United Nations (UN) 2030 Agenda for Sustainable Development [2]. The 17 Sustainable Development Goals (SDGs) involve the three dimensions of sustainability (economic, social, and environmental) and require all the stakeholders to act in a global collaborative partnership. Such goals aim to achieve no poverty and hunger, to grant access to health services, to improve infrastructures, to reduce inequality, to fight climate change, to protect marine ecosystems, or to promote alliances between different actors to improve people’s lives, among others.
Emerging technologies like the Internet of Things (IoT), 3D/4D printing, augmented reality/mixed reality/virtual reality (AR/MR/VR), cyber-physical systems (CPSs), robotics, novel human-machine interfaces (HMI), artificial intelligence (AI), big data techniques, machine learning (ML), deep learning (DL), 5G/6G connectivity, and new computing paradigms, when oriented toward SDGs, will bring a wide range of disruptive solutions in multiple fields. Nonetheless, the mentioned technologies will create ever-increasing complex systems in terms of heterogeneity, autonomy, interoperability, and scalability that will also come with additional cybersecurity risks and threats of malicious attacks.
Distributed ledger technology (DLT) represents nowadays an evolution toward the so-called Web 3.0, the Internet of Value. This new era of the Internet will include a collaborative economy among peers with crowdsourcing data sharing systems [3, 4]. A blockchain is a specific type of DLT that involves timestamped blocks of transactions linked in a chain by cryptographic hashes. Blockchain presents a decentralized architecture that provides benefits in terms of security, privacy, non-repudiation, integrity, accountability, transparency, robustness, and authentication. Moreover, it provides a high operational efficiency and eliminates the need for centralized parties and/or intermediaries. In fact, the World Economic Forum (WEF) forecasts that, by 2027, 10% of the global gross domestic product (GDP) will likely be stored on DLTs [5].
In this context, blockchain and other DLTs can enable global partnerships for open innovation and cyber-resilient applications compliant with the aims of the EU Green Deal and the UN SDGs. Thus, the contribution of this chapter is to provide a global overview of blockchain as an enabler for sustainability and open innovation. In addition, its aim is also to make the different involved stakeholders to rethink global development challenges to create cyber-resilient, decentralized, and high-impact sustainable developments.
The rest of the chapter is organized as follows. Section 2 overviews the basic concepts of blockchain. Sections 3 and 4 summarize the main principles of blockchain for sustainability and open innovation. Section 5 presents some relevant use cases of blockchain-based applications toward each of the SDGs. Section 6 summarizes the key main benefits of blockchain for SDGs and their main open challenges. Finally, Section 7 is devoted to conclusions.
A blockchain is a secured distributed ledger whose data are shared among peers [6, 7, 8, 9]. In some blockchains like Bitcoin, decentralized miners validate every transaction (by following a consensus protocol), which allows them to solve the Byzantine Generals Problem (i.e., a situation where different parties must agree on a strategy and some of them may be corrupt, disseminate false information, or have intention to deceive). In the case of cryptocurrencies, the problem to be solved is called the double-spend problem: it must be guaranteed that the exchanged digital cash was not spent previously [6].
There are four main types of blockchains depending on who can access the stored data (private or public blockchains) and who can manage such data (permissionless or permissioned blockchains). Since a blockchain can store any kind of digital information, it could be the future of all secure transactions. Moreover, blockchain enables smart contracts, which consist of self-sufficient decentralized code that is executed autonomously according to a business logic. Furthermore, some blockchain platforms can also run decentralized applications, which are commonly called DApps [10].
Another important concept is the so-called decentralized autonomous organization (DAO), which can operate without requiring management hierarchy or a centralized authority [11]. The first DAO was launched in 2016 and raised $150 million worth of Ether (ETH) in 27 days. Nevertheless, DAOs are still very immature from the legal and security standpoints (e.g., a DAO attack due to code bugs led to a more than $50 million (ETH) theft in June 2016). Since 2016, a number of DAO initiatives have arisen (e.g., Steemit). In addition, the proliferation of DAOs is linked to the concept of decentralized autonomous society (DAS), in which citizens may be able to establish self-enforcing trade agreements without relying on centralized institutions of power and control.
It must be noted that a blockchain is not suited for every SDG-oriented application, which must fulfill the following main requirements:
Trustworthy transactions are needed, but traditional databases do not cover the application needs.
Data need to be updated by more than one stakeholder.
There is a lack of trust among the entities that will update the data.
The updaters are not willing to give the control of the database to a third party, and the involvement of intermediaries wants to be avoided when possible.
A database could be used, but it is likely to be attacked (e.g., denial-of-service (DoS) attacks) or censored.
Data redundancy in multiple distributed computers is needed.
Additional requirements could be involved, so several researchers have proposed more detailed decision frameworks about the use of blockchain [6, 12, 13].
It is worth mentioning that a detailed description of the different blockchain design aspects is out of the scope of this chapter, but the reader can find additional insights on the following recent works [4, 6, 8, 13].
Sustainability is related to the effect that current actions will have upon the future. Such an effect can take many forms that vary depending on their nature, like the utilization of natural resources as a part of production processes, the waste management processes, the effects of competition among corporations in the same market, the enrichment of the community by creating employment, the produced pollution, the outbreak of a pandemic, or the relation with regulators. For example, if natural resources run out, then they may be no longer available (i.e., raw materials). Thus, the way in which economic, social, and environmental resources are efficiently managed is a key issue for long-term sustainability.
Recently, the EU has progressed significantly toward sustainability through the three main approaches [14]:
Corporate social responsibility (CSR)/responsible business conduct (RBC) and new business models
Business and human rights and the protection of human rights in general
Sustainability and the implementation of the UN 2030 Agenda for Sustainable Development
The definition of CSR and RBC is related with ethical behavior and particularly with the relationship between a corporation and its stakeholders within a societal context, integrating social, environmental, and economic concerns into its business processes [14]. CSR/RBC can also be seen as actions under SDG 8 (decent work and economic growth).
In 2011, the UN Human Rights Council endorsed 31 Guiding Principles on Business and Human Rights (UNGPs) [14]. This approach came up as a sort of response to the perceived failure of CSR/RBC in terms of law binding and state oversight.
Recently, given the clear relationship between the three approaches (CSR/RBC, UNGPs, and the SDGs), the EC has adopted a holistic and practical approach toward sustainability irrespective of its name (i.e., CSR, RBC, business and human rights, SDG) while at the same time recognizing the target goal between the different agendas.
Within this context, blockchain is able to bring advantages toward sustainability in four main aspects: cybersecurity, accountability, transparency, and traceability:
The importance of external traceability has been enhanced by globalization, the free movement of people and the global expansion of complex supply chain structures, combining networks of actors from multiple sectors (business, public, non-profit, and informal) in multiple locations.
Open innovation, where innovative knowledge and ideas flow freely internally and externally to an organization, has become an important factor to enable sustainability [20]. To address SDGs, the EU recognizes the need for strengthening the impact of research and innovation and the use of coordinated approaches to ensure knowledge exchanges at an EU level [15]. These coordinated approaches will involve stakeholders with inter- and transdisciplinary points of view and the ability to manage jointly these development processes (SDG 17, partnerships for the goals) [21]. Although the current literature in open innovation details theoretical frameworks to guide solution development [20, 22], this development implies novel governance models that create thriving and diverse ecosystems where solutions are conceived, designed, experimented, implemented, supplied to the market, scaled up, and adopted. In that sense, one of the latest paradigms is called Open Innovation 2.0 (OI2) [23], a quadruple helix model where science, policy, industry, and society collaborate to achieve greater aims than a single entity.
Open innovation is uncertain and involves a high risk [20]. However, the lack of trust is today a major concern that withholds the cooperation and involvement of stakeholders in open innovation processes [24], especially for small- and medium-sized enterprises (SMEs). This need for orchestrating multiple stakeholders in a trusted and reliable way matches perfectly with the distributed nature of blockchain [20], which also provides the following main benefits:
Stronger intellectual property (IP) protection. It includes responsible open-source licensing, processes of idea claiming [25], IP registries (e.g., trade secrets, patents, and trademarks), record keeping, licensing, and non-disclosure agreements (NDAs). In addition, profits (e.g., patent royalties and revenue on creative work) can be paid automatically according to predetermined agreements.
Accurate collaboration between stakeholders modeled through smart contracts. Content can be shared among the stakeholders using smart contracts. Such smart contracts may deal with timestamping any IP disclosure or creation and automate corrective actions when unauthorized IP usage, IP infringements, and disclosure happen, acting as signed NDAs [25]. Furthermore, incentivized and rewarding mechanisms can be established (e.g., GlucoCoins to promote a global knowledge of diabetes [26]).
Open data. It means the availability of data to all the stakeholders with a high degree of privacy (i.e., sovereignty and data ownership) and data protection.
Regulatory compliance. It involves back-office processes mostly burdensome and inefficient to report to regulatory bodies. It also enables new open governance models.
Currently there are few examples of academic research on the use of blockchain for SDGs. For instance, the authors of [16] review recent academic and commercial “blockchain for good” applications in supply chain, innovations in governance, sharing economy, and financial inclusion. This section provides some relevant use cases of blockchain-based applications toward each of the SDGs. Such use cases are summarized in Figure 1.
Blockchain4SDGs: main blockchain use cases for SDGs.
Access to credit and financial services (e.g., microfinance) is one of the most commonly known mechanisms to reduce poverty. For instance, crowdsourcing and crowdlending platforms can also ease financial inclusion. Blockchain can help to increase the efficiency, traceability, and transparency of these financial processes [27]. Moreover, micro-transactions and automatic funding through forecast-based financing [28] can be implemented jointly with smart contracts and big data analytics. Such models can provide more efficient funding, since no additional intermediaries are required and some procedures can be substantially simplified.
According to [29], 206.4 million people of 81 countries needed humanitarian assistance in 2018. For instance, only 6 of such countries represent 80.6 million people in need. Such a humanitarian assistance from governments and private donors reached US $28.9 billion in 2018. Nevertheless, a substantial percentage of the assistance was and is today lost due to fraud and corruption. Blockchain can be applied to provide tracking of the funds and to reduce cyberattacks. The authors of [28] highlight the need for ethical guidelines (i.e., privacy, intentional design choices, and humanitarian principles) and a common evaluation framework of the solutions, especially as DLT developments are still in their early stages.
In 2017, the World Food Programme (WFP) [30] developed a proof of concept (PoC) in Sindh (Pakistan) named Building Blocks to evaluate blockchain for authentication and registration of transactions without financial intermediaries. Refugees have restrictions to open bank accounts and limited choices regarding the access and spending of their cash assistance. Building Blocks was also deployed with the aid of a biometric authentication system (i.e., iris scanning identification at checkout) in two refugee camps in Jordan to improve security and to ease cash transfers and the purchase of goods.
Sustainable food production systems along their life cycle can be guaranteed with the traceability properties of blockchain (e.g., avoid malpractice and guarantee food security).
In Yue et al. [31], the authors propose a decentralized solution that enables healthcare intelligence that allows patients to control their data without compromising privacy or security.
In addition, blockchain can be used for managing data more efficiently during public health diseases. For instance, with the current rapid spread of the coronavirus disease (COVID-19) pandemic, a blockchain-based monitoring and traceability system can help to automatically identify unsafe areas by using geographic information and provide real-time information about patients (e.g., temperature, symptoms, and social distancing) for further analysis. As a result, it may keep communities from further infections and ensure (or even certify) that some locations (e.g., workplaces) are safe areas. For the implementation of such an application, cybersecurity and privacy (i.e., pseudo-anonymization) will be key issues for a successful deployment. Disease control may also depend on the ability of organizations (e.g., centers of disease control, state and local agencies, journalists, governments, hospitals, scientists) to collaborate in an effective and efficient manner. It must also be noted that richer countries are better prepared than poorer countries to identify a virus outbreak, to face infection with public health contingency plans, and to minimize the socioeconomical impact.
The authors of [32] have thoroughly reviewed the utilization of emerging technologies like blockchain, IoT, and fog and edge computing for improving education. Examples of applications include record verification [33], the management of digital copyright information [34], or the design and evaluation of novel learning approaches [35, 36, 37].
For instance, Sony Global Education [38] is an educational platform that uses Hyperledger Fabric to guarantee the authenticity of the student transcripts. Another commercial example is Learning Machine [39], a company that has created an open peer-to-peer infrastructure to issue digital records that can be easily shared and verified. The system is not only devoted to educational institutions: governments and companies can also issue blockchain-based records at scale, rooted in any blockchain they select.
Easier access to financial services (e.g., even informal financial networks) promotes women empowerment as well as their independence. For example, hiveonline [40] is helping women through the CARE Village Savings and Loan Association (VSLA) program to get access to credits and markets with a fact-based reputation supported by blockchain. Such a financial infrastructure reduces the cost of cross-border payments and the risk of lending.
It must be noted that blockchain implies the use of Information and Communication Technologies (ICT), which can contribute to increase access to literacy. Furthermore, the inner characteristics of blockchain remove trust issues and enable the creation of new types of governance that may create equal opportunities for women leadership.
Sustainable and efficient water management systems involve the use of sophisticated IoT architectures that optimize consumption and availability. Such architectures may be subject to security attacks (e.g., physical attacks on sensors, device cloning, data theft, DoS, jamming, or eavesdropping). Therefore, it is important to cyber-secure these systems and minimize the reliance on cloud-centered architectures that, when the server is down, may derive in the unavailability of the service. In addition, the communication between IoT devices within a decentralized architecture allows for avoiding single points of failure and enables the use of autonomous IoT transactions in a secure manner, thus guarantying tamper-proof data, visibility, and transparency in water trading [41].
The authors of [42] study blockchain-based smart grid sustainable local energy markets. These systems enable cost-efficient micro-transactions, avoid central intermediaries, and promote reliability and equality among the different involved agents.
Blockchain has the ability to promote economic growth by enabling free trade. For instance, it also has the potential to optimize global financial infrastructure in terms of asset transfer and operative costs.
In addition, it may ease new types of economic organization and governance (e.g., innovation-centered and governance-centered [43]). In Davidson et al. [43] the authors present an example of a self-governing organization for evaluating the contributions to projects on a network. When evaluating such an example, they introduce a wide range of perspectives to be considered, such as the problem of contractual enforcement, efficient institutions, governance, or even the constitutional characteristics of a nation.
The Industry 4.0 paradigm is expected to represent the next phase in the digitalization of all the sectors in the economy [8]. Supply chain traceability has been traditionally performed by wireless technologies like radio-frequency identification (RFID) [44], which can be enhanced with additional security capabilities [45]. The next step forward is the so-called smart label [46], which adds novel features like event detection, interaction, and IoT capabilities. Such IoT solutions link cyber and physical worlds while enabling tracking and monitoring of assets and processes. Thus, blockchain goes one step further, making feasible end-to-end transparency in global supply chains. Business data can be shared rapidly between the different stakeholders across a trusted network [13]. In addition, smart contracts provide lower transaction costs by avoiding the intervention of intermediaries and third parties.
Ultimately, the ambition is to achieve Sustainable Supply Chain Management (SSCM), aiming to reduce the social and environmental impacts in global supply chains [47]. It is worth mentioning that, although research suggests that the combined use of blockchain and IoT devices will add significant value in supply chain, it will also impose some additional constraints in terms of computing power and power efficiency [6].
There are a number of supply chain projects deployed worldwide. For instance, Walmart, together with IBM, has developed a blockchain-based traceability system with Hyperledger Fabric [48]. In October 2016, they started with a PoC that tracked two items that were shipped to multiple stores. Before that, when a product had an issue (e.g., a customer became ill), it could take days to identify the batch, shipment, and vendor, and it may require to throw away a lot of the product. Through blockchain, it is possible to obtain specific data and details on the “how, where, and when” of the item within its supply chain. The shared database is able to capture attributes at the level of an individual package to take informed decisions. This functionality enables Walmart today to track a product in seconds (instead of days or sometimes weeks).
Following this approach, in August 2017, IBM announced a consortium with the food sector that included Walmart, Driscoll’s, Dole, McCormick, Nestlé, Kroger, Tyson Foods, and Unilever. This consortium, named IBM Food Trust, will further explore the potential of blockchain to boost traceability along global supply chains with more products [48].
The shipping industry can also benefit greatly from blockchain. Ocean freight and maritime transport account for over 90% of the goods shipped globally [49]. The main characteristics are high number of involved stakeholders, complex transactions (e.g., letters of credit), burdensome paperwork, and lack of transparency, traceability, and information sharing. For instance, Maersk and IBM created TradeLens, a blockchain-based solution to create a more secure and efficient global logistics and spur industry-wide innovation [50].
Additionally, several blockchain startups are also innovating in traceability. For instance, the startup Provenance [51] has created an application to engage customers in the point of sale by providing mechanisms to verify sustainability claims (i.e., no greenwashing).
As it was previously mentioned, blockchain is also able to reduce transaction costs by reducing intermediaries and thus allowing more direct payment flows. For instance, DocuSign [52] is a company that offers several applications (e.g., electronic signature, contract lifecycle management). In 2015, DocuSign collaborated with Visa in a PoC project that used a smart contract to enhance car leasing processes. In 2018, DocuSign integrated an Ethereum blockchain in their signing services. As a result, the signers of an agreement can check anytime the integrity of the contract. DocuSign is also part of the Accord Project [53], a non-profit initiative that aims to develop a technology-agnostic ecosystem with open-source tools for smart contracts.
Accurate transaction records enable the use of tools for forecasting. For instance, Augur [54] is a decentralized platform built with Ethereum smart contracts that allows users to create their own prediction markets (i.e., oracle).
Another relevant commercial solution is Storj.io [55], which is a blockchain-enabled cloud storage network where users can rent the storage space that do not use and get paid in Storj tokens or store their information on a globally distributed network.
Some startups focus on removing intermediaries from trading like OpenBazaar [56], while other companies focus on providing visibility and transparency to philanthropy [57]. Such a global foundation leverages Bitcoin and blockchain to perform and track transactions while providing an immutable record of charitable financial transactions.
In 2018, IBM was awarded a patent for its Autonomous Decentralized Peer-to-Peer Telemetry (ADEPT) environment [58]. In 2016, IBM developed jointly with Samsung a PoC using different elements of Bitcoin to create a distributed network of IoT devices. For instance, to secure transactions, it uses a mix of proof of work (PoW) and proof of stake (PoS) as consensus protocols, BitTorrent for file sharing, Telehash for messaging, and Ethereum to support smart contracts.
It is also worth mentioning that other authors focused on smart grids and supply chain management systems as substantial areas of sustainable innovation [59].
Theoretically, blockchain capabilities make the technology a catalyst for enabling a sharing economy with a democratic ownership structure (e.g., fractionally own goods by every community member) while avoiding unnecessary intermediaries. Nevertheless, authors like Novak [60] evaluate the implications of blockchain for income inequality and consider that, although it has potential to have a positive impact, it may also exacerbate current wealth concentration.
The authors of [61] propose a systematic literature review on specific blockchain use cases proposed by the research community. They remark the great concern about the infancy stage of blockchain.
Production patterns can be monitored by using supply chain traceability techniques.
Blockchain will likely play an important role on the urgent actions for improving the accountability and transparency of policies to limit global fossil fuel consumption and foster decarbonization. Hyperledger, as part of the Linux Foundation, has recently announced a new Special Interest Group (SIG) that will explore how blockchain can help to address the climate goals set out in the Paris Agreement [62].
The company Possible Future oriented one of its projects to the sustainable use of the oceans, preserving their life and restoring damaged coral reefs [63]. They created a game, named CryptoCorals, in which for each purchase of a virtual coral, another coral is planted. The project is developed, thanks to the collaboration of a non-governmental organization (NGO) partner, and blockchain is used to guarantee transparency, as it is one of the major concerns of potential users.
Blockchain can be used to register trustworthy data about the different terrestrial ecosystems.
Blockchain can help to reduce paper-based processes, minimize fraud, create inclusive institutions, and increase accountability in public services.
A good example is Delaware Blockchain Initiative [64], which was born with the aim of creating a legal framework for DLT sharing in corporations and governments. A more ambitious approach is Aragon [65], which is a startup that aims to create worldwide decentralized organizations, including employees and contractors from developing countries.
Other initiatives focus on increasing the transparency of democratic processes and on avoiding potential frauds. An example is Follow My Vote [66], which is a cost-effective online voting platform that audits ballots in real time.
To strengthen the means of collaboration between stakeholders is the key for enabling open innovation and for achieving SDGs.
The following paragraphs summarize the key main benefits that blockchain will bring to SDGs and their main open challenges.
Blockchain may provide significant operational benefits, since current information systems rely on centralized databases that operate in silos. By having a single, timestamped, immutable, and unique version of the truth, transparency and simplified audits can be guaranteed.
Furthermore, re-balancing the degree of information symmetry between stakeholders will help to achieve SDGs and will enable new forms of corporate governance and decentralized corporations. A collaborative mindset (the so-called coopetition) will be necessary to find additional ways to create value.
In terms of the maturity of the technology, there are a number of open challenges related to scalability, interoperability, standardization, or even energy consumption. The process of mining public networks, especially in the case of Bitcoin [67], requires enormous amounts of electricity. Therefore, although the underlying networks can provide sustainable applications, their footprint cannot be neglected [68].
From the cybersecurity standpoint, it is essential to provide secure applications with no single point of failure that comply with the expected degree of privacy. Nonetheless, it must be noted that blockchain can be also subject to cyberattacks [6]. The evolution of quantum computers will affect the security of public-key cryptosystems and hash functions. For instance, the authors of [9] analyze how to evolve blockchain cryptography to resist attacks based on Grover’s and Shor’s algorithms.
Blockchain can be used to develop secure peer-to-peer platforms for exchanging assets without intermediaries and in a trustworthy, sustainable, accountable, and transparent way to fulfill UN SDGs and the objectives of the EU Green Deal. Although research into blockchain has significantly increased in the last few years, there are not many academic or commercial solutions with sustainability and open innovation in mind. Moreover, most of them present solutions at very early stages of development.
Blockchain has the potential to radically change many societal sectors and to foster open innovation in all types of organizations, including supply chains, or the enforcement of governance in a completely innovative way. This overview has inherent methodological limitations due to its length and high level, so only a sample selection of some of the recent solutions is presented to give an idea of the potential of blockchain. The solutions described are not meant to be representative or generalizable. Such cases are the basics for further research, having in mind how blockchain can solve many of the current cybersecurity issues. Furthermore, open challenges were mentioned as a guidance for researchers and companies for future developments.
IoT | Internet of Things |
CPS | cyber-physical system |
CSR | corporate social responsibility |
DLT | distributed ledger technology |
DoS | denial of service |
PKI | public-key cryptography |
NGO | non-governmental organization |
PoC | proof of concept |
P2P | peer-to-peer |
PoS | proof of stake |
PoW | proof of work |
SSCM | sustainable supply chain management |
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"14"},books:[{type:"book",id:"11988",title:"Magnesium Alloys",subtitle:null,isOpenForSubmission:!0,hash:"4da7079fb57ccc6aa9f8323d8d42bda6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11988.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11990",title:"Iron Ores and Iron Oxide",subtitle:null,isOpenForSubmission:!0,hash:"20cbec723d56ff06096e08d93750ad58",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11990.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11991",title:"Trace Metals in the Environment",subtitle:null,isOpenForSubmission:!0,hash:"668c7f042fb58587e82ac90c32a22447",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11991.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11993",title:"Reinforced Concrete",subtitle:null,isOpenForSubmission:!0,hash:"74188d8583c4569b6cf7755128a311be",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11993.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11995",title:"Elastomers",subtitle:null,isOpenForSubmission:!0,hash:"e37c2de13a51e358b06c9cf637b55d33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11995.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11996",title:"Granite",subtitle:null,isOpenForSubmission:!0,hash:"03b9e834fd0abe7ffef7ef85e7c02426",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11996.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites",subtitle:null,isOpenForSubmission:!0,hash:"31d8afbb8256b34918ddc7ce910cc6e5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12261",title:"Sol-gel Method",subtitle:null,isOpenForSubmission:!0,hash:"5d96c89299217a36052ad1b8031be001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12261.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12263",title:"Geosynthetic Materials and Products",subtitle:null,isOpenForSubmission:!0,hash:"9f1b26209b356040678d896248f51215",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12263.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12264",title:"Polyaniline",subtitle:null,isOpenForSubmission:!0,hash:"2e0710de2d17485e9d56a87461a2b0b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12264.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12265",title:"Silk-based Materials",subtitle:null,isOpenForSubmission:!0,hash:"7f580af2140c873052c6e12f9318ee95",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12265.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:37},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:98},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4379},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"194",title:"Pediatrics",slug:"pediatrics",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:19,numberOfSeries:0,numberOfAuthorsAndEditors:316,numberOfWosCitations:117,numberOfCrossrefCitations:64,numberOfDimensionsCitations:205,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"194",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9132",title:"Congenital Anomalies in Newborn Infants",subtitle:"Clinical and Etiopathological Perspectives",isOpenForSubmission:!1,hash:"6e1cf722caa7276c22d24dbf4df139e9",slug:"congenital-anomalies-in-newborn-infants-clinical-and-etiopathological-perspectives",bookSignature:"Rita P. Verma",coverURL:"https://cdn.intechopen.com/books/images_new/9132.jpg",editedByType:"Edited by",editors:[{id:"278358",title:"Dr.",name:"Rita P.",middleName:null,surname:"Verma",slug:"rita-p.-verma",fullName:"Rita P. Verma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7784",title:"Spina Bifida and Craniosynostosis",subtitle:"New Perspectives and Clinical Applications",isOpenForSubmission:!1,hash:"a979d42a6e93e686c533420a9a638c07",slug:"spina-bifida-and-craniosynostosis-new-perspectives-and-clinical-applications",bookSignature:"Branislav Kolarovszki, Raffaella Messina and Valeria Blè",coverURL:"https://cdn.intechopen.com/books/images_new/7784.jpg",editedByType:"Edited by",editors:[{id:"92436",title:"Associate Prof.",name:"Branislav",middleName:null,surname:"Kolarovszki",slug:"branislav-kolarovszki",fullName:"Branislav Kolarovszki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9805",title:"Infant Feeding",subtitle:"Breast versus Formula",isOpenForSubmission:!1,hash:"7d1570fa9b5653287eaa25fe171b404a",slug:"infant-feeding-breast-versus-formula",bookSignature:"Isam Jaber Al-Zwaini, Zaid Rasheed Al-Ani and Walter Hurley",coverURL:"https://cdn.intechopen.com/books/images_new/9805.jpg",editedByType:"Edited by",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8728",title:"Update on Critical Issues on Infant and Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"52c4dbe7c0deb54899657dc4323238d6",slug:"update-on-critical-issues-on-infant-and-neonatal-care",bookSignature:"René Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/8728.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",middleName:null,surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6508",title:"The Role of Transcranial Doppler Sonography in the Management of Pediatric Hydrocephalus",subtitle:null,isOpenForSubmission:!1,hash:"4fc5fd6bba9da6cb5271faac79e55df9",slug:"the-role-of-transcranial-doppler-sonography-in-the-management-of-pediatric-hydrocephalus",bookSignature:"Branislav Kolarovszki",coverURL:"https://cdn.intechopen.com/books/images_new/6508.jpg",editedByType:"Authored by",editors:[{id:"92436",title:"Associate Prof.",name:"Branislav",middleName:null,surname:"Kolarovszki",slug:"branislav-kolarovszki",fullName:"Branislav Kolarovszki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"7527",title:"Neonatal Medicine",subtitle:null,isOpenForSubmission:!1,hash:"777de6ff63e03a7b9c8e443d8f06828c",slug:"neonatal-medicine",bookSignature:"Antonina I. Chubarova",coverURL:"https://cdn.intechopen.com/books/images_new/7527.jpg",editedByType:"Edited by",editors:[{id:"244610",title:"Prof.",name:"Antonina",middleName:"I.",surname:"Chubarova",slug:"antonina-chubarova",fullName:"Antonina Chubarova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7084",title:"Contemporary Pediatric Hematology and Oncology",subtitle:null,isOpenForSubmission:!1,hash:"21ab490c2debd2992b2a0b45f778b785",slug:"contemporary-pediatric-hematology-and-oncology",bookSignature:"Marwa Zakaria and Tamer Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/7084.jpg",editedByType:"Edited by",editors:[{id:"187545",title:"Associate Prof.",name:"Marwa",middleName:null,surname:"Zakaria",slug:"marwa-zakaria",fullName:"Marwa Zakaria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5821",title:"Selected Topics in Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"711594f833d5470b73524758472f4d96",slug:"selected-topics-in-neonatal-care",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/5821.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",middleName:null,surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5542",title:"Pediatric Cancer Survivors",subtitle:null,isOpenForSubmission:!1,hash:"dfd9d9e58bf08bc44679a030148793e5",slug:"pediatric-cancer-survivors",bookSignature:"Karen Wonders and Brittany Stout",coverURL:"https://cdn.intechopen.com/books/images_new/5542.jpg",editedByType:"Edited by",editors:[{id:"52860",title:"Dr.",name:"Karen",middleName:null,surname:"Wonders",slug:"karen-wonders",fullName:"Karen Wonders"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5473",title:"Pediatric and Neonatal Surgery",subtitle:null,isOpenForSubmission:!1,hash:"cecf75716957606b6bbbb3999e80cfcf",slug:"pediatric-and-neonatal-surgery",bookSignature:"Joanne Baerg",coverURL:"https://cdn.intechopen.com/books/images_new/5473.jpg",editedByType:"Edited by",editors:[{id:"178844",title:"Dr.",name:"Joanne",middleName:null,surname:"Baerg",slug:"joanne-baerg",fullName:"Joanne Baerg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4480",title:"Pediatric Nursing, Psychiatric and Surgical Issues",subtitle:null,isOpenForSubmission:!1,hash:"350881cf5fc1cdb8a99316e3a98de842",slug:"pediatric-nursing-psychiatric-and-surgical-issues",bookSignature:"Oner Ozdemir",coverURL:"https://cdn.intechopen.com/books/images_new/4480.jpg",editedByType:"Edited by",editors:[{id:"62921",title:"Dr.",name:"Öner",middleName:null,surname:"Özdemir",slug:"oner-ozdemir",fullName:"Öner Özdemir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:19,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"30834",doi:"10.5772/33532",title:"Comparisons of Bully and Unwanted Sexual Experiences Online and Offline Among a National Sample of Youth",slug:"comparisons-of-bully-and-unwanted-sexual-experiences-online-and-offline-among-a-national-sample-of-y",totalDownloads:2153,totalCrossrefCites:2,totalDimensionsCites:24,abstract:null,book:{id:"2123",slug:"complementary-pediatrics",title:"Complementary Pediatrics",fullTitle:"Complementary Pediatrics"},signatures:"Michele L. Ybarra, Kimberly J. Mitchell and Dorothy L. Espelage",authors:[{id:"96025",title:"Dr.",name:"Michele",middleName:null,surname:"Ybarra",slug:"michele-ybarra",fullName:"Michele Ybarra"}]},{id:"30833",doi:"10.5772/33907",title:"Adolescent Psychosocial Development and Evaluation: Global Perspectives",slug:"adolescent-psychosocial-development-and-evaluation-global-perspectives",totalDownloads:3765,totalCrossrefCites:2,totalDimensionsCites:10,abstract:null,book:{id:"2123",slug:"complementary-pediatrics",title:"Complementary Pediatrics",fullTitle:"Complementary Pediatrics"},signatures:"Fadia AlBuhairan, Rosawan Areemit, Abigail Harrison and Miriam Kaufman",authors:[{id:"97692",title:"Dr.",name:"Fadia",middleName:null,surname:"AlBuhairan",slug:"fadia-albuhairan",fullName:"Fadia AlBuhairan"},{id:"100992",title:"Dr.",name:"Rosawan",middleName:null,surname:"Areemit",slug:"rosawan-areemit",fullName:"Rosawan Areemit"},{id:"100995",title:"Dr.",name:"Abigail",middleName:null,surname:"Harrison",slug:"abigail-harrison",fullName:"Abigail Harrison"},{id:"100997",title:"Dr.",name:"Miriam",middleName:null,surname:"Kaufman",slug:"miriam-kaufman",fullName:"Miriam Kaufman"}]},{id:"37453",doi:"10.5772/45749",title:"Neonatal Mortality: Incidence, Correlates and Improvement Strategies",slug:"neonatal-mortality",totalDownloads:4919,totalCrossrefCites:2,totalDimensionsCites:9,abstract:null,book:{id:"765",slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Sajjad ur Rahman and Walid El Ansari",authors:[{id:"84941",title:"Prof.",name:"Sajjad",middleName:"Ur",surname:"Rahman",slug:"sajjad-rahman",fullName:"Sajjad Rahman"}]},{id:"44444",doi:"10.5772/54255",title:"The Role of C-Reactive Protein in the Diagnosis of Neonatal Sepsis",slug:"the-role-of-c-reactive-protein-in-the-diagnosis-of-neonatal-sepsis",totalDownloads:4998,totalCrossrefCites:5,totalDimensionsCites:8,abstract:null,book:{id:"2990",slug:"neonatal-bacterial-infection",title:"Neonatal Bacterial Infection",fullTitle:"Neonatal Bacterial Infection"},signatures:"Nora Hofer, Wilhelm Müller and Bernhard Resch",authors:[{id:"66173",title:"Prof.",name:"Bernhard",middleName:null,surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch"},{id:"149705",title:"Dr.",name:"Nora",middleName:null,surname:"Hofer",slug:"nora-hofer",fullName:"Nora Hofer"},{id:"149706",title:"Prof.",name:"Wilhelm",middleName:null,surname:"Müller",slug:"wilhelm-muller",fullName:"Wilhelm Müller"}]},{id:"44445",doi:"10.5772/54320",title:"Neonatal Osteomyelitis",slug:"neonatal-osteomyelitis",totalDownloads:4863,totalCrossrefCites:5,totalDimensionsCites:7,abstract:null,book:{id:"2990",slug:"neonatal-bacterial-infection",title:"Neonatal Bacterial Infection",fullTitle:"Neonatal Bacterial Infection"},signatures:"Ursula Kiechl-Kohlendorfer and Elke Griesmaier",authors:[{id:"163261",title:"Prof.",name:"Ursula",middleName:null,surname:"Kiechl-Kohlendorfer",slug:"ursula-kiechl-kohlendorfer",fullName:"Ursula Kiechl-Kohlendorfer"}]}],mostDownloadedChaptersLast30Days:[{id:"66831",title:"Management of Gastroschisis",slug:"management-of-gastroschisis",totalDownloads:1286,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Gastroschisis (GS) is one of the congenital abdominal wall defects, in which the bowel has prolapsed without a covering through a defect adjacent to (and nearly always to the right of) an otherwise normal umbilicus. Proper management of such cases gives them the opportunity to survive and thrive. In this chapter, simplified flowcharts for the initial management of GS, surgical intra-operative decisions and post-operative active follow-up of such cases will be presented and discussed. The first flowchart will discuss how to deal with a GS case from birth till the operative theatre, while the second flowchart will take the lead to guide the surgeon with the available surgical options and how to choose the suitable one for the case. Finally, the post-operative active follow-up fluid management and possible complications are discussed.",book:{id:"8463",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",fullTitle:"Pediatric Surgery, Flowcharts and Clinical Algorithms"},signatures:"Alaa Obeida and Aly Shalaby",authors:[{id:"273587",title:"Dr.",name:"Alaa",middleName:null,surname:"Obeida",slug:"alaa-obeida",fullName:"Alaa Obeida"},{id:"276899",title:"Mr.",name:"Aly",middleName:null,surname:"Shalaby",slug:"aly-shalaby",fullName:"Aly Shalaby"}]},{id:"67769",title:"Pediatric Choledochal Cysts: Unknowns are Decreasing",slug:"pediatric-choledochal-cysts-unknowns-are-decreasing",totalDownloads:1225,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Choledochal cysts (CCs) are congenital cystic dilatation of extrahepatic and/or intrahepatic bile ducts. CCs are more common in Asian population, the cause is still unknown. Although the etiology is controversial, the main elements in the natural historical emergence of the type I and type IV, which make up the majority of all types, have become clearer. The majority of CCs are diagnosed in childhood. Clinical presentation varies from jaundice in young patients to nonspecific abdominal pain in older, but morbidity increases with complications such as cholangitis, pancreatitis, perforation, hepatitis, liver failure, and malignancy in delayed diagnosed patients. MRCP is considered the current gold standard diagnostic modality that is able to accurately assess biliary anatomy. Although the treatment approach has been formed over the years, it still has not reached the last state. Eventually, the removal of the entire cyst and the reconstruction of the remaining biliary tract to drainage is the current treatment approach. But the dilemma is the way of reconstruction procedure (hepaticoduodenostomy or hepaticojejunostomy). All patients should be followed up for a long period of time, regardless of the surgery method.",book:{id:"8463",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",fullTitle:"Pediatric Surgery, Flowcharts and Clinical Algorithms"},signatures:"Hasan Özkan Gezer",authors:[{id:"273381",title:"M.D.",name:"Hasan",middleName:"Özkan",surname:"Gezer",slug:"hasan-gezer",fullName:"Hasan Gezer"}]},{id:"44446",title:"Neonatal Pneumonia",slug:"neonatal-pneumonia",totalDownloads:14709,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"2990",slug:"neonatal-bacterial-infection",title:"Neonatal Bacterial Infection",fullTitle:"Neonatal Bacterial Infection"},signatures:"Friedrich Reiterer",authors:[{id:"152025",title:"Prof.",name:"Friedrich",middleName:null,surname:"Reiterer",slug:"friedrich-reiterer",fullName:"Friedrich Reiterer"}]},{id:"53683",title:"Pre and Postoperative Management of Pediatric Patients with Congenital Heart Diseases",slug:"pre-and-postoperative-management-of-pediatric-patients-with-congenital-heart-diseases",totalDownloads:4853,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Stabilization during preoperative cardiac surgery especially in neonates has an important role to predict outcome for pediatric congenital heart surgery. We tried to elaborate general guidelines on how to diagnose and some anticipations for emergency treatments tailored by the type of congenital heart disease in neonates. Stabilization consists of medical treatment including emergent prostaglandin institution in some types of duct dependent lesion. The role of interventional catheterization such as patent ductus arteriosus (PDA) stent, balloon pulmonary valvotomy, etc. as modalities for stabilization before surgery was also elaborated. Some general and specific guidelines based on the type of surgeries for postoperative management were also discussed.",book:{id:"5473",slug:"pediatric-and-neonatal-surgery",title:"Pediatric and Neonatal Surgery",fullTitle:"Pediatric and Neonatal Surgery"},signatures:"Eva Miranda Marwali, Beatrice Heineking and Nikolaus A. Haas",authors:[{id:"191397",title:"Dr.",name:"Eva",middleName:"Miranda",surname:"Marwali",slug:"eva-marwali",fullName:"Eva Marwali"},{id:"191414",title:"Prof.",name:"Nikolaus",middleName:null,surname:"Haas",slug:"nikolaus-haas",fullName:"Nikolaus Haas"},{id:"202373",title:"Dr.",name:"Beatrice",middleName:null,surname:"Heineking",slug:"beatrice-heineking",fullName:"Beatrice Heineking"}]},{id:"68042",title:"Neonatal Bacterial Meningitis",slug:"neonatal-bacterial-meningitis",totalDownloads:1163,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Despite improvements in neonatal intensive care, neonatal bacterial meningitis continues to be a serious disease with mortality rates varying between 10 and 15%. Additionally, long-term complications are observed among 20–50% of survivors, depending on time of diagnosis and therapy and virulence of the infecting pathogen. It is more common during the neonatal period than at any other age with the estimated incidence of 0.25 per 1000 live births. The absence of specific clinical presentation makes diagnosis of meningitis more difficult in neonates than in older children. Culture of cerebrospinal fluid is the traditional gold standard for diagnosis of bacterial meningitis, so all newborn infants with proven or suspected sepsis should undergo lumbar puncture. However, deciding when to perform lumbar puncture and interpretation of the results are challenging. Although the pathophysiology of neonatal meningitis is complex and not fully understood, researches on diagnostic and prognostic tools are ongoing. Prevention of neonatal sepsis, early recognition of infants at risk, development of novel, rapid diagnostics and adjunctive therapies, and appropriate and aggressive antimicrobial treatment to sterilize cerebrospinal fluid as soon as possible may prevent the lifelong squeal of bacterial meningitis in newborn infants.",book:{id:"7527",slug:"neonatal-medicine",title:"Neonatal Medicine",fullTitle:"Neonatal Medicine"},signatures:"Mehmet Şah İpek",authors:[{id:"267903",title:"Associate Prof.",name:"Mehmet Şah",middleName:null,surname:"İpek",slug:"mehmet-sah-ipek",fullName:"Mehmet Şah İpek"}]}],onlineFirstChaptersFilter:{topicId:"194",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"80416",title:"Antenatal Corticosteroids and Magnesium Sulfate in Twin Pregnancy for the Prevention of Neonatal Morbidity",slug:"antenatal-corticosteroids-and-magnesium-sulfate-in-twin-pregnancy-for-the-prevention-of-neonatal-mor",totalDownloads:30,totalDimensionsCites:0,doi:"10.5772/intechopen.102611",abstract:"The use of corticosteroids is one of the most important therapies used in prenatal care to improve the outcomes of the newborn by reducing the rates of respiratory distress syndrome, intraventricular hemorrhage, necrotizing enterocolitis and contribute to the survival of extreme preterm infants. In addition to steroids, the use of magnesium sulfate protects the newborn from cerebral palsy in cases of extreme preterm births. All of these conditions increase perinatal morbidity/mortality and are related to potentially serious illness in the newborn requiring care in neonatal intensive units. The use of corticosteroids and magnesium sulfate are measured to prevent unfavorable outcomes of premature newborns admitted to a neonatal intensive care unit. The incidence of twin pregnancy is only 3% of all live births, however, it accounts for 15% of extreme preterm births less than 32 weeks. Women with multiple pregnancies are six times more likely to terminate the pregnancy before term compared to single pregnancies. The determination of the use of corticosteroids in multiple pregnancies remains conflicting due to the scarcity of studies related to this group. Therefore, this chapter aims to evaluate the effectiveness of the use of corticosteroids in twin pregnancies in early and late preterm, evaluating its outcome in respiratory morbidity and metabolic aspects of the newborn.",book:{id:"10734",title:"Topics on Critical Issues in Neonatal Care",coverURL:"https://cdn.intechopen.com/books/images_new/10734.jpg"},signatures:"Julio Elito Jr and Micheli Goldani Shuai"},{id:"78720",title:"Neonatal Anemia",slug:"neonatal-anemia",totalDownloads:142,totalDimensionsCites:0,doi:"10.5772/intechopen.99761",abstract:"Neonatal anemia and iron deficiency are frequent founds in neonatal intensive care units (NICUs). The three major causes of anemia in neonates are blood loss, reduced red blood cell production, and increased degradation of the erythrocytes. Premature infants in ICUs have high levels of iron deficiency, and ascertaining the cause of anemia in this group of patients can be a challenge in clinical practice. This chapter provides an updated review of neonatal anemia. It will concern the pathophysiology of neonatal anemia in term and preterm infants and a detailed discussion of the traditional and innovative laboratory tests for diagnosis and assessment of this condition in the ICUs.",book:{id:"10734",title:"Topics on Critical Issues in Neonatal Care",coverURL:"https://cdn.intechopen.com/books/images_new/10734.jpg"},signatures:"Laura M. Dionisio and Thamires A. Dzirba"},{id:"78174",title:"Breastfeeding and the Influence of the Breast Milk Microbiota on Infant Health",slug:"breastfeeding-and-the-influence-of-the-breast-milk-microbiota-on-infant-health",totalDownloads:139,totalDimensionsCites:0,doi:"10.5772/intechopen.99758",abstract:"Nutrition is an essential condition for physical, mental, and psycho-emotional growth for both children and adults. It is a major determinant of health and a key factor for the development of a country. Breastfeeding is a natural biological process, essential for the development of the life of the newborn at least during the first six months by ensuring a nutritional contribution adapted to the needs of the latter. Thus, breast milk is the physiological and natural food best suited to the nutrition of the newborn. It contains several various components, which are biologically optimized for the infant. Cells are not a negligible component of breast milk. Breast milk is also a continuous source of commensal and beneficial bacteria, including lactic acid bacteria and bifidobacteria. It plays an important role in the initiation, development, and composition of the newborn’s gut microbiota, thanks to its pre-and probiotic components. Current knowledge highlights the interdependent links between the components of breast milk, the ontogeny of intestinal functions, the development of the mucus intestinal immune system, colonization by the intestinal microbiota, and protection against pathogens. The quality of these interactions influences the health of the newborn in the short and long term.",book:{id:"10734",title:"Topics on Critical Issues in Neonatal Care",coverURL:"https://cdn.intechopen.com/books/images_new/10734.jpg"},signatures:"Fatima Chegdani, Badreddine Nouadi and Faiza Bennis"},{id:"78222",title:"Reducing Toxic Phthalate Exposures in Premature Infants",slug:"reducing-toxic-phthalate-exposures-in-premature-infants",totalDownloads:85,totalDimensionsCites:0,doi:"10.5772/intechopen.99714",abstract:"Phthalates are a ubiquitous group of industrial compounds used as industrial solvents and as additives to plastics to make products softer avnd more flexible. Phthalates are found in a variety of products including medical devices, personal care products, flooring, and food packaging. Infants in the neonatal intensive care unit are exposed to phthalates both in the building materials, but more importantly in the medical supplies and devices. Toxicity from phthalates has been of concern to researchers for many decades. Toxicity concerns to neonates includes male reproductive toxicity, hepatotoxicity, cardiotoxicity (including hypertension), neurotoxicity, and neurodevelopmental abnormalities. Limited recommendations have been given for reducing phthalate exposures to premature infants. These include avoiding infusing lipids or blood products through intravenous tubing containing phthalates. Storage of blood in containers made with phthalates has been a strong recommendation and has largely been accomplished. A comprehensive plan for phthalate reduction has heretofore been missing. This chapter has the goal of identifying the problem of phthalate exposure in premature infants, with some practical solutions that can be done today, as well as suggestions for manufacturers to complete the work.",book:{id:"10734",title:"Topics on Critical Issues in Neonatal Care",coverURL:"https://cdn.intechopen.com/books/images_new/10734.jpg"},signatures:"Randall Jenkins"},{id:"78011",title:"Prolonged Jaundice in Newborn",slug:"prolonged-jaundice-in-newborn",totalDownloads:134,totalDimensionsCites:0,doi:"10.5772/intechopen.99670",abstract:"Prolonged jaundice is defined as a serum bilirubin level higher than 85 μmol/L (5 mg/dl), which persists at postnatal 14 days in term infants and 21 days following the birth in preterm infants. It affects 2–15% of all newborns and 40% of breastfed infants. Although underlying cause can not be found in the majority of prolonged jaundice cases, this may also be the first sign of a serious causative pathology. Tests performed to determine the underlying cause and failure to determine the etiology cause anxiety for both families and physicians. The most important point is to determine whether prolonged jaundice is of a benign cause or is due to a substantial disease. For this reason, health care providers should not take unnecessary tests in normal infants, but should also recognize infants with a causative pathology. Neonatal jaundice still maintains its importance in neonatal clinical practice, since early diagnosis and treatment is feasible.",book:{id:"10734",title:"Topics on Critical Issues in Neonatal Care",coverURL:"https://cdn.intechopen.com/books/images_new/10734.jpg"},signatures:"Erhan Aygün and Seda Yilmaz Semerci"}],onlineFirstChaptersTotal:5},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:11,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:139,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:314,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:193,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:168,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:249,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:383,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:288,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"bookSubject",path:"/subjects/194",hash:"",query:{},params:{id:"194"},fullPath:"/subjects/194",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()