\r\n\tAccording to the protection and control strategies in recent years; Although WHO has reduced the rates somewhat with the application of mass medication in children in places where the prevalence of roundworm is over 20%, to control morbidity and eliminate STN as a public health problem, the mathematical applications have been to apply the treatments to adults as well.
\r\n\r\n\tIn this book, roundworms transmitted through soil or arthropods; Developments in epidemiology, life cycles, pathophysiology, clinical diagnosis, management, and public health control in the world will be reviewed with the contribution of studies on this subject from past to present. In addition, this book aims to highlight the connection between helminths and autoimmune and allergic diseases: the determination, treatment, and control strategies.
",isbn:"978-1-80356-714-3",printIsbn:"978-1-80356-713-6",pdfIsbn:"978-1-80356-715-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"5edc96349630be8bb4e67170be677d8c",bookSignature:"Dr. Nihal Dogan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11801.jpg",keywords:"Ascaris, Trichuris, Hookworms, Strongyloides, Wuchereria, Brugia, Onchocerca, Trichinella, Larval Infection, Visceral Larva Migrans, Cutaneous Larva Migrans, Ocular",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 23rd 2022",dateEndSecondStepPublish:"May 27th 2022",dateEndThirdStepPublish:"July 26th 2022",dateEndFourthStepPublish:"October 14th 2022",dateEndFifthStepPublish:"December 13th 2022",remainingDaysToSecondStep:"7 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A leading academic in parasitology at the Department of Microbiology at the Faculty of Medicine of Eskişehir Osmangazi University, expertise in hydatid cysts, toxoplasma, leishmania, parasitic diseases transmitted by water and intestinal parasites. She wrote numerous book chapters on infectious diseases, clinical parasitology, clinical microbiology, and medical microbiology laboratory applications and manuals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"169552",title:"Dr.",name:"Nihal",middleName:null,surname:"Dogan",slug:"nihal-dogan",fullName:"Nihal Dogan",profilePictureURL:"https://mts.intechopen.com/storage/users/169552/images/system/169552.png",biography:"Prof. Dr Nihal Doğan is the leading academic in the Field of Parasitology at the Department of Microbiology at the Faculty of Medicine of Eskişehir Osmangazi University since 1993. She was granted a professorship in 2008 and has expertise in parasitology and epidemiology of parasitic diseases. She took part as an executive academic on 6 projects hydatid cysts, toxoplasma, leishmania, parasitic diseases transmitted by water and intestinal parasites. Her research is published in more than 40 national and international journals and she took part as a keynote speaker and as abstract and poster presenter in more than international and national congresses and conferences. She wrote numerous book chapters on infectious diseases, clinical parasitology, clinical microbiology and medical microbiology laboratory applications and manuals. \nShe concluded her Master and PhD Thesis at Eskişehir Anadolu University and Eskişehir Osmangazi University Medical Faculty and focused on the field of diagnosis and seroepidemiology of Toxoplasmosis. She visited the University of Virginia Department of Parasitology as a visiting researcher in 2003 for 3 months and worked on the diagnosis of Entamoeba histolytica and Universidad De Chile Faculty of Medicine as an observer researcher in 2016 for 1 month and worked on Trypanosomes.\nHer research interests include medical ethics, seroepidemiological survey; intestinal, blood, tissue and ocular parasites, vector-borne diseases, zoonotic parasites.",institutionString:"Eskisehir Osmangazi University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55488",title:"DFT-based Theoretical Simulations for Photocatalytic Applications Using TiO2",doi:"10.5772/intechopen.68976",slug:"dft-based-theoretical-simulations-for-photocatalytic-applications-using-tio2",body:'\nEmergent technologies and the demand for alternative energy sources, which do not produce greenhouse gases as a byproduct lead to a growing awareness in using those renewable sources already provided by nature, such as sunlight. The ideal goal is to emulate the photochemical process with which the plants convert H2O and CO2 into O2 and carbohydrates by absorbing photons in the energy range between 3.3 and 1.5 eV (visible spectrum). Scientists then aim at designing new catalysts that can employ the easily available sunlight and convert it into chemical energy, without depending on the activation energy generated by traditional fuels.
\nIn 1938, for the first time, Goodeve and Kitchener [1] demonstrated the photocatalytic activity of the TiO2 surface, which can produce oxygen by absorbing UV light thus leading to the photobleaching of dyes. This study has initiated many others toward discovering photocatalytic reactions that can be catalyzed by TiO2. The success of this material is also justified by its high stability, low cost, no side effects on humans and environment, and ease in large‐scale usage. In spite of the promising properties of TiO2, the photocatalytic activity of the bare surface is not optimal, due to the too large energy gap [2]. This limits the photons’ absorption and induces the fast recombination of the photogenerated carriers [3]. While these drawbacks significantly hinder the effective application of the pristine material, several possible solutions have been envisioned by considering surface modifications, such as composite semiconductor coupling, metal/nonmetal doping, and functionalization by means of different types of adsorbates [4]. For instance, Zn‐porphyrin adsorbed on the TiO2 surface reduces the threshold for the photons’ absorption, and by allowing the fast electron injection toward the substrate, slows down the charge recombination process [5].
\nAmong many photocatalytic applications of functionalized TiO2 surface, water splitting for H2 production and dye sensitized solar cells (DSSCs) are among the most widely studied topics. Although the increasing number of promising studies is going to build photocatalytically efficient and robust several TiO2‐based materials, in this field, the support of the theoretical approach to explore the properties of possible candidate materials is essential. The investigation of proper atomistic models of the systems of interest, possibly including the electronic structure characterization and reproducing the relevant processes, can significantly help the screening of materials. In particular, it is necessary to understand the nature of the adsorbate‐substrate interaction, and providing insights into the photoactivity prior to extensive experimental efforts. The aim of this chapter is to review the current progress and challenges in density functional theory (DFT)‐based simulations of functionalized TiO2 surfaces, including rutile, anatase, and TiO2 nanoparticles, with respect to the applications in photocatalytic water splitting and DSSCs.
DFT is developed by Hohenberg, Kohn, and Sham [6, 7] in 1964 as a minimization problem of the ground state energy as a function of electron density. The approach is to solve any fully interacting problem by mapping it to a noninteracting problem introducing exchange‐correlation functional, see Eq. (1).
\nwhere
Electron density can be expressed in many ways [8]; however, Gaussian and plane wave formalism is shown to be significantly efficient for the description of the orbitals [9]. A localized Gaussian basis set positioned at each atom is used to expand the Kohn‐Sham orbitals and an auxiliary plane wave basis set is used to describe the electron density, thus improving the computational performance in the calculation of the Coulomb interactions. This scheme is shown to be a suitable choice for large‐scale DFT simulations [10, 11].
\nAlthough the achievement in introducing electron density depends on the total energy instead of the electron wave function formalism and providing simple, universal, and self‐consistent‐field description of the ground‐state electronic structure, any practical usage of DFT requires an accurate description to the exchange and correlational effects,
where
Many methods have been proposed to calculate exchange‐correlation contribution to the total energy [12]. One of the most commonly used ones is the generalized gradient approximation (GGA), where the exchange and correlation energy depends on both electron density and its gradient [13]. This method includes semiempirical functionals that consist of one or more parameters fitted to experimentally observed quantities. Perdew‐Burke‐Ernzerhof (PBE) [14] and Becke exchange/Lee‐Yang‐Parr correlation (BLYP) [15] are the most popular semiempirical functionals. These functionals are successfully applied to many systems from metals to 2D self‐assemblies [16]. However, it is shown that they fail to reproduce some of the experimentally observed properties of oxides accurately, due to the incorrect description of electronic localization by standard DFT [17]. The problem is the incomplete cancellation of the Coulomb self‐interaction in GGA functionals, which leads to stabilization of electron delocalization [18]. For instance, PBE density functional is shown to be quite good to capture structural properties of both bulk phase and the surface of TiO2; however, band gap of bulk TiO2 is predicted as 1.74 eV [19] which significantly underestimates the experimentally measured band gap of 3.2 eV [20]. Therefore, for electronic structure analysis and band alignment of oxides one should go beyond GGA [21].
\nOne of the commonly applied methods to overcome the failure of GGA is to use hybrid density functionals that mix exact exchange from Hartree‐Fock exchange [22] and correlation from GGA. Applying hybrid functionals removes some of the self‐interaction error and favors localized electronic states by reducing the barrier to the localization [23]. Including orbital analogue of exchange formalism in hybrid functionals often improves the accuracy of the simulations; however, computational cost increases by at least an order of magnitude with respect to the pure GGA formalism. The most popular hybrid functionals are, e.g., HSE06 [24] and PBE0 [25]. The band gap of the bulk TiO2 is calculated to be 4.21 eV [26] and 3.35 eV [21] by PBE0 and HSE06, respectively. Although larger band gaps are obtained for semiconductors using hybrid functionals, one should carefully choose the exchange‐correlation formalism since significantly larger band gaps can also be obtained, e.g., PBE0.
\nFor most of the photocatalytic applications of TiO2, a photosensitizer or an active catalyst is adsorbed on the surface in which case both chemical and physical interactions play a role on the adsorption geometry or stability of the complex. For instance, it is shown that cis/trans coordination of the ligand with respect to anchoring group adsorbed on anatase TiO2 (110) surface affects binding mode of the dye which likely arises due to the dispersion interactions [27]. It is well known that the exchange‐correlational functionals suffer for a poor description of dispersion interactions or van der Waals interactions. To increase the accuracy of the simulations the missing dispersion interactions can also be incorporated into DFT. One way is to add dispersion energy correction term, Grimme‐D3 [28], which calculates pairwise interactions between atomic species and shows usual 1/r6 asymptotic behavior, on top of the total energy obtained by DFT.
\nUsing DFT, one can optimize structures, determine the most stable adsorption geometries, calculate corresponding adsorption and interaction energies, and extract electronic properties. Electronic structure can be analyzed by calculating projected density of states, which also provides energy band gaps, schematic representation of molecular orbitals, charge distribution maps, and charge density difference maps. On the other hand, the exploration of the conformational space at finite temperature is obtained by running ab‐initio molecular dynamics simulations (AIMD) [29] through the generation of trajectories of several picoseconds. Phase‐space trajectories are generated via numerical integration of equations of motion. Due to the advances in the electronic structure calculations, forces can be derived directly from the electrons without any empirical parameters. Within the Born‐Oppenheimer approximation [30], electrons are fully decoupled from the nuclear motion at each MD step. Nuclei is subsequently propagated according to the forces obtained from the electronic structure calculation from timestep to timestep.
\nAlthough there are significant contributions to the modeling of materials/devices using many simulation methods, such as time‐dependent density functional theory (TD‐DFT) [31] or quantum mechanics‐molecular mechanics (QM/MM) [32], it is beyond the scope of this chapter to give a complete overview of all studies with different simulation techniques. Therefore, the following sections will focus on theoretical simulations of DSSC and water splitting using DFT, sometime in combination with AIMD.
The photoinitiated reactions can be performed using TiO2 as a substrate‐like film having 2–3 μm thickness with 4–10 μm surface area [33], supported on another material, or in the form of nanoparticles ranging from 10 to 300 nm [34] depending on the preparation conditions [35]. There are three main stable crystal phases of TiO2 rutile, anatase, and brookite, that being interested in heterogeneous catalytic processes. We consider the interactions at the TiO2 surfaces, and that the most stable surfaces, i.e., the exposed surfaces of TiO2 films or nanoparticles are the rutile (110) and anatase (101) surfaces [36]. Among these surfaces, the most stable one is known to be the rutile and this is also the reason why it is easier to grow high quality single crystal thin films of rutile exposing the (110) surface [37]. Regarding the electronic structures, the band gaps of rutile and anatase are very similar, ≈3.2 eV; in the case of nanoparticles, some effects due to the finite size might appear, for example, the band gap increases slightly and becomes 3.35 eV [38].
\nFor photocatalytic applications of TiO2, the anatase phase is often preferred to the rutile phase because of its higher activity [39]. This characteristic is attributed to the its larger conduction band (CB) edge energy [40]. On the other hand, the comparison of DSSC performance of rutile and anatase films shows that their voltage and current characteristics are very similar. The overall solar energy conversion efficiency of rutile is only a few percentage lower than the efficiency of the anatase cell [41]. Given the relatively small difference in activity, rutile and anatase phases are the most widely explored phases of TiO2. Therefore, in the following sections, we are going to consider only the anatase and rutile TiO2 polymorphs.
\nDSSCs are obviously an important and promising application area of TiO2, converting photon energy to electric energy. The very first examples of DSSCs have been developed in 1954 by Rappaport and coworkers [42]. Gallium arsenide (GaAs)‐based p‐n junctions, which are formed by joining n‐type and p‐type semiconductors, were proposed providing a solar energy conversion efficiency of 6%. The main drawback of such a system has always been its high fabrication cost on a large scale, thus preventing its commercialization. In 1991, O\'Regan and Grätzel [43] proposed the today’s known modern photovoltaic cell based on a n‐type highly porous layer of TiO2 film coated with a monolayer of dye molecules. This system can be produced at a much lower cost and it mimics photosynthesis providing a photon energy conversion efficiency of 7% under sunlight and 12% under diffuse natural light. Dye molecules absorb photons in the visible light region, while TiO2 nanoparticles are employed to harvest the excited electrons from the dye’s conduction band. The large band gap of TiO2 is overcome by anchoring the dye to the TiO2 exposed surfaces by means of properly chosen linking groups, dyes to the device are chemically stabilized on oxide nanoparticles by anchoring groups, for instance by carboxylates. Another advantage with respect to the GaAs‐based photovoltaic cells is the extremely thin layer of dye molecules on a TiO2 substrate which facilitates photosensitization and the electron injection into the TiO2 conduction band with an efficiency of close to unity [44]. The early discovery of these interesting features and of the advances obtained by the efficient combined dye/TiO2 systems, the research in this area has been strongly supported and it has led to significant progress in the field of photovoltaics.
A schematic representation of the most common TiO2‐based DSSC is shown in Figure 1(a) where the working principle of DSSC is also illustrated. A transparent conductive oxide (TOC) layer, commonly treated with a glass sheet, is the anode that is exposed to photons in the visible spectrum [45]. A mesoporous layer of TiO2 nanoparticles is deposited over the TCO layer. In order to facilitate the photosensitization, dye molecules having relatively small band gap are chemically bonded to the surface of TiO2 nanoparticles. The environment is filled with an electrolyte solution, typically consisting of acetonitrile as a solvent and iodine/triiodide (I−/I3−) as a redox couple. The electrolyte is responsible for the regeneration of the dye molecules. The cathode part consists of TOC and an effective catalyst, generally Pt, to collect electrons from the anode.
DSSC schematic (left) structure and (right) working principles. TCO stands for transparent conducting oxide. Reprinted with the permission from Ref. [
Exposure to sunlight leads to charge separation in the dye molecules, thus generating excited electrons (
In order to be efficient, the described devise has to satisfy some essential conditions. The absorption spectra of the photosensitizers should have a good overlap with the whole solar light spectrum and some of the near‐infrared regions. Moreover, the dyes should have high molar extinction coefficient, which is a measure of how strongly a substance absorbs light at a given wavelength per molar concentration. The dye’s chemical stability is an another important feature, which affects the lifetime of the device. This can be achieved by chemically linking dyes and semiconductors using anchoring groups. In addition to the chemical stability, properly chosen anchoring groups might also strengthen the degree of coupling between the dyes and oxides thus enhancing the electron injection into the semiconductor CB [50].
\nIt is necessary for a photosensitizer to promote electron injection into TiO2 layers efficiently. The dye’s LUMO has to be aligned correctly if the anchoring group is present, then also its LUMO alignment matters, in particular it has to be energetically close to the dye’s LUMO and probably partially overlapping. Besides, the LUMO of the dye should be higher than the CB edge of the oxide to make the electron injection possible. To achieve proper regeneration of the dye, its highest occupied molecular orbital (HOMO) should be below HOMO of the redox mediator, see Figure 1(b) for illustration of the complete charge transfer mechanism.
Dye molecules are relatively well understood with respect to the complex surface structures of TiO2 phases. The commonly used photosensitizers are either metal‐free organic donor‐acceptor dyes, such as polythiophenes [51], polypyrroles [52], azobenzene, catechol, and anthraquinone [53] or transition‐metal based ligand complexes, such as Ru‐polypyridyl molecules [54]. The metal‐free organic dyes have large
Transition metal‐based dyes show higher efficiencies with respect to their fully organic counterparts. This is attributed to their capability of absorption in large spectrum range from the visible to the near‐infrared regime. The ligand system, i.e., polypyridyl‐based or phthalocyanine‐based, can be complexed with a chosen transition metal, i.e., Ru, Zn, Mg, and Co. The possibility of long‐lived metal‐to‐ligand (MLCT),
As already stated, dye molecules are bound to the TiO2 surface by anchoring groups to enhance chemical stability of the complex. The anchoring groups should be well chosen, since the presence of water in electrolyte solution may weaken the binding strength of the anchors to the TiO2 surface thus leading to desorption of the dye molecules. Phosphonate groups have been proposed for anchoring Ru‐dye/TiO2 complex and shown to be better candidates than carboxylates [58]. Formic acids are another common example of anchoring groups used in DSSCs [59]. In addition to chemical stability, anchoring groups also affect the degree of coupling between the dye and the semiconductor, which promotes/hinders electron injection into oxide CB. It is shown that strong coupling between Ru‐based dyes and TiO2 nanoparticles anchored by carboxylates leads to an electron injection on femtosecond timescale. On the other hand, SnO2 and ZnO thin films having lower density of states coupled to a dye/anchoring group have much slower electron injection time with respect to TiO2 [60].
Up to date, Ru‐based dyes such as N3 and N749 are the most widely investigated dyes with recorded efficiency of 11.4% [61]. Labat et al. [62] studied the electronic and structural properties of N3 dye on anatase (101) surface using DFT. As depicted in Figure 2 while computed orbitals of the HOMO and HOMO‐1 are centered on N3 dye and correspond to a
Calculated (a) LUMO, (b) HOMO, and (c) HOMO-1 crystalline orbitals for the bridging adsorption mode of N3/TiO2\\rm_22. Isovalues: |0.040| and |0.007| for HOMOs and LUMOs, respectively. Reprinted with the permission from Ref. [
Although Ru‐based photosensitizers are very often explored in the literature because of their specific photophysical characteristics and their better performance [65, 66], there are other studies which try to replace expensive Ru metal with cheaper transition metals, such as Fe, Cu, and Co. The experimental study of Ferrere and Gregg [67] investigating Fe(II)bipyridine molecule adsorbed onto nanocrystalline TiO2 films reveals the substandard performance of Fe‐based dyes. The low performance of Fe‐based dyes is attributed to the weaker ligand field which prevents MLCT state populations. While the strong ligand field in Ru‐based dyes results in having nanoseconds to microseconds lifetime of excited states, excited state lifetime in Fe(II)bipyridine is shown to be only around ps timescale. In spite of the lower performance of the cheaper transition‐metal deposited dyes, there are several theoretical studies investigating structural and electronic properties of the most promising ones.
\nGuillemoles et al. [68] modeled the Os‐based polypyridyl dyes with different linker groups (CN− vs. NCS−) and in different environments (gas vs. aqueous solution). Their study shows the effects of linker groups and environment on the structural and electronic properties of the dyes. Although in the gas phase the Os‐CN− distance becomes shorter than Os‐NCS− due to the better electron donation character of CN−, aqueous solution leads to contraction of Os‐CN− (Os‐NCS−) bonds and increases the Os‐pyridine distances. Calculated HOMO has contribution from both Os and the linkers, while the LUMO is located on the bipyridyl ligand with
Fully organic dyes are the alternative of the transition metal deposited ones. One of the widely studied metal‐free dyes is catechol. The band gap of catechol, ≈4.2 eV, is larger than the TiO2 band gap; however, it is shown that the absorption spectra of the catechol/TiO2 complex have an intense band at 2.95 eV [71]. This observation is explained by a direct electron injection into the CB of TiO2 from the catechol VB [72]. A DFT study by Persson et al. [73] attributes the reason of direct electron injection to the occupied
Oprea et al. [75] investigated several coumarin‐based dyes adsorbed on different sizes of anatase (101) nanoparticles. Preferential adsorption mode of the coumarin dyes is determined as bidentate bridging which results in localization of the HOMO state on the dyes and the LUMO on the substrate. De Angelis et al. [76] modeled squaraine dye adsorbed on anatase (101) slab in water environment using AIMD. They showed that adsorption mode of squaraine changes from bridged bidentate to a monodentate as simulation time evolves. After 6 ps, however, squaraine is desorbed from the surface due to the strong solvent reorganization which weakens the binding strength of the anchoring group, carboxylic acid.
Molecular hydrogen has the highest specific energy content as compared to other energy carriers such as electricity and biofuels, conventional fuels such as coal and oil or renewable energy sources as, for example, wind and biomass. Dihydrogen is also environmentally friendly because, the waste product after its reaction with pure dioxygen is only water. These features make H2 a potential candidate for energy carrier in the near future. One of the dihydrogen generation methods is photochemical water splitting [77]. Several transition metal deposited catalysts such as porphyrin‐derived molecules [78], cobaloximes [79], pyrphyrins [80], and molecules with polypyridine ligands [81] have been used for hydrogen evolution in homogeneous environment. Alternatively, to prevent photogenerated charge recombination and stabilize the system and reaction intermediate heterogeneous systems have been widely investigated.
\nWater splitting on the bare TiO2 surface is thermodynamically allowed; however, due to the large overpotential for both H2 and O2, the reaction is kinetically hindered. Therefore, the pristine TiO2 surface is inactive for water splitting and needs to be functionalized with metals/nonmetals, large macrocyclic molecules, or mixed with other types of oxides. Several studies deduce the design criteria for an efficient overall water splitting devise based on TiO2 which can be summarized, as its valence band maximum should be more positive than the oxidation potential of water and its conduction band minimum should be more negative than the reduction potential of a proton [82].
\nIn 1972, Fujishima and Honda [83] carried out the successful and inspiring experiment of water splitting using TiO2 as a photoanode. In a closed circuit photoelectrochemical cell, photogenerated electron and hole pairs move to the TiO2 surface where water molecules are oxidized to generate O2 and resultant protons are combined with electrons at the cathode, Pt, to generate H2. The correlation has been observed between the band gaps of the photoanode and its water splitting activity. If the band gap becomes closer to the free energy of the water splitting reaction, 1.23 eV, then the efficiency of the photoelectrochemical cell becomes relatively high, around 41%. Efficiency drops to 18% for a band gap of 2 eV. Further increase in the band gap, 3 eV, results in dramatic decrease in the efficiency of the cell, 0.05% [84]. These results engender band gap tuning of TiO2 by taking advantage of several methods, as discussed below.
\nAn alternative to the photoelectrochemical cells proposed by Fujishima and Honda [83], two other widely explored methods of water splitting using TiO2 have been recommended. One method is to use transition metal‐deposited TiO2 nanoparticles together with another metal oxide. An example is depicted in Figure 3(a) where photon absorption is followed by charge separation in TiO2 and photogenerated electrons and holes are transported into Pt for H2 generation and RuO2 for O2 evolution, respectively. This design results in a substantial decrease in overpotential of the reaction [85]. Another proposed method is to use sacrificial agents to remove one of the photogenerated products. An illustration is shown in Figure 3(b) where CH3OH is used as a sacrificial specie. While photogenerated holes are injected into CH3OH which afterwards oxidizes water, excited electrons in TiO2 CB reduces water to H2 [85]. This system focuses on half reactions, either water reduction via sacrificial electron donor or water oxidation via sacrificial electron acceptor [86].
(a) Photosplitting of water on a composite catalyst. (b) Photosplitting of water: sacrificial donor effect. Reprinted with the permission from Ref. [
Prior to reviewing theoretical studies of water splitting on functionalized TiO2 surfaces, it is useful to first give a closer examination of the interactions between water molecules and the pristine TiO2 surface. It is shown that water molecules prefer to adsorb on oxygen vacancies of the rutile (110) surface [87]. Water adsorption is followed by a proton transfer to the adjacent two‐coordinated surface oxygen thus leading to a formation of hydroxy radical on the surface [88]. Zhao [89] calculated adsorption and decomposition energies of water molecules on different rutile surfaces, such as (110), (100), and (001) using DFT. While dissociative adsorption of water is more favorable on the (110) surface, the activation energy of the water dissociation is largest on the (100) surface. Calculations by Hahn et al. [90] showed that the employed adsorbate coverage affects the favored adsorption mechanism of water molecules. While at low coverage water molecules tend to dissociate on the rutile (110) surface, increasing coverage leads to an associative adsorption. Investigating interactions between water and bare TiO2 surface is a fundamental research; however, for photocatalytic water splitting TiO2 surface has to be functionalized, as stated earlier.
\nAdsorption of large macrocyclic water reduction/oxidation catalysts on the TiO2 surface is shown to be a promising way of achieving the water splitting reaction. In this regard, Monti et al. [91] proposed a model system of Ru‐based catalyst/antenna/TiO2 complex for water splitting and investigated proton coupled electron transfer dynamics of the catalyst in water solution using AIMD. Results show that a water molecule binds to the Ru center and after 1.9 ps of simulation, time proton transfer from the attached water molecule to the closest one in the solution is achieved. Gurdal et al. [21] modeled adsorption of co‐deposited pyrphyrin (CoPyr), a water reduction catalyst [80], on the rutile TiO2 (110) surface using DFT. The band gap of the complex is decreased by more than 1.5 eV with respect to the bare surface. Additionally, the catalytic properties of CoPyr are preserved upon adsorption since the adsorption process does not lead to strong modifications of the electronic structure at the Co(II) active center.
\nAlternative complexes, metal/nonmetal deposited TiO2 structures, are investigated by many groups. Phase stabilities of Fe, Al, Si, and F deposited rutile and anatase phases of TiO2 are compared using DFT [92]. Results show that while cationic dopants in Ti lattice sites stabilize anatase slightly more than rutile, anionic doping with F substantially reduces the phase stability of the anatase. Modeling Pt, Ru, and Co ions doped anatase TiO2 (001) surface shows that band gaps of the complexes decrease in the order of deposition of Co (by 1.8 eV), Ru (by 1.7 eV), and Pt (by 0.4 eV) [93]. Nucleation and growth mechanism of Ru clusters on the anatase TiO2(101) surface reveals that in addition to decrease in the band gap, an electron accumulation at the metal/oxide interface is observed due to the electron flow from Ru to TiO2 [94].
\nThere are also other studies that focus on designing water splitting systems by mixing TiO2 with another metal oxide. Graciani et al. [95] modeled water adsorption on the Ce2O3 doped rutile TiO2(110) surface. Results show that the proposed mixed‐metal oxide has a promising ability to dissociate water exposing an exothermic dissociation energy of −0.7 eV with a small activation barrier of 0.04 eV. A relatively larger system is investigated by Pastore and De Angelis [96] who modeled TiO2/Ru‐dye/IrO2 complex using DFT. In the designed complex Ru polypyridyl dye, acting as a linker between the oxides, is attached to both the anatase TiO2(101) and IrO2 surfaces via phosphonic acid and malonate groups, respectively. Figure 4 shows the orientation of the Ru‐dye with respect to the oxides. Electronic structure analysis shows that both the HOMO and LUMO are located on IrO2 showing a metallic‐like character. While the occupied molecular orbitals of the dye are located within the IrO2 VB, its unoccupied orbitals are distributed over the CB of both IrO2 and TiO2.
Optimized molecular structure of Ru-dye in its partially deprotonated form, grafted to the (TiO2\\rm_22)2\\rm_{82}2 cluster (a), to the (IrO22\\rm_22)2\\rm_{56}2.2H2\\rm_22O nanoparticle (b), and tethered across the TiO2\\rm_22 and IrO2\\rm_22 systems, (c). Reprinted with the permission from Ref.~\\cite{pastore2015} Copyright (2015) American Chemical Society
In order to understand the physical properties of TiO2 complexes and develop photocatalytically active and efficient devices, one has to use adequate theoretical methods. Although DFT is a powerful tool to analyze and screen TiO2‐based complexes for photocatalytic applications, it also has some limitations. Accurate results can be obtained by increasing system size, i.e., increasing layers of the TiO2 slab. While the thickness of the slab has to be sufficient to reproduce the correct behavior at the surface and increase the calculated accuracy, increasing system size also increases computational effort. In the case of AIMD runs required computational source becomes even more expensive than DFT calculations. Therefore, one needs to find a compromise between the accuracy and the computational cost. In this regard, Harris and Quong [97] proposed a method named “25% rule” to determine the sufficient slab thickness that should be used in the simulations.
\nAs already stated, the other issue is the uncertain forms of the exchange‐correlation functionals which limit the accuracy and cause a dilemma in trusting obtained results. Though, several methods beyond DFT are developed and successfully used to increase the accuracy of the calculations, such as random phase approximation and Green function theory [98, 99].
\nIn spite of several limitations, in both the accuracy of the DFT description and the size of feasible models, this approach seems to be the most appropriate one so far. Constant improvement in computational algorithms together with rapidly increasing computer power, DFT, and AIMD are robust methods used to gain preliminary knowledge on the systems and supervise experimentalists to build promising materials for photocatalytic applications.
Search for renewable energy sources leads scientists to benefit from sunlight and convert photon energy to chemical/electric energy using TiO2‐based materials. Although photocatalytic water splitting and DSSC applications are accomplished using TiO2 surface, large band gap of the oxide limits absorbing photons in the visible spectrum thus hindering device efficiency. Therefore, functionalizing TiO2 surface by adsorbing photosensitizers and/or water reduction/oxidation catalysts, by metal/nonmetal deposition, or by mixing with other oxides, the optical response of the complex can be shifted from UV to the visible region. This is the crucial requirement in designing promising, robust, and scalable photocatalysts toward water splitting and DSSC applications.
\nTogether with the improvement in the computational power, today, DFT is an important tool to obtain optimized geometries of the complexes, analyze electronic structures, model many spectroscopic techniques, determine intermediate states of the reactions, and so on. In particular, it is powerful for modeling several TiO2‐based materials and testing their physical/chemical/optical characteristics for photocatalytic applications. Although there are some limitations in DFT, several new exchange‐correlation density functionals and van der Waals correction schemes have been proposed to increase the flexibility and accuracy of the model. Using DFT, all phases of TiO2 surfaces, i.e., rutile, anatase, and TiO2 nanoparticles can be modeled. The outcome of the simulations serves as an initial knowledge on the systems for scientists without experimental effort.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that involves cognitive impairment, such as loss of memory and reasoning and decline in mental ability. The AD brain is characterized by cell death and intra- and extracellular accumulation of amyloid-beta (Aβ) and tau proteins that form senile plaques and neurofibrillary tangles, respectively. Nowadays, medical treatments available on the market comprise two classes of drugs, acetylcholinesterase (AchE) inhibitors (i.e. donepezil, galantamine, and rivastigmine) and
Much progress has been made since Aβ and tau proteins were recognized as the major hallmarks of AD. With the aim of finding novel and more effective therapeutic targets, scientists have put enormous effort in understanding the molecular mechanisms causing the development and progression of the disease. Long-term potentiation (LTP) is the primary experimental model for investigating synaptic transmission and strength in the hippocampus [2]. Changes in synaptic strength, resulting from specific patterns of synaptic activity, define the biological process called synaptic plasticity, which is thought to contribute to learning and memory [4]. It is widely recognized that LTP at the CA3-CA1 synapse is triggered by postsynaptic NMDA receptors in response to high-frequency synaptic transmission. During the induction of LTP, the depolarization of the postsynaptic membrane, induced by tetanic stimulation, removes the Mg2+ block from the NMDA receptor channel that would otherwise occupy the lumen of the channel at resting membrane potential levels. At the same time, the neurotransmitter L-glutamate is released to activate NMDA receptors, upon which Ca2+ as well as Na+ ions enter the dendritic spine. Consequently, the elevation of intracellular Ca2+ triggers LTP. The implication of the NMDA receptors in the process of LTP has been proven by a variety of NMDA antagonists, such as MK-801 and 2-amino-5-phosphopentanoate that are able to prevent the induction of LTP [2, 5]. Likewise, Ca2+ chelators injected intracellularly block the induction of LTP as demonstrated by Lynch and coworkers [6]. Ca2+ triggers activation of second messenger cascades relevant to memory formation such as the NO cascade [7] on which we have focused in this chapter. LTP has been used as an electrophysiological model to investigate the correlation between memory impairment and synaptic strengthening in hippocampal slices of mice and to evaluate the effect of various compounds on synaptic transmission. Interestingly, Aβ1–42 has been found to block LTP through the disruption of different molecular pathways, such as the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase (MAPK) as well as the metabotropic glutamate receptor type 5 [8], the extracellular signal-regulated kinase (ERK)-MAPK cascade [9], the cyclic adenosine monophosphate (cAMP)/cAMP-dependent-protein kinase/cAMP-regulatory element-binding protein (CREB) pathway [10], and the NO/cyclic guanosine monophosphate (cGMP)/CREB pathway [11].
\nThis chapter provides an overview of the NO/cGMP/CREB phosphorylation signaling pathway and its role in learning and memory mechanisms during aging and neurodegenerative diseases. Several studies have demonstrated the association between NO, cGMP and CREB phosphorylation and synaptic plasticity [11, 12, 13]. The overall pathway includes the gaseous molecule NO, which is synthesized by the enzyme nitric oxide synthase (NOS) from arginine and induces an increase in the levels of second messenger cGMP by activating the enzyme soluble guanylyl cyclase (sGC). cGMP, consequently, activates the cGMP-dependent protein kinases (PKGs), a family of enzymes that is involved as transduction mediators in a number of cellular signaling systems. Lastly, PKGs phosphorylate the transcription factor CREB at its serine 166 (Ser-166), leading to the transcription of genes relevant to learning and memory during LTP. Additionally, phosphodiesterase enzymes (PDEs) act on the pathway by hydrolyzing cGMP and therefore lowering the intracellular levels of the second messenger (Figure 1). CREB phosphorylation has been recognized as a crucial event during synaptic plasticity. Indeed, not only does the increase of phosphorylated CREB (pCREB) levels regulate the transcription of important neuronal genes, such as the gene for brain-derived neurotrophic factor (BDNF) [14] but also leads to the generation of new dendritic spines that represent morphological changes crucial in LTP in central neurons [15]. The fundamental role of the NO/cGMP/CREB signaling pathway in strengthening the synaptic transmissions has been explored by observing the effect of inhibiting the single components of the pathway on CREB phosphorylation [16, 17, 18]. On the contrary, the stimulation of this pathway has shown to restore the levels of pCREB and improve age-related learning and memory in
NO/cGMP/CREB phosphorylation signaling pathway. Nitric oxide (NO) is produced during the conversion of arginine into citrulline by the enzyme nitric oxide synthase (NOS). NO activates soluble guanylyl cyclase (sGC), which stimulates cyclic guanosine monophosphate (cGMP) production from guanosine triphosphate (GTP). cGMP is degraded into 5’‑GMP by the phosphodiesterases (PDEs). The increase of cGMP levels activates cGMP‑dependent protein kinase (PKG), which induces phosphorylation of cAMP‑responsive element binding (CREB).
Due to the high relevance of the NO/cGMP/CREB pathway in aging and neurodegenerative disorders, a growing number of studies have focused on developing therapeutic strategies aimed at regulating this signaling pathway. The following sections summarize the single components of the pathway and their implication in neurodegenerative disorders, with particular emphasis on AD, as well as the therapeutic approaches advanced for targeting each of these pathway effectors. Among them, inhibitors of PDEs have been the most studied and developed agents modulating the NO/cGMP/CREB pathway.
\nNitric oxide, •N〓O (abbreviated as NO) is a diatomic molecule with an unpaired electron in its outer orbit. NO is a highly diffusible gaseous molecule, which easily crosses cell membranes due to its high lipophilicity [22]. NO is involved in different metabolic pathways. NO can react with molecular oxygen (O2) or superoxide anion (O2•−) to produce nitrogen reactive species, including peroxynitrite [22, 23, 24]. At a cellular level, NO is a signaling molecule that regulates important processes such as cell differentiation and death, immune response, vascular tone and function, platelet aggregation, angiogenesis, and neurotransmission [25, 26, 27]. NO is predominantly produced along the biosynthetic process that converts the amino acid arginine into citrulline, in the presence of oxygen and cofactors (Figure 1). This metabolic pathway is catalyzed by nitric oxide synthases (NOS) [28, 29]. NOS occur in three isoforms: neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). nNOS and eNOS are constitutively expressed and their activities are regulated by calcium-bound calmodulin. Both constitutive NOS isoforms respond immediately to increased levels of calcium and produce low levels of NO rapidly. The endothelial isoform is a key regulator of NO production in vascular endothelial cells and has a major role in the regulation of vascular tone and platelet aggregation. In the brain, the basal concentration of NO is mainly regulated by nNOS and, in a smaller extent, by eNOS [28]. iNOS is tightly bound to calmodulin and acts independently of calcium levels; its activity is induced by a number of cytokines, such as interferon-gamma and tumor necrosis factor. While several studies have associated iNOS with the development of disease such as atherosclerosis, others have proposed that the activity of iNOS in pathological conditions has a protective mechanism [28, 30]. The main receptor for NO is sGC. The binding of NO to the heme Fe center present in the catalytic site increases the enzymatic basal activity for conversion of guanosine 5′-triphosphate (GTP) to cyclic guanosine monophosphate (cGMP) [31, 32, 33]. Most recently, Martin and coworkers have reported the mechanism of binding of NO to sGC [34]. By using isotopic 14NO and 15NO in rapid-freeze quench experiments, different intermediates of the complex NO−sGC were trapped and analyzed by electron paramagnetic resonance (EPR) spectroscopy. This study confirmed that NO binds to the distal side of heme Fe and then a second molecule of NO binds to the proximal side, leading to the release of NO from the distal side of the transient bis-NO-sGC complex. Also, a concerted mechanism in which the dissociation of the His-105 proximal ligand occurs simultaneously with the binding of the second NO has been unveiled [34].
\nIn the central nervous system, NO plays crucial physiological functions as a neurotransmitter as well as regulator of the cGMP levels [35]. Specifically in the hippocampus, NO is involved in the processes of LTP, the persistent increase in synaptic strength upon high-frequency stimulation of a neuronal synapse [7, 36]. In the early 1990s, two studies demonstrated the link between NO and LTP concluding that the messenger NO was required in LTP [37, 38]. In electrophysiology experiments using hippocampal slices, NOS inhibitors such as
Unbalance in the concentration of NO plays an important role in the development of neurodegenerative damage in AD [45]. For one thing, neural cell damage in the amygdala and hippocampus of AD brain has been associated with NO reactive species, which leads to the generation of oxidative stress [46]. Immunohistochemistry of hippocampal slices from AD human brains has specifically detected nitrotyrosine, a product of nitration of tyrosine residue by NO-reactive species peroxynitrite [47, 48]. In addition, neurotoxicity caused by excess of the excitatory neurotransmitter glutamate (defined as glutamatergic excitotoxicity) leads to the overexpression of NO through an increase in Ca2+ intraneuronal levels and activation of NOS. Yamauchi and colleagues measured the concentration of NO and survival of rat cultured cortical neurons upon treatments with NOS inhibitor (L-NMMA), NO donors (S-nitroso-N-acetyl-D,L-penicillamine-SNAP) and NMDA receptor agonist (glutamate) and antagonists (MK-801, ketamine) [49]. Application of glutamate to the cultured medium increased NO concentration, while both pretreatment with NMDA antagonists prevented glutamate-induced NO increase and neuronal death. L-NMMA prevented glutamate-induced NO production and neuronal death. The nitric oxide donor also caused neuronal death, and MK-801, ketamine and L-NMMA did not prevent SNAP-induced toxicity. This study demonstrated the link between changes of NO concentration and neuronal death [49].
\nDifferently from above, other studies have reported the neuroprotective effects of NO. In cultures of differentiated cerebellar granule cells (CGCs), the inhibition of NO production for 3–4 days, obtained by using the NOS inhibitor L-NAME, resulted in progressive apoptotic death of CGCs. Cell death was rescued by adding to the culture medium slow-releasing NO donors, DETA-NONOate and Glyco-SNAP2 [50]. In addition, to confirm the essential role of cGMP in NO-mediated action, inhibition of sGC through the specific inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), replicated the pro-apoptotic effect of NOS inhibition [50]. The NO neuroprotection effect was evaluated in the NMDA-mediated neurotoxicity model, in which prolonged stimulation of NMDA receptors causes excitotoxic cell death [51, 52]. These studies indicate that NO protects against such excitotoxicity by S-nitrosylating the NMDA receptor subunits, thus reducing the intracellular Ca2+ influx that is responsible for neuronal death. S-nitrosylation is a post-translational modification that regulates the activity of important signaling effectors [53]. Prolonged nNOS stimulation during excitotoxicity generates superoxide radicals that react with NO to form peroxynitrite and S-nitrosylate the NMDA subunits, leading to a reduction of either the formation of peroxynitrite or Ca2+ influx and promoting neuronal survival [51, 52].
\nSince the handling of NO is particularly challenging, drugs that release NO have been developed as a useful means of systemic nitric oxide delivery. Although several types of NO donors (e.g., nitrates, nitrites, metal-NO complexes, and furoxans) have been reported over the years, sodium nitroprusside and organic nitrates such as glyceryl trinitrate, isosorbide mononitrate, and pentaerythritol tetranitrate have been used for many years as effective therapies for cardiovascular diseases [22].
\nNew NO donors have been investigated for their neuroprotective activity, together with anti-inflammatory and antioxidant effects. A NO-releasing derivative of ferulic acid (NO-FA, also named NCX 2057) has been studied on lipopolysaccharide LPS-infused rats, an animal model of chronic neuroinflammation (Figure 2) [54]. Treatment with NO-FA for 14 days after LPS infusion produced a dose-dependent reduction in the level of microglial activation in the hippocampus and entorhinal cortex, demonstrating beneficial effects at a lower dose than that of the antioxidant ferulic acid. NO-FA or drug combining anti-inflammatory and antioxidant properties have been suggested as treatments that might significantly attenuate the processes driving the pathology associated with AD [54].
\nStructures of NO-donors.
The importance of NO signaling in modulating synaptic plasticity and its correlation to enhanced learning and memory, as well as its neuroprotective effects, has also supported the development of NO donor for the treatment of neurodegeneration and AD. The nitrate ester GT 715 (Figure 2) is a NO mimetic drug that has shown to improve task acquisition in scopolamine-treated animals in a time and dose-dependent manner, activate hippocampal sGC and increase cGMP accumulation in hippocampal brain slices
cGMP, as well as cAMP, is a cyclic nucleotide that functions as an intracellular second messenger in a variety of signal transduction cascades. cGMP is a hydrophilic molecule and therefore transmits signals within the cytosol, activating mainly protein kinases and ion channels. Synthesis of cGMP is regulated by sGC, which converts GTP into cGMP (Figure 1). However, the most important regulation of this cyclic nucleotide is seemingly not achieved by its synthesis but its breakdown in an inactive form, 5’-GMP. The enzymes responsible for this process are PDEs. Initially, the increase in cGMP has been associated with relaxation of tracheal, intestinal, and vascular smooth muscle [57, 58]. These studies led to the first proposed role of cGMP in the regulation of smooth muscle relaxation. In the hippocampus, cyclic nucleotides play an important role in the regulation of CREB phosphorylation through the activation of cyclic nucleotide-dependent protein kinases. While some studies provide evidence that cAMP is critically involved in the processes of LTP and memory formation and consolidation [10, 59], others recognize cGMP as a key player as well [11, 59, 60, 61]. In an effort to identify biomarkers for AD, it was recently found that the levels of cGMP in the cerebrospinal fluid (CSF) of AD patients are reduced, supporting the relevance of cGMP in dementia and depression [62]. Molecules with molecular structures similar to cGMP (cGMP analogs) have been employed to provide insights into the mechanisms and functional role of the cGMP-dependent component of LTP [11, 60]. cGMP analogs mimic the endogenous cGMP, thus activating PKG. Examples of such molecules are 8-Br-cGMP, 8-(4-chlorophenylthio)-cGMP, and 8-Br-PET-cGMP (Figure 3) [11, 63, 64].
\nStructures of cGMP analogs (8‑Br‑cGMP, 8‑(4‑chlorophenylthio)‑cGMP, and 8‑Br‑PET‑cGMP) and PKG inhibitors (Rp‑8‑Br‑cGMPS and KT5823).
Along the NO/cGMP/CREB cascade, cGMP activates the cGMP-dependent, serine/threonine protein kinase PKG that, in turn, phosphorylates CREB [16, 65]. Two families of PKG are known, PKG-I and PKG-II. PKG-I is found in various regions of nervous system, including the hippocampus, and its isoforms (PKG-Iα and β) are more commonly involved when NO mediates the cGMP signaling [65, 66]. Both PKGs exist as homodimers and each monomer contains a regulatory domain that is located in the more N-terminal portion of the protein and a catalytic domain that is located in the C-terminal portion. Two molecules of cGMP bind to the regulatory domain at an allosteric site. In the catalytic domain, there are two major subdomains: (1) a subdomain that binds Mg2+/ATP and (2) a substrate-binding subdomain [66]. Arancio et al. studied the role of pre- and post-synaptic PKG in LTP [67]. To this end, inhibition of PKG by injecting a highly specific peptide (Gly-Arg-Thr-Gly-Arg-Arg-Asn-(D-Ala)lle-NH2) into the presynaptic but not the postsynaptic neuron has been found to block LTP in rat hippocampal neurons. This work supported the hypothesis that PKG functions as a target of NO during the induction of LTP in the hippocampus [61] and possesses a predominant pre-synaptic role. Other inhibitors of PKG, such as Rp-8-Br-cGMPS and KT5823 (Figure 3), have revealed the importance of the cGMP/PKG pathway in learning and memory in either electrophysiological experiments or animal models [68, 69].
\nAn important part of the signal transduction process is the rapid degradation of cGMP or cAMP by cyclic nucleotide PDEs. Specifically, PDEs catalyze the hydrolysis of the cyclic phosphate bond in cAMP and cGMP to generate the products 5’-AMP and 5’-GMP, respectively [70]. PDEs include 11 families of enzymes, namely PDE1–11, that show specificity for one only or both cyclic nucleotides. PDE1–3, 10, and 11 hydrolyze both cAMP and cGMP; PDE4, 7, and 8 are highly specific for cAMP while PDE5, 6, and 9 are cGMP-hydrolyzing enzymes. Each family of PDE comprises multiple isoforms, generated from 21 PDE genes by alternative splicing or transcription from distinct promoters [71]. PDEs exhibit tissue-specific differences in expression and functional characteristics. Some PDEs are expressed in a variety of tissues (PDE1, 2, 3, and 4) whereas others are more restricted, such as the PDE6 family that is mainly localized in retinal photoreceptors and regulates light perception [70, 72]. Importantly, splice variants of PDE1, 2, 4, 5, 7, 9, and 10 have been identified in different regions of human brain [72, 73, 74, 75, 76, 77, 78, 79]. It is worth to mention that studies aimed at measuring the levels of PDEs in various tissues have provided inconsistent results. This could be due to differences in age, tissue species and specific technique involved for the measurement of either the mRNA or the protein level.
\nPDEs are homodimers with the exception of PDE1 and PDE6, which are typically heterotetramers under physiological conditions. The representative structure for most PDE monomers includes an NH2-terminal regulatory domain (R domain) and a COOH-terminal catalytic domain (C domain). With exception of PDE4, which contains regulatory features also in the C domain, the R domain provides regulatory control through different types of domains, such as calcium-calmodulin binding (PDE1), GAF-A and -B (PDE2, 5, 6, 10, and 11), PAS (PDE8), and upstream conserved regulatory domain (PDE4) [70]. With regard to the C-terminal catalytic domain, approximately 270 amino acids are conserved, with a sequence identity of 35–50% among different PDE families. The catalytic site contains two major regions: (1) a region that interacts with the purine-like base in the nucleotides, and (2) a distinctive histidine-rich region that forms a binuclear metal-ion binding site where a catalytic hydroxide ion is generated and catalysis occurs. The first region is formed of hydrophobic, aromatic residues that engage with the purine-like ring through π-π stacking interactions. The presence of a conserved tyrosine residue (Tyr-612) in this pocket contributes to its hydrophobicity. The histidine-rich region contains two metal ions that play a critical role in the hydrolysis of the cyclic phosphate bond. Several studies have confirmed the zinc ion as the metal occupying the M-1 site in all the PDEs, while the second ion in the M-2 site is magnesium [80]. The whole catalytic machinery is made of two histidines, two aspartic acid residues, and water molecules coordinating the two metal ions. The nucleophile responsible for the attack to the phosphorous atom and breakage of the cyclic phosphate bond has been identified as a bridging hydroxide ion [80].
\nBy hydrolyzing the second messenger cGMP and/or cAMP, PDEs are related to specific intracellular transduction signals, ranging from cell proliferation and apoptosis to smooth muscle contraction to neuronal functions [81]. In the brain, an important target of both cyclic nucleotides in neuronal signaling is the CREB protein. CREB is a transcription factor that regulates the gene expression of neurotransmitters, growth factors, and other signaling molecules [82]. Therefore, changes in PDEs expression and subsequently cyclic nucleotides alter the level of neuroprotection via CREB [83, 84]. For instance, an increase in PDE4 expression has been observed in primary cultures of cortical neurons of rats, while significant increase in PDE5 expression, together with a decrease in cGMP in the CSF, has been detected in the temporal cortex of AD patients [84, 85]. In animal studies, however, PDE4 activity was found to be reduced in the striatum and frontal cortex of aged monkey [86] and aged rat brains [87].
\nThe important role of cGMP (and cAMP) levels and CREB phosphorylation in learning and memory has led to a growing interest in exploring PDE inhibitors for the treatment of neurodegenerative disorders, especially AD. The inhibition of PDEs has been proposed as a novel therapeutic approach based on a number of evidence showing that several PDE inhibitors have exhibited remarkable effects in animal models related to AD when tested in different behavioral tests, including the Morris water maze, passive avoidance, and object recognition test (ORT). Recent studies have demonstrated that certain PDE inhibitors ameliorate memory impairment or enhance cognitive functions in rodent models. Examples include inhibitors of PDE2 (BAY60-7550, [88, 89, 90]), PDE3 (cilostazol, [91, 92, 93]), and PDE5 (sildenafil, [19, 94]). Herein, a list of well-studied cGMP-degrading PDE inhibitors that modulate the NO/cGMP/CREB signaling pathway and their effects on learning and memory is presented.
\nPDE1 is a Ca2+/calmodulin-dependent PDE family comprising three isoforms, PDE1A, 1B, and 1C). PDE1 hydrolyzes both cGMP and cAMP and is highly distributed in the brain. PDE1 has been considered as a pharmacological target for the improvement of cognitive impairment in neurodegenerative disorders, such as AD, Parkinson’s disease (PD), and schizophrenia.
\nA handful of selective PDE1 inhibitors have been discovered thus far [95] (Figure 4). Vinpocetine is a nutraceutical derivative of the alkaloid vincamine with moderate potency (PDE1, IC50 = 30 μM). In streptozotocin-induced rat model, chronic treatment with vinpocetine significantly improved learning and memory abilities in the Morris water maze and passive avoidance tests [95]. Intra-cellular therapies has identified a potent PDE1-inhibiting pyrazolopyrimidinone, namely ITI-214 with much higher potency than vinpocetine against PDE1B specifically (IC50 = 0.058 nM) [96]. ITI-214 has shown to improve memory performance of rats in the novel object recognition test at a dose of 3 mg/kg, i.p. [97]. Most recently, a thienotriazolopyrimidinone PDE1 inhibitor, DNS-0056 (PDE1B, IC50 = 0.026 μM) has been reported. In a rat model of recognition memory, DNS-0056 (0.3 mg/kg, p.o.) notably increased long-term memory, without altering exploratory behavior [98]. However, at odds with these findings, administration of the ICOS PDE1 inhibitor IC354 (IC50 against PDE1 of 80 nM; ratio of IC50 value for the next most sensitive PDE to IC50 value for PDE1 equal to 127) failed to rescue the defect in LTP in a mouse model of amyloid elevation [19].
\nStructures of PDE1 inhibitors.
PDE2 is found in the brain, where it hydrolyzes both cAMP and cGMP [72, 99]. PDE2A is the only isoform recognized in several brain regions [72]. In most peripheral tissues, except the spleen, PDE2 levels are relatively low. Due to this tissue distribution, PDE2 inhibitors exhibit less cardiovascular side effects than other PDE inhibitors. Thus, PDE2 inhibitors have been considered attractive therapeutic agents against cognitive disorders.
\nBAY-60-7550 is a highly selective PDE2A inhibitor developed by Bayer. It shows a high potency (IC50 = 4.7 nM) and selectivity versus the other PDEs. BAY-60-7550 has been used in numerous behavioral tasks and animal models for testing learning and memory [88, 89, 90]. A study by Boess and coworkers has explored the effect of BAY-60-7550 on the synaptic plasticity as well as memory in rats. BAY-60-7550 at a concentration of 100 nM was able to increase hippocampal LTP. In the ORT, BAY-60-7550 improved the recognition performance of adult rats at a dose of 1–3 mg/kg. Interestingly, similar doses of the PDE2 inhibitor reversed the memory impairment caused by an NMDA antagonist (MK-801) in a T-maze spontaneous alteration task [88]. Additionally, BAY-60-7550 has been tested in scopolamine-induced and MK-801-induced memory deficit mouse models. A dose of 1–3 mg/kg given by oral gavage rescued the memory defects in the ORT [90]. Recently, young mice have shown a dose-dependent memory enhancement upon treatment with BAY-60-7550 (0–6 mg/kg, i.c.v.) in the ORT. In this recent study, researchers have proven that the enhancement of memory in the ORT following PDE2 inhibition during early consolidation is mediated via NOS/cGMP/PKG pathway by using a NOS inhibitor and an sCG inhibitor. In support of these results, an increase in CREB phosphorylation was observed as well [89].
\nTwo PDE2 inhibitors sharing the same chemical scaffold were developed by Pfizer, PF-05085727 and PF-05180999 (also called PF-999) [100, 101]. PF-05085727 showed an IC50 of 2.0 nM and selectivity of up to 4000-fold over other PDEs was identified by Pfizer as well [101]. PF-05085727 increased the level of cGMP in rodent brain regions expressing the highest levels of the PDE2A enzyme. PF-05085727 (0.032–1 mg/kg, s.c.) significantly attenuated memory impairments induced by ketamine in rats subjected to the radial arm maze task. Additional behavioral experiments using the MK-801-induced memory deficit mouse model revealed that the PDE2 inhibitor is able to reverse the MK-801-induced local field potential disruption. This study represents another evidence of the potential use of selective PDE2A inhibitors in treating neurological and neuropsychiatric disorders [101].
\nLikewise, PF-05180999 showed remarkable inhibitory activity (IC50 = 2.3 nM) and selectivity over other PDEs. PF-05180999 was found to increase the level of cGMP in the CSF of rats, attenuate ketamine-induced memory deficits, and reverse spatial learning and memory in scopolamine-induced models [100]. In 2015, a study that explored the primarily presynaptic mechanism of PDE2A inhibition was also performed by using PF-05180999 [102]. These results showed that the inhibition of PDE2 might be involved in short-term synaptic plasticity by modulating the hydrolysis of cAMP to accommodate changes in cGMP levels associated with presynaptic short-term plasticity.
\nIn 2017 Takeda disclosed the discovery of compound 20 as a novel PDE2 inhibitor [103]. Compound 20 increased cGMP levels in the frontal cortex, hippocampus and striatum of rats in a dose-dependent manner (1–10 mg/kg), while no increase of cAMP was observed in the same rat brain regions. Also, compound 20 was effective on MK-801-induced episodic memory deficits in a passive avoidance task in rat. The ability of compound 20 to reverse deficits in episodic memory produced by MK-801, suggests its potential for the treatment of cognitive deficits seen in a range of psychiatric disorders with impaired glutamatergic neurotransmission [103].
\nFinally, through structure-based drug design approaches and molecular modeling, DNS-8254 has been proposed as a potent and selective PDE2 inhibitor with good brain-penetrant properties. DNS-8254 was evaluated in a test of rat NOR, and improved visual recognition memory was observed 24 h after training [104].
\nSimilar to PDE1 and PDE2, PDE3 is another subfamily responsible for hydrolyzing both cAMP and cGMP and has two isoforms: PDE3A and PDE3B. In the brain, the expression of PDE3A and PDE3B is relatively low and is mainly in the cerebellum [72]. Cilostazol is a PDE3 inhibitor clinically used as an antiplatelet drug (Figure 5) [105]. As cilostazol increases the cerebral blood flow [106], this drug has been explored for its effectiveness in treating the type of dementia associated with a decrease and stoppage of the cerebral blood flow in brain blood vessels. A study conducted by Hiramatsu and coworkers has revealed that cilostazol prevents Aβ25–35-induced memory impairment and oxidative stress in mice [93]. The effect of cilostazol was examined on mice with memory impairment induced by treatment with Aβ25–35. Two behavioral testes were performed: the Y-maze and the step-down type passive avoidance tests. Repeated administration of cilostazol (30 and 100 mg/kg, p.o.) significantly and dose dependently attenuated the impairment of spontaneous alternation the shortened step-down latency induced by Aβ25–35. Cilostazol prevented the accumulation of lipid peroxide (malondialdehyde—MDA levels) in the frontal cortex and hippocampus in the early period after Aβ25–35 treatment, as MDA levels in both regions returned to control levels by 7 days after Aβ25–35 injection [93]. Interestingly, an
Structures of PDE2 (PF‑05085727, PF‑05180999, and compound 20, and DNS‑8254) and PDE3 (cilostazol) inhibitors.
PDE5 specifically hydrolyzes cGMP and has one isoform, PDE5A. While according to Lakics and colleagues the expression of PDE5A in the brain is relatively low [72], others have proved that PDE5 protein is significantly present in human brain as well as neurons and the low expression previously detected was due to methodological inaccuracies [79]. PDE5 inhibitors have been proposed as novel therapeutics for the treatment of AD and other neurological disorders (Figure 6). Sildenafil, vardenafil, and tadalafil are PDE5 inhibitors approved by the FDA for the treatment of erectile dysfunction and pulmonary arterial hypertension. Both sildenafil and tadalafil have been explored for their effects in neurodegenerative disorders. Sildenafil has shown an IC50 of 2.2 nM against PDE5A and selectivity across other PDEs, except for PDE1 and PDE6. The ability of sildenafil to cross the blood-brain barrier (BBB) together with its lower toxicity, indicate that this drug is a suitable candidate in treating neurodegenerative processes related to low levels of cGMP and down-regulation of the NO/cGMP/CREB signaling pathway. Sildenafil produced an immediate and long-lasting improvement of synaptic function, CREB phosphorylation, and memory in the APP/PS1 mouse model of AD [19]. Furthermore, sildenafil has been shown to regulate the level of Aβ, possibly by modifying its production, metabolism, or clearance, as well as presenting an anti-inflammatory effect [107].
\nStructures of PDE5 inhibitors.
Tadalafil (PDE5 IC50 = 5.0 nM) shows a better selectivity against PDE6 and a longer half-life compared to sildenafil [108, 109]. At a dose of 1 mg/kg and administered intraperitoneally, tadalafil failed to improve either contextual fear conditioning or spatial working memory in APP/PS1 mice, most likely due to the poor brain permeability of the drug [19]. A derivative of tadalafil, 3c•Cit, with improved water solubility and BBB permeability has been developed and tested on a scopolamine-induced cognitive impairment mouse model. In the passageway water maze test, mice treated with 3c•Cit (10 and 30 mg/kg, orally) showed reduced escape latency and number or errors [110].
\nLately, two novel PDE5 inhibitors have been generated at Columbia University, a quinoline-based compound, 7a, and a naphthyridine-based molecule, 6c [111, 112]. Both compounds have exhibited a high inhibitory activity (IC50 = 0.27 and 0.056 nM, respectively) and better selectivity than sildenafil, vardenafil and tadalafil. Levels of cGMP in the hippocampus of mice were increased upon
PDE10A is a dual-specificity subfamily that hydrolyzes cAMP and cGMP, with a higher affinity for cAMP. The highest expression of PDE10A in the brain is in the caudate nucleus, and it is also the most prevalent PDE species in this tissue, together with PDE1B. The level of PDE10A is relatively high in the nucleus accumbens. In other parts of the brain and the peripheral tissues examined, the level of PDE10 mRNA was very low. Currently, PDE10 is considered a promising target for CNS diseases, especially schizophrenia and Huntington’s disease (HD). Although numerous studies have reported that PDE10A expression in the striatum and different other brain regions of post-mortem HD patients [113, 114, 115] and HD animal models [113, 116] is reduced, inhibition of PDE10A has shown rescue of behavioral, neurodegenerative, and electrophysiological deficits in HD animal models.
\nPF-02545920 (also named MP-10) was developed by Pfizer [117] and tested for schizophrenia [118] and HD [119] in preclinical and clinical studies (Figure 7).
\nStructures of PDE10 inhibitors.
Developed by Takeda by using structure-based drug design techniques, TAK-063 has a potency of 0.30 nM against PDE10 and high selectivity over other PDEs (Figure 7). The potential antipsychotic-like effects of the compound were evaluated in mice showing phencyclidine (PCP)-induced hyperlocomotion. At a minimum dose of 0.3 mg/kg, p.o., TAK-063 reversed the induced deficits, while had no effects on the hyperactivity produced by PCP in PDE10A-knockout mice [120]. Additional studies reported the dose-dependent antipsychotic-life effects of TAK-063 in methamphetamine-induced hyperactivity in rodents [121] as well as attenuation of PCP-induced and MK-801-induced working memory deficits in a Y-maze behavioral test in mice and eight-arm radial maze task in rats, respectively [122].
\nIn summary, activation of the NO/cGMP/CREB pathway has been greatly evaluated as a critical molecular mechanism responsible for learning and memory. The impact of this signaling pathway on synaptic strengthening and memory formation has been explored pharmacologically through the use of activators and/or inhibitors of the single components. NO donors, well-known drugs in use for the treatment of cardiovascular diseases, have been considered as therapeutics in AD due to their ability to activate sGC. A number of analogs of the second messenger cGMP are commercially available and have been used to target the pathway by stimulating PKG. Moreover, inhibitors of PKG have proven that CREB phosphorylation leading to improved learning and memory is correlated to the increase in cGMP levels. Most importantly, PDE inhibitors have received much attention by pharmaceutical industries and research institutions. Overall, the safe clinical profile of the PDE inhibitors—some are FDA approved for other diseases—and the pharmacological effects observed both in electrophysiological and animal experiments has contributed to the development of new therapeutic strategies for the treatment of AD.
\nThis manuscript was supported by the Alzheimer’s Association, grant number AARF-17-504483.
\nOA is a co-founder of Neurokine Therapeutics LLC. DWL and OA have received research funding from Appia Pharmaceuticals LLC. Columbia University owns equity in Appia Pharmaceuticals LLC.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6597},{group:"region",caption:"Middle and South America",value:2,count:5902},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12537},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17560}],offset:12,limit:12,total:132762},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",topicId:"5"},books:[{type:"book",id:"11788",title:"Plant Stress Responses and Defense Mechanisms",subtitle:null,isOpenForSubmission:!0,hash:"fd76ac80924e5a4d530ad0a1b54ca1f4",slug:null,bookSignature:"Dr. Saddam Hussain, Dr. Tahir Hussain Awan, Dr. Ejaz Waraich and Dr. Masood Iqbal Awan",coverURL:"https://cdn.intechopen.com/books/images_new/11788.jpg",editedByType:null,editors:[{id:"247858",title:"Dr.",name:"Saddam",surname:"Hussain",slug:"saddam-hussain",fullName:"Saddam Hussain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11624",title:"Agricultural Waste - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"f86a9f720cc3ac0f1c385d0367ea89b9",slug:null,bookSignature:"Dr. Fiaz Ahmad and Prof. Muhammad Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/11624.jpg",editedByType:null,editors:[{id:"338219",title:"Dr.",name:"Fiaz",surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11810",title:"Animal Behavior - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"db1dacc9284b2fc73f38fa985a586e15",slug:null,bookSignature:"Associate Prof. Volkan Gelen and Dr. Abdulsamed Kükürt",coverURL:"https://cdn.intechopen.com/books/images_new/11810.jpg",editedByType:null,editors:[{id:"178366",title:"Associate Prof.",name:"Volkan",surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12157",title:"Rice Crops - Productivity, Quality and Sustainability",subtitle:null,isOpenForSubmission:!0,hash:"2a38bb2448f4516740db05ce746f08e3",slug:null,bookSignature:"Dr. Min Huang, Dr. Jiana Chen, Dr. Xiaowu Pan and Dr. Haiming Tang",coverURL:"https://cdn.intechopen.com/books/images_new/12157.jpg",editedByType:null,editors:[{id:"189829",title:"Dr.",name:"Min",surname:"Huang",slug:"min-huang",fullName:"Min Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12173",title:"Dairy Processing - From Basics to Advances",subtitle:null,isOpenForSubmission:!0,hash:"420e687768b56ca7b3238d77f63f1302",slug:null,bookSignature:"Dr. Neelam Upadhyay",coverURL:"https://cdn.intechopen.com/books/images_new/12173.jpg",editedByType:null,editors:[{id:"269538",title:"Dr.",name:"Neelam",surname:"Upadhyay",slug:"neelam-upadhyay",fullName:"Neelam Upadhyay"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11793",title:"Production, Nutritional and Industrial Perspectives of Barley",subtitle:null,isOpenForSubmission:!0,hash:"996125d4599193b3b6b749f5d8aa3cb2",slug:null,bookSignature:"Dr. Farhan Saeed and Dr. Muhammad Afzaal",coverURL:"https://cdn.intechopen.com/books/images_new/11793.jpg",editedByType:null,editors:[{id:"192244",title:"Dr.",name:"Farhan",surname:"Saeed",slug:"farhan-saeed",fullName:"Farhan Saeed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12178",title:"Hemiptera - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"daf49271b1a1a8fe6ca15063ba065765",slug:null,bookSignature:"Dr. Hamadttu El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/12178.jpg",editedByType:null,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11806",title:"Cephalopoda",subtitle:null,isOpenForSubmission:!0,hash:"5bae04ca92f8888fafd32ba37b3353a2",slug:null,bookSignature:"Dr. Soumalya Mukherjee and Prof. Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/11806.jpg",editedByType:null,editors:[{id:"175476",title:"Dr.",name:"Soumalya",surname:"Mukherjee",slug:"soumalya-mukherjee",fullName:"Soumalya Mukherjee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12159",title:"Palm Oil - Current Status and Updates",subtitle:null,isOpenForSubmission:!0,hash:"ebb0b5ef5efea408ec91300863405f84",slug:null,bookSignature:"Dr. Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/12159.jpg",editedByType:null,editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11786",title:"The Bromeliads",subtitle:null,isOpenForSubmission:!0,hash:"0abcda80d5906e738c0701f7cec025ce",slug:null,bookSignature:"Associate Prof. Mohamed Addi",coverURL:"https://cdn.intechopen.com/books/images_new/11786.jpg",editedByType:null,editors:[{id:"457029",title:"Dr.",name:"Mohamed",surname:"Addi",slug:"mohamed-addi",fullName:"Mohamed Addi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11795",title:"Nut Crops - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"1843d68aceace005d335966147f9b751",slug:null,bookSignature:"Dr. Muhammad Akram",coverURL:"https://cdn.intechopen.com/books/images_new/11795.jpg",editedByType:null,editors:[{id:"215436",title:"Dr.",name:"Muhammad",surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11613",title:"New Insight on Terpenes and Terpenoids",subtitle:null,isOpenForSubmission:!0,hash:"f4acd3890d8f1ef49f4b006b56d48c3b",slug:null,bookSignature:"Dr. Muhammad Shahzad Aslam",coverURL:"https://cdn.intechopen.com/books/images_new/11613.jpg",editedByType:null,editors:[{id:"220324",title:"Dr.",name:"Muhammad Shahzad",surname:"Aslam",slug:"muhammad-shahzad-aslam",fullName:"Muhammad Shahzad Aslam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:43},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1317",title:"Public Health",slug:"social-sciences-education-public-health",parent:{id:"265",title:"Education",slug:"social-sciences-education"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:14,numberOfWosCitations:1,numberOfCrossrefCitations:12,numberOfDimensionsCitations:17,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1317",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10191",title:"Health and Academic Achievement",subtitle:"New Findings",isOpenForSubmission:!1,hash:"7ee3f57e3911318305ac5c2eef39f8ab",slug:"health-and-academic-achievement-new-findings",bookSignature:"Blandina Bernal-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/10191.jpg",editedByType:"Edited by",editors:[{id:"174721",title:"Dr.",name:"Blandina",middleName:null,surname:"Bernal-Morales",slug:"blandina-bernal-morales",fullName:"Blandina Bernal-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8645",title:"Contemporary Topics in Graduate Medical Education",subtitle:null,isOpenForSubmission:!1,hash:"76d224ba3c158c43fda8141a61ababd6",slug:"contemporary-topics-in-graduate-medical-education",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, James P. Orlando and Thomas J. Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/8645.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"66759",doi:"10.5772/intechopen.84235",title:"Resident Autonomy",slug:"resident-autonomy",totalDownloads:894,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Autonomy in medical training is required to develop independent and competent physicians. The way in which this incremental level of independence is granted to a trainee must be thoughtful and deliberate to ensure appropriate supervision and patient safety. Theories that support the role of autonomy will be introduced and discussed in this chapter. Ethical considerations that describe the implications of balancing the necessary independence for trainees and an attending physician’s responsibility to the patient and the patient’s safety will also be considered. The level of autonomy that is granted is the responsibility of both the attending physician and trainee so that it is not only appropriate but also well-earned. There are multiple tools that may be used to objectively measure one’s competence and necessary level of autonomy based on performance that will be discussed within this chapter. Finally we will demonstrate that encouraging and striking the balance of supervision and autonomy may be done safely with appropriate patient outcomes and trainee development into independent physicians. These outcomes will help to encourage autonomy amongst medical trainees, no matter one’s specialty, to train and develop competent, independent physicians of the future.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Amanda Cooper and Steven Allen",authors:null},{id:"64635",doi:"10.5772/intechopen.82343",title:"Wellness in Residency: A Paradigm Shift",slug:"wellness-in-residency-a-paradigm-shift",totalDownloads:806,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"There has been a cultural shift in the state of residency training over the past two decades. While the traditional view of trainees heavily emphasized the service component of residency, training programs are gaining an increasing awareness of the trainees’ well-being as crucial to their functioning, the success of the training program, and ultimately, to the care of patients. To this end, work-hour limitations have been imposed universally. Additionally, some programs have established interventions that allow residents to lead balanced lives with emphasis on time away from work, sleep, and outside activities. A paradigm shift recognizing the importance of wellness in residency may reduce the risk of physician burnout in the long term.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Roderick M. Quiros and Elspeth Black",authors:null},{id:"73295",doi:"10.5772/intechopen.93886",title:"The Social Isolation Triggered by COVID-19: Effects on Mental Health and Education in Mexico",slug:"the-social-isolation-triggered-by-covid-19-effects-on-mental-health-and-education-in-mexico",totalDownloads:732,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Public health in Mexico was on alert since the World Health Organization declared a pandemic of COVID-19. This disease represents a challenge not only for the health system but also for the education system, which implement emerging measures such as online education. In Mexico online education has several limitations associated with computer and internet access, which affect the academic achievement of the students. Additionally, the main measures against the pandemic are social isolation, but this measure can generate stress and affect the academic achievement and mental health of the population. The present review was based on Mexican scientific and journalistic sources, and a thesaurus system such as Medical Subject Headings (MeSH) terms to find original articles to social isolation, mental health, and academic achievement. The contribution of this chapter is to describe the effects that social isolation has caused on mental health and scholar challenges in the Mexican student population.",book:{id:"10191",slug:"health-and-academic-achievement-new-findings",title:"Health and Academic Achievement",fullTitle:"Health and Academic Achievement - New Findings"},signatures:"Ana Karen Limón-Vázquez, Gabriel Guillén-Ruiz and Emma Virginia Herrera-Huerta",authors:[{id:"218681",title:"Dr.",name:"Gabriel",middleName:null,surname:"Guillén-Ruiz",slug:"gabriel-guillen-ruiz",fullName:"Gabriel Guillén-Ruiz"},{id:"306437",title:"Dr.",name:"Emma Virgina",middleName:null,surname:"Herrera-Huerta",slug:"emma-virgina-herrera-huerta",fullName:"Emma Virgina Herrera-Huerta"},{id:"306438",title:"MSc.",name:"Ana Karen",middleName:null,surname:"Limón-Vázquez",slug:"ana-karen-limon-vazquez",fullName:"Ana Karen Limón-Vázquez"}]},{id:"63925",doi:"10.5772/intechopen.81532",title:"Curriculum Development: Foundations and Modern Advances in Graduate Medical Education",slug:"curriculum-development-foundations-and-modern-advances-in-graduate-medical-education",totalDownloads:2285,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Curriculum development has undergone many transitions since the inception of medical education in the United States in the 1800’s. In this chapter, we briefly review the history of curriculum development in medical education. We discuss the landmark models of curriculum development including the concept of a curriculum map and Harden’s SPICES model of educational strategy, detail the six steps of Kern’s foundational framework, and provide an overview of the PRISMS strategy. We address the importance of adult learning theory and the advancing understanding of education for the millennial generation, including implementation of the flipped classroom model of education. Finally, we turn our focus on contemporary applications of curriculum design, including the application of simulation to medical education, the rise of massive open online courses (MOOC), and the implementation of free open access medical education (FOAM) within undergraduate and graduate medical curricula.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Simiao Li-Sauerwine and Andrew King",authors:null},{id:"64979",doi:"10.5772/intechopen.82618",title:"Teaching Balanced Patient Care Using Principles of Reductionism and Holism: The Example of Chronic Low Back Pain",slug:"teaching-balanced-patient-care-using-principles-of-reductionism-and-holism-the-example-of-chronic-lo",totalDownloads:992,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"This chapter explores how integrating holistic and reductionistic approaches to care may better optimize value based care. First, we define the terms ‘Holistic,’ ‘Reductionistic’ and ‘Integrative’. Then we explore their scope in the arenas of teaching and patient care, with the advantages, disadvantages and pitfalls of each approach. We review how these styles are embedded in and interact with the cultures of medicine and western societies at large. As an example of a balanced care approach, we focus on the example of chronic low back pain (CLBP), an increasingly common and expensive medical problem. We present practical examples of teaching and practicing these different styles, Holism and Reductionism, illustrating when each may be appropriate to optimize value of patient care. Study questions are included. A list of further readings and resources is included for the interested reader.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Alan Remde, Stephen DeTurk and Thomas Wojda",authors:null}],mostDownloadedChaptersLast30Days:[{id:"74883",title:"Relation between Student Mental Health and Academic Achievement Revisited: A Meta-Analysis",slug:"relation-between-student-mental-health-and-academic-achievement-revisited-a-meta-analysis",totalDownloads:947,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In the present research, the relationship between mental health and academic achievement in adolescents was investigated. The research adopted meta-analysis model to investigate the relationship between these two phenomena. In the meta-analysis, 13 independent studies were included, and their data were combined to display effect sizes. According to the result of the research, it was indicated that there was a positive relationship between mental health and academic achievement. Also, it was revealed that there was no significant relationship within sub-group variation in the relationship between mental health and academic achievement in terms of year of publication, publication type, community, and sample size, but not the setting.",book:{id:"10191",slug:"health-and-academic-achievement-new-findings",title:"Health and Academic Achievement",fullTitle:"Health and Academic Achievement - New Findings"},signatures:"Gokhan Bas",authors:[{id:"324308",title:"Associate Prof.",name:"Gokhan",middleName:null,surname:"Bas",slug:"gokhan-bas",fullName:"Gokhan Bas"}]},{id:"66601",title:"Leadership in Graduate Medical Education",slug:"leadership-in-graduate-medical-education",totalDownloads:821,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Graduate medical education (GME) is a very complex endeavor within an even more complex healthcare system. This chapter examines many questions that need to be considered and the role of the key individual with oversight of the GME, the designated institutional official (DIO). Topics examined are the leadership theories, practices and strategies for the DIO, dealing with change when the DIO starts, using authority versus power, effective problem-solving and decision-making, adaptive leadership style, the historical function of the DIO, as well as the many tools available to the DIO including networking. The chapter concludes with several pearls of wisdom to positively help the DIO meet the many challenges of this very important role in GME.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Jay M. Yanoff",authors:null},{id:"63925",title:"Curriculum Development: Foundations and Modern Advances in Graduate Medical Education",slug:"curriculum-development-foundations-and-modern-advances-in-graduate-medical-education",totalDownloads:2287,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Curriculum development has undergone many transitions since the inception of medical education in the United States in the 1800’s. In this chapter, we briefly review the history of curriculum development in medical education. We discuss the landmark models of curriculum development including the concept of a curriculum map and Harden’s SPICES model of educational strategy, detail the six steps of Kern’s foundational framework, and provide an overview of the PRISMS strategy. We address the importance of adult learning theory and the advancing understanding of education for the millennial generation, including implementation of the flipped classroom model of education. Finally, we turn our focus on contemporary applications of curriculum design, including the application of simulation to medical education, the rise of massive open online courses (MOOC), and the implementation of free open access medical education (FOAM) within undergraduate and graduate medical curricula.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Simiao Li-Sauerwine and Andrew King",authors:null},{id:"64979",title:"Teaching Balanced Patient Care Using Principles of Reductionism and Holism: The Example of Chronic Low Back Pain",slug:"teaching-balanced-patient-care-using-principles-of-reductionism-and-holism-the-example-of-chronic-lo",totalDownloads:995,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"This chapter explores how integrating holistic and reductionistic approaches to care may better optimize value based care. First, we define the terms ‘Holistic,’ ‘Reductionistic’ and ‘Integrative’. Then we explore their scope in the arenas of teaching and patient care, with the advantages, disadvantages and pitfalls of each approach. We review how these styles are embedded in and interact with the cultures of medicine and western societies at large. As an example of a balanced care approach, we focus on the example of chronic low back pain (CLBP), an increasingly common and expensive medical problem. We present practical examples of teaching and practicing these different styles, Holism and Reductionism, illustrating when each may be appropriate to optimize value of patient care. Study questions are included. A list of further readings and resources is included for the interested reader.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Alan Remde, Stephen DeTurk and Thomas Wojda",authors:null},{id:"66801",title:"Physician Burnout",slug:"physician-burnout",totalDownloads:879,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Burnout is pervasive among physicians and is rapidly becoming a pandemic in healthcare. It is characterized by increasing demands without adequate support and hallmarked by depersonalization, emotional exhaustion, and a reduced sense of personal accomplishment. It is essential to address burnout, as it can lead to decreased productivity, increased healthcare costs, medical errors, workforce attrition, depression, and even suicide. Many factors contribute to burnout, and it occurs at all stages of medicine: it can begin during medical school, intensify during the years of graduate medical education (GME) or residency training, and persist as residents become staff physicians. It affects both sexes, but may impact female physicians disproportionately. Impact can also vary among specialties. Recognizing the problem and intervening with unified physician and organization-directed solutions centered on well-being, efficient practice models, and goal prioritization may help to reduce the prevalence and effects of burnout.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Bess Connors, Charlotte Horne, Valery Vilchez and Sofya Asfaw",authors:null}],onlineFirstChaptersFilter:{topicId:"1317",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:7,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",slug:"marcus-vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11667",title:"Marine Pollution - Recent Developments",coverURL:"https://cdn.intechopen.com/books/images_new/11667.jpg",hash:"e524cd97843b075a724e151256773631",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 20th 2022",isOpenForSubmission:!0,editors:[{id:"318562",title:"Dr.",name:"Monique",surname:"Mancuso",slug:"monique-mancuso",fullName:"Monique Mancuso"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",hash:"cf1ee76443e393bc7597723c3ee3e26f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",hash:"f1043cf6b1daae7a7b527e1d162ca4a8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11665",title:"Recent Advances in Wildlife Management",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",hash:"73da0df494a1a56ab9c4faf2ee811899",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 25th 2022",isOpenForSubmission:!0,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",hash:"c8890038b86fb6e5af16ea3c22669ae9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 9th 2022",isOpenForSubmission:!0,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 17th 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:617,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNVJQA4/Profile_Picture_2022-03-07T13:23:04.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. His research interests include biochemistry, oxidative stress, reactive species, antioxidants, lipid peroxidation, inflammation, reproductive hormones, phenolic compounds, female infertility.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. degree from Integral University. Currently, he’s working as an Assistant Professor of Pharmaceutics in the Faculty of Pharmacy, Integral University. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than 32 original articles published in reputed journals, 3 edited books, 5 book chapters, and a number of scientific articles published in ‘Ingredients South Asia Magazine’ and ‘QualPharma Magazine’. He is a member of the American Association for Cancer Research, International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs that aim to provide practical solutions to current healthcare problems.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}},{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",biography:"Metin Budak, MSc, PhD is an Assistant Professor at Trakya University, Faculty of Medicine. He has been Head of the Molecular Research Lab at Prof. Mirko Tos Ear and Hearing Research Center since 2018. His specializations are biophysics, epigenetics, genetics, and methylation mechanisms. He has published around 25 peer-reviewed papers, 2 book chapters, and 28 abstracts. He is a member of the Clinical Research Ethics Committee and Quantification and Consideration Committee of Medicine Faculty. His research area is the role of methylation during gene transcription, chromatin packages DNA within the cell and DNA repair, replication, recombination, and gene transcription. His research focuses on how the cell overcomes chromatin structure and methylation to allow access to the underlying DNA and enable normal cellular function.",institutionString:"Trakya University",institution:{name:"Trakya University",country:{name:"Turkey"}}},{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",biography:"Anca Pantea Stoian is a specialist in diabetes, nutrition, and metabolic diseases as well as health food hygiene. She also has competency in general ultrasonography.\n\nShe is an associate professor in the Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. She has been chief of the Hygiene Department, Faculty of Dentistry, at the same university since 2019. Her interests include micro and macrovascular complications in diabetes and new therapies. Her research activities focus on nutritional intervention in chronic pathology, as well as cardio-renal-metabolic risk assessment, and diabetes in cancer. She is currently engaged in developing new therapies and technological tools for screening, prevention, and patient education in diabetes. \n\nShe is a member of the European Association for the Study of Diabetes, Cardiometabolic Academy, CEDA, Romanian Society of Diabetes, Nutrition and Metabolic Diseases, Romanian Diabetes Federation, and Association for Renal Metabolic and Nutrition studies. She has authored or co-authored 160 papers in national and international peer-reviewed journals.",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",country:{name:"Romania"}}},{id:"279792",title:"Dr.",name:"João",middleName:null,surname:"Cotas",slug:"joao-cotas",fullName:"João Cotas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279792/images/system/279792.jpg",biography:"Graduate and master in Biology from the University of Coimbra.\n\nI am a research fellow at the Macroalgae Laboratory Unit, in the MARE-UC – Marine and Environmental Sciences Centre of the University of Coimbra. My principal function is the collection, extraction and purification of macroalgae compounds, chemical and bioactive characterization of the compounds and algae extracts and development of new methodologies in marine biotechnology area. \nI am associated in two projects: one consists on discovery of natural compounds for oncobiology. The other project is the about the natural compounds/products for agricultural area.\n\nPublications:\nCotas, J.; Figueirinha, A.; Pereira, L.; Batista, T. 2018. An analysis of the effects of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae), in the Mondego River (Portugal). Journal of Oceanology and Limnology. in press. DOI: 10.1007/s00343-019-8111-3",institutionString:"Faculty of Sciences and Technology of University of Coimbra",institution:null},{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",biography:"Leonel Pereira has an undergraduate degree in Biology, a Ph.D. in Biology (specialty in Cell Biology), and a Habilitation degree in Biosciences (specialization in Biotechnology) from the Faculty of Science and Technology, University of Coimbra, Portugal, where he is currently a professor. In addition to teaching at this university, he is an integrated researcher at the Marine and Environmental Sciences Center (MARE), Portugal. His interests include marine biodiversity (algae), marine biotechnology (algae bioactive compounds), and marine ecology (environmental assessment). Since 2008, he has been the author and editor of the electronic publication MACOI – Portuguese Seaweeds Website (www.seaweeds.uc.pt). He is also a member of the editorial boards of several scientific journals. Dr. Pereira has edited or authored more than 20 books, 100 journal articles, and 45 book chapters. He has given more than 100 lectures and oral communications at various national and international scientific events. He is the coordinator of several national and international research projects. In 1998, he received the Francisco de Holanda Award (Honorable Mention) and, more recently, the Mar Rei D. Carlos award (18th edition). He is also a winner of the 2016 CHOICE Award for an outstanding academic title for his book Edible Seaweeds of the World. In 2020, Dr. Pereira received an Honorable Mention for the Impact of International Publications from the Web of Science",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",country:{name:"Portugal"}}},{id:"61946",title:"Dr.",name:"Carol",middleName:null,surname:"Bernstein",slug:"carol-bernstein",fullName:"Carol Bernstein",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61946/images/system/61946.jpg",biography:"Carol Bernstein received her PhD in Genetics from the University of California (Davis). She was a faculty member at the University of Arizona College of Medicine for 43 years, retiring in 2011. Her research interests focus on DNA damage and its underlying role in sex, aging and in the early steps of initiation and progression to cancer. In her research, she had used organisms including bacteriophage T4, Neurospora crassa, Schizosaccharomyces pombe and mice, as well as human cells and tissues. She authored or co-authored more than 140 scientific publications, including articles in major peer reviewed journals, book chapters, invited reviews and one book.",institutionString:"University of Arizona",institution:{name:"University of Arizona",country:{name:"United States of America"}}},{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/182258/images/system/182258.jpeg",biography:"Dr. Serra studied Agronomy on Universidade Federal de Mato Grosso do Sul (UFMS) (2005). He received master degree in Agronomy, Crop Science (Soil fertility and plant nutrition) (2007) by Universidade Federal da Grande Dourados (UFGD), and PhD in agronomy (Soil fertility and plant nutrition) (2011) from Universidade Federal da Grande Dourados / Escola Superior de Agricultura Luiz de Queiroz (UFGD/ESALQ-USP). Dr. Serra is currently working at Brazilian Agricultural Research Corporation (EMBRAPA). His research focus is on mineral nutrition of plants, crop science and soil science. Dr. Serra\\'s current projects are soil organic matter, soil phosphorus fractions, compositional nutrient diagnosis (CND) and isometric log ratio (ilr) transformation in compositional data analysis.",institutionString:"Brazilian Agricultural Research Corporation",institution:{name:"Brazilian Agricultural Research Corporation",country:{name:"Brazil"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/88744",hash:"",query:{},params:{id:"88744"},fullPath:"/profiles/88744",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()