\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"3293",leadTitle:null,fullTitle:"Recent Advances in Autism Spectrum Disorders - Volume I",title:"Recent Advances in Autism Spectrum Disorders",subtitle:"Volume I",reviewType:"peer-reviewed",abstract:'The pace of research on Autism Spectrum Disorders (ASD) can only be described as extraordinary as this volume shows. It is extremely difficult for any single professional to keep abreast of all the developments in this area. This volume gathers together leading researchers and expert clinicians from many different parts of the world to produce this "up-to-the-minute" volume. It gives an in depth view of many areas of research which may be unfamiliar to the clinician and indeed researcher focused on their own area of interest. The volume gives an in depth overview of the field of Autism Spectrum Disorders.',isbn:null,printIsbn:"978-953-51-1021-7",pdfIsbn:"978-953-51-7107-2",doi:"10.5772/46001",price:169,priceEur:185,priceUsd:219,slug:"recent-advances-in-autism-spectrum-disorders-volume-i",numberOfPages:806,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"75b66fb38eb33a901ecd7e9279ff3c27",bookSignature:"Michael Fitzgerald",publishedDate:"March 6th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3293.jpg",numberOfDownloads:93787,numberOfWosCitations:97,numberOfCrossrefCitations:69,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:165,numberOfDimensionsCitationsByBook:4,hasAltmetrics:1,numberOfTotalCitations:331,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 17th 2012",dateEndSecondStepPublish:"May 19th 2012",dateEndThirdStepPublish:"August 15th 2012",dateEndFourthStepPublish:"September 14th 2012",dateEndFifthStepPublish:"December 14th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"28359",title:"Prof.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/28359/images/3879_n.jpg",biography:"First Professor of Child and Adolescent Psychiatry in Ireland, specialising in Autism, Aspergers Syndrome and ADHD. He has a large number of peer reviewed publications and 25 books written, co-written or co-edited. Simon Baron-Cohen described his book ‘Autism and Creativity’ as “is the best book on autism”. He has diagnosed over 3,000 persons with Autism and Aspergers Syndrome. He has a number of foreign language publications in Japanese and Polish. He has lectured extensively throughout the world including The Royal Society in London and China, Korea, Hawaii, New York, Buenos Aires, Tbilisi, Melbourne and many European countries. Recent books include ‘Recent Advances in Autism Spectrum Disorders INTECH Volume I & II. For further information, visit www.professormichaelfitzgerald.eu",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1054",title:"Neurobiology",slug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system-neurobiology"}],chapters:[{id:"43461",title:"Promoting Early Identification of Autism in the Primary Care Setting: Bridging the Gap Between What We Know and What We Do",doi:"10.5772/53715",slug:"promoting-early-identification-of-autism-in-the-primary-care-setting-bridging-the-gap-between-what-w",totalDownloads:2430,totalCrossrefCites:5,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Michael Siller, Lindee Morgan, Meghan Swanson and Emily Hotez",downloadPdfUrl:"/chapter/pdf-download/43461",previewPdfUrl:"/chapter/pdf-preview/43461",authors:[{id:"157704",title:"Dr.",name:"Michael",surname:"Siller",slug:"michael-siller",fullName:"Michael Siller"},{id:"157817",title:"Dr.",name:"Lindee",surname:"Morgan",slug:"lindee-morgan",fullName:"Lindee Morgan"},{id:"166393",title:"Dr.",name:"Meghan",surname:"Swanson",slug:"meghan-swanson",fullName:"Meghan Swanson"},{id:"166394",title:"BSc.",name:"Emily",surname:"Hotez",slug:"emily-hotez",fullName:"Emily Hotez"}],corrections:null},{id:"43457",title:"Indicators of Autism in Iranian Children",doi:"10.5772/52853",slug:"indicators-of-autism-in-iranian-children",totalDownloads:2005,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Sayyed Ali Samadi and Roy McConkey",downloadPdfUrl:"/chapter/pdf-download/43457",previewPdfUrl:"/chapter/pdf-preview/43457",authors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"},{id:"52156",title:"Prof.",name:"Roy",surname:"McConkey",slug:"roy-mcconkey",fullName:"Roy McConkey"}],corrections:null},{id:"39073",title:"Prevalence of Pervasive Developmental Disorders – Croatia in Comparison with Other Countries of the World",doi:"10.5772/51637",slug:"prevalence-of-pervasive-developmental-disorders-croatia-in-comparison-with-other-countries-of-the-wo",totalDownloads:1710,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"\ufeff\ufeffTomislav Benjak and Gorka Vuletic",downloadPdfUrl:"/chapter/pdf-download/39073",previewPdfUrl:"/chapter/pdf-preview/39073",authors:[{id:"28139",title:"Dr.",name:"Tomislav",surname:"Benjak",slug:"tomislav-benjak",fullName:"Tomislav Benjak"},{id:"157683",title:"Dr.",name:"Gorka",surname:"Vuletic",slug:"gorka-vuletic",fullName:"Gorka Vuletic"}],corrections:null},{id:"43455",title:"Gut Microbiome and Brain-Gut Axis in Autism — Aberrant Development of Gut-Brain Communication and Reward Circuitry",doi:"10.5772/55425",slug:"gut-microbiome-and-brain-gut-axis-in-autism-aberrant-development-of-gut-brain-communication-and-rewa",totalDownloads:3794,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:1,abstract:null,signatures:"Elizabeth M. Sajdel-Sulkowska and Romuald Zabielski",downloadPdfUrl:"/chapter/pdf-download/43455",previewPdfUrl:"/chapter/pdf-preview/43455",authors:[{id:"35197",title:"Prof.",name:"Elizabeth",surname:"Sajdel-Sulkowska",slug:"elizabeth-sajdel-sulkowska",fullName:"Elizabeth Sajdel-Sulkowska"}],corrections:null},{id:"41291",title:"Why There Is no Link Between Measles Virus and Autism",doi:"10.5772/52844",slug:"why-there-is-no-link-between-measles-virus-and-autism",totalDownloads:2475,totalCrossrefCites:1,totalDimensionsCites:7,hasAltmetrics:1,abstract:null,signatures:"Stephen A. Bustin",downloadPdfUrl:"/chapter/pdf-download/41291",previewPdfUrl:"/chapter/pdf-preview/41291",authors:[{id:"155548",title:"Prof.",name:"Stephen",surname:"Bustin",slug:"stephen-bustin",fullName:"Stephen Bustin"}],corrections:null},{id:"41866",title:'Vaccine Safety Study as an Interesting Case of "Over-Matching"',doi:"10.5772/53876",slug:"vaccine-safety-study-as-an-interesting-case-of-over-matching-",totalDownloads:2103,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"M. Catherine DeSoto and Robert T. Hitlan",downloadPdfUrl:"/chapter/pdf-download/41866",previewPdfUrl:"/chapter/pdf-preview/41866",authors:[{id:"159286",title:"Dr.",name:"Catherine",surname:"DeSoto",slug:"catherine-desoto",fullName:"Catherine DeSoto"},{id:"159287",title:"Prof.",name:"Robert T.",surname:"Hitlan",slug:"robert-t.-hitlan",fullName:"Robert T. Hitlan"}],corrections:null},{id:"41295",title:"Pro-Inflammatory Phenotype Induced by Maternal Immune Stimulation During Pregnancy",doi:"10.5772/53990",slug:"pro-inflammatory-phenotype-induced-by-maternal-immune-stimulation-during-pregnancy",totalDownloads:1995,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Nicholas M. Ponzio, Mili Mandal, Stella Elkabes, Pan Zhang, Junichi Sadoshima, Sayantani Basak, Peiyong Zhai and Robert Donnelly",downloadPdfUrl:"/chapter/pdf-download/41295",previewPdfUrl:"/chapter/pdf-preview/41295",authors:[{id:"158022",title:"Dr",name:null,surname:"Ponzio",slug:"ponzio",fullName:"Ponzio"}],corrections:null},{id:"43452",title:"Valproic Acid in Autism Spectrum Disorder: From an Environmental Risk Factor to a Reliable Animal Model",doi:"10.5772/54824",slug:"valproic-acid-in-autism-spectrum-disorder-from-an-environmental-risk-factor-to-a-reliable-animal-mod",totalDownloads:4077,totalCrossrefCites:9,totalDimensionsCites:15,hasAltmetrics:1,abstract:null,signatures:"Carmem Gottfried, Victorio Bambini-Junior, Diego Baronio, Geancarlo Zanatta, Roberta Bristot Silvestrin, Tamara Vaccaro and Rudimar Riesgo",downloadPdfUrl:"/chapter/pdf-download/43452",previewPdfUrl:"/chapter/pdf-preview/43452",authors:[{id:"31995",title:"Prof.",name:"Carmem",surname:"Gottfried",slug:"carmem-gottfried",fullName:"Carmem Gottfried"},{id:"43615",title:"Prof.",name:"Rudimar",surname:"Riesgo",slug:"rudimar-riesgo",fullName:"Rudimar Riesgo"},{id:"167294",title:"Prof.",name:"Victorio",surname:"Bambini-Junior",slug:"victorio-bambini-junior",fullName:"Victorio Bambini-Junior"},{id:"167295",title:"M.Sc.",name:"Diego",surname:"Baronio",slug:"diego-baronio",fullName:"Diego Baronio"},{id:"167296",title:"MSc.",name:"Geancarlo",surname:"Zanatta",slug:"geancarlo-zanatta",fullName:"Geancarlo Zanatta"},{id:"167297",title:"MSc.",name:"Roberta",surname:"Silvestrin",slug:"roberta-silvestrin",fullName:"Roberta Silvestrin"},{id:"167298",title:"MSc.",name:"Tamara",surname:"Vaccaro",slug:"tamara-vaccaro",fullName:"Tamara Vaccaro"}],corrections:null},{id:"43451",title:"Mnesic Imbalance or Hyperthymestic Syndrome as Cause of Autism Symptoms in Shereshevskii",doi:"10.5772/54295",slug:"mnesic-imbalance-or-hyperthymestic-syndrome-as-cause-of-autism-symptoms-in-shereshevskii",totalDownloads:2632,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:1,abstract:null,signatures:"Miguel Ángel Romero-Munguía",downloadPdfUrl:"/chapter/pdf-download/43451",previewPdfUrl:"/chapter/pdf-preview/43451",authors:[{id:"32986",title:"Dr.",name:"Miguel Ángel",surname:"Romero-Munguía",slug:"miguel-angel-romero-munguia",fullName:"Miguel Ángel Romero-Munguía"}],corrections:null},{id:"43450",title:"Genetic Evaluation of Individuals with Autism Spectrum Disorders",doi:"10.5772/53900",slug:"genetic-evaluation-of-individuals-with-autism-spectrum-disorders",totalDownloads:1982,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Eric C. Larsen, Catherine Croft Swanwick and Sharmila Banerjee- Basu",downloadPdfUrl:"/chapter/pdf-download/43450",previewPdfUrl:"/chapter/pdf-preview/43450",authors:[{id:"45742",title:"Dr.",name:"Eric",surname:"Larsen",slug:"eric-larsen",fullName:"Eric Larsen"}],corrections:null},{id:"43446",title:"Genetic Etiology of Autism",doi:"10.5772/53106",slug:"genetic-etiology-of-autism",totalDownloads:1860,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Agnes Cristina Fett-Conte, Ana Luiza Bossolani-Martins and Patrícia Pereira-Nascimento",downloadPdfUrl:"/chapter/pdf-download/43446",previewPdfUrl:"/chapter/pdf-preview/43446",authors:[{id:"31969",title:"Prof.",name:"Agnes",surname:"Fett-Conte",slug:"agnes-fett-conte",fullName:"Agnes Fett-Conte"}],corrections:null},{id:"43445",title:"Advances in Autism Research – The Genomic Basis of ASD",doi:"10.5772/53689",slug:"advances-in-autism-research-the-genomic-basis-of-asd",totalDownloads:1886,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Melanie Lacaria and James R. Lupski",downloadPdfUrl:"/chapter/pdf-download/43445",previewPdfUrl:"/chapter/pdf-preview/43445",authors:[{id:"163196",title:"Dr.",name:"James",surname:"Lupski",slug:"james-lupski",fullName:"James Lupski"},{id:"163198",title:"Dr.",name:"Melanie",surname:"Lacaria",slug:"melanie-lacaria",fullName:"Melanie Lacaria"}],corrections:null},{id:"43441",title:"Autism Spectrum Disorders: Insights from Genomics",doi:"10.5772/54357",slug:"autism-spectrum-disorders-insights-from-genomics",totalDownloads:1895,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"John J. Connolly and Hakon Hakonarson",downloadPdfUrl:"/chapter/pdf-download/43441",previewPdfUrl:"/chapter/pdf-preview/43441",authors:[{id:"158107",title:"Dr.",name:"John",surname:"Connolly",slug:"john-connolly",fullName:"John Connolly"}],corrections:null},{id:"43440",title:"The Genetic Architecture of Autism and Related Conditions",doi:"10.5772/54854",slug:"the-genetic-architecture-of-autism-and-related-conditions",totalDownloads:1931,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Michael Gill, Graham Kenny and Richard Anney",downloadPdfUrl:"/chapter/pdf-download/43440",previewPdfUrl:"/chapter/pdf-preview/43440",authors:[{id:"155576",title:"Prof.",name:"Michael",surname:"Gill",slug:"michael-gill",fullName:"Michael Gill"},{id:"155695",title:"Dr.",name:"Richard",surname:"Anney",slug:"richard-anney",fullName:"Richard Anney"}],corrections:null},{id:"43439",title:"Genetic and Environmental Factors in Autism",doi:"10.5772/53295",slug:"genetic-and-environmental-factors-in-autism",totalDownloads:2460,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Esra Guney and Elvan Iseri",downloadPdfUrl:"/chapter/pdf-download/43439",previewPdfUrl:"/chapter/pdf-preview/43439",authors:[{id:"44874",title:"Prof.",name:"Elvan",surname:"Iseri",slug:"elvan-iseri",fullName:"Elvan Iseri"},{id:"44984",title:"M.D.",name:"Esra",surname:"Guney",slug:"esra-guney",fullName:"Esra Guney"}],corrections:null},{id:"43499",title:"Discovering the Genetics of Autism",doi:"10.5772/53797",slug:"discovering-the-genetics-of-autism",totalDownloads:1947,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Abdullah K. Alqallaf, Fuad M. Alkoot and Mash’el S. Aldabbous",downloadPdfUrl:"/chapter/pdf-download/43499",previewPdfUrl:"/chapter/pdf-preview/43499",authors:[{id:"42239",title:"Dr.",name:"Abdullah",surname:"Alqallaf",slug:"abdullah-alqallaf",fullName:"Abdullah Alqallaf"},{id:"158644",title:"Dr.",name:"Fuad",surname:"Alkoot",slug:"fuad-alkoot",fullName:"Fuad Alkoot"},{id:"158645",title:"Dr.",name:"Mashael",surname:"Aldabbous",slug:"mashael-aldabbous",fullName:"Mashael Aldabbous"}],corrections:null},{id:"43435",title:"Co-Occurrence of Developmental Disorders: Children Who Share Symptoms of Autism, Dyslexia and Attention Deficit Hyperactivity Disorder",doi:"10.5772/54159",slug:"co-occurrence-of-developmental-disorders-children-who-share-symptoms-of-autism-dyslexia-and-attentio",totalDownloads:5330,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:1,abstract:null,signatures:"Ginny Russell and Zsuzsa Pavelka",downloadPdfUrl:"/chapter/pdf-download/43435",previewPdfUrl:"/chapter/pdf-preview/43435",authors:[{id:"33427",title:"Dr.",name:"Ginny",surname:"Russell",slug:"ginny-russell",fullName:"Ginny Russell"},{id:"167365",title:"Ms.",name:"Zsuzsa",surname:"Pavelka",slug:"zsuzsa-pavelka",fullName:"Zsuzsa Pavelka"}],corrections:null},{id:"43433",title:"Pre-Existing Differences in Mothers of Children with Autism Spectrum Disorder and/or Intellectual Disability: A Review",doi:"10.5772/54488",slug:"pre-existing-differences-in-mothers-of-children-with-autism-spectrum-disorder-and-or-intellectual-di",totalDownloads:2028,totalCrossrefCites:0,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Jenny Fairthorne, Amanda Langridge, Jenny Bourke and Helen Leonard",downloadPdfUrl:"/chapter/pdf-download/43433",previewPdfUrl:"/chapter/pdf-preview/43433",authors:[{id:"158722",title:"Dr.",name:"Helen",surname:"Leonard",slug:"helen-leonard",fullName:"Helen Leonard"},{id:"163414",title:"Ph.D. Student",name:"Jenny",surname:"Fairthorne",slug:"jenny-fairthorne",fullName:"Jenny Fairthorne"},{id:"163416",title:"Dr.",name:"Amanda",surname:"Langridge",slug:"amanda-langridge",fullName:"Amanda Langridge"}],corrections:null},{id:"43429",title:"Relationships, Sexuality, and Intimacy in Autism Spectrum Disorders",doi:"10.5772/53954",slug:"relationships-sexuality-and-intimacy-in-autism-spectrum-disorders",totalDownloads:5105,totalCrossrefCites:3,totalDimensionsCites:10,hasAltmetrics:1,abstract:null,signatures:"Maria R. Urbano, Kathrin Hartmann, Stephen I. Deutsch, Gina M. Bondi Polychronopoulos and Vanessa Dorbin",downloadPdfUrl:"/chapter/pdf-download/43429",previewPdfUrl:"/chapter/pdf-preview/43429",authors:[{id:"32007",title:"Prof.",name:"Stephen",surname:"Deutsch",slug:"stephen-deutsch",fullName:"Stephen Deutsch"},{id:"41980",title:"Prof.",name:"Maria",surname:"Urbano",slug:"maria-urbano",fullName:"Maria Urbano"},{id:"157623",title:"Dr.",name:"Kathrin",surname:"Hartmann",slug:"kathrin-hartmann",fullName:"Kathrin Hartmann"},{id:"159397",title:"M.Sc.",name:"Gina Marie",surname:"Polychronopoulos",slug:"gina-marie-polychronopoulos",fullName:"Gina Marie Polychronopoulos"},{id:"160029",title:"Ms.",name:"Vanessa",surname:"Dorbin",slug:"vanessa-dorbin",fullName:"Vanessa Dorbin"}],corrections:null},{id:"42286",title:"Clinical Implications of a Link Between Fetal Alcohol Spectrum Disorders (FASD) and Autism or Asperger’s Disorder – A Neurodevelopmental Frame for Helping Understanding and Management",doi:"10.5772/54924",slug:"clinical-implications-of-a-link-between-fetal-alcohol-spectrum-disorders-fasd-and-autism-or-asperger",totalDownloads:4701,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:null,signatures:"Kieran D. O’Malley, Susan D. Rich",downloadPdfUrl:"/chapter/pdf-download/42286",previewPdfUrl:"/chapter/pdf-preview/42286",authors:[{id:"155711",title:"Dr.",name:"Kieran D.",surname:"O'Malley",slug:"kieran-d.-o'malley",fullName:"Kieran D. O'Malley"}],corrections:null},{id:"43427",title:"Autism Spectrum Disorders in People with Sensory and Intellectual Disabilities Symptom Overlap and Differentiating Characteristics",doi:"10.5772/53714",slug:"autism-spectrum-disorders-in-people-with-sensory-and-intellectual-disabilities-symptom-overlap-and-d",totalDownloads:2027,totalCrossrefCites:1,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Gitta De Vaan, Mathijs P.J. Vervloed, Harry Knoors and Ludo Verhoeven",downloadPdfUrl:"/chapter/pdf-download/43427",previewPdfUrl:"/chapter/pdf-preview/43427",authors:[{id:"156051",title:"M.Sc.",name:"Gitta",surname:"De Vaan",slug:"gitta-de-vaan",fullName:"Gitta De Vaan"},{id:"157224",title:"Dr.",name:"Mathijs",surname:"Vervloed",slug:"mathijs-vervloed",fullName:"Mathijs Vervloed"},{id:"166523",title:"Prof.",name:"Harry",surname:"Knoors",slug:"harry-knoors",fullName:"Harry Knoors"},{id:"166524",title:"Prof.",name:"Ludo",surname:"Verhoeven",slug:"ludo-verhoeven",fullName:"Ludo Verhoeven"}],corrections:null},{id:"43421",title:"Empowering Families in the Treatment of Autism",doi:"10.5772/54303",slug:"empowering-families-in-the-treatment-of-autism",totalDownloads:2486,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jennifer Elder",downloadPdfUrl:"/chapter/pdf-download/43421",previewPdfUrl:"/chapter/pdf-preview/43421",authors:[{id:"156987",title:"Dr.",name:"Jennifer",surname:"Elder",slug:"jennifer-elder",fullName:"Jennifer Elder"}],corrections:null},{id:"43419",title:"Collaboration Between Parents of Children with Autism Spectrum Disorders and Mental Health Professionals",doi:"10.5772/53966",slug:"collaboration-between-parents-of-children-with-autism-spectrum-disorders-and-mental-health-professio",totalDownloads:2948,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Efrosini Kalyva",downloadPdfUrl:"/chapter/pdf-download/43419",previewPdfUrl:"/chapter/pdf-preview/43419",authors:[{id:"158901",title:"Dr.",name:"Efrosini",surname:"Kalyva",slug:"efrosini-kalyva",fullName:"Efrosini Kalyva"}],corrections:null},{id:"43417",title:"Early Intensive Behavioural Intervention in Autism Spectrum Disorders",doi:"10.5772/54274",slug:"early-intensive-behavioural-intervention-in-autism-spectrum-disorders",totalDownloads:2991,totalCrossrefCites:4,totalDimensionsCites:9,hasAltmetrics:1,abstract:null,signatures:"Olive Healy and Sinéad Lydon",downloadPdfUrl:"/chapter/pdf-download/43417",previewPdfUrl:"/chapter/pdf-preview/43417",authors:[{id:"156296",title:"Dr.",name:"Olive",surname:"Healy",slug:"olive-healy",fullName:"Olive Healy"}],corrections:null},{id:"43414",title:"Feeding Issues Associated with the Autism Spectrum Disorders",doi:"10.5772/53644",slug:"feeding-issues-associated-with-the-autism-spectrum-disorders",totalDownloads:4007,totalCrossrefCites:8,totalDimensionsCites:17,hasAltmetrics:1,abstract:null,signatures:"Geneviève Nadon, Debbie Feldman and Erika Gisel",downloadPdfUrl:"/chapter/pdf-download/43414",previewPdfUrl:"/chapter/pdf-preview/43414",authors:[{id:"157283",title:"Dr.",name:"Erika",surname:"Gisel",slug:"erika-gisel",fullName:"Erika Gisel"},{id:"157379",title:"M.Sc.",name:"Genevieve",surname:"Nadon",slug:"genevieve-nadon",fullName:"Genevieve Nadon"}],corrections:null},{id:"42649",title:"Clinical Approach in Autism: Management and Treatment",doi:"10.5772/54784",slug:"clinical-approach-in-autism-management-and-treatment",totalDownloads:2206,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Rudimar Riesgo, Carmem Gottfried and Michele Becker",downloadPdfUrl:"/chapter/pdf-download/42649",previewPdfUrl:"/chapter/pdf-preview/42649",authors:[{id:"31995",title:"Prof.",name:"Carmem",surname:"Gottfried",slug:"carmem-gottfried",fullName:"Carmem Gottfried"},{id:"43615",title:"Prof.",name:"Rudimar",surname:"Riesgo",slug:"rudimar-riesgo",fullName:"Rudimar Riesgo"},{id:"160959",title:"Dr.",name:"Michele",surname:"Becker",slug:"michele-becker",fullName:"Michele Becker"}],corrections:null},{id:"43411",title:"Building an Alternative Communication System for Literacy of Children with Autism (SCALA) with Context-Centered Design of Usage",doi:"10.5772/54547",slug:"building-an-alternative-communication-system-for-literacy-of-children-with-autism-scala-with-context",totalDownloads:2088,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Liliana Maria Passerino and Maria Rosangela Bez",downloadPdfUrl:"/chapter/pdf-download/43411",previewPdfUrl:"/chapter/pdf-preview/43411",authors:[{id:"30773",title:"Dr.",name:"Liliana",surname:"Passerino",slug:"liliana-passerino",fullName:"Liliana Passerino"},{id:"158812",title:"MSc.",name:"Maria Rosangela",surname:"Bez",slug:"maria-rosangela-bez",fullName:"Maria Rosangela Bez"}],corrections:null},{id:"43408",title:"Addressing Communication Difficulties of Parents of Children of the Autism Spectrum",doi:"10.5772/53964",slug:"addressing-communication-difficulties-of-parents-of-children-of-the-autism-spectrum",totalDownloads:1875,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Fernanda Dreux Miranda Fernandes, Cibelle Albuquerque de La Higuera Amato, Danielle Azarias Defense-Netvral, Juliana Izidro Balestro and Daniela Regina Molini-Avejonas",downloadPdfUrl:"/chapter/pdf-download/43408",previewPdfUrl:"/chapter/pdf-preview/43408",authors:[{id:"28286",title:"Dr.",name:"Fernanda Dreux Miranda",surname:"Fernandes",slug:"fernanda-dreux-miranda-fernandes",fullName:"Fernanda Dreux Miranda Fernandes"},{id:"38598",title:"Dr.",name:"Cibelle",surname:"Amato",slug:"cibelle-amato",fullName:"Cibelle Amato"},{id:"38599",title:"Prof.",name:"Daniela",surname:"Molini-Avejonas",slug:"daniela-molini-avejonas",fullName:"Daniela Molini-Avejonas"},{id:"158284",title:"MSc.",name:"Juliana",surname:"Balestro",slug:"juliana-balestro",fullName:"Juliana Balestro"},{id:"158286",title:"MSc.",name:"Danielle",surname:"Defense-Netvral",slug:"danielle-defense-netvral",fullName:"Danielle Defense-Netvral"}],corrections:null},{id:"43407",title:"Early Intervention of Autism: A Case for Floor Time Approach",doi:"10.5772/54378",slug:"early-intervention-of-autism-a-case-for-floor-time-approach",totalDownloads:3764,totalCrossrefCites:6,totalDimensionsCites:18,hasAltmetrics:0,abstract:null,signatures:"Rubina Lal and Rakhee Chhabria",downloadPdfUrl:"/chapter/pdf-download/43407",previewPdfUrl:"/chapter/pdf-preview/43407",authors:[{id:"28701",title:"Dr.",name:"Rubina",surname:"Lal",slug:"rubina-lal",fullName:"Rubina Lal"},{id:"158260",title:"Ms.",name:"Rakhee",surname:"Chhabria",slug:"rakhee-chhabria",fullName:"Rakhee Chhabria"}],corrections:null},{id:"43405",title:"Early Communication Intervention for Children with Autism Spectrum Disorders",doi:"10.5772/54881",slug:"early-communication-intervention-for-children-with-autism-spectrum-disorders",totalDownloads:3073,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Gunilla Thunberg",downloadPdfUrl:"/chapter/pdf-download/43405",previewPdfUrl:"/chapter/pdf-preview/43405",authors:[{id:"31724",title:"Dr.",name:"Gunilla",surname:"Thunberg",slug:"gunilla-thunberg",fullName:"Gunilla Thunberg"}],corrections:null},{id:"41296",title:"Atypical Sense of Self in Autism Spectrum Disorders: A Neuro- Cognitive Perspective",doi:"10.5772/53680",slug:"atypical-sense-of-self-in-autism-spectrum-disorders-a-neuro-cognitive-perspective",totalDownloads:9362,totalCrossrefCites:14,totalDimensionsCites:21,hasAltmetrics:0,abstract:null,signatures:"Viktoria Lyons and Michael Fitzgerald",downloadPdfUrl:"/chapter/pdf-download/41296",previewPdfUrl:"/chapter/pdf-preview/41296",authors:[{id:"28359",title:"Prof.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"},{id:"165744",title:"Dr.",name:"Viktoria",surname:"Lyons",slug:"viktoria-lyons",fullName:"Viktoria Lyons"}],corrections:null},{id:"43403",title:"Critical Evaluation of the Concept of Autistic Creativity",doi:"10.5772/54465",slug:"critical-evaluation-of-the-concept-of-autistic-creativity",totalDownloads:2619,totalCrossrefCites:4,totalDimensionsCites:8,hasAltmetrics:1,abstract:null,signatures:"Viktoria Lyons and Michael Fitzgerald",downloadPdfUrl:"/chapter/pdf-download/43403",previewPdfUrl:"/chapter/pdf-preview/43403",authors:[{id:"28359",title:"Prof.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"},{id:"165744",title:"Dr.",name:"Viktoria",surname:"Lyons",slug:"viktoria-lyons",fullName:"Viktoria Lyons"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3544",title:"Recent Advances in Autism Spectrum Disorders",subtitle:"Volume II",isOpenForSubmission:!1,hash:"601b4c43b6f88bcd29ab35455c57f68d",slug:"recent-advances-in-autism-spectrum-disorders-volume-ii",bookSignature:"Michael Fitzgerald",coverURL:"https://cdn.intechopen.com/books/images_new/3544.jpg",editedByType:"Edited by",editors:[{id:"28359",title:"Prof.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4496",title:"Autism Spectrum Disorder",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"554c56c045ceba00b9a03e831e47292c",slug:"autism-spectrum-disorder-recent-advances",bookSignature:"Michael Fitzgerald",coverURL:"https://cdn.intechopen.com/books/images_new/4496.jpg",editedByType:"Edited by",editors:[{id:"28359",title:"Prof.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"685",title:"Epilepsy",subtitle:"Histological, Electroencephalographic and Psychological Aspects",isOpenForSubmission:!1,hash:"93a8993809704cb0c536e02067400bd6",slug:"epilepsy-histological-electroencephalographic-and-psychological-aspects",bookSignature:"Dejan Stevanovic",coverURL:"https://cdn.intechopen.com/books/images_new/685.jpg",editedByType:"Edited by",editors:[{id:"28680",title:"Dr.",name:"Dejan",surname:"Stevanovic",slug:"dejan-stevanovic",fullName:"Dejan Stevanovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3856",title:"Traumatic Brain Injury",subtitle:null,isOpenForSubmission:!1,hash:"5a47495e99f48e249726f8d02f798ff5",slug:"traumatic-brain-injury",bookSignature:"Farid Sadaka",coverURL:"https://cdn.intechopen.com/books/images_new/3856.jpg",editedByType:"Edited by",editors:[{id:"101031",title:"Dr.",name:"Farid",surname:"Sadaka",slug:"farid-sadaka",fullName:"Farid Sadaka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"773",title:"Post Traumatic Stress Disorders in a Global Context",subtitle:null,isOpenForSubmission:!1,hash:"5d0958a26a52cca485fc440fa0eb74e0",slug:"post-traumatic-stress-disorders-in-a-global-context",bookSignature:"Emilio Ovuga",coverURL:"https://cdn.intechopen.com/books/images_new/773.jpg",editedByType:"Edited by",editors:[{id:"70800",title:"Prof.",name:"Emilio",surname:"Ovuga",slug:"emilio-ovuga",fullName:"Emilio Ovuga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"462",title:"Autism",subtitle:"A Neurodevelopmental Journey from Genes to Behaviour",isOpenForSubmission:!1,hash:null,slug:"autism-a-neurodevelopmental-journey-from-genes-to-behaviour",bookSignature:"Valsamma Eapen",coverURL:"https://cdn.intechopen.com/books/images_new/462.jpg",editedByType:"Edited by",editors:[{id:"62816",title:"Dr.",name:"Valsamma",surname:"Eapen",slug:"valsamma-eapen",fullName:"Valsamma Eapen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"964",title:"Huntington's Disease",subtitle:"Core Concepts and Current Advances",isOpenForSubmission:!1,hash:"7469b484fe69f49ebe4553d913a025dc",slug:"huntington-s-disease-core-concepts-and-current-advances",bookSignature:"Nagehan Ersoy Tunali",coverURL:"https://cdn.intechopen.com/books/images_new/964.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3823",title:"Epilepsy Topics",subtitle:null,isOpenForSubmission:!1,hash:"cccc3d3bf1205c4866d66d0913fac6b0",slug:"epilepsy-topics",bookSignature:"Mark D. Holmes",coverURL:"https://cdn.intechopen.com/books/images_new/3823.jpg",editedByType:"Edited by",editors:[{id:"27747",title:"Prof.",name:"Mark D.",surname:"Holmes",slug:"mark-d.-holmes",fullName:"Mark D. Holmes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5384",title:"New Developments in Anxiety Disorders",subtitle:null,isOpenForSubmission:!1,hash:"c355c8b1bce4b291f916878f12e0ab8a",slug:"new-developments-in-anxiety-disorders",bookSignature:"Federico Durbano and Barbara Marchesi",coverURL:"https://cdn.intechopen.com/books/images_new/5384.jpg",editedByType:"Edited by",editors:[{id:"157077",title:"Dr.",name:"Federico",surname:"Durbano",slug:"federico-durbano",fullName:"Federico Durbano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3803",title:"Cerebral Palsy",subtitle:"Challenges for the Future",isOpenForSubmission:!1,hash:"410b38d03cbef2e374dac371df9483cc",slug:"cerebral-palsy-challenges-for-the-future",bookSignature:"Emira Svraka",coverURL:"https://cdn.intechopen.com/books/images_new/3803.jpg",editedByType:"Edited by",editors:[{id:"29419",title:"Associate Prof.",name:"Emira",surname:"Švraka",slug:"emira-svraka",fullName:"Emira Švraka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72959",slug:"erratum-driving-control-technologies-of-new-high-efficient-motors",title:"Erratum - Driving Control Technologies of New High-Efficient Motors",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72959.pdf",downloadPdfUrl:"/chapter/pdf-download/72959",previewPdfUrl:"/chapter/pdf-preview/72959",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72959",risUrl:"/chapter/ris/72959",chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]}},chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]},book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11458",leadTitle:null,title:"Human-Robot Interaction - Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tHuman-Robot Interaction (HRI) is defined as a field of study that is committed to realizing, creating, and testing robotic systems that interact with humans. HRI has emerged as a significant area of research due to its diverse applications in personal and societal domains.
\r\n\r\n\tThis book aims to present recent advances in this emerging area. More specifically, the book aims to look at research methods and domains in HRI including collaborative robots, humanoid robots, telerobotics, design and control, adaptation, and learning. The book also aims to look at some promising current and future applications of HRI including space, military, medical, personal, and societal applications. We welcome other novel applications that are not mentioned here.
\r\n\r\n\tThe book aims to close with some anticipated challenges in HRI and their integration into society. These challenges include standardizations, design evaluations, testing and validation, and contextualization. Overall, the goal of this book is to present comprehensive coverage from the contributions of leading researchers in this flourishing field of HRI.
",isbn:"978-1-80356-411-1",printIsbn:"978-1-80356-410-4",pdfIsbn:"978-1-80356-412-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"2003e3388833e911f610e0cd9788a5e7",bookSignature:"Dr. Ramana Vinjamuri",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11458.jpg",keywords:"Collaborative Robots, Humanoid Robots, Design and Control, Adaptation, Learning, HRI in Space, Military Applications, Medical Applications, Challenges in Human Robot Interaction, Standardizations, Testing and Validations, Contextualization",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 24th 2022",dateEndSecondStepPublish:"March 24th 2022",dateEndThirdStepPublish:"May 23rd 2022",dateEndFourthStepPublish:"August 11th 2022",dateEndFifthStepPublish:"October 10th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dedicated, resourceful, and innovative researcher in human-centered computing, robotics, and brain-machine interfaces, IEEE Senior Member and holder of two registered patents.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",biography:"Ramana Vinjamuri received a Ph.D. in Electrical Engineering with a specialization in dimensionality reduction in control and coordination of human hand from the University of Pittsburgh, Pennsylvania, in 2008. From 2008 to 2012, he worked as a postdoctoral research associate in the field of Brain-Machine Interfaces (BMI) to control prostheses at the School of Medicine, the University of Pittsburgh, where he received the Mary E Switzer Merit Fellowship from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) in 2010. From 2012 to 2013, he worked as a research assistant professor in the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, in the area of neuroprosthetics. He also worked as an assistant professor in the Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, from 2013 to 2020. He holds a secondary appointment as an adjunct assistant Professor at the Indian Institute of Technology, Hyderabad, India. He is currently an assistant professor in the Department of Computer Science and Electrical Engineering, University of Maryland, USA.\n\nIn 2018, Dr. Vinjamuri received the Harvey N Davis Distinguished Teaching Award for excellence in undergraduate and graduate teaching. He also received the National Science Foundation (NSF) CAREER Award in 2019 and an NSF Industry-University Cooperative Research Centers (IUCRC) Planning Grant in 2020. His other notable research awards are from the US-India Science and Technology Endowment Fund (USISTEF) and the New Jersey Health Foundation.",institutionString:"University of Maryland, Baltimore County",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444316",firstName:"Blanka",lastName:"Gugic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444316/images/20016_n.jpg",email:"blanka@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7178",title:"Prosthesis",subtitle:null,isOpenForSubmission:!1,hash:"87ab135eeaa8424520cff806439e32a2",slug:"prosthesis",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/7178.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5943",title:"Biomimetic Prosthetics",subtitle:null,isOpenForSubmission:!1,hash:"80150cc5713e49ac90a564e8b2895289",slug:"biomimetic-prosthetics",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/5943.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39273",title:"Effects of Hypercholesterolaemia in the Retina",doi:"10.5772/48359",slug:"effects-of-hypercholesterolaemia-in-the-retina",body:'A cholesterol-rich diet causes postprandial hyperlipaemia with an accumulation of chylomicrons. This accumulation leads to a redistribution of the very-low-density lipoproteins (VLDL), thereby determining the elimination of the coarsest particles, the residual chylomicrons, which promote the onset of atherogenesis [1].
For some years, cholesterol-rich food has been associated with the subsequent development of complications such as the formation of atheromatous plaque and lipid deposits at the ocular level. These findings have been reproduced in an experimental rabbit model [2,3], this animal being particularly sensitive to the induction of atheromatous lesions, which faithfully reproduce those caused in human atherosclerosis [4-6].
One of the main barriers of the eye is Bruch’s membrane, which, for its strategic situation between the choroidal vascular membrane and the outer retina, constitutes a semi-permeable filtration zone, through which the nutrients pass from the choriocapillaris towards the photoreceptors, while the cell-degradation products of the retina pass in the opposite direction. The accumulation of these waste products thickens Bruch’s membrane and the basal layer of the retinal pigment epithelium (RPE) [7]. These changes in the outer retina may be the consequence of metabolic stress associated with the metabolism of fatty acids or of the changes in choroidal perfusion due to atherosclerosis [8]. In any case, the lipids that accumulate in a structurally altered Bruch’s membrane cause a hydrophobic barrier that can hamper the free metabolic exchange between the choriocapillaris and the RPE, on interfering with the passage of nutrients and oxygen to the retina. This situation could contribute to the loss of retinal sensitivity and play a pathogenic role in the development of age-related macular degeneration (AMD) [9], the leading cause of blindness among people over 65 years in developed countries. On the other hand, the deposits that accumulate underneath the RPE, which contains unsaturated fatty acids, are oxidized by the light, strengthening lipid peroxidation [10,11] and negatively influencing retinal function. The changes in the RPE-Bruch’s membrane complex contribute to the death of multiple retinal neurons, this translating as a thinning and disorganization of its layers.
Cholesterol is essential for cell functioning. The main cholesterol source for the photoreceptors and the RPE comes from extracellular lipid metabolism, as has been demonstrated on detecting native low-density lipoprotein (LDL) receptors at the RPE level [12], which could be involved in the local production of apolipoprotein E (apoE). The retina also locally produces lipoprotein particles that contain apoE. These particles are secreted fundamentally by the Müller glia to the extracellular retinal compartment and to the vitreous, from which they are transported to the optic nerve [13]. Also, the retinal astrocytes associated with the axons of the ganglion cells participate in the secretion of apoE. This cholesterol transport is essential to supply the retinal neurons the lipids needed for the maintenance and remodelling of their cell membrane.
Studies in apoE-deficient mice have demonstrated the presence of alterations in Müller glia and in amachrine cells, these generating aberrations in the retinal circuit as a consequence of the local disruption of cholesterol homeostasis [14]. In a hypercholesterolaemic rabbit model, cell loss in the inner nuclear layer and in the ganglion-cell layer of the retina has been demonstrated [15,16]. This cell loss probably results from the deprivation of the neurotrophic support [17] and of the CNTF (ciliary neurotrophic factor) and glial fibrillary acidic protein (GFAP) upregulation secondary to the reactivation of the Müller cells [18,19]. In hypercholesterolaemic rabbits, added to the situation of ischaemia at the level of the outer retina induced by the alterations in Bruch’s membrane and in the choriocapillaris, is the thickening of the basal membranes of the retinal vessels, which by hampering the passage of oxygen and nutrients towards the inner retina would generate a prolonged situation of ischaemia [15,20]. This chronic ischaemia could increase the concentration of extracellular glutamate, conditioning oxidative damage by a neuronal cytotoxic mechanism [21,22]. This situation can be counteracted so long as the astrocytes maintain their capacity to eliminate cytotoxic neurotransmitters and to supply growth factors and cytokines [23].
In summary, in the present chapter, the structural and ultrastructural changes in the retina of an experimental model of hypercholesterolaemia are described, specifically changes in Bruch’s membrane, RPE, and retinal layers as well as the vascular changes responsible for chronic ischaemia. Further on, the effects of the diet-induced normalization of the plasma-cholesterol levels in the retinal structures are discussed. The comparison between the two scenarios suggests that hypercholesterolaemia is a risk factor for the development of chronic ischaemia in the retina and therefore for neuronal survival.
Bruch’s membrane, the innermost layer of the choroid, fuses with RPE as a 5-layered structure consisting of (from outer to inner): a basement membrane of the choriocapillaris, an outer collagenous layer, an elastic layer, an inner collagenous layer, and a basement membrane of the RPE [7,24] (Figure 1, 3A, 4A). Fine filaments from the basement membrane of the RPE merge with the fibrils of the inner collagenous zone, contributing to the tight adhesion between choroid and the RPE. The basement membrane of the choriocapillaris is discontinuous and is absent in the intercapillary spaces [25]. The collagenous layers surround the elastic layer [7]. Some collagen fibres are arranged parallel to the tissue plane, especially at the inner collagenous zone; others cross from one side of the elastic fibre layer to another, interconnecting the two collagenous layers [7]. Collagen fibres pass through the disruption of the basement membrane to join the collagen fibres of the intercapillary septae. This arrangement may help Bruch’s membrane to attach to the choriocapillaris. Vesicles, linear structures, and dense bodies occur in the collagenous and elastic zones but predominantly in the inner collagenous layer [26]. The elastic layer is made up of inter-woven bands of elastic fibres with irregular spaces between them, through which the collagen fibres pass [7,26] (Figure 3A,\n\t\t\t\t4A). The exchange of substances between the choroid and retina (both directions) must traverse Bruch’s membrane [7]. The importance of this process is evident in situations in which this membrane is disrupted. During aging, Bruch’s membrane gradually thickens [27]. The collagenous layers thicken from the accumulation of membranous lipidic debris [28], abnormal extracellular matrix components (collagen fibres "cross-linking") and the advanced glycation end-product [29]. This decreases the porosity of Bruch’s membrane, presumably heightening resistance to the movement of water through it [30]. Also, it has been found that this thickening of Bruch’s membrane is accompanied by lower membrane permeability [31]. Although this thickening with aging is relatively minor, greater increases can appear in specific regions. The accumulation of material in the inner collagenous layer bulging toward the retina, is what is known by the term "drusen" [32]. These drusen will deprive the photoreceptors of their nutrition from the choriocapillaris.
Histological section of the human retina. Retinal layers. Hematoxylin/eosin. 1: retinal pigment epithelium; 2: photoreceptor layer; 3: outer limiting membrane; 4: outer nuclear layer; 5: outer plexiform layer; 6: inner nuclear layer; 7: inner plexiform layer; 8: ganglion-cell layer; 9: nerve-fibre layer; 10: inner limiting membrane. [Bruch’s membrane (BM); choroidal vascular layers (C)].
The elastic layer also suffers a disruption with aging, namely, an increase in density and calcification [33]. These aged-related changes could cause cracks and holes in Bruch’s membrane. Major breaks in Bruch’s membrane are associated with oedema, leading to the accumulation of fluid between the RPE and photoreceptors, and hence to a retinal detachment. This association between the discontinuity of Bruch\'s membrane and retinal oedema suggests that, under normal conditions, Bruch’s membrane could play a role in limiting fluid movement to and from the retina [25].
The primary function of the retina is to convert light into nerve impulses which are transferred to the brain via the optic nerve. The retina comprises the retinal pigment epithelium and the neurosensory retina, the latter containing neurons, glial cells and components of the vascular system. Various types of neurons are present, such as: photoreceptors, bipolar cells, ganglion cells, amacrine cells and horizontal cells [34]. The coding function of the retina depends not only on photoreceptors but also on neurons, glial cells and RPE, which amplify the signal [35]. The photoreceptors are the cells that capture light and are situated at the most external side of the neurosensory retina, in the vicinity of the RPE. These cells are of two types: rods (for scotopic vision) and cones (for photopic vision) [34]. The ability of photoreceptors to convert light photons into an electrical signal is due to the presence of a photopigment in their outer segments. These segments consist of a stack of disk membranes that are synthesised in the proximal portion of the outer segment and shed at its apical size [35]. Photoreceptors form contacts with horizontal and bipolar cells in the outer plexiform layer (OPL). Coupling between neighbouring rods and cones in OPL allows the first stage of visual processing. The inner nuclear layer (INL) contains cell bodies of Müller glial, bipolar, amacrine, and horizontal cells. The inner plexiform layer (IPL) consists of a synaptic connection between the axons of bipolar cells and dendrites of ganglion and amacrine cells. The ganglion-cell layer (GCL) contains the cell bodies of retinal ganglion cells, certain displaced amacrine cells, and astrocytes. Inside the eye, ganglion-cell axons run along the retinal surface toward the optic-nerve head forming nerve-fibre layer (NFL) [34,35] (Figure 1).
The neural retina also contains two types of macroglial cells: Müller cells and astrocytes (Figure 2).
Müller cells are long, radially oriented cells which span the width of the neural retina from the outer limiting membrane (OLM), where their apical ends are located, to the inner limiting membrane (INL), where their basal endfeet terminate (Figure 2A). In the nuclear layers, the lamellar processes of the Müller cells can be seen to form basket-like structures which envelope the cell bodies of photoreceptors and neural cells. In plexiform layers, fine processes of these cells are interwoven between the synaptic processes of neural cells. In both the plexiform and nuclear layers, Müller cell processes cover most but not all neural surfaces [36].
Astrocytes are located mainly in the NFL and GCL in most mammals (human, rabbit, rats and mouse, among others) [37-39] (Figure 2B). Astrocyte morphology differs between species. In humans, two types of astrocytes can be distinguished: elongated (located in the NFL) and star-shaped (located in GCL) astrocytes. In mice and rats the astrocytes are stellate (Figure 2B). The greatest variety of retinal astroglial cell morphologies is found in the rabbit, which possesses two large astrocyte groups: astrocytes associated with the nerve-fibre bundles (AANFB) which are aligned parallel to the axonal bundles in the NFL (Figure 10G), and perivascular astrocytes (PVA), associated with the retinal and vitreous blood vessels (Figure 10A,D). PVA can be further subdivided into: i) type I PVA, which have numerous sprouting, hair-like processes, associated with medium-sized epiretinal vessels, and with capillaries located over the inner limiting membrane (ILM) (Figure 10A), and ii) type II star-shaped PVA, which are located on and between larger and medium-sized epiretinal vessels [15,38,40-42] (Figure 10D). The morphology of retinal astrocytes in different animal species is determined by the way their processes adapt to the surrounding structures [43].
Immunohistochemistry anti-GFAP in mouse retinal whole-mount. A: GFAP+ Müller cells after 15 days of laser-induced ocular hypertension. The pressure exerted by the cover glass on the retinal whole-mount, produced a retinal-like section effect in some retinal borders. Müller cells exhibit a radial morphology that creates a columnar matrix that maintains the laminar structure of the retina [Astrocyte (*); inner limiting membrane (ILM)]. B: Confocal microscopy of normal retinal astrocytes. These cells form a homogeneous plexus on the nerve-fibre-RCG layer constituted by stellate cells. (Modified from Gallego et al [
Macroglial cells perform a variety of essential roles for the normal physiology of the retina, maintaining a close and permanent relationship with the neurons [43]. Thus every aspect of the development, homeostasis, and function of the visual system involves a neuron-glia partnership. Glial cells insulate neurons, provide physical support, and supplement them with several metabolites and growth factors. These cells also play important roles in axon guidance and control of synaptogenesis [44]. Under normal conditions, astrocytes and Müller cells maintain the homeostasis of extracellular ions, glucose, and other metabolites, water, pH and neurotransmitters such as glutamate and GABA [45]. These cells also produce a great quantity of growth factors and cytokines, which may contribute both to neurotoxic as well as neuroprotective effects. It has also been demonstrated that macroglial cells are more resistant to oxidative damage than are the neurons, this trait protecting them against such damage. This potential is due to the fact that these cells contain high concentrations of antioxidants such as reduced glutathione and vitamin C. Consequently, a depression of these cellular activities could lead to neuronal dysfunction [46]. Macroglial cells induce the properties of barrier in the endothelial cells of retinal capillaries (the blood-retinal barrier), securing immune privilege to protect neurons from potentially damaging effects of an inflammatory immune response. Finally, glial cells can play fundamental roles in local immune responses and immunosurveillance [44].
Macroglial cells also play a part in pathological processes in central nervous system (CNS). Glial cells in the CNS have been cited as participants in the pathological course of neuronal damage after mechanical, ischaemic, and various other insults. Glial cell activation is a hallmark of CNS injury, characterized by an increase in size and number of glial cells and upregulation of GFAP, with additional cellular changes that may cause or relieve neuronal impairment. These reactive cells also have higher metabolic activity. After injury, reactive glial cells participate in the formation of a glial scar, in which there is an accumulation of enlarged astrocyte bodies and a thick network of processes with increased expression of GFAP and vimentin. Macroglial cells become reactive in response to a wide variety of stimuli, including inflammation and oxidative and mechanical stress [47].
Other components of the retina are the blood vessels. Photoreceptors receive nutrients via the choriocapillaris. The inner retinal layers have their own blood supply coming from the blood vessels entering the retina at the optic-nerve head. For its protection, the retina is physiologically and immunologically segregated from the rest of the body by tight junctions between vascular endothelial cells (inner blood-retinal barrier) and RPE cells (outer blood-retinal barrier). This fact is responsible for intraocular tissue to be an immune privileged site, thus protecting the eye from the innocent-bystander effect of inflammation [34]. In addition, only small molecules can cross these barriers, making it difficult for many drugs to reach ocular tissue.
The outermost retinal layer is the RPE (Figure 1), which is formed by a single layer of pigmented hexagonal cells. These cells provide the supportive role necessary to sustain the high metabolic demands of photoreceptors. RPE cells supply nutrients and oxygen, regenerate phototransduction products, and digest debris shed by the photoreceptors. The basal aspect of RPE cells contains numerous infoldings and is adjacent to Bruch’s membrane. The apical surface is adjacent the neural retina. The RPE cells contain numerous pigment granules (melanosomes), lipofuscin granules, and degradation products of phagocytosis, which grow in number with age (Figure 4A) [7]. The RPE had several intercellular junctions: zonula occludens, zonula adherents, desmosomes, and gap junctions. The latter allow the cell electrical coupling and provide a low-resistance pathway for the passage of ions and metabolites [48]. The RPE fosters the health of the neural retina and choriocapillaris in several ways: the zonula occludens joining the RPE cells are part of the blood-retinal barrier and selectively control movement of nutrients and metabolites from choriocapillaris into the retina and removal of waste products from the retina into the choriocapillaris [49]. RPE cells phagocytose fragments of the photoreceptor outer segment discs, metabolise and store vitamin A, and produce growth factors, helping to maintain choriocapillaris and retinal function. Other, less well-characterized functions of the RPE are the absorption of stray light and the scavenging of free radicals by the melanin pigment in the epithelium and the drug detoxification by the smooth endoplasmic reticulum cytochrome p-450 system [50]. From the several functions displayed by RPE, it can be easily concluded that dysfunction of RPE cells has serious consequences on the health of photoreceptors [34].
Recent studies have demonstrated that fatty acids are fundamental for normal visual function [51]. Humans are unable to synthesise essential fatty acids (EFAs) and must acquire them through the food intake. Dietary EFAs are transformed into the endoplasmic reticulum of hepatic and retinal cells [52] into long-chain polyunsaturated fatty acids (LCPUFAs). LCPUFAs perform various functions, e.g. serving as ligands for gene-transcription factors for cell growth and differentiation, to participate in the metabolism of lipids, carbohydrates, and proteins, and to intervene in the inter- and intracellular signal cascades that influence vascular, neural, and immune functions [51].
In the neural retina, the richest LCPUFA-containing lipids are the phospholipids of the cell membranes [53], and the most abundant LCPUFAs in the retina are docosahexaenoic acid (DHA) and arachidonic acid (AA). DHA is a long-chain polyunsaturated fatty acid from the omega 3 series. It is present at high levels in the neurosensory retina [54]. DHA improves the kinetics of the photocycle by creating specific intermolecular associations with rhodopsin [35]. Brain astrocytes [55] and retinal tissue [34] can produce DHA, but in a limited way [56], given that the synthesis process is slow [57] and restricted to the RPE and the endothelial cells of the retinal vessels [58]. Consequently, retinal requirements of LCPUFAs depend on input from the liver (the main site of LCPUFA biosynthesis) [59] and hence on transportation of LCPUFAs from the choriocapillaris to the outer segments of the RPE-photoreceptor.
Cell-membrane permeability is thought to depend on the balance between LCPUFAs and cholesterol [60,61]. Ocular DHA levels are lower in high-cholesterol diets, a fact that could influence the development of ocular disease [62]. Recently, it has been reported the relationship between lipid intake and AMD in patients with low intake of linoleic acid (a LCPUFA) [63].
Cholesterol is present exclusively as the free form in the neurosensory retina, and distributed in all cell layers [54,64]. Cholesterol in the neuroretina originates from
Similar to the brain [68,69], the neurosensory retina expresses cholesterol-24S-hydroxylase (CYP46A1) [70]. CYP46A1 is a microsomal cytochrome P450 enzyme which catalyses the hydroxylation of cholesterol at position C24. It has been suggested that CYP46A1 represents a mechanism of cholesterol removal from neurons [71] and strongly induces oxidative stress as well the inflammatory response in RPE cells. RGC specifically express CYP46A1 [70], a hydroxylase that might promote apoptosis of RGC in glaucoma. Cholesterol-27-hydroxylase (CYP27A1) shows a property the similar to that of CYP46A1, converting cholesterol into a more polar metabolite [72]).
7-ketocholesterol is a non-enzymatic-oxidation product of cholesterol. The formation of 7-ketocholesterol in the retina has been thoroughly studied in the retina, in connection with oxidative stress, aging and AMD [73].
With age, the diffusion characteristics of the choriocapillaris-Bruch’s membrane-RPE-photoreceptor complex [74,75] change, RPE density decreases [76], and the cytoarchitecture of RPE cells transforms [77]. Such morphological and functional changes lead to AMD in some patients. Additionally, there may be age-related changes in the specific activities of the lysosomal enzymes of the RPE and it has been reported that animals fed a fish-oil-enriched diet presented higher activity of lysosomal acid lipase [78,79]. This could augment the hydrolysis of the intralysosomal lipids of the RPE, thus reducing lipofuscin deposits and oxidative damage of the RPE, this in turn preventing the development of AMD.
Recent studies have demonstrated the relationships between dietary fat and the promotion of vascular disease [51]. Lipoprotein metabolism has also been associated with neurodegenerative disorders in rats [14] but preliminary results showed no marked changes in apo-E knockout mice [80]. Eukaryotic cells require sterols to achieve normal structure and function of their plasma membranes, and deviations from normal sterol composition can perturb these features and compromise cell and organism viability [81]. Given that cholesterol is required by neurons, an intimate relationship could exist between cholesterol homeostasis and the development, maintenance, and repair of these cells [14].
The particular spatial arrangement of retinal macroglial cells (astrocytes and Müller cells) that are intercalated between vasculature and neurons points to their importance in the uptake of nutrients from the circulation, metabolism, and transfer of energy to neurons [37,40,82]. Moreover, apoE lipoprotein, which plays a central role in serum-cholesterol homeostasis through its ability to bind cholesterol with other lipids and to mediate their transport into cells, is produced by glial cells [83]. Müller cells express HMGcoA reductase. Glia is also known to support neurons in the formation and maintenance of synapses in which cholesterol is crucial [84]. Therefore, all together, these data suggest that glial Müller cells may also help deliver cholesterol to neurons [35].
As mentioned above, associations between 24S-hydroxycholesterol in glaucoma and other neurodegenerative diseases are suspected. Glial expression of CYP46A1 has also been reported in the brain of Alzheimer’s patients [85,86]. Glia may compensate for the loss of neurons while expressing CYP46A1. Meanwhile, Müller cells play a key role in the maintenance of RGC bodies in the retina, besides participating in lipid metabolism, including fatty acid oxidation [86].
Reactive gliosis, a general response to injury and inflammation in the adult brain [87,88], is characterized by up-regulation of various kinds of molecules, the best known being GFAP [89]. The
Given the intricate metabolic interdependence between vessels, macroglial cells, and neurons, high cholesterol levels could deregulate a number of cell functions in both macroglial and neuronal cells.
Most of the information available on vascular diseases is based mainly on studies of ischaemic heart disease [97] and cerebrovascular diseases [98]. In both, the underlying phenomenon is artherosclerosis, a general term referring to any vascular degeneration causing the thickening and loss of arterial-wall elasticity and that encompasses atherosclerotic and non-atherosclerotic conditions. Atherosclerosis involves a hardening of the arterial intima due to a lipid build-up in artery, a condition that appears in humans at an early age and develops progressively over the aging process [99].
Schematically, we can point to various types of long-recognized vascular risk factors: i) non-reversible factors, such as age, male gender or family history of early atherosclerosis; ii) reversible factors such as smoking, hypertension, obesity or hypercholesterolaemia; iii) partially reversible factors such as hypertriglyceridaemia and other forms of hyperlipidaemia, hyperglycaemia, and diabetes mellitus; and iv) potential risk factors such as physical inactivity or emotional stress. Some new factors can be added to the aforementioned vascular risk factors, including lipoprotein A, homocysteine, coagulation factors and C-reactive protein [99,100].
It bears noting that the importance of hypercholesterolaemia as a cardiovascular risk factor lies not only in its direct effect on the pathogenesis of coronary or cerebrovascular disease, but also in the influence exerted on the course of other pathologies. For ocular diseases, epidemiological studies have demonstrated that hypercholesterolaemia is a risk factor for several pathologies despite not being considered the primary cause of the process.
In the case of retinal lesions, classical risk factors for atherosclerosis seem to lose influence. The Atherosclerosis Risk in Communities Study (ARIC) has suggested that changes in the retinal vessels (arteriolar narrowing, arteriovenous index, and abnormalities where the arterioles cross or arteriovenous nicking) are closely linked to hypertension but not to other factors [101], although the presence of retinal lesions is associated with a higher prevalence of ischaemic heart disease, myocardial infarction, stroke, or carotid plaques in patients over 65 years [102,103]. It has been suggested that the retinal lesions could reflect the persistence of small-vessel damage due to hypertension and possibly inflammation and endothelial dysfunction, although they have little relation to large-vessel damage [103].
Another work of the ARIC study found that retinal arteriolar narrowing intensifies the risk of ischaemic heart disease in women but not men after adjusting the population for other known risk factors such as blood pressure, diabetes, smoking, and lipids. The authors speculated that the difference between sexes may be due to the fact that microvascular lesions may have a greater role in women than in men. Hormones protect women from macrovascular injury but it is not clear whether small vessels receive the same protection [104].
The examination of the retinal vasculature offers a unique opportunity to investigate cerebral microcirculation [105], which can be of outstanding importance to clarify the role of microcirculation in stroke [106]. The presence of retinal microvascular abnormalities is linked to the incidence of any stroke and also to the presence of high blood pressure, not only at the time of diagnosis, but also beforehand. Furthermore, stroke has been associated with markers of inflammation and endothelial dysfunction, suggesting the possibility of a significant microvascular component in stroke that a retinal examination might reveal [107]. Notably, although the importance of the association between brain and retinal microvascular lesions is still unknown, the prediction of a stroke provided by the white-matter lesions multiply in the presence of retinal lesions [108].
In conclusion, epidemiological studies have shown an association between vascular changes in the retina and elsewhere. This association appears to be related to common factors of microvasculature damage, the role of which, both in ischaemic heart disease and stroke, may be greater than suspected.
Animal models provide a controlled environment in which to study disease mechanisms and to devise technologies for diagnosis and therapeutic intervention for human atherosclerosis. Different species have been used for experimental purposes (cat, pig, dog, rabbit, rat, mouse, zebra fish). The larger animal models more closely resemble human situations of atherosclerosis and transplant atherosclerosis and can also be easily used in (molecular) imaging studies of cardiovascular disease, in which disease development and efficacy of (novel) therapies can be monitored objectively and non-invasively. Imaging might also enable early disease diagnosis or prognosis [109]. On the other hand, the benefits of genetically modified inbred mice remain useful, especially in quantitative trait locus (QTL)-analysis studies (a genetic approach to examine correlations between genotypes and phenotypes and to identify (new) genes underlaying polygenic traits [109].
Wild-type mice are quite resistant to atherosclerosis as a result of high levels of anti-atherosclerotic HDL and low levels of pro-atherogenic LDL and very-low-density-lipoproteins (VLDL). All of the current mouse models of atherosclerosis are therefore based on perturbations of lipoprotein metabolism through dietary or genetic manipulations [110].
In apoliprotein-deficient mice (apoE-/-) the homozygous delection of the apoE gene results in a pronounced rise in the plasma levels of LDL and VLDL attributable to the failure of LDL-receptor (LDLr-) and LDL-related proteins (LRP-) mediated clearance of these lipoproteins. As a consequence, apoE-/- mice develop spontaneous atherosclerosis. Of the genetically engineered models, the apoE-deficient model is the only one that develops extensive atherosclerotic lesions on a low-fat cholesterol-free chow diet (<40g/kg). The development of atherosclerosis lesion can be strongly accelerated by a high-fat, high-cholesterol (HFC) diet [111].
ApoE-knockout mice have played a pivotal role in understanding the inflammatory background of atherosclerosis, a disease previously thought to be mainly degenerative. The apoE-deficient mouse model of atherosclerosis can be used to: i) identify atherosclerosis-susceptibility-modifying genes; ii) define the role of various cell types in atherogenesis; iii) characterize environmental factors affecting atherogenesis; and iv) to assess therapies [112].
Because of the rapid development of atherosclerosis and the resemblance of lesion to human counterparts, the apoE-/- model have been widely used. However, some drawbacks are associated with the complete absence of apoE proteins: i) the model is dominated by high levels of plasma cholesterol; ii) most plasma levels are confined to VLDL and not to LDL particles, as in humans; and iii) apoE protein has additional antiatherogenic properties besides regulating the clearance of lipoproteins such as antioxidant, antiproliferative (smooth-muscle cells, lymphocytes), anti-inflammatory, antiplatelet, and also has NO-generating properties or immunomodulatory effects [113-115]. The study of the above processes and the effects of drugs thereupon is restricted in this model.
In humans, mutations in the gen for the LDLr cause familial hypercholesterolaemia. Mice lacking the gene for LDL receptor (LDLr-/- mice), develops atherosclerosis, especially when fed a lipid-rich diet [116]. The morphology of the lesions in LDLr-/- mice is comparable to that in apoE-/-, while the main plasma lipoprotein in LDLr-/- mice are LDL and high-density-lipoprotein (HDL) [117].
ApoE*3Leiden (E3L) transgenic mice are being generated by introducing a human ApoE*3-Leiden construct into C57B1/6 mice. E3L mice develop atherosclerosis on being fed cholesterol. Because they are highly responsive to diets containing fat, sugar, and cholesterol, plasma lipid levels can easily be adjusted to a desired concentration by titrating the amount of cholesterol and sugar in the diet. E3L mice have a hyperlipidaemic phenotype with a prominent increase in VLDL- and LDL-sized lipoproteins fractions [118] and are more sensitive to lipid-lowering drugs than are apoE-/- and LDLr-/- mice [110].
Because of their well-known physiological and anatomical similarities to humans, swine are considered to be increasingly attractive toxicological and pharmacological models. Pigs develop plasma cholesterol levels and atherosclerotic lesions similar to those of humans, but their maintenance is more difficult and expensive than that of smaller animals [109]. The minipig, smaller than the domestic swine, has served as a model of hypercholesterolaemia for more than two decades now. In 1986, the ref. [119] reported that the Göttingen strain had more susceptibility to alimentary hypercholesterolaemia and experimental atherosclerosis than did domestic swine of the Swedish Landrace. Clawn, Yucatan, Sinclair, and Handford are among other general minipigs used for experimental use [120-122].
Down-sized Rapacz pigs are minipigs with familial hypercholesterolaemia caused by a mutation in the low-density lipoprotein receptor. It is a model of advanced atherosclerosis with human like vulnerable plaque morphology that has been used to test an imaging modality aimed at vulnerable plaque detection [123].
The Microminipig (MMP) is the smallest of the minipigs used for experimental atherosclerosis [124]. One of its advantages is that in 3 months an atherosclerosis very similar in location, pathophysiology and pathology to that in humans can be induced [125]. The easy handling and mild character of the MMP make it possible to draw blood and conduct CT scanning under non-anaesthesized conditions.
Cholesterol-fed zebra fish represent a novel animal model in which to study the early events involved in vascular lipid accumulation and lipoprotein oxidation [126,127]. Feeding zebra fish a high-cholesterol diet results in hypercholesterolaemia, vascular lipid accumulation, myeloid cell recruitment, and other pathological processes characteristic of early atherogenesis in mammals [128]. The advantages of the zebra-fish model include the optical transparency of the larvae, which enables imaging studies.
Investigation has continued on hypercholesterolaemic rabbits since 1913, when Anitschkow demonstrated that, in rabbits fed a hypercholesterolaemic diet underwent atherosclerotic changes at the level of the arterial intima similar to those in atherosclerotic humans. The atheromatose lesions in this animal are similar to those in humans also in sequence, as confirmed in aortic atherosclerosis [3], making this animal a universal model for studying the anti-atherogenic activity of many drugs [129-132].
For the characteristics detailed below, the New Zealand rabbit is an excellent model to reproduce human atheromatosis because: i) it is possible to induce hypercholesterolaemia in a few days after administration of a high-cholesterol diet [2]; ii) it is sensitive to the induction of atheromatose lesions [3]; iii) hypercholesterolaemia results from excess LDL [133]; iv) excess cholesterol is eliminated from the tissues to be incorporated in HDL [134]; vi) it is capable of forming cholesterol-HDL complexes associated with apoE which are transported by the blood to the liver [134]; vii) the lipoprotein profile is similar in size to that of humans in the highest range, with HDL being practically the same [135]; viii) it presents postprandial hyperlipaemia for the existence of chilomicron remnants [136]; ix) the hyperlipaemic diet increases apoE [4]; and x) the sustained alteration of lipids after feeding with a cholesterol-rich diet is reversible when the diet [130] is replaced by a normal one [2].
Studies on hypercholesterolaemic rabbits have improved our knowledge of human atherosclerosis by delving into different aspects of the disease such as lipoproteins, mitogenes, growth factors, adhesion molecules, endothelial function, and different types of receptors. At the vascular level, the importance of endothelial integrity and cell adhesion has been investigated [137]. It has been demonstrated that the high levels of lysosomal iron start the oxidation of the LDL, spurring the formation of lesions [138]. In addition, the expression of VCAM-1 preceding the infiltration of the subendothelial space by macrophages has been studied [139], as have the proteins, including MCP-1. In hypercholesterolaemic rabbits, this protein is over-expressed when the serum-cholesterol levels rise in macrophages and smooth-muscle cells, contributing to the development of fatty streaks [140].
In hypercholesterolaemic rabbits, the expression of Fas-L in cells of the arterial wall help us to understand the progression of the atherosclerotic lesion, as this expression indicates an increase in cell injury, as well as a greater accumulation in the intima of smooth-muscle cells [141]. Also, a hyperlipaemic diet causes a selective alteration of the functioning of certain regulatory proteins that are involved in gene expression, as occurs with the nuclear B factor, which stimulates the proliferation of macrophages and smooth-muscle cells [142].
In this model, a study was also made of the pre-thrombosis state triggered by the platelet aggregation in an altered endothelium and the possibilities of its inhibition [143], as well as the interactions of the LDL with the extracellular matrix to form aggregates that accumulate in the intima of the artery wall [144].
The consequences of hypercholesterolaemia in ischaemic cardiopathy and cerebrovascular pathology are well known. The same does not occur with the functional repercussions of the hypercholesterolaemia at the ocular level, partly because the underlying structural changes are not well known.
The hypercholesterolaemic rabbit constitutes a useful model to explore the repercussions of excess lipids at the ocular level. This is because rabbits are susceptible to both systemic as well as ocular alterations. One of the broadest contributions made to the implications of experimental hypercholesterolaemia at the ocular level was that of ref. [145]. These authors, apart from analysing the changes in the liver, spleen, adrenaline glands, heart, aorta, and supraaortic trunk, described the most significant ocular findings, such as the accumulation of lipids in the choroid, retinal disorganization, and lipid keratopathy. With respect to the retinal macroglia, the synthesis of the apoE by the Müller cells, its subsequent secretion in vitro, and its being taken up by the axons and transported by the optic nerve enabled the detection of apoE in the latter geniculate body and in the superior colliculus [13].
Studies with electron microscopy on hypercholesterolaemic rabbits have revealed hypercellularity and optically empty spaces in the corneal stroma. These optically empty spaces, with an elongated or needle shape, were previously occupied by crystals of cholesterol monohydrate or crystals of cholesterol esters [146]. In other studies, the analysis in the form adopted for the crystallizations of the different types of lipids revealed that the needles corresponded to esterified cholesterol, and the short, thin ones to triglycerides [134]. Both crystallizations appear to be associated with other components such as collagen.
It had been recently reported that hypercholesterolaemic rabbis had a build-up of lipids (foam cells and cholesterol clefts) mainly at the suprachoroidea and to a lesser extent at the choroidal vascular layers. This lipids compressed the choroidal vessels and causes hypertrophy of the vascular endothelial- and vascular smooth-muscle cells. The ultrastructural analysis of these vascular structures demonstrated numerous sings of necrosis and a severe damage of the cytoplasmic organelles and caveolar system [16,147].
Recently, it has been reported that in comparison with normal control animals, hypercholesterolaemic rabbits had a reduction of the amplitudes of the first negative peak of the visually evoked potentials, the density of the RGCs, and the thickness of the INL and photoreceptor-cell layer. Additionally, the immunoreactivity to eNOS was reduced and increased to iNOSs. Enhanced activity of iNOS in hypercholesterolaemic rabbits might be involved in impaired visual function and retinal histology. Downregulation of eNOS activity might be one of the causes for impairment of the autoregulation [148].
The formation of foam cells is a consequence of phagocytes from the macrophage-oxidized LDL [16], with the retention of cholesterol in the vascular wall and the activation of ACAT (acetyl-cholesterol-acyl-transferase) [149], this point being key to the role of macrophages in the progression or regression of the lesions [134].
The Watanabe heritable hyperlipidaemic (WHHL) rabbit is an animal model for hypercholesterolaemia due to genetic defects in LDL receptors [150] and a lipoprotein metabolism very similar to that of humans [150,151]. These features make WHHL rabbits a true model of human familial hypercholesterolaemia. The first paper on the WHHL rabbit was published in 1980 [152]. The original WHHL rabbits had a very low incidence of coronary atherosclerosis and did not develop myocardial infarction. Several years of selective breeding led to the development of coronary atherosclerosis-prone WHHL rabbits, which showed metabolic syndrome-like features, and myocardial infarction-prone WHHLMI rabbits. WHHL rabbits have been used in studies of several compounds with hypocholesterolaemic and/or anti-atherosclerotic effects with special relevance for statins [151]. Recently, WHHLMI rabbits have been used in studies of the imaging of atherosclerotic lesions by MRI [153], PET [154] and intravascular ultrasound [155].
Few experimental studies examine the effects of hypercholesterolaemia on the posterior segment of the eye [14,15,145,156-158]. Hypercholesterolaemic rabbits constitute a useful model to delve into the repercussions of excess lipids at the ocular level. Rabbits fed a 0.5% cholesterol-enriched diet for 8 months showed a statistical increase in total serum cholesterol [15,16,147,158,159]. In these animals, the hypercholesterolaemia caused numerous changes in the Bruch’s membrane-retinal complex. Bruch’s membrane was thicker than in normal animals (Figure 3A,B) due to the build-up of electrodense and electrolucent particles (Figure 3B) in the inner and outer collagenous layers [15]. As in hypercholesterolaemic animals, thickening and lipid accumulation in Bruch’s membrane has been described in human AMD [160,161]. These deposits of lipids or lipid-rich material could add resistance to the flow of solutes and water through the Bruch’s membrane-RPE complex, as demonstrated by the studies that have measured the hydraulic conductivity of isolated Bruch’s membranes [162,163]. The local metabolism and transport of cholesterol, impaired in hypercholesterolaemic rabbits as a result of a thickened Bruch’s membrane with changes in its collagenous layers, could play an important role in the contribution of lipids required for retinal neurons to maintain and remodel their membranes.
The cholesterol source for RPE and photoreceptors are the plasma lipids. Given that there is no direct contact between the photoreceptors and the choroidal circulation, adjacent cell types (RPE cells and Müller cells) must facilitate the transfer of lipids to the photoreceptors. In fact, the expression of native receptors for LDL on RPE cells has been reported [12,164]; this could be related to local production of apoE by RPE cells. An abnormal metabolism of lipids secondary to a cholesterol-enriched diet and/or apoE deficiencies could upset the cholesterol balance in RPE and photoreceptors. This could be the situation in hypercholesterolaemic rabbits in which ERP changes have been reported [15]. In this experimental model, RPE showed numerous hypertrophic cells and some nuclei were absent. The cytoplasm of these cells showed numerous dense bodies, debris from cell membranes, and numerous clumps of lipids (Figure 4B) filling the cytoplasm and replacing the nucleus and organelles that could be contributing to the hypertrophy and degeneration of the RPE [15]. Additionally, the basal zone of some RPE cells revealed autophagic vesicles, vacuoles, electrodense deposits, and debris from cell membranes [15] that could correspond to the laminar deposits described by [165] (Figure 4B). As in human AMD, changes of RPE could contribute to the degeneration of the photoreceptors [164] whose metabolism depends on normal RPE function and integrity [15,166].
Transmission electron microscopy of Bruch’s membrane and choriocapillaris. A: Control rabbit. B: Hypercholesterolaemic rabbit. Electrodense (black arrowhead) and electroluminescent (white arrowhead) particles at the inner collagenous layer Modified from Triviño et al. [
Transmission electron microscopy of Bruch’s membrane and retinal pigment epithelium cells (RPE). A: Choriocapillaris - Bruch’s membrane - RPE complex from control rabbit. Detail of Bruch’s membrane (insert) showing the outer collagenous layer, elastic layer and inner collagenous layer. B: The cytoplasm of RPE cell in hypercholesterolaemic rabbit shows dense bodies (white arrows), debris from cell membranes (*) and droplets of lipids. The apical microvilli have disappeared and the basal infolding forms lamellar structures (black arrow). C: RPE cells in reverted rabbit. Few lipids, dense bodies (white arrows) and some lamellar structures are visible in the cytoplasm. [Choriocapillaris (CC); retinal pigment epithelium (RPE); Bruch’s membrane (BM); inner collagenous layer (ICL); elastic layer (E); outer collagenous layer (OCL); lipids (L)]. (Modified from Ramírez et al. [
Retinal semi-thin sections (light microscopy). Retinal-layer changes. A: Control rabbit. B: Hypercholesterolaemic rabbit. C: Reverted rabbit. The figure illustrates the overall thinning of the retinal layers in hypercholesterolaemic and reverted animals with respect to control. The empty spaces (arrows) secondary to cell loss and degeneration observed in hypercholesterolaemic (B) are less evident in reverted rabbit (C). [Ganglion-cell layer (GCL); inner nuclear layer (INL); inner plexiform layer (IPL); inner limiting membrane (ILM); nerve-fibre layer (NFL); outer nuclear layer (ONL); outer plexiform layer (OPL); photoreceptor layer (RL)]. (Modified from Ramírez et al. [
The nutrition of the outer retina depends on the integrity of the choriocapillaris vessels and on the diffusion of plasma through the Bruch’s membrane-RPE complex. The alterations in the endothelium of the choriocapillaris and the build-up of lipids (hydrophobic barrier) detected in the Bruch’s membrane-RPE complex of hypercholesterolaemic rabbits [15] could interfere with oxygen and nutrient transportation, leading to an ischaemic state [30].
The conditions of hypoxia-ischaemia lead to higher glutamate levels in the extracellular fluid, and thereby could cause oxidative damage by excitotoxic mechanisms in the neurons [21,22]. In hypercholesterolaemic rabbits, neurosensory retinal changes were detected (Figure 5A,B) [15].
These changes were not uniformly distributed throughout the retina, being more intense in the retinal areas overlying the most altered RPE cells. In these areas, the photoreceptor discs were mostly absent. The thickness of the retinal layers (ONL, OPL, INL, IPL, GCL and NFL) were reduced (Figure 5B) and empty spaces were visible at different retinal levels that consisted of different stages of cell degeneration due to necrosis and apoptosis (Figure 6A,7A,B). In necrotic cells, the nucleoplasm, cytoplasm, and cytoplasmic organelles underwent progressive hydropic degeneration (swelling, vacuolization, and disappearance of specific ultrastructural features) (Figure 6A). The nuclear and cytoplasm membranes ruptured and released their contents into the intercellular space (Figure 6A). The remains were taken up and absorbed by neighbouring cells –essentially Müller cells (Figure 6A,7A) and astrocytes -, the latter only in the NFL. The apoptotic cells showed progressive condensation and shrinkage of the nucleoplasm and cytoplasm (Figure 7A,B). Cells in more advanced stages of apoptosis shed part of their substance, which was observed as dense inclusion bodies in neighbouring cells (Figure 6A,7A). The compact bodies appeared surrounded by or engulfed in Müller cells and astrocytes [15,158].
Changes found in the nuclear layers of the retina of hypercholesterolaemic rabbits resemble those described in human AMD [74]. As in human AMD, hypercholesterolaemic rabbits exhibited a loss of ganglion cells and had cell features of apoptosis and necrosis as well as electrodense inclusions (probably lipofuscin) in the cytoplasm of this cell type (Figure 7B). This ganglion-cell loss could be caused, at least partly, by a local disruption of cholesterol homeostasis [14]. A reduced population of ganglion cells could secondarily impair the neurotrophic support of the retinal neurons as a consequence of reduced secretion of brain-derived neurotrophic factor (BDNF) by ganglion cells. This scenario is feasible, given that amacrine cells express the TrkB receptor for BDNF [17] and that BDNF improves the survival of bipolar cells upon activation of the p75 receptor, which then induces the secretion of fibroblast growth factor b (bFGF) [167]. The situations described could contribute to the axon loss observed in hypercholesterolaemic rabbits [158]; this loss parallels human AMD, in which a considerable axonal degeneration has been reported [74].
In hypercholesterolaemic rabbits, the capillaries in the NFL and in the vitreous humour had a thickening of the basal membrane, dense bodies, and cytoplasm vacuoles (Figure 8A,B). These alterations have also been reported in hypercholesterolaemic rats [156].
In summary, the thickening of the basal membrane together with the alterations of the endothelial cells of the intraretinal and epiretinal capillaries, combined with the changes in Bruch’s membrane and the build-up of lipids in the outer retina, could contribute to a situation of chronic ischaemia observed in the retina of hypercholesterolaemic rabbits.
Ultrastructural retinal changes in outer nuclear layer and outer plexiform layer. A: Hypercholesterolaemic rabbit. Numerous dense bodies (black arrows) and empty spaces (*) are visible in these layers. The processes of Müller cells fill the empty spaces left by degenerated cells. Insert: at greater magnification the empty spaces consist of degenerated cytoplasm with numerous dense bodies (black arrow) and cell debris (black arrowhead). B: Reverted rabbit. Apoptosis (white arrows) and necrosis (black arrows) of photoreceptors are visible in the ONL. [Müller cells (M); inner nuclear layer (INL); inner plexiform layer (IPL); outer nuclear layer (ONL); outer plexiform layer (OPL)]. (Modified from Ramírez et al. [
Ultrastructural retinal changes in inner nuclear layer and ganglion-cell layer. A-B: Hypercholesterolaemic rabbit. A: Cells in apoptosis (white arrows) in the inner nuclear layer. Dense bodies (black arrows) inside the Müller cell processes. B: Apoptosis (white arrow) in the ganglion-cell layer. Cell debris (black arrowheads) and dense bodies (black arrow). [Müller cell (M); axon (ax); ganglion cell (GC)]. C-D: Reverted rabbit. C: Cell necrosis (black arrow) in the inner nuclear layer. D: Ganglion cell in advanced stage of necrosis. (Modified from Ramírez et al. [
Transmission electron microscopy of capillaries in the vitreous humour. A: Control rabbit. B: Hypercholesterolaemic rabbit. The basal membrane is thickened with respect the control. C: Reverted rabbit. The basal membrane is thicker than control and cholesterol animals. Necrotic features (arrowhead) are visible in some endothelial cells. [Basal membrane (bm); capillary (cap); endothelial cell (E); glial tuft (GT); pericyte (P); vitreous humour (V); dense bodies (black arrows); retina (R); vascular lumen (L); astrocyte (A)]. (Modified from Ramírez et al. [
An abnormal metabolism of lipids secondary to a cholesterol-enriched diet and/or apoE deficiencies could upset the cholesterol balance in the retinal layers, as mentioned above. However, it appears that other retinal components can produce heterogeneous particles locally containing apoE [13]. These particles are synthesised mainly by Müller cells, although astrocytes associated with ganglion cells axons could be involved in their production [13]. Müller cells are radially oriented cells that along their course, extend branches that interdigitate with every type of retinal neuron, with other types of glia (Figure 2A), and with the blood vessels of vascularized retinas [168]. Its participation in the cholesterol metabolism (supplying heterogeneous lipoprotein particles and apoE) and transport (due to its anatomical position in the retina) determines its importance as a source of the lipids needed by neurons for maintaining and restructuring their cell membranes [13,168].
Transmission electron microscopy of retinal astrocytes and Müller cells. A: Hypercholesterolaemic rabbit. Three nuclei of Müller cells displaced to the nerve-fibre layer. One of the Müller cells participates in the formation of the inner limiting membrane (white asterisk). Astrocytes in advanced stage of necrosis (black asterisk). B: Reverted rabbit. The empty spaces left by degenerated axons in the medullated nerve-fibre region are occupied only by the Müller cells in the retinal periphery. [Axon (ax); basal membrane of the ILM (bm); Müller cell (M); vitreous humour (V)]. (Modified from Ramírez et al. [
In situations of sustained hypercholesterolaemia, alterations of lipid metabolism could take place, potentially influencing the glial response. In fact, in hypercholesterolaemic rabbits Müller cells were reactive, exhibiting large amounts of rough endoplasmic reticulum and abundant glial filaments in their cytoplasm (Figure 9A), manifested by a more intense immunoreaction to GFAP (Figure 10H) [158]. Normally, GFAP is expressed at a low level or is not detectable in mammalian Müller cells (Figure 10G). In pathological situations, the major intermediate filament expressed by reactive Müller cells appears to be GFAP. The loss of retinal integrity as a result of mechanical injury, detachment, photoreceptor degeneration or glaucoma (Figure 2A) provokes intense GFAP immunoreactivity in Müller cells and increases the GFAP content of the retina [39,91,169-171]. This over-expression of GFAP is due to the activation of the transcriptional gene for GFAP in Müller cells [168]. Additionally, Müller cell reactivity transduces an increase in cell metabolism [168].
Another consequence of the reactivity of Müller cells is their capacity to form glial scars, most probably in an attempt to restore the blood-retinal barrier [172]. These scars, formed by hypertrophic cells in which the nuclei were displaced to the NFL, were detected in hypercholesterolaemic rabbits (Figure 9A). In addition, hypertrophic Müller cells occupied some of the empty spaces left by degenerated neurons in the INL, ONL, IPL, and NFL (Figure 6A) [15,158,173]. This type of cell response, which has also been described in human AMD [74] resembles that following photoceptor degeneration, which induces the processes of Müller cells to extend into and fill the empty spaces [168]. Another similarity between human AMD and experimental hypercholesterolaemia are the ultrastructural changes affecting the outer and inner retina. In both instances, the bodies of Müller cells are displaced from the INL to the vitreous in the case of human AMD [74] and to the NFL and ILM in hypercholesterolaemic rabbits [15,158]. It is possible that in both situations Müller cells migrate in an attempt to reach the metabolic reserve in the vitreous. This could be an adaptive system for transporting nutrients and energy substrates to those areas of the retina exposed to the chronic ischaemic insult.
Like Müller cells, astrocytes are related to apoE secretion [174,175], making these cells susceptible to alteration in long-term hypercholesterolaemia. Müller cells and astrocytes are intermediate between neurons and vessels; they are located on the basal membrane of capillaries separating them from neurons [37,82,95,168]. The thickening of the basal membrane and the presence of dense bodies and vacuoles in the endothelial cytoplasm of the retinal blood vessel in hypercholesterolaemic rabbits (Figure 8A) [15] could indicate impaired transport of oxygen and nutrients to the retinal tissue as well as the removal of cellular debris, thus contributing to a situation of chronic ischaemia [20] in the inner retina. It is known that astrocytes protect neurons from ischaemia by different mechanisms: they remove excitotoxic neurotransmitters and ions from the perineural space, doing so partly by glutamine synthetase, which also provides glutamine to neurons ([176,177]. In addition, astrocytes store glycogen, have the potential to provide lactate, and produce growth factors as well as cytokines [23]. Moreover, it has been shown that astrocytes are more resistant to oxidative damage because they possess antioxidant mechanisms such as high concentrations of reduced glutathione and vitamin C [21]. Therefore, a reduction in the protective function of astrocytes could contribute to neural dysfunction.
Differences between rabbit and human retinas and astrocytes must be taken into account when comparing the two species [38,41,42,82]. The rabbit retina has epiretinal vascularization and possesses perivascular astrocytes which are absent in humans. However, in both species, astrocytes are located at the NFL and GCL. The rabbit retina had two main groups of astrocytes: astrocytes associated with the nerve-fibre bundles (Figure 10A) and perivascular astrocytes (type I and type II) (Figure 10A,D), associated with the vitreous blood vessels [40].
As mentioned above, astrocytes are essential for the maintenance of neural homeostasis, and their susceptibility to alteration in long-term hypercholesterolaemia has been reported [15]. Thus, in hypercholesterolaemic rabbits, all retinal types of astrocytes were reactive, having large amounts of rough endoplasmic reticulum and upregulation of GFAP immunoreactivity (Figure 10B,E,H). The altered lipid homeostasis, in conjunction with increased astrocyte activity, could explain the build-up of electrodense particles, probably lipofuscin and lipids, found in their cytoplasm. The exposure of these electrodense particles to light and high oxygen concentrations provide ideal conditions for the formation of reactive oxygen species that damage cellular proteins and lipid membranes [178], a situation that could impair the mechanism of protection from ischaemia. If we add to this the higher concentrations of extracellular toxic substances (e.g. glutamate) which could damage the neurons by cytotoxic mechanisms [21,22], the possibilities of keeping the cellular machinery intact against ischaemia diminish in favour of neuronal death. All the above-mentioned conditions could contribute to macroglial swelling and subsequent breakdown of intermediate filaments (loss of GFAP staining) and ultimately macroglial death [23]. In fact, hypercholesterolaemic rabbits showed apoptosis and necrosis affecting Müller cells and astrocytes (Figure 7B,9A), resulting in a statistically significant loss of all types of astrocytes in comparison with control animals (Figure 10A,B,\n\t\t\t\t11) [15].
In summary, long-term hypercholesterolaemia lowers the astrocyte number and their antioxidant activity as well as the capability to remove glutamate from the extracellular space; it may also contribute to neuronal dysfunction [15,158]. The reactivation and migration of retinal Müller cells may be reflecting an adaptive system to supply nutrients to those areas of the retina exposed to the chronic ischaemia generated by the hyperlipidaemia.
It has been established that the atherosclerotic lesions can undergo regression in experimental animals such as rabbits, dogs, and non-human primates [179]; and the lack of progression or even regression can occur in humans, especially with the introduction of new therapeutic options [180].
Animal models are useful for studying lesion regression after the normalization of cholesterol serum values. When high levels of cholesterol are withdrawn from the diet, rabbits recover some of the biochemical and histological parameters altered in cholesterol-fed animals [16,181]. Serum concentration of total cholesterol, triglycerides, phospholipids, VLDL, HDL, LDL, and intermediate-density lipoprotein (IDL) have reported to increase in rabbits fed with a 0.5% cholesterol-enriched diet for eight months. When the same animals are then fed a standard diet for another 6 months, (reverted rabbits), lipid values returned to normal [158]. Notably, the normalization of serum values was not followed by a complete recovery of the thoracic aorta, choroid [16], or histology of the retina (Figure 5C) [158]. Specifically, in reverted rabbits, Bruch’s membrane (Figure 3C) and RPE alterations (Figure 4C) were still present although to a lesser extent than in hypercholesterolaemic animals (Figure 3B,\n\t\t\t\t4B). Bruch’s membrane was thicker in some areas due to collagenous and electrodense material in the outer collagenous layer (Figure 3C). This contrasted with the observations in hypercholesterolaemic rabbits in which the thicker Bruch’s membrane resulted from the build-up of electrodense and electrolucent particles, mainly at the inner collagenous layer (Figure 3B) [15]. The cytoplasm of RPE cells contained a considerably lower quantity of lipids in reverted animals (Figure 4C), although in some instances the lamellar structures (the plasma membrane of basal infolding back on itself) described in hypercholesterolaemic rabbits were also seen. This partial structural recovery could improve the diffusion of nutrients from the choriocapillaris and removal of cell debris from RPE, thus exerting a possible effect on the retina. However, reverted rabbits retained features observed in hypercholesterolaemic animals, such as an apparent decrease in retinal thickening (Figure 5C), intense cell degeneration due to necrosis and apoptosis in the ONL, INL, and GCL and axonal degeneration at the NFL (Figure 6B, 7CD). The empty spaces following neuronal death observed in hypercholesterolaemic animals were occupied by Müller cells (in OPL, IPL, NFL) and by astrocytes (in NFL) in reverted rabbits (Figure 6A) [158].
It bears mentioning that the retinal vessel in reverted rabbits showed greater damage than in hypercholesterolaemic animals such as: thickening of the basal membrane with numerous dense bodies, necrosis of endothelial cells, hypertrophy of the muscle layer, and increase in the collagen tissue of the adventitia (Figure 8C) [158]. The maintenance of retinal damage observed in reverted animals could be at least partly due to the greater alterations of retinal vessels and the persistence of the choriocapillaris alterations [16]. The vascular retinal alterations, which extended from the endothelium to the adventitia, could contribute to sustain an ischaemic situation despite the diet-induced normalization of lipid levels. Another factor that could contribute to the maintenance of retinal damage would be the role of Müller cells in neuronal swelling and apoptosis. During ischaemia, over-excitation of ionotropic glutamate receptors not only leads to neuron depolarization, which causes excess Ca2+ influx into the cells, but also activates the apoptosis machinery. The ion fluxes in the retinal neurons, associated with water movements that are mediated by aquaporin-4 water channels expressed by Müller cells, can result in neuronal swelling [182]. Thus, during ischaemic episodes in the rabbit retina, the plexiform layers and the cytoplasm of neurons become oedematous.
In summary, normalization of the lipid level is not followed by a complete normalization of the retinal histology. The remaining changes in the retina are due mainly to the sustained chronic ischaemia caused by the alterations in the retinal vessel, Bruch’s membrane, and RPE. Such ischaemic situations exert a detrimental impact on the neurons of the different layers of the retina.
As described for the Bruch’s membrane-retinal complex, the normalization of the blood-lipid levels by the substitution of 8 months of a hypercholesterolaemic diet by 6 months of a standard one, do not reverse the changes in the retinal macroglial population of hypercholesterolaemic rabbits [158].
In reverted animals, Müller cells were hypertrophic and filled up the empty spaces left by degenerated neurons and axons (Figure 9B). This hypertrophy could be due to the osmotic swelling of Müller cells. A significant correlation between Müller cell hypertrophy and the extent of osmotic Müller cell swelling has been reported in rat retina during retinal inflammation, suggesting that the alterations of swelling properties is characteristic of Müller cell gliosis [183]. It has also been proposed that Müller cell swelling in the post-ischaemic retina is caused by inflammatory mediators, due to the activation of phospholipase A2 by osmotic stress [182]. In both hypercholesterolaemic and reverted rabbits, the hyperlipaemic diet could have caused an imbalance in long-chain polyunsaturated fatty acids (in the neural retina, these are present mainly in the phospholipids of the cell membranes [53]) which could prompt an increase in inflammatory elements such as reactive oxygen species from macrophages, TNF-α, IL-1β, IL-6, Natural Killer, cytotoxic T lymphocyte activation, and lymphocyte proliferation [51]. Therefore, ischaemic and inflammatory processes could trigger Müller cell hypereactivity in hypercholesterolaemic animals and reverted rabbits and provoke the hypertrophy and swelling of this cell type.
The astrocytes of reverted rabbits displayed changes with respect to hypercholesterolaemic animals. The area occupied by the astrocytes associated with the nerve-fibre bundles was significantly lower than in the hypercholesterolaemic group (Figure 10H,I,11). With respect PVA (perivascular astrocytes), a striking feature was the absence of type I PVA, thus the intense GFAP immunoreactivity found in the retinal blood vessels was due mainly to type II PVA (Figure 10C,F). The processes of these cells formed a network similar to that exhibited by the type I PVA of the normal rabbits [158]. The maintenance of the area occupied by the PVA in reverted animals (Figure 11) could be due to the hyperplasia of type II PVA as an attempt to compensate for the loss of type I PVA (Figure 10C,F). This cell proliferation is presumably a response to the sustained retinal ischaemia undergone by reverted rabbits despite of normalization of cholesterol levels. Type II PVA of reverted animals were reactive, hypertrophic, and had an enlargement of their cell bodies and processes (Figure 10F) [158]. These features plus the above-mentioned hyperplasia are typical changes of glial cells in response to nerve damage [184].
The specific function of reactive gliosis is unknown. It has been reported that glial cells undergoing reactive gliosis up-regulate the production of cytokines and neurotrophic factors which may be crucial for the viability of injured neurons [168]. Additionally, it is presumed that reactive gliosis is involved in phagocytosis of debris and in restoring breaches in the blood-brain barrier by scar formation [185]. Müller cells and astrocytes from hypercholesterolaemic and reverted rabbits had cell debris in their cytoplasm [158]. It has been reported that astrocytes [186] as well as Müller cells [187] can exert phagocytic functions and that the microglia (the main phagocytic cell of the nervous system) intervene only when the build-up of debris in the nervous tissue is abundant [188]. Phagocytosis of exogenous particles, cell debris, and hemorrhagic products may be an important scavenging function of Müller cells [168]. It has been suggested that the phagocytic process of these cells is similar to that associated with macrophages and that in addition they can function as antigen-presenting cells [39,168].
From the above, it can be concluded that the substitution of a hyperlipaemic diet by a standard one in an experimental rabbit model normalizes the blood-lipid levels. However, the progressive and irreversible chronic retinal ischaemia secondary to cholesterol-induced changes in the choroid [16,147] as well as the retinal blood vessels trigger a sustained reactive gliosis that could be exerting neurotrophic, phagocytic or immune-related functions among others.
Immunohistochemistry anti-GFAP in rabbit retinal whole-mount. A-C: Type I perivascular astrocytes (PVA). D-F: Type II PVA. G-I: Astrocytes associated with the nerve-fibre bundles (AANFB). A, D, G: Control rabbits. B, E, H: Hypercholesterolaemic rabbits. C, F, I: Reverted rabbits. A-C: In hypercholesterolaemic animals Type I PVA have a higher GFAP+ immunoreactivity than in control animals; these cells are absent from many retinal vessels. In reverted animals a striking feature is the absence of type I PVA. D-F: In hypercholesterolaemic animals Type II PVA have higher GFAP immunoreactivity, robust cell bodies and thicker processes than in control. In reverted animals the intense GFAP+ cells are morphologically similar to the reactive type II PVA of hypercholesterolaemic animals. G-I: In hypercholesterolaemic and reverted animals the AANFB show high GFAP+ immunoreactivity, robust cell bodies, and thick processes. [Astrocytes cell bodies (arrow); vessel free of type I PVA ( arrowhead); GFAP immunorectivity of Müller cells (empty arrow)]. (Modified from Ramírez et al. [
Area occupied by astrocytes per zone measured (0.1899mm2) in Control, hypercholesterolaemic, and reverted animals. (Modified from Ramírez et al. [
Hypercholesterolaemia is a risk factor for the development of chronic ischaemia in the retina and therefore for neuronal survival [15,158]. It is now recognized that lipids play a key role as structural and signalling molecules. Given that lipid intake is most dependent on food composition, the dietary regimen could contribute to induction or prevention of retinal diseases. In relation to this, a pertinent question would be whether or not the normalization of the plasma-cholesterol levels could restore the retinal changes that take place during hypercholesterolaemia and reverse the chronic ischaemia process generated by this situation. The answer to this question seems to be no, since, although it is true that the lipid accumulations in the choroid and Bruchs’ membrane are reduced with the normalization of the blood-lipid level, some structural changes do not reverse [16,158], implying an irreversibly chronic situation and very probably progressive ischaemia in retina.
The authors would like to thank David Nesbitt for correcting the English version of this work. This work was supported by RETICs Patología Ocular del Envejecimiento, Calidad Visual y Calidad de Vida (Grant ISCIII RD07/0062/0000, Spanish Ministry of Science and Innovation); Fundación Mutua Madrileña (Grant 4131173); BSCH-UCM GR35/10-A Programa de Grupos de Investigación Santander-UCM. Beatriz Gallego is currently supported by a predoctoral fellowship from the Universidad Complutense de Madrid.
Epoxy resin adhesive (ERA) is the general term for polymers with two or more epoxy groups in the molecule. It is widely used in industries and is an important thermosetting resin adhesive [1, 2]. ERA is a thermosetting adhesive with strong adhesion, high cohesion, low shrinkage, low cost and low creep rate. It can be used for several materials, such as metal, cement and wood; thus, it is referred to as a ‘universal and strong’ glue [3]. It has a history of more than 70 years. The molecular end of epoxy resin is connected with epoxy groups. During curing, hydroxyl and ether bonds are formed, and the structure contains benzene or heterocyclic rings. Due to the presence of epoxy groups, hydroxyl groups, ether bonds, ester groups and other polar groups, it has a strong bonding effect on many substances other than non-polar polymers [4]. After the epoxy-based adhesive is cured, it forms a complex three-dimensional (3D) network structure with strong cohesion. The epoxy-based adhesive hardly generates low-molecular products during curing, has a small linear expansion coefficient, stable dimensions, small internal stress and better bonding strength. Epoxy-based adhesives meet the requirements of structural adhesives, but they also have some shortcomings. Because the curing process of epoxy-based adhesives needs a higher temperature, and it contains many rigid groups, such as a benzene or heterocyclic ring, the flexibility of the molecular chain is minimal [5]. Besides, after cross-linking to form a network structure, the deformability is further weakened, showing strong brittleness, which results in low bonding strength, poor impact strength, delamination and easy cracking resulting of epoxy-based adhesives [3]. Meanwhile, its flame retardancy is poor. As a structural adhesive, it is expected to cure quickly, have higher heat resistance and flame retardancy. Therefore, epoxy-based adhesives must be modified to expand its scope of application. This study mainly introduces the curing, heat resistance, toughening and flame-retardant modification of epoxy-based adhesives and their application in different fields.
As a thermosetting adhesive, ERA must be cured at high temperatures. However, for industrial applications, it must be cured at room temperature [6, 7], so the importance of developing curing agents for epoxy-based adhesive cured at room temperature is self-evident. Especially, room-temperature fast-curing epoxy adhesives can be used in aerospace and marine engineering applications, as well as in traditional manufacturing and daily life [8, 9], because of their fast-curing speed, high strength and strong durability [10]. With the continuous development of curing agents, room-temperature fast-curing ERAs as chemical products have become indispensable in the manufacturing industry [11]. The room-temperature curing of ERAs is an energy-saving curing method. The curing process is simple, and it is suitable for various curing situations that do not require heating.
According to the curing temperature, epoxy-based adhesive curing agents can be divided into amines, acid anhydrides, synthetic resins and latent curing agents by different chemical components. Among them, amine-curing agents are often used in ambient curing at room temperature [12]. Amine-curing agents are the earliest room-temperature curing agent used. It adheres excellently to most adherents. However, amine-curing agents have high volatility and toxicity and have strong water and carbon dioxide absorption abilities. The cured surface is prone to whitening and blistering [13]. Among the amine-curing agents, there are mainly polyamides, aliphatic amines, alicyclic amines. In industrial applications, curing agents, such as aliphatic amines, polyamides and alicyclic amines, are often used [14].
As one commonly used curing agent, polyamide accounts for more than 30% of the total epoxy resin-curing agents. It is mainly made of dimers or unsaturated fatty acids and polyamine as raw materials and forms amide bonds through dehydration condensation [15]. Among them, the dimerised fatty acid polyamide can overcome the shortcomings of epoxy-based adhesives’ fragility and has low toxicity, good workability and high-paint film adhesion [16]. Modifying the polyamide-curing agent can effectively improve the properties of epoxy resins. For example, Bryan et al. [17] used polyamide and phthalic anhydride as the curing agent of epoxy resin to improve the curing rate at room temperature. Gholipour et al. [18] improved the thermal properties of epoxy resins by preparing polyamidoamine (PAMAM) dendrimer-curing agents grafted with graphene oxide.
The amount of aliphatic amine-curing agents in various curing agents is second only to polyamide because most are liquid and have good miscibility with epoxy resin. Epoxy resin can be cured at room temperature. Modifying the aliphatic amine-curing agent can effectively improve the mechanical properties of epoxy resin. For example, Patel et al. [19] brominated unsaturated castor oil, which was the main raw material, and reacted the resulting material with excess aliphatic diamines, such as ethylenediamine, 1,3-propanediamine and 1,6-hexanediamine, to obtain an amino-functionalised castor-oil-curing agent to improve the mechanical strength of epoxy resins. Wan et al. [20] synthesised a novel low-volatility star aliphatic polyamine with extremely high-NH2 functional groups as the curing agent of bisphenol A diglycidyl ether epoxy resin. The novel curing agent has a high reaction activity, and the reaction has autocatalytic properties. Additionally, compared with linear propylene diamine, it can significantly increase the crosslinking density and glass transition temperature (Tg) of the cured epoxy resin.
Alicyclic amines are amine compounds containing alicyclic rings. The alicyclic amine-curing agent has many spatial conformations and good flexibility. Most alicyclic amines are low-viscosity liquids with long pot life and excellent chroma and gloss. Alicyclic polyamine compounds are widely used as curing agents for epoxy-resin adhesives and other structure adhesives because the molecular structure contains alicyclic rings (five-membered or six-membered rings) with higher stiffness and better stability. Xu et al. [21] used alicyclic polyamines and acrylonitrile to synthesise the curing agent to improve the bonding strength of epoxy-resin-based adhesives.
ERAs can withstand high temperatures up to 175°C and are compatible with all common reinforcement materials. A higher-temperature-resistant ERA can be essentially applied in many fields. In addition to having high-temperature-resistant properties, it can also show strong properties in many aspects, such as high-temperature-resistant epoxy. It has excellent mechanical properties, relatively outstanding strength and has good corrosion resistance and insulation properties [22, 23]. Therefore, research on high-temperature-resistant ERA is extremely necessary. There are two main measures in implementing the modification of high-temperature ERA. The first measure entails introducing new structures into the epoxy resin itself to improve its high-temperature properties. The second measure is blending or co-polymerisation to modify the high-temperature epoxy resin.
The modification treatment of high-temperature-resistant ERA is mainly performed to promote the structure of ERA to be changed to a certain extent. It is more common to improve the high-temperature resistance effect by introducing new structures. This method for introducing a new structure through the epoxy resin also involves many types of processing in actual implementation. For example, the effective use of multifunctional structures can promote the formation of ring structures [24]. The functionality of the epoxy-resin structure increases, which can promote the stability and cross-linking density of the corresponding structure and finally effectively enhance the high-temperature resistance of the epoxy resin. Furthermore, introducing rigid groups that have a good high-temperature resistance effect can promote the epoxy resin to show excellent performance, such as benzene ring, fused ring and biphenyl are some of the more commonly used rigid groups [25]. Moreover, Bismaleimide and epoxy resin may form an interpenetrating network or two-phase system during the polymerisation process, which improves the toughness and heat resistance of the epoxy resin [26].
Luo et al. [27] modified bisphenol A epoxy resin with bismaleimide and 4,4′-diaminodiphenylsulfone to produce a two-component high-strength bismaleimide modified epoxy-based adhesive with high cross-linking. The viscosity of the adhesive gradually decreases as temperature increases and can maintain good mechanical properties and storage stability. Cheng et al. [28] used 2,7-dihydroxynaphthalene and epi-chlorohydrin as raw materials to synthesise an epoxy-resin-based adhesive containing a naphthalene ring structure. Also, Yang et al. [29] used 1-naphthol and dicyclopentadiene as the main raw materials to synthesise an ERA containing naphthalene ring and dicyclopentadiene structure. The results show that the ERA has a higher heat resistance than the bisphenol A epoxy resin.
The blending and co-polymerisation methods can effectively and mainly help select an ideal material and ERA for effective combination to ensure greater high-temperature-resistant properties. Combined with the specific application and implementation of these methods, the requirements for specific blended or co-polymerised materials are relatively strict [6]. For example, the appropriate use of heat-resistant polymers, nano-materials and silicones can achieve ideal modifications. The treatment effect improves the heat resistance of the epoxy resin; besides, it can also guarantee its toughness or strength to be ideally optimised. Zhang et al. [30] modified ordinary bisphenol A epoxy resin with organic silicon active intermediates, added nitrile-40 and nano-TiO2 active fillers to toughen and strengthen the resin. The results showed that the modified ERA that could be cured at room temperature, used for a long time at 250°C and can withstand 300°C for a short period has been developed. Hu et al. [31] used polymethyltriethoxysilane (PTS) to react with a synthetic phosphorus-containing silane coupling agent in a certain ratio to modify the bisphenol A epoxy resin. The modified ERA retained its tensile strength. However, the Tg, high-temperature thermal stability, impact strength and limiting oxygen index (LOI) were all improved. Ramirez et al. [32] combined epoxycyclohexyldimethylsilyl with the curing agent 4,4′-(1,3-phenylene diisopropylidene) diphenylamine after coordination. Due to the dispersion of the heat-resistant epoxycyclohexyldimethylsilyl in the ERA, the silicon oxide compound formed during the thermal decomposition process deposited on the surface of the unburned polymer, partially forming a protective layer, slowing down the heat transfer to a certain extent and inhibiting the flammability as the gas volatilises, thereby preventing the mixture of flammable gas and oxygen.
ERAs are cost-effective and have simple moulding and processing methods, low chemical shrinkage after curing, good chemical stability, excellent mechanical properties and good bonding properties [33]. However, due to several epoxy groups, the cured structure has a high chemical cross-link density, low-molecular chain flexibility and high internal stress, resulting in greater brittleness, poor impact resistance and fatigue resistance of the ERA. It limits its application and development in some high-tech fields that require high durability and reliability.
ERA has good compatibility with rubber and other elastomers. After the rubber is dissolved in the uncured epoxy-resin matrix, the ERA undergoes a curing reaction, separates from the rubber and is dispersed in the resin to form a ‘sea island’ structure, thereby improving the toughness of the epoxy resin [34]. The rubber molecules containing no reactive groups cannot react with epoxy resin and will precipitate out during curing, which has a toughening effect. However, if excessively added, it weakens the adhesion of the bonding interface. Therefore, rubber molecules with active groups are generally used to modify and toughen epoxy resins. Carboxyl-terminated liquid nitrile rubber (CTBN) and amino-terminated liquid nitrile rubber (ATBN) have been widely mixed with epoxy resins to improve their toughness. For example, Wang et al. [35] used CTBN and ERA to prepare a structural adhesive with high shear and excellent peel strength. Meanwhile, to adapt to the application in different fields and improve the toughness of the cured ERA, flexible segments are often introduced into the curing agent to control its physical and chemical properties. Lou et al. [36] used dendritic polyester polyol as the branching unit and toughening segment and imidazole-terminated diisocyanate as a functional group to synthesise a functional toughening-curing agent to improve the toughness of ERAs. In the initial curing stage, several secondary hydroxyl groups react with the isocyanate groups to form a dendritic epoxy structure, and the bisphenol A epoxy molecule acts as a long-chain polyol to react with the dendritic epoxy structure. Simultaneously, the epoxy group opens a ring to form a secondary hydroxyl group and continuously reacts with the isocyanate group in the cross-linking structure. Furthermore, NH- existing in the carbamate reacts with the epoxy group, thereby obtaining an epoxy resin-curing cross-linking system with a 3D dendritic cross-linking structure. Thus, the toughness of epoxy resin has been greatly improved. Meanwhile, Zheng et al. [37] studied the toughening effect of nano-SiO2 on cycloaliphatic epoxy systems. They used nano-silica to improve the toughness of cycloaliphatic ERA. The coupling agent γ-glycidoxypropyltrimethoxysilane (KH-560) was used to modify the surface properties of SiO2. The results show that adding nano-SiO2 effectively improves the toughness and thermal stability of the cycloaliphatic ERA.
ERAs have been widely used due to their excellent properties [38]. However, the conventional ERA is formed from reacting bisphenol A and epi-chlorohydrin [39]. It is flammable when cured, which could cause a high fire risk when ERAs are used in certain applications, such as printed manufacture, furniture, aircraft and train interiors [40]. Serious consequences could occur due to the high release rate of heat and smoke accompanied by the combustion of epoxy resins. Therefore, it is very important to enhance the flame retardancy of ERA for expanding their application in this field. Many studies have reported improving the flame retardancy of epoxy resins via structural modification or adding various flame retardants [41, 42]. Structural modification introduces the elements with flame-retardant functions into the molecular structure of ERAs. The representative of structural modification is brominated ERA, which is the reaction product of epi-chlorohydrin and brominated bisphenol A, such as tetrabromo diphenylolpropane. The brominated ERA has an outstanding flame ignition resistance, whereas the bromine content is ~18–20% in the finished adhesive. When the product is thermally decomposed at the temperature generated in the fire, it will release acid halide gas, which protects the product from fire. These halide gases act as extinguishers to significantly increase the ignition temperature of the cured ERA. The addition of flame retardants in ERA shows good properties, such as simple processing, low cost, wide source of raw materials and obvious flame-retardant effect. It is one of the most popular strategies for flame-retardant modification of ERA. Flame retardants could be an integral part of the ERA by reacting chemically with the polymers or simply mixed with the ERA without any reaction. All kinds of flame retardants work by acting chemically and/or physically either in the vapour phase and/or condensed phase to interfere with the combustion process during heating, pyrolysis, ignition or flame spread [43]. The types of flame retardants and their operating characteristics are described as follows [38]: (1) char formers: usually, phosphorus compounds, which remove the carbon fuel source and provide an insulation layer against the fire’s heat. (2) Heat absorbers: usually metal hydrates, such as aluminium trihydrate (ATH) or magnesium hydroxide, which remove heat by evaporating the water in their structure. (3) Flame quenchers: usually, bromine- or chlorine-based halogen systems that interfere with the reactions in a flame. (4) synergists: Usually, antimony compounds, which enhance the performance of the flame quencher. The flame-retarding action of ERA could be divided into physical and chemical actions. Physical action includes cooling, barrier action via the formed protective layer and fuel dilution. For the cooling action, flame retardants absorb the heat when they decompose, and the endothermic decomposition may consume the released heat from the combustion of ERA, then the burning adhesive is cooled. Generally, most inorganic-hydrated compounds, such as aluminium and magnesium hydroxides, may play a role via this mode. For the barrier action, the decomposition products of some flame retardants shield the surface of the adhesive and form a protective layer that may act as a barrier to resist oxygen and the produced heat. Consequently, the burning process is difficult to sustain. For fuel dilution, some flame retardants may release water vapour, carbon dioxide, or other inert gases, thereby decreasing the concentration of free radicals and combustible gases in the burning adhesive. Chemical action includes gas-phase and condensed-phase reactions. The gas-phase reaction mechanism is generally regarded as the interruption of the chain reaction of the ERA structural system during burning. The flame retardant that provides the flame-retarding action via the gas-phase reaction action may capture free radicals to decrease the concentration of free radicals than the combustion threshold and then prevent or delay burning, in which halogen-containing flame retardants are the most representative. During burning, the halogen-containing flame retardants release the hydrogen halide, which may react with the free radicals formed during burning to inhibit the combustion of substrates. For the condensed-phase reaction, the flame retardant that provides the flame-retarding action via the condensed-phase reaction may promote the formation of a carbonised or vitreous layer by cross-linking, aromatising, catalytic dehydration of polymers or reacting with the ERA. In this flame-retardant mode, intumescent flame retardants may form an intumescent char layer by some chemical reactions during burning, and generally, the formed char layer may promote the barrier action and improve the flame retardancy of the ERA. Furthermore, some flame retardants can accelerate the rupture of the chains of the ERA, and several droplets are produced under this condition. Then, a large amount of heat may be taken away when these droplets move away from the burning zone [44]. Flame retardants can be classified into several families, including halogen-based compounds, phosphorus-based compounds, silicon-based compounds, nano-composites and metal-based compounds. Among them, halogen-based and phosphorus-based flame retardants are widely used.
For halogen-containing flame retardants, the flammability of ERA can be greatly reduced by incorporating a halogen into the molecule. The best known are the halogen-containing ERAs based on chlorinated, brominated and fluorinated bisphenol A. They often comprise blends of two or more epoxy-resin systems, one of which is a halogenated resin, and the other of which perhaps contains a halogenated curing agent, such as chloric anhydride. These halogen-containing ERAs have been developed over decades and are still used widely due to the obvious advantages of low cost, processability, miscibility and low reduction in physical/mechanical features of the flame-retardant systems. Halogen-containing flame retardants function by liberating acid halide gases as the product thermally breaks down at the high temperatures incurred in a fire. These halide gases act as extinguishers to significantly increase the ignition temperature of the cured ERA. The mechanism of these flame retardants is the release of hydrogen halides (HCl and HBr) during the thermal decomposition of the ERA. The chemical reaction during burning is a free radical chain reaction, and the continuous growth of free radicals is important for maintaining the burning process for the ERA. Several chemical halide intermediates form during the burning of ERAs. These halide species are carried into the flame front of the burning polymer where they inhibit key free radical reactions of combustion. This inhibition results in flames becoming unsteady and extinguishing and lowers the release of heat overall [10, 11]. Generally, alicyclic or aliphatic halogen-containing flame retardants are more efficient than aromatic halogen compounds. Alicyclic or aliphatic halogen-containing flame retardants burn at low temperatures for most polyolefins because of lower carbon-halogen bond energies and easier halogen release [45]. Beach et al. [46] synthesised brominated polybutadiene-polystyrene (BrPBPS) flame retardant from styrene-butadiene-styrene triblock architecture by bromination. The BrPBPS flame retardant contains similar aliphatic bromine as in hexabromocyclododecane, but with a higher-molecular-weight structure. It provides similar flame-retardant activity as hexabromocyclododecane in polystyrene blends, where both release HBr to provide the gas-phase activity. Both also provide enhanced ERA degradation as another major pathway for condensed flame-retardant activity. Jiang et al. [47] added BrPBPS into epoxy asphalt adhesive to enhance its flame resistance. Meanwhile, the Tg of the epoxy asphalt adhesive was notably enhanced with the inclusion of BrPBPS. Wu et al. [48] synthesised liquid-oxygen-compatible bromine-containing ERA by the polycondensation of tetrabromobisphenol A and epoxy resins. The bromine element was introduced into the ERA to improve the liquid oxygen compatibility and enhance flame retardancy. The results showed that limiting oxygen index increased drastically when the bromine content was increased from 0% to 21.20%.
Phosphorus-containing flame retardants are identified as one of the most promising halogen-free flame retardants [49, 50] since they possess excellent properties, such as low-smoke emission, low toxicity, form a stable carbonised layer after burning effectively [44, 46, 51, 52] and are environmentally friendly [35]. For preparing organophosphorus epoxides-based adhesive, three general methods were employed. First, the condensation of 1-chloro-2,3-epoxypropane and organophosphorus compounds containing two or more hydroxyl groups. Second, the Michaelis-Arbuzov reaction of phosphites with 1-halogeno-2,3-epoxypropanes. Finally, the epoxidation of tertiary phosphine oxides by peroxy acids [53]. Phosphorus-containing flame retardants can be generally classified into three categories: (1) simple reactive phosphate monomers; (2) linear polyphosphazenes; (3) aromatic cyclic phosphazenes. They may be integrated into the ERA chains through co-polymerisation, homo-polymerisation, surface modification or blending; simple inorganic or organic additives are excluded [25, 53, 54, 55]. During the burning of ERAs, most of the current phosphorus-containing flame retardants may act simultaneously in the condensed and gaseous phases [56]. In the condensed phase, phosphorous-containing flame retardants can make the amount of carbonaceous residue or char, which acts as the thermal insulation, and a barrier of oxygen to transfer to the burning adhesive increase. Afterwards, a carbonised layer is formed. The carbonised layer prevents further pyrolysis of the corresponding ERA [57]. In the gaseous phase, some phosphorus-based additive flame retardants may produce several free radicals during the thermal decomposition process, and they may react with the free radicals which are generated from the ERA. Then, the free-radicals-supported combustion of polymers might be stopped due to the lack of fuel [58, 59, 60]. Wazarkar et al. [61] synthesised phosphorus–sulphur-containing di and tetra functional carboxyl curing agents and used them in preparing high-performance ERA and coating. The anticorrosive and flame-retardant properties of the adhesives and coatings were improved as the concentration of the flame-retardant-curing agents increased, and they exhibited excellent mechanical and chemical properties and thermal stability. Ma et al. [62] synthesised a phosphorus-containing bio-based ERA from itaconic acid and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. As the matrix, its cured epoxy network with methyl hexahydrophthalic anhydride as the curing agent showed comparable Tg and mechanical properties to diglycidyl ether in a bisphenol A system, as well as good flame retardancy with UL94 V-0 grade during a vertical burning test.
ERA is often used mainly because it has the advantages of low-temperature curing, good bonding performance and improved engineering efficiency. ERAs are usually used for metal bonding, concrete bonding and wood adhesive.
Several studies have been conducted on the use of ERAs for metal bonding. In a previous study, polyurethane 1,2-polyethylene oxide was first cured onto the metal surface and then used 1,1-polyoxyethylene ether. The adhesive adheres the polyurethane resin material to the metal [63]. Subsequently, another study prepared a novel high-temperature curing epoxy adhesive using polysulfone as a raw material. Studies have shown that the tackifier resin accelerates the bonding of ERA and steel and promotes the bonding and vulcanisation of fluorine rubber [64]. Uehara et al. [65] prepared a monolithic ERA layer with a porous structure on the surface of a stainless steel (SUS) plate through a polymerisation-induced phase separation process, as a mediator for bonding SUS and various thermoplastic resin plates. The research results show that the bond strength of the apparent bond area between SUS and ERA is two to three times higher than those for direct metal-resin bonding.
Concrete is the most widely used worldwide building material. Traditional cement is used as a binding material for concrete. Cement concrete also has some shortcomings, such as low tensile and flexural strength, high porosity, low durability and abrasion resistance and longer solidification time. The mechanism of epoxy concrete is such that ERA forms a 3D structure through cross-linking in the combination of masonry mortar and concrete [66]. Afterwards, the ERA particles are dispersed into the system. Then, a part of the adhesive particles settle on the surface of the aggregate particles and participate in the cross-linking reaction. Finally, the ERA particles form a cured network structure, and the aggregates are bonded in the cured epoxy network structure. In ERA/mortar/concrete composites, the adhesive network forms a bridge between aggregates, so that the epoxy-based composites have higher mechanical properties and impermeability [67]. Also, it was found that the resin bond concrete has great advantages in the manufacture of machine tool beds. Kim et al. [68] studied ERA as the matrix material of resin concrete. The reinforced aggregate of resin concrete comprises pebbles and sand. The results showed that when the mass fraction of resin in the resin concrete is 7.5%, the thermal expansion coefficient of the resin concrete is the same as that of cast iron. In this case, the specific heat of resin concrete is 63% larger than that of cast iron. Beutel et al. [69] added epoxy resin-based adhesive concrete and coarse aggregate to the mixture and found that adding the aggregate did not affect the strength of the mixture. Additionally, the specimens exhibited much higher tensile and flexural strength than ordinary concrete, and the compressive strength was similar to ordinary high-strength concrete.
Lei et al. [70] modified soy protein isolate with a surfactant grafted with maleic anhydride and blended with epoxy resin to prepare wood adhesives with higher bonding strength and good water resistance. Zhang et al. [71, 72, 73] prepared wood adhesive with good water and heat resistance by the co-polycondensation of tannin or lignin or starch with furfuryl alcohol and blending with epoxy resin. After bonding with wood, the adhesive was cured at high temperature under pressing to prepare a wood-based panel. After testing, the material showed good shear strength.
Although research activities on modifying ERAs have greatly progressed, several problems still need urgent resolution. For example, most of the toughening methods of ERAs are at the expense of the rigidity and strength of the modified product, and it is difficult to increase the toughness and strength of the ERA simultaneously. The ERA modified with rubber or nano-particles, due to the large specific surface area of nano-particles or rubber, is very easy to agglomerate. Therefore, how to uniformly disperse it in the ERA system to obtain a reinforced and toughened high-performance ERA remains an important research topic. Therefore, the future development direction of ERAs should be towards low-temperature fast curing, high performance, green environmental protection and multifunctional development. ERAs have developed in a more stable, safe and scientific direction.
This work was supported by The Yunnan Provincial Natural Science Foundation (Grant No. 202101AT070038, 2018FG001095), and the Yunnan Provincial Youth top talent project (YNWR-QNBJ-2020-166) and Youth talent support project and Middle-age Reserve Talents of Academic and Technical Leaders (2019HB026) and the 111 project (D21027).
The authors declared that they have no conflicts of interest.
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"14"},books:[{type:"book",id:"11988",title:"Magnesium Alloys",subtitle:null,isOpenForSubmission:!0,hash:"4da7079fb57ccc6aa9f8323d8d42bda6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11988.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11990",title:"Iron Ores and Iron Oxide",subtitle:null,isOpenForSubmission:!0,hash:"20cbec723d56ff06096e08d93750ad58",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11990.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11991",title:"Trace Metals in the Environment",subtitle:null,isOpenForSubmission:!0,hash:"668c7f042fb58587e82ac90c32a22447",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11991.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11993",title:"Reinforced Concrete",subtitle:null,isOpenForSubmission:!0,hash:"74188d8583c4569b6cf7755128a311be",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11993.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11995",title:"Elastomers",subtitle:null,isOpenForSubmission:!0,hash:"e37c2de13a51e358b06c9cf637b55d33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11995.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11996",title:"Granite",subtitle:null,isOpenForSubmission:!0,hash:"03b9e834fd0abe7ffef7ef85e7c02426",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11996.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites",subtitle:null,isOpenForSubmission:!0,hash:"31d8afbb8256b34918ddc7ce910cc6e5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12261",title:"Sol-gel Method",subtitle:null,isOpenForSubmission:!0,hash:"5d96c89299217a36052ad1b8031be001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12261.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12263",title:"Geosynthetic Materials and Products",subtitle:null,isOpenForSubmission:!0,hash:"9f1b26209b356040678d896248f51215",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12263.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12264",title:"Polyaniline",subtitle:null,isOpenForSubmission:!0,hash:"2e0710de2d17485e9d56a87461a2b0b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12264.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12265",title:"Silk-based Materials",subtitle:null,isOpenForSubmission:!0,hash:"7f580af2140c873052c6e12f9318ee95",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12265.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:37},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:98},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4379},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"596",title:"Computational Algorithm",slug:"computational-algorithm",parent:{id:"95",title:"Numerical Analysis and Scientific Computing",slug:"numerical-analysis-and-scientific-computing"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:56,numberOfWosCitations:82,numberOfCrossrefCitations:43,numberOfDimensionsCitations:47,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"596",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8754",title:"Scheduling Problems",subtitle:"New Applications and Trends",isOpenForSubmission:!1,hash:"c700a7e3dbf7482d7d82a1e6639b7f32",slug:"scheduling-problems-new-applications-and-trends",bookSignature:"Rodrigo da Rosa Righi",coverURL:"https://cdn.intechopen.com/books/images_new/8754.jpg",editedByType:"Edited by",editors:[{id:"69889",title:"Prof.",name:"Rodrigo",middleName:null,surname:"da Rosa Righi",slug:"rodrigo-da-rosa-righi",fullName:"Rodrigo da Rosa Righi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5095",title:"Montecarlo Simulation of Two Component Aerosol Processes",subtitle:null,isOpenForSubmission:!1,hash:"b3ae34b8425f0bd16af093dc899fa698",slug:"montecarlo-simulation-of-two-component-aerosol-processes",bookSignature:"Jose Ignacio Huertas",coverURL:"https://cdn.intechopen.com/books/images_new/5095.jpg",editedByType:"Authored by",editors:[{id:"37220",title:"Dr.",name:"Jose Ignacio",middleName:null,surname:"Huertas",slug:"jose-ignacio-huertas",fullName:"Jose Ignacio Huertas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"3250",title:"Theory and Applications of Monte Carlo Simulations",subtitle:null,isOpenForSubmission:!1,hash:"bed7d51effabfc6156f85819c2b51b2b",slug:"theory-and-applications-of-monte-carlo-simulations",bookSignature:"Victor (Wai Kin) Chan",coverURL:"https://cdn.intechopen.com/books/images_new/3250.jpg",editedByType:"Edited by",editors:[{id:"157011",title:"Prof.",name:"Wai Kin (Victor)",middleName:null,surname:"Chan",slug:"wai-kin-(victor)-chan",fullName:"Wai Kin (Victor) Chan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"43523",doi:"10.5772/53384",title:"Variance Reduction of Monte Carlo Simulation in Nuclear Engineering Field",slug:"variance-reduction-of-monte-carlo-simulation-in-nuclear-engineering-field",totalDownloads:3532,totalCrossrefCites:7,totalDimensionsCites:13,abstract:null,book:{id:"3250",slug:"theory-and-applications-of-monte-carlo-simulations",title:"Theory and Applications of Monte Carlo Simulations",fullTitle:"Theory and Applications of Monte Carlo Simulations"},signatures:"Pooneh Saidi, Mahdi Sadeghi and Claudio Tenreiro",authors:[{id:"19676",title:"Prof.",name:"Mahdi",middleName:null,surname:"Sadeghi",slug:"mahdi-sadeghi",fullName:"Mahdi Sadeghi"},{id:"22336",title:"Dr.",name:"Pooneh",middleName:null,surname:"Saidi",slug:"pooneh-saidi",fullName:"Pooneh Saidi"},{id:"22337",title:"Prof.",name:"Claudio",middleName:null,surname:"Tenreiro",slug:"claudio-tenreiro",fullName:"Claudio Tenreiro"}]},{id:"42376",doi:"10.5772/53203",title:"Monte-Carlo Simulation of Particle Diffusion in Various Geometries and Application to Chemistry and Biology",slug:"monte-carlo-simulation-of-particle-diffusion-in-various-geometries-and-application-to-chemistry-and-",totalDownloads:3428,totalCrossrefCites:7,totalDimensionsCites:11,abstract:null,book:{id:"3250",slug:"theory-and-applications-of-monte-carlo-simulations",title:"Theory and Applications of Monte Carlo Simulations",fullTitle:"Theory and Applications of Monte Carlo Simulations"},signatures:"Ianik Plante and Francis A. Cucinotta",authors:[{id:"21574",title:"Dr.",name:"Ianik",middleName:null,surname:"Plante",slug:"ianik-plante",fullName:"Ianik Plante"}]},{id:"43534",doi:"10.5772/53049",title:"Monte Carlo Statistical Tests for Identity of Theoretical and Empirical Distributions of Experimental Data",slug:"monte-carlo-statistical-tests-for-identity-of-theoretical-and-empirical-distributions-of-experimenta",totalDownloads:3563,totalCrossrefCites:1,totalDimensionsCites:9,abstract:null,book:{id:"3250",slug:"theory-and-applications-of-monte-carlo-simulations",title:"Theory and Applications of Monte Carlo Simulations",fullTitle:"Theory and Applications of Monte Carlo Simulations"},signatures:"Natalia D. Nikolova, Daniela Toneva-Zheynova, Krasimir Kolev and Kiril Tenekedjiev",authors:[{id:"19421",title:"Dr.",name:"Krasimir1",middleName:null,surname:"Kolev",slug:"krasimir1-kolev",fullName:"Krasimir1 Kolev"},{id:"159664",title:"Dr.",name:"Natalia D.",middleName:null,surname:"Nikolova",slug:"natalia-d.-nikolova",fullName:"Natalia D. Nikolova"},{id:"159666",title:"Dr.",name:"Daniela",middleName:null,surname:"Toneva-Zheynova",slug:"daniela-toneva-zheynova",fullName:"Daniela Toneva-Zheynova"},{id:"159668",title:"Prof.",name:"Kiril",middleName:null,surname:"Tenekedjiev",slug:"kiril-tenekedjiev",fullName:"Kiril Tenekedjiev"}]},{id:"43532",doi:"10.5772/53709",title:"Kinetic Monte Carlo Simulation in Biophysics and Systems Biology",slug:"kinetic-monte-carlo-simulation-in-biophysics-and-systems-biology",totalDownloads:3312,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"3250",slug:"theory-and-applications-of-monte-carlo-simulations",title:"Theory and Applications of Monte Carlo Simulations",fullTitle:"Theory and Applications of Monte Carlo Simulations"},signatures:"Subhadip Raychaudhuri",authors:[{id:"156414",title:"Dr.",name:"Subhadip",middleName:null,surname:"Raychaudhuri",slug:"subhadip-raychaudhuri",fullName:"Subhadip Raychaudhuri"}]},{id:"71902",doi:"10.5772/intechopen.86873",title:"Types of Task Scheduling Algorithms in Cloud Computing Environment",slug:"types-of-task-scheduling-algorithms-in-cloud-computing-environment",totalDownloads:1334,totalCrossrefCites:5,totalDimensionsCites:5,abstract:"Cloud computing is one of the most important technologies used in recent times, it allows users (individuals and organizations) to access computing resources (software, hardware, and platform) as services remotely through the Internet. Cloud computing is distinguished from traditional computing paradigms by its scalability, adjustable costs, accessibility, reliability, and on-demand pay-as-you-go services. As cloud computing is serving millions of users simultaneously, it must have the ability to meet all users requests with high performance and guarantee of quality of service (QoS). Therefore, we need to implement an appropriate task scheduling algorithm to fairly and efficiently meet these requests. Task scheduling problem is the one of the most critical issues in cloud computing environment because cloud performance depends mainly on it. There are various types of scheduling algorithms; some of them are static scheduling algorithms that are considered suitable for small or medium scale cloud computing; and dynamic scheduling algorithms that are considered suitable for large scale cloud computing environments. In this research, we attempt to show the most popular three static task scheduling algorithms performance there are: first come first service (FCFS), short job first scheduling (SJF), MAX-MIN. The CloudSim simulator has been used to measure their impact on algorithm complexity, resource availability, total execution time (TET), total waiting time (TWT), and total finish time (TFT).",book:{id:"8754",slug:"scheduling-problems-new-applications-and-trends",title:"Scheduling Problems",fullTitle:"Scheduling Problems - New Applications and Trends"},signatures:"Tahani Aladwani",authors:[{id:"291371",title:"Dr.",name:"Tahani",middleName:null,surname:"Aladwani",slug:"tahani-aladwani",fullName:"Tahani Aladwani"}]}],mostDownloadedChaptersLast30Days:[{id:"43533",title:"Monte Carlo Simulations Applied to Uncertainty in Measurement",slug:"monte-carlo-simulations-applied-to-uncertainty-in-measurement",totalDownloads:5733,totalCrossrefCites:13,totalDimensionsCites:0,abstract:null,book:{id:"3250",slug:"theory-and-applications-of-monte-carlo-simulations",title:"Theory and Applications of Monte Carlo Simulations",fullTitle:"Theory and Applications of Monte Carlo Simulations"},signatures:"Paulo Roberto Guimarães Couto, Jailton Carreteiro Damasceno and Sérgio Pinheiro de Oliveira",authors:[{id:"158935",title:"MSc.",name:"Paulo",middleName:"Guimarães",surname:"Couto",slug:"paulo-couto",fullName:"Paulo Couto"},{id:"159056",title:"Dr.",name:"Jailton",middleName:null,surname:"Damasceno",slug:"jailton-damasceno",fullName:"Jailton Damasceno"},{id:"159057",title:"Dr.",name:"Sérgio",middleName:"Pinheiro",surname:"Oliveira",slug:"sergio-oliveira",fullName:"Sérgio Oliveira"}]},{id:"71902",title:"Types of Task Scheduling Algorithms in Cloud Computing Environment",slug:"types-of-task-scheduling-algorithms-in-cloud-computing-environment",totalDownloads:1334,totalCrossrefCites:5,totalDimensionsCites:5,abstract:"Cloud computing is one of the most important technologies used in recent times, it allows users (individuals and organizations) to access computing resources (software, hardware, and platform) as services remotely through the Internet. Cloud computing is distinguished from traditional computing paradigms by its scalability, adjustable costs, accessibility, reliability, and on-demand pay-as-you-go services. As cloud computing is serving millions of users simultaneously, it must have the ability to meet all users requests with high performance and guarantee of quality of service (QoS). Therefore, we need to implement an appropriate task scheduling algorithm to fairly and efficiently meet these requests. Task scheduling problem is the one of the most critical issues in cloud computing environment because cloud performance depends mainly on it. There are various types of scheduling algorithms; some of them are static scheduling algorithms that are considered suitable for small or medium scale cloud computing; and dynamic scheduling algorithms that are considered suitable for large scale cloud computing environments. In this research, we attempt to show the most popular three static task scheduling algorithms performance there are: first come first service (FCFS), short job first scheduling (SJF), MAX-MIN. The CloudSim simulator has been used to measure their impact on algorithm complexity, resource availability, total execution time (TET), total waiting time (TWT), and total finish time (TFT).",book:{id:"8754",slug:"scheduling-problems-new-applications-and-trends",title:"Scheduling Problems",fullTitle:"Scheduling Problems - New Applications and Trends"},signatures:"Tahani Aladwani",authors:[{id:"291371",title:"Dr.",name:"Tahani",middleName:null,surname:"Aladwani",slug:"tahani-aladwani",fullName:"Tahani Aladwani"}]},{id:"71826",title:"An Empirical Survey on Load Balancing: A Nature-Inspired Approach",slug:"an-empirical-survey-on-load-balancing-a-nature-inspired-approach",totalDownloads:608,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Since the dawn of humanity man tried to mimic several animals and their behavior be it in the age of hunting of while designing the aero plane. Human brain holds a significant amount of power in observing the species around him and trying to incorporate their behavior in several walks of life. This mimicking has helped human to evolve into beings which we are now. Some typical examples include navigation systems, designing several gadgets like aero planes, boats, etc. These days these inspirations are several, and their inspiration is being utilized in several fields like operations, supply-chain management, machine learning and several other fields. The similar kind of approach has been discussed in this paper where we tried to analyze different phenomenon in nature and how different algorithms were designed from these and how these can ultimately be used to solve different issues in cloud balancing. Essential component of cloud computing is load balancer which holds a crucial role of task allocation in virtual machines and several kinds of algorithms were developed on different ways of task allocation procedures each holding its significance here we tried to find the optimal resource allocation in terms of task allocation and rather than approaching through traditional methods we tried to solve this issue by using soft computing techniques. Specifically, nature-inspired algorithms as it hold the key to unlocking massive potential regarding research and problem-solving approach. The central idea of this paper is to connect different optimization techniques to load balancer and how could we make a hybrid algorithm to serve the purpose. We also discussed several different types of algorithms each bearing its roots from different natural procedures. All the algorithms in this paper can be broadly tabulated into three different types SO (Swarm optimization techniques), GO (Genetic-based algorithms), PO (Physics-based algorithms).",book:{id:"8754",slug:"scheduling-problems-new-applications-and-trends",title:"Scheduling Problems",fullTitle:"Scheduling Problems - New Applications and Trends"},signatures:"Surya Teja Marella and Thummuru Gunasekhar",authors:[{id:"297632",title:"Mr.",name:"Surya Teja",middleName:null,surname:"Marella",slug:"surya-teja-marella",fullName:"Surya Teja Marella"},{id:"298899",title:"Dr.",name:"Thummuru",middleName:null,surname:"Gunasekhar",slug:"thummuru-gunasekhar",fullName:"Thummuru Gunasekhar"}]},{id:"42376",title:"Monte-Carlo Simulation of Particle Diffusion in Various Geometries and Application to Chemistry and Biology",slug:"monte-carlo-simulation-of-particle-diffusion-in-various-geometries-and-application-to-chemistry-and-",totalDownloads:3428,totalCrossrefCites:7,totalDimensionsCites:11,abstract:null,book:{id:"3250",slug:"theory-and-applications-of-monte-carlo-simulations",title:"Theory and Applications of Monte Carlo Simulations",fullTitle:"Theory and Applications of Monte Carlo Simulations"},signatures:"Ianik Plante and Francis A. Cucinotta",authors:[{id:"21574",title:"Dr.",name:"Ianik",middleName:null,surname:"Plante",slug:"ianik-plante",fullName:"Ianik Plante"}]},{id:"43516",title:"Comparative Study of Various Self-Consistent Event Biasing Schemes for Monte Carlo Simulations of Nanoscale MOSFETs",slug:"comparative-study-of-various-self-consistent-event-biasing-schemes-for-monte-carlo-simulations-of-na",totalDownloads:2259,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3250",slug:"theory-and-applications-of-monte-carlo-simulations",title:"Theory and Applications of Monte Carlo Simulations",fullTitle:"Theory and Applications of Monte Carlo Simulations"},signatures:"Shaikh Ahmed, Mihail Nedjalkov and Dragica Vasileska",authors:[{id:"3809",title:"Prof.",name:"Dragica",middleName:null,surname:"Vasileska",slug:"dragica-vasileska",fullName:"Dragica Vasileska"},{id:"154817",title:"Prof.",name:"Shaikh",middleName:null,surname:"Ahmed",slug:"shaikh-ahmed",fullName:"Shaikh Ahmed"},{id:"154818",title:"Dr.",name:"Mihail",middleName:null,surname:"Nedjalkov",slug:"mihail-nedjalkov",fullName:"Mihail Nedjalkov"}]}],onlineFirstChaptersFilter:{topicId:"596",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:11,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:139,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:314,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:193,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:168,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:249,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:383,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:288,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/82190",hash:"",query:{},params:{id:"82190"},fullPath:"/profiles/82190",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()