The chemical formula for three areas divided by two lines: α = 5γ/4 and α = γ/2, here, α and γ are in BaαTaγOα+5γ/2 and vacancies on the A-, B- and O-sites [22].
Advances in Embryo Transfer",title:"胚胎移植新进展",subtitle:"Advances in Embryo Transfer",reviewType:"peer-reviewed",abstract:"本书阐述了生殖医学相关的技术知识,以21世纪最新进展和发展趋势为重点,注重创新性、实用性。 其内容从最佳的卵巢刺激方案、授精技术新进展,到胚胎移植操作技巧、胚胎冷冻保存以及子宫内膜容受性的最新研究成果等都做了详尽的描 述。本书旨在帮助更多从事辅助生殖技术的人员了解本领域最新进展,更新此领域中科学研究和临床诊治观念,以提高诊疗水平达到最佳活产 率。
Embryo transfer has become one of the prominent high businesses worldwide. This book updates and reviews some new developed theories and technologies in the human embryo transfer and mainly focus on discussing some encountered problems during embryo transfer, which gives some examples how to improve pregnancy rate by innovated techniques so that readers, especially embryologists and physicians for human IVF programs, may acquire some new and usable information as well as some key practice techniques. Major contents include the optimal stimulation scheme for ovaries, advance in insemination technology, improved embryo transfer technology and endometrial receptivity and embryo implantation mechanism. Thus, this book will greatly add new information for readers to improve human embryo transfer pregnancy rate.
Please note that this is the official Chinese translation of the book originally published in English.",isbn:null,printIsbn:"978-953-51-1727-8",pdfIsbn:null,doi:"10.5772/59247",price:140,priceEur:null,priceUsd:null,slug:"advances-in-embryo-transfer-translation-chinese",numberOfPages:216,isOpenForSubmission:!1,isInWos:null,hash:"32b738c0d0cbce7a61a3ea63b5d43ed0",bookSignature:"Bin Wu",publishedDate:"October 23rd 2014",coverURL:"https://cdn.intechopen.com/books/images_new/4594.jpg",numberOfDownloads:3626,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,hasAltmetrics:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 16th 2014",dateEndSecondStepPublish:"October 7th 2014",dateEndThirdStepPublish:"January 11th 2015",dateEndFourthStepPublish:"April 11th 2015",dateEndFifthStepPublish:"May 11th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"108807",title:"Dr.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu",profilePictureURL:"https://mts.intechopen.com/storage/users/108807/images/system/108807.jfif",biography:"Bin Wu, Ph.D., HCLD is currently a scientific laboratory director at Arizona Center for Reproductive Endocrinology and Infertility, USA. He received his training in genetics and reproductive biology at the Northwest Agricultural University in China and Cornell University, New York and post-doctor training at University of Guelph, Canada. He was promoted as a professor at the Northwest Agricultural University. As an embryologist, he later joined in the Center for Human Reproduction in Chicago. Dr. Wu has membership for many professional associations, such as American Society for Reproductive Medicine; International Embryo Transfer Society; Society for the Study of Reproduction; American Association of Bioanalysts and European Society of Human Reproduction and Embryology. Also, he has obtained some significant research awards from these professional associations.",institutionString:"Arizona Center for Reproductive Endocrinology and Infertility",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"5",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"398",title:"Embryology",slug:"human-genetics-embryology"}],chapters:[{id:"47691",title:"胚胎移植新进展
Advances In Embryo Transfer",doi:"10.5772/59253",slug:"advances-in-embryo-transfer-chinese-translation",totalDownloads:3626,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Bin Wu",downloadPdfUrl:"/chapter/pdf-download/47691",previewPdfUrl:"/chapter/pdf-preview/47691",authors:[{id:"108807",title:"Dr.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"4588",title:"New Discoveries in Embryology",subtitle:null,isOpenForSubmission:!1,hash:"2d40aace9724b9c451a8d8168acd0169",slug:"new-discoveries-in-embryology",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/4588.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Dr.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5817",title:"Embryo Cleavage",subtitle:null,isOpenForSubmission:!1,hash:"11de486fcf8fe42d4359c65e71a8f1da",slug:"embryo-cleavage",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/5817.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Dr.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1577",title:"Advances in Embryo Transfer",subtitle:null,isOpenForSubmission:!1,hash:"b9d06c4d4736cf2bd3394ce91e8d3031",slug:"advances-in-embryo-transfer",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/1577.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Dr.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6977",title:"Embryology",subtitle:"Theory and Practice",isOpenForSubmission:!1,hash:"4620ebf60e92b453c7e4fde00cd94515",slug:"embryology-theory-and-practice",bookSignature:"Bin Wu and Huai L. Feng",coverURL:"https://cdn.intechopen.com/books/images_new/6977.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Dr.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66068",slug:"addendum-an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia",title:"Addendum - An Overview of PET Radiopharmaceuticals in Clinical Use: Regulatory, Quality and Pharmacopeia Monographs of the United States and Europe",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66068.pdf",downloadPdfUrl:"/chapter/pdf-download/66068",previewPdfUrl:"/chapter/pdf-preview/66068",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66068",risUrl:"/chapter/ris/66068",chapter:{id:"62269",slug:"an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia-monograp",signatures:"Ya-Yao Huang",dateSubmitted:"February 25th 2018",dateReviewed:"May 31st 2018",datePrePublished:"November 5th 2018",datePublished:"July 24th 2019",book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"247754",title:"Prof.",name:"Ya-Yao",middleName:null,surname:"Huang",fullName:"Ya-Yao Huang",slug:"ya-yao-huang",email:"careyyh@ntuh.gov.tw",position:null,institution:null}]}},chapter:{id:"62269",slug:"an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia-monograp",signatures:"Ya-Yao Huang",dateSubmitted:"February 25th 2018",dateReviewed:"May 31st 2018",datePrePublished:"November 5th 2018",datePublished:"July 24th 2019",book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"247754",title:"Prof.",name:"Ya-Yao",middleName:null,surname:"Huang",fullName:"Ya-Yao Huang",slug:"ya-yao-huang",email:"careyyh@ntuh.gov.tw",position:null,institution:null}]},book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9340",leadTitle:null,title:"Antifungal Therapy",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tFungi are important microbial agents which can lead to different infections in patients. Therefore, recognition of fungal actions of pathogenicity and virulencity is necessary for prevention, control and treatment of mycoses. Today, there is a wide range of antifungal drugs which can be administered to patients with different types of mycoses. The use of suitable antifungal drugs may lead to a definite treatment. Therefore, knowing the fungal pathogenome, metabolome, transcriptome and virulome could help us apply appropriate antifungal agents. Simultaneously, the knowledge about antifungal drugs mechanisms of actions and mechanisms of resistance are invaluable means for a definite treatment. The progression of computational drug designing and bioinformatics enables us to design and produce more effective antifungal drugs with less side effects. In this book, we will discuss different aspects of fungi, mycoses and antifungal drugs.
",isbn:"978-1-83880-989-8",printIsbn:"978-1-83880-988-1",pdfIsbn:"978-1-83880-990-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"664c976bb282e83d7f3828f93869cfa3",bookSignature:"Ph.D. Payam Behzadi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9340.jpg",keywords:"Metabolome, Pathogenome, Treatment of Mycoses, Etiologies, Antifungal Drugs Chemistry, Target Molecules, Pharmacokinetics, Toxicity, Fungicidal Agents, Fungistatic Agents, Drug Modeling, Drug Discovery",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 19th 2019",dateEndSecondStepPublish:"September 9th 2019",dateEndThirdStepPublish:"November 8th 2019",dateEndFourthStepPublish:"January 27th 2020",dateEndFifthStepPublish:"March 27th 2020",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,editors:[{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jfif",biography:"Dr. Payam BEHZADI (BSC and MSC in Microbiology; Ph.D. in Molecular Biology), the Assistant Professor of Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran-Iran teaches students from undergraduate to Ph.D. levels. \r\nHe has been a faculty member of the above-mentioned university since 2004 and he has led some graduate (Master of Science) students as supervisor and adviser. \r\nHis primary research fields are: Infectious Diseases (in particular Urinary Tract Infections), Molecular biology, Gene profiling, Genetics, and Bioinformatics. Dr. Payam Behzadi has authored, edited and refereed many books and papers.\r\nNearly 60 papers and 18 books and chapters are the outcomes of his scientific activities.",institutionString:"Shahr-e-Qods Branch, Islamic Azad University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"177730",firstName:"Edi",lastName:"Lipovic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/177730/images/4741_n.jpg",email:"edi@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8303",title:"Gene Regulation",subtitle:null,isOpenForSubmission:!1,hash:"717b32b5becef8d895adf106c5a3099d",slug:"gene-regulation",bookSignature:"Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/8303.jpg",editedByType:"Edited by",editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7452",title:"Microbiology of Urinary Tract Infections",subtitle:"Microbial Agents and Predisposing Factors",isOpenForSubmission:!1,hash:"e99363f3cb1fe89c406f4934a23033d0",slug:"microbiology-of-urinary-tract-infections-microbial-agents-and-predisposing-factors",bookSignature:"Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/7452.jpg",editedByType:"Edited by",editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3794",title:"Swarm Intelligence",subtitle:"Focus on Ant and Particle Swarm Optimization",isOpenForSubmission:!1,hash:"5332a71035a274ecbf1c308df633a8ed",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",bookSignature:"Felix T.S. Chan and Manoj Kumar Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/3794.jpg",editedByType:"Edited by",editors:[{id:"252210",title:"Dr.",name:"Felix",surname:"Chan",slug:"felix-chan",fullName:"Felix Chan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"29729",title:"Establishment of Functional Biotechnology Laboratories in Developing Countries",doi:"10.5772/27943",slug:"establishment-of-functional-biotechnology-laboratories-in-developing-countries",body:'\n\t\tTraditionally, biotechnology is defined as making use of living organisms or genetic material from living organisms to provide new products for agricultural, industrial, and medical uses. This definition includes the use of fermentation in the leavening in the 10000 BC. This technology over the years has advanced into Modern Biotechnology. According to the Cartagena protocol (Secretariat of the Convention on Biological Diversity, 2000), Biotechnology is defined as any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or process for a specific use. According to the Convention on Biological Diversity, Art.3 (i), “Modern biotechnology” means the application of:
\n\t\t\t\n\t\t\t\t\t\tIn vitro nucleic acid techniques, including recombinant deoxyribonucleic acid (DNA) and direct injection of nucleic acid into cells or organelles, or
Fusion of cells beyond the taxonomic family, that overcome natural physiological reproductive or recombination barriers and that are not techniques used in traditional breeding and selection.
Plant Biotechnology encompasses tools such as tissue culture and molecular biology which are used in crop improvement. Although these technological tools are applied in advanced countries, their use in agricultural research and development in developing countries is limited. However, these countries need to enhance the utilization of tissue culture and molecular biology to increase agriculture productivity. The prospects ofbiotechnology as a modern tool for addressing various productivity problems and challenges in agriculture in the face of present day changing climatic conditions and starvation are now well known. Agriculture accounts for about 40% of Ghana’s GDP, contributes 35% of foreign exchange earnings, and provides employment for over 60% of the population. More than 80% of the rural populations depend on it for their livelihood.
\n\t\t\tIn recognition of the need to use biotechnology tools in agriculture in sub-Sahara Africa, in June 2003 at a Worldwide Ministerial Conference, in Sacramento, USA 112 Ministers of Science and Technology from 117 countriesrecommended the facilitation of access of Developing countries to Science and Technology innovations as means to reach Millennium development goals (MDGs). As a follow-up to that, inJune 2004, a West African Ministerial Conference on “the use of Science and Technology to improve agricultural productivity in Africa” was held in Ouagadougou (Burkina Faso). At this meeting, participants recognised the need to:
\n\t\t\tDevelop an information strategy on new technologies and especially on biotechnology
Establish a strong scientific partnership between research institutions of Africa and developed countries
Put in place a Regional Biotechnology Centre
Subsequently, in November 2004, there was the Economic Community of West African States (ECOWAS) Ministerial Conference on “Agriculture and Biotechnology” in Abuja (Nigeria) the meeting recommended the following:
\n\t\t\tThe need to establish Regional Biotechnology Centres of Excellence in countries having comparative advantages
The promotion of in situ Research and Development activities on priority areas to support the emergence and growth of the biotechnology industry in West Africa
The transfer of biotechnology product packages and their commercialisation in relevant areas
The reinforcement of private-public sectors collaboration in order to boost the local Biotechnology industry
The reinforcement of regional and national capacities in Biosafety
There was thus adoption of the Biotechnology and Biosafety Programme (BBP) Action Plan by the ECOWAS Ministerial Conference in Accra (Ghana), in May 2007. The BBP general objective is to use the development and exploitation of biotechnology products as means to increase agricultural productivity and competitiveness in West Africa
\n\t\t\tThe Specific Objectives are to:
\n\t\t\tPromote the use of Biotechnology in agriculture
Develop a regional approach for Biosafety
Establish and make effective at the regional level, a mechanism for coordination of initiatives, fund raising and communication in the field of Biotechnology and Biosafety.
Thematic areas addressed in priority being:
\n\t\t\tThe application of Molecular Markers
The application of Genetic Engineering
The application of Molecular Diagnostics for animal and plant diseases
Plant tissue/cell culture and micro-propagation techniques
Vaccines for livestock production
Animal Reproduction Technologies
This meeting was a significant landmark in the application of Science and Technology for improving performance in the agribusiness sector in the West African sub-region. This is because the meeting brought together biotechnology and biosafety experts, as well as the ECOWAS Ministers of Environment, Science and Technology, and Agriculture. At the end of the meeting, the communiqué issued indicated that the Ministers fully support the application of biotechnology in addressing some of the numerous problems facing agriculture in Africa, particularly towards improvement in production, competitiveness and sustainable management of natural resources. Although the Ministers pledged their support, they stressed the need to have in place safety measures to ensure effective and sustainable application of the technologies.
\n\t\t\tAll these initiatives have harnessed the application of modern techniques, however, in Ghana, utilization of biotechnology tools in agricultural research and development is associated with several setbacks: which may lead to nonfunctional and unsustainable laboratories. This paper thus focuses on how functional laboratories have been established in Ghana, with specific reference to some research output by the Biotechnology Unit of the Council for Scientific and Industrial Research (CSIR) – Crops Research Institute (CRI).
\n\t\tTissue culture is the most applied biotechnology tool and its establishment is vital for the application of various techniques.By means of definition, plant tissue culture is the growth or maintenance of plant cells, tissues or organs or whole plant on a nutrient culture medium under aseptic conditins invitro. Tissue culture employs the principle of "Totipotency” which is the cell characterestics in which the potential for forming all the cell types in the adult organsim is retained, or the capacity of differentiated cells to retain their full genetic potentialities and express them under appropriate conditions, or potential of cells or tissues to form all cell types and/ or to regenerate plants (Murch & Saxena 2005).
\n\t\t\t\tListed below are applications and advantages of plant tissue culture
\n\t\t\t\tProduction of clones
Large-scale plant multiplication
Mutation-assisted breeding
Induction of genetic variability- somaclonal variation
\n\t\t\t\t\t\t\tIn vitro selection
International germplasm exchange
All year round availability of tissue culture derived plants
High commercial prospects – floriculture and vegetative crops
Plants as a bioreactor for producing vaccines, and chemicals
Saves time and space
Long-term storage of elite genetic material
Establishment of germplasm bank
Labour oriented- employment generation, socio-economic impact
Secondary metabolite production- medicine
Plant tissue culture techniques include:
\n\t\t\t\tAnther/pollen/microspore/ovary culture
Protoplasts
Embryo rescue
\n\t\t\t\t\t\t\tIn vitro fertilization
\n\t\t\t\t\t\t\tIn vitro micro-grafting
Micropropagation
Somatic embryogenesis
Callus and cell suspension
Cryopreservation
Cold storage
Encapsulation
Bioreactor
Gene transfer
In Ghana, one of the first agricultural based research organizations to set up a tissue culture laboratory was the Ghana Atomic Energy Commission (GAEC) in the mid 1980s. This was followed by the Department of Botany of the University of Ghana, Legon in 1988, to train students. Subsequently, the Council for Scientific and Industrial Research (CSIR) Crops Research Institute (CRI) also established a tissue culture laboratory in 1996. All these set ups had to cope with interrupted supply of water and electricity, however, putting in place efficient water storage systems as well as bore hole and also standby generator for electricity helped solve these problems. Other setbacks included lack of regular and reliable source of consumables, glassware, equipment, equipment maintenance, not to mention source of funds, since limited funds were received from central government. However, it is worth mentioning that the CGIAR centers have been instrumental in training human resources and assisting with supplies through projects. The Consultative Group on International Agricultural Research (CGIAR) centers include the International Institute for Tropical Agriculture (IITA), International Center for Tropical Agriculture (CIAT), International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), just to mention a few.
\n\t\t\t\tWhen setting up the tissue culture facility of the CSIR-CRI, the laboratory initially used to share laminar flow cabinet with the microbiology research group. This was very frustrating since it took us a while to establish clean cultures. Once we established our ability to produce results in tissue culture, the laboratory in 1998 collaborated in research activities sponsored by German Technical Cooperation (GTZ), West Africa seed Development Unit (WASDU) for the production of clean plating materials of yam and cassava in West Africa (\n\t\t\t\t\t\tQuain, 2001\n\t\t\t\t\t). Another project with IITA with funding from GATSBY UK, produced clean Musa planting material for field evaluation and selection of hybrids with tolerance to the Black Sigatoka Disease in Ghana which started in 1998 this project resulted in the selection an release of two hybrid Musa species for release and utilization in Ghana. Also, in 1999, as the institute’s sweetpotato breeding group worked towards the selection of varieties to be released to farmers under the Root and Tuber Improvement Project (RTIP), the laboratory with assistance from IITA, produced clean planting materials for multilocational trial. The sweetpotato varieties cleaned through tissue culture techniques in the laboratory,when established in the field was highly accepted by Agriculture extension officers and farmers. The tuber yield resulted in a 30% increase when compared with the conventional planting material (Otoo & \n\t\t\t\t\t\t\tQuain 2001\n\t\t\t\t\t\t\n\t\t\t\t\t).
\n\t\t\t\tSubsequently, the CSIR-CRI tissue culture laboratory has optimized existing protocols for local crop varieties, some of these recent research outputs include publications on the following: Multiple Shoot Generation Media for Musa sapientum L. (False Horn, Intermediate French Plantain and Hybrid Tetraploid French Plantain) Cultivars in Ghana (Quain et al., 2010a). This paper considered plantains (Musa sapientum), a major staple in Ghana, which encounter several production constraints including availability of adequate healthy planting materials at the time the crop needs to be planted. In attempts to improve production, tissue culture methods were employed, using one medium. It was however realized that optimization of invitro rapid propagation protocol for mass production of different accessions of Musa was paramount. Excised buds from cultures with proliferating buds were used as explants in this experiment. The cultures of proliferating buds had been generated from excised apical meristem of four Musa varieties (False Horn; local names – Osoboaso and Apantu, intermediate French plantain; local name – Oniaba and FHIA 21, which is a hybrid tetraploid French plantain) which were cultured on Murashige and Skoog (MS) medium (Murashige and Skoog, 1962) containing indole-3-acetic acid (IAA), citric acid, and 0-20 μM benzyl amino purine (BAP). The most popular local plantain variety, Apantu, only produced proliferating buds profusely when placed on routine medium (MS medium containing IAA, citric acid and 20 μM BAP). Reducing the concentration of BAP generated an average of more than 4 shoots/culture in 8 weeks. Medium not supplemented with any plant growth regulators also generated an average of less than 2 shoots/culture in 8 weeks. The other three Musa varieties generated 4-8 shoots/culture from proliferating buds, indicating that each cultivar has optimum concentrations at which rapid plantlet formation can be optimized to meet growing demands for planting material.This protocol has presently been adapted by the laboratory which produces about 3000 musa plants yearly through tissue culture for farmer, NGOs and interested organizations.
\n\t\t\t\tOther research activities have also established in vitro manipulation protocols for Dioscorea species (yam), which is a vital staple. In the yam tissue culture research, effect of various hormonal (growth regulators) combinations on in vitro sprouting of various species of Dioscorea spp under light and dark conditions (Ashun, 1991). In vitro studies on micropropagation of various yam species (Dioscorea species) (Ashun, 1996), indicated that where various concentrations of phytohormone Naphthalene Acetic Acid (NAA), 2,4-dichlorophenoxycetic acid (2,4-D), and BAP are used to culture Dioscorea sppin vitro using complete Murashige and Skoogs medium, the concentrations of 0.5µM and 5µM NAA, enhanced plantlet development. BAP concentrations of 5µM and above were lethal to explant development whereas 5µM and above NAA enhanced callus development in D. alata cv. 145 used. These studies also established that during yam explants initiation in culture with explants derived from vine, the age of the explants is critical. Explants aged two to 20 weeks were used in this study and for the different Dioscorea species used, the highest growth for D. bulbifera was in 2 week old explants, D. dumentorum were six weeks and four week old explants for D. alata (\n\t\t\t\t\t\tQuain & Achempong, 2001\n\t\t\t\t\t). Dioscorea species produce tubers and it is an important staple in Ghana and sub-saharan African countries. The above mentioned tissue culture studies therefore provide the basic tissue culture tools applicable in modern biotechnology, that can be used in the improvement of the crop in the sub-region.
\n\t\t\t\tCurrent tissue culture research activities are aiming at producing protocol for the in vitro manipulation of local bananas, plantains as well as various local root and tuber crops. The aim of these is to establish schematic mass production systems to benefit the commercial farmer. Protocols for long-term in vitro conservation of germplasm are also being optimized. The development of all these protocols will facilitate the adaptation of other modern biotechnology tools for the maintenance and improvement of local crop varieties to meet agricultural production constraints.
\n\t\t\tMolecular biologyis the aspect of biology that deals with the molecular basis of biological activity. This aspect of science is related with other areas of biology, chemistry, genetics and biochemistry. Mostly, molecular biology chiefly covers interactions between the various systems of a cell, namely between the different types of DNA, RNA and protein biosynthesis, and how these interactions are regulated. In 1961, William T. Astbury, made a statement that “molecular biology implies not so much a technique as an approach, an approach from the viewpoint of the so-called basic sciences with the leading idea of searching below the large-scale manifestations of classical biology for the corresponding molecular plan. It is concerned particularly with the forms of biological molecules and with evolution, exploitation, and ramification of those forms of the ascent to higher and higher levels of organisation. Molecular biology is predominantly three-dimensional and structural—which does not mean, however, that it is merely a refinement of morphology. It must at the same time inquire into genesis and function” (Astbury, 1961).
\n\t\t\t\tMolecular biologists have since the late 1950s and early 1960s learned to characterize, isolate, and manipulate the molecular components of cells and organisms. These components include firstly, DNA, which is the storehouse of genetic information. Secondly is RNA, which is a close relative of DNA with functions ranging from serving as a temporary working copy of DNA to actual structural and enzymatic functions, as well as a functional and structural part of the translational apparatus. Thirdly, are proteins; the major structural and enzymatic type of molecule in cells (Molecular Biology Source: http://en.wikipedia.org/w/index.php?oldid=417169395).
\n\t\t\t\tThe aspects of biology listed below can all be found under Molecular Biology:
\n\t\t\t\tGenomics
Proteomics
Molecular Microbiology
Genetic transformation
Molecular modelling
Molecular breeding
Molecular marker selection
Mutation
Bioinformatics
Genetic fingerprinting
Following the successful establishment of tissue culture facility at the CSIR – CRI, it became apparent that a molecular biology laboratory be establish to complement the biotechnology activities. Project proposals developed under the then Agricultural Services Sub-Sector Investment Programme (AGSSIP) project secured the necessary basic equipment for molecular biology research. The project also contributed toward the training of two researchers; one in marker assisted breeding and another in genetic transformation in advanced laboratories. These scientists returned to Ghana, with the basic laboratory consumables to initiate the molecular biology laboratory. With assistance from a research assistant who had just completed using molecular techniques in disease diagnosis in a Ghanaian university, the molecular biology laboratory started operation in 2006 supported with inputs from the Generation Challenge Programme (GCP), CIAT and International Atomic Energy Agency (IAEA).In that same year, funds were also secured from the Government of Ghana to provide more equipment and consumables for the laboratory. These gave the laboratory a sound basis to be really established. Since then the CSIR-CRI molecular biology laboratory has been locally adjudged the best biotechnology laboratory in Ghana and is yearly conducting training courses for researchers and students both locally and within the West African sub-region. Several research publications have been released and these include the following:
\n\t\t\t\tAssessing transferability of Sweetpotato EST SSR primers to cocoyam and micropropagation of nine elite cocoyam varieties in Ghana; Cocoyam, an important staple crop in Ghana, provides edible leafy vegetable and starchy cormels. Due to difficulty in getting primers for cocoyam, sweetpotato EST SSR primers were used to amplify genomic DNA of elite cocoyam lines. Genomic DNA was isolated from 10 sweetpotato and nine cocoyam cultivars. Ten sweetpotato accessions were screened alongside three cocoyam cultivars, using 22 EST Sweetpotato SSR primers, 13 of which could amplify cocoyam sequences and were subsequently used to screen nine cocoyam cultivars. Thirteen random primers were also used for diversity study. Cocoyam cultivars were established in vitro. Dendogram generated after screening cocoyams alongside sweetpotato, grouped sweetpotato varieties in two main clusters and cocoyam in one cluster. The random primers and the SSRs grouped the cocoyam into two clusters which corresponds with known morphological classification. The method would be used to screen large cocoyam germplasm (Quain et al., 2010b). Through this study genetic fingerprint of eight elite and one local check cocoyams has been documented. These fingerprinted cocoyam accessions are presently being evaluated on the field to establish their agronomic attributes and select some lines for release to farmers and the Ghanaian public for utilization. This will be the first time ever in Ghana that research output is releasing cocoyam varieties.
\n\t\t\t\tGenetic diversity of elite Musa cultivars and introduced hybrids in Ghana using SSR markers; in this study, molecular diversity was carried out on 10 Musa cultivars using SSR. Musa SSRs (49) marker was used for the diversity and NTSYS Data analysis used to establish conclusions on studies. Dendogram and similarity matrix generated, indicated that local false horn and intermediate French plantain are distantly related (16.78%). The closest related cultivars are two false horn (Apantu-Dichotomy and Osoboaso) at 70.32%. Similarity between introduced hybrids and local false horn plantains and local intermediate French plantains was in the range of 20.81–49.67% and 18.85–42.27% respectively. Apem (local intermediate French plantain) was distantly related to all the cultivars screened (16.78–36.84%). The information generated has documented diversity between the introduced hybrids and elite local cultivars and this will aid breeders mine for genes in the local cultivars that are responsible for earliness, peculiar taste and preferred cooking qualities (Quain et al., 2010c).
\n\t\t\t\tGenetic relationships between some released and elite Ghanaian cassava cultivars based on distance matrices has also been carried out (Acquah et al., 2010); Eleven (11) released and two local Ghanaian cassava cultivars were fingerprinted to estimate the genetic diversity among them using 35 SSR markers. Genomic DNA of thirteen cassava cultivars (UCC,IFAD, Agelifiaa, Nyerikobga, Nkabom, Essam Bankye, Akosua Tumtum, Debor, Filindiakong, Afisiafi,Doku Duade, Bankye Hemaa and Bankye Botan) were isolated and used as template for PCR amplification involving 35 SSR markers. The recorded gel bands (163 polymorphic bands) were subjected to NTSYS Version 2.1 software for cluster analysis and development of dendrogram to show the corresponding similarity coefficients. Genetic relationships between Bankye Hemaa and Filindiakoh and that between Bankye Hemaa and Afisiafi had similarity coefficients of 1.2%. The local cultivars, Debor and Akosua Tumtum were related at 52.31% similarity. Filindiakoh was found to be the relative to Akosua Tumtum and Debor at 17.9 and 29.1% similarity, respectively. Bankye Botan and Bankye Hemaa, however, were distantly related to most of the cultivars, including the local varieties. Bankye Botan and Bankye Hemaa are distant relatives to most of the cultivars, including the local varieties which could however make these cultivars also very useful in breeding. This research work documented molecular information on released cassava varieties for the first time in Ghana. This information will contribute towards variety identification as they are released for utilization by farmers. The various research groups that have released cassava varieties over the years can also track the performance of their lines within the country and the subregion.
\n\t\t\t\tGroundnut is a member of the genus Arachis and the crop is divided into two subspecies and six botanical varieties based on morphological characteristics. A groundnut core collection of 831 accessions was developed from a total of 7432 US groundnut accessions based on morphological characteristics. Identification of DNA markers associated with the botanical varieties of groundnut would be useful in genotyping, germplasm management and evolutionary studies. A study was initiated to evaluate 22 groundnut genotypes representing six botanical varieties from a US groundnut core collection to determine their diversity using DNA microsatellites. Cluster analysis located the lines in their assigned specific botanical groups in agreement with available morphological classification for groundnut (Asibuo et al., 2010). Groundnut production and utilization in Ghana is presently very promising and selected groundnut varieties are produced for the confectionary industry. The output of this study will thus enable organizations that produce seed for farmers to cultivate scrutinize the stability and identity of their seeds.
\n\t\t\tCryopreservation is a process of cooling cells, tissues or organs at ultralow temperature to preserve them indefinitely. The applied temperature is typically at −196 C which is the boiling point of liquid nitrogen. Other temperatures applied in cryopreservation include -40 C, -70 C, -80 C, in programmable or ultra-low freezers, or in the vapor phase of liquid nitrogen at -150 C, or at -210 C in nitrogen slash. Technically, at these low temperatures, any biological, metabolic activity as well as biochemical reactions that would lead to the cell losing viability should cease and the preserved cell tissue or organ should be viable when retrieved from cooling. Due to the complex nature of cells, organs and tissues subjected to cryopreservation, other additives including cryoprotectants are used to prevent damage otherwise caused by cooling.
\n\t\t\t\tAs the biotechnology research advanced, conservation of clonally propagated crops was identified as an important aspect. To facilitate the development of this technological tool, a PhD student worked on Complementary Conservation of Root and Tuber Genetic Resources - Dioscorea species and Solenostemon rotundifolius. The major focus of this study was the application of cryopreservation techniques to complement in vitro slow growth methods, since in vitro conservation under slow growth has been used for the conservation of clonally propagated crops. However, it demands periodic subculturing and regular attention and, with interruptions in electric power supply, conserved cultures are in danger of being lost. Presently the existing root and tuber germplasm conservation techniques serve a short to medium-term purpose only. The ultimate means of long-term conservation, which will complement all the existing modes being used and serve the purpose of base collections, is conservation in liquid nitrogen at –196oC (Engelmann, 2000). Storage of biological material at ultra-low temperatures, preferably that of liquid nitrogen, arrests all metabolic activities: consequently, no genetic changes occur, theoretically, permitting indefinite germplasm storage periods (Panis & Lambardi, 2005). However, in practice, although very long, indefinite (seed) storage may not be attainable (Walters et al., 2005) and this probably applies to other forms of germplasm as well (Benson & Bremner, 2004). The development of protocols tested three cryomodels: being vitrification–based, silica gel dehydration, encapsulation vitrification, as well as encapsulation desiccation. The study revealed that, the successful cryopreservation of Dioscorea rotundata which is an important crop producing mealy tubers is possible using a simple vitrification protocol. The procedure incorporates:
\n\t\t\t\tpregrowth of the donor plant on 0.09 M sucrose-supplemented medium for five weeks
preculture on 0.3 M sucrose supplemented medium for 5 d
PVS2 solution for 40 min
Rapid cooling in liquid nitrogen or slow cooling to -80ºC
Through this study, Dioscorea rotundata accession “Pona” which is an elite variety in Ghana was successfully cryopreserved for the first time. The technique developed was simple, cost-effective and potentially reliable methodology that does not require sophisticated equipment. The procedures can be adapted for germplasm conservation of other species, using limited resources in laboratories in sub-Saharan Africa. It was also brought to the fore that to achieve an optimal recovery of cryopreserved explants, the donor plants should be adequately conditioned.S. rotundifolius (Frafra potato) was extremely sensitive to the vitrification based protocol. The nodal explants used in the experiments easily becomes hyperhydric, and are impossible to dehydrate sufficiently for cryopreservation, this provide a sound basis for further attempts to cryopreserve Frafra potato genetic resources. Presently, cryopreservation tools are being developed further for other vegetatively propagated crops in Ghana.
\n\t\t\tMarker assisted selection (MAS) is indirect selection process where a trait of interest is selected, not based on the trait itself, but on a marker linked to it (Ribaut and Hosington, 1998). During selection for tolerance to an abiotic or biotic stress by means of MAS, the plants not on basis of quantified but rather a marker allelomorph (allele) which is linked with the particular trait (disease) is used to determine the presence of the trait (disease). The assumption being that linked allele associates with the gene and/or quantitative trait locus (QTL) of interest. MAS can be useful for traits that are difficult to measure, exhibit low heritability, as well as those that are expressed late in development.
\n\t\t\t\tOver the years most breeding activities in the CSIR-CRI have been mainly through selection, based on agronomic traits.However, since 2005, due to training obtained from The International Centre for Tropical Agriculture (CIAT), Cali Columbia, the cassava breeding group has initiated development of crosses to select varieties. Some of the breeding efforts are towards pyramiding genes responsible for tolerance/resistance to cassava mosaic disease using wild relatives from the centre of origin in South America into local Ghanaian accessions through mechanical hybridization. Other similar crop development to select varieties that can withstand biotic and abiotic stresses include drought tolerance in maize, pod shattering in soybean and disease resistance in peanuts. All these processes are being hastened by the utilization of molecular markers to shorten the number of years used in breeding from 10 – 15 years to about four to six years.
\n\t\t\tEffective crop management involves the early and accurate diagnosis of plant disease.Early introduction of effective control measures in plant development can facilitate plant diseases management. Reliance on symptoms is usually not satisfactory in this regard. This is because the diseasemay be well underway when symptoms first appear, and symptom expressioncan be highly variable. Biological techniques for disease diagnosis andpathogen detection are usually highly accurate but too slow and not amenable to large-scale application.Recent advances in molecular biology and biotechnology are being appliedto the development of rapid, specific, and sensitive tools for the detection ofplant pathogens. (Miller & Martin, 1988). Some Immunologicaland nucleic-acid hybridization-based methods available for pathogen detectionin crop systems are listed below:
\n\t\t\t\tImmunoassay Technology
Enzyme Linked Immunoabsorbent Assay (ELISA)
Colloidal Gold
Immunofluorescence Assay (IFA)
Radio Immunoassy (RIA)
Nucleic – Acid hybridization – Based Pathogen detection
Nucleic Acid-Based Detection Technologies
Dot – Blot Assay
Nonradioactive Labels
Restriction Fragment Length Polymorphisms (RFLPS)
Nucleic Acid Probes
Uncloned Probes
Synthetic Probes
Cloned Probes and RFLPS
Viruses and Viroids
Mycoplasma – like organisms and bacteria
Fungi
Nematode
Molecular biology tools that have been explored so far in our Laboratory include the application of molecular markers to screen for occurrence of disease in crops. This is being applied for African Cassava Mosaic Virus (ACMV) in cassava, Tomato Yellow Leaf Curl Virus (TYLCV) and Root Knot diseases in tomatoes, yellow mottle virus in rice and Sweet Potato Virus Disease (SPVD) in sweetpotato is still at the developmental stages. In a recent study on cassava, disease observations in the field were confirmed with laboratory diagnostics using the polymerase chain reaction assay. African cassava mosaic virus (ACMV) and East African cassava mosaic virus were detected on all the cultivars either as single infections or as mixtures. The detection of EACMV on cassava at Fumesua and Ejura is the first to be reported in Ashanti region in Ghana. This study recommended that, with the advent and spread of the EACMV serotype of the mosaic virus in important cassava growing eco-zones and the emergence of some severe strains of the African cassava mosaic in the pathosystem highly resistant planting materials should be used for ratooning of mother plants as one of the methods to increase the production of clean planting materials for farmers. It was also indicated that, there is also the need to conduct an extensive survey in all the cassava growing areas in Ghana to determine the incidence and spread of emerging species of the cassava mosaic begomoviruses virus in order to develop better strategies to reduce the menace of the cassava mosaic disease in Ghana and sub-region as a whole (Lamptey et al., 2011).
\n\t\t\tGenetic transformation, also referred to as Modern Biotechnology, is the application of the techniques of molecular biology and/or recombinant DNA technology, or in vitro gene transfer, to develop products or impart specific capabilities to organisms. Although the various breeding programs in Ghana are still using conventional breeding tools, efforts are being made to improve plants through an additional technique known as genetic engineering or recombinant DNA (rDNA) science. This method does not rely on the pollination of flowers: it allows individual genes with desire traits to be moved directly from one organism into another living DNA of the same or different species. This technique is very vital for the improvement of most of our local staple crops which are vegetatively propagated. Genetic engineering was first accomplished in the laboratory in 1973 (Paarlberg, 2008). However, as of 2011, laboratories in Ghana have not started applying rDNA in crop research activities. In 2008, a biosafety legislative instrument was passed in the Ghanaian parliament to permit confined field trials and contained laboratory experiment by research scientists. In 2009, a project to Strengthen Capacity for the Safe Management of Biotechnology in Sub-Sahara Africa (SABIMA), was initiated by the Forum for Agricultural Research in Africa (FARA) with sponsored by the Syngenta Foundation for Sustainable Agriculture (SFSA). This project identified personalities who can champion the advancement of Biotechnology in Ghana (Champions) and also focal persons to run the project. Following advocacy and awareness creation workshops conducted by champions in the SABIMA project, with focus on policy makers since 2010, the policy makers were incited to pay critical attention to the biosafety bill that has been before parliament. The members of parliament subsequently, took the biosafety bill through consideration in parliament, in February 2011 and it was passed into law in June 2011. In Ghana, there already exist a National biosafety committee (NBC) which has started receiving applications for conducting confined field trials (CFT). The three proposals in the pipeline for consideration by the NBC are:
\n\t\t\t\tIntroduction of BT-Cowpea in Ghana
Protein quality improvement in sweetpotato
Nitrogen use efficiency and salt tolerance in rice
Other research efforts have been initiated in collaboration with advanced laboratories using crops of local importance, and these include studies on the transgenic potential of Dioscorea rotundata, using agrobacterium-mediated genetic transformation (Quain et al., 2011). This study considered D. rotundata (yam) which is one of the important staples and sources of carbohydrate in the diet in Sub-Saharan African sub-region. The crop has several post harvest problems including poor storage of the tuber, availability of the edible planting materials and high cost of labour for cropping. The crop therefore needs to be improved using modern biotechnology methods. Studies were conducted to induce shoot regeneration in D. rotundata leaf petiole as explants. Explants (0.5 cm long) were cultured on MS medium supplemented with 0.2 mg L-1 2,4-D for 3 days, and transferred to MS medium containing TDZ alone or in combination with 2iP. Shoot regeneration was observed within 21 days on all media; however, the highest shoot regeneration, 7–9 shoots developing per explant were obtained on media supplemented with TDZ and 2iP. The shoots grew vigorously when transferred to MS medium supplemented with GA3. When petiole explants were subjected to Agrobacterium-mediated transformation using strain C58 and EHA101 harbouring a binary plasmid containing the β glucuronidase (gusA or uidA) intron gene under the transcriptional control of CaMV35S promoter, very high efficiency of transformation (25–65%) was obtained. This successful organogenesis and transformation protocol could be optimized and adapted in engineering of local yam quality and productivity for enhanced protein content, and longer shelf-life.
\n\t\t\tTo facilitate research in the application of biotechnology tools, Ghanaian researchers have partnered with regional, subregional and international programs. These include projects with financial and technical support from International Atomic Energy Agency (IAEA), Generation Challenge Program (GCP), United States Agency International Development (USAID), CORAF/WECARD, Syngenta foundation for Sustainable Agriculture, United States Department of Agriculture/Food and Agricultural Science (USDA/FAS), African Agricultural Technology Foundation (AATF), United Nations University – Institute for Natural Resources in Africa(UNU/INRA), World Bank, just to name a few. Collaboration with CGIAR centers as well as universities (Tuskegee University Alabama, USA, and Cornell University) has contributed immensely to recent research outputs, training human capacity, as well as technical and infrastructural capacities.
\n\t\t\t\tPresently, Ghanaian agricultural research organizations have graduated to the status of organizing national and regional training courses which hitherto were organized at Consultative Group (CG) centers in the subregion. This activity re-enforces the fact that both the human and infrastructural capacities have been developed to identify and solve regional problems.
\n\t\t\t\tDevelopment of functional and sustainable Biotechnology systems needs to take into account `proper stewardship principle. Ghana is presently a participating country in the project to Strengthen Capacity for Safe Application of Biotechnology (SABIMA). This is an Excellence through stewardship based project ensuring the utilization of modern biotechnology tools is practiced in a responsible manner. Under this project, through stewardship training workshops, researchers are being trained to develop and properly document standard operating procedures as well as critical control points along the life cycle of product development. Biotechnology application policies are also being developed by the various institutes for implementation at the management level in the organizations.
\n\t\t\t\tOver the years, Ghanaian Universities had been training plant and animal breeders and researchers in related fields of applied and basic sciences, with limited or no knowledge in molecular biology. There is therefore a generation of Breeders and Research Scientists with little or no knowledge of molecular biology, tissue culture and modern biotechnology. However with the establishment of the West Africa Centre for Crop Improvement (WACCI), Alliance for Green Revolution in Africa (AGRA), Postgraduate Program at the University of Ghana at Legon, and Kwame Nkrumah University of Science and Technology (KNUST) respectively, a new generation of plant breeders with knowledge on the use of biotechnology in crop improvement are being turned out. This new generation of plant breeders is challenged to help solve African’s problems on African’s soil by developing crop varieties tolerant/resistant to biotic and abiotic stresses, and thus alleviate poverty in order to achieve the Millennium Challenge Goals. The Government of Ghana also assisted by providing funds for the establishment of Biotechnology laboratories in 2006, the CSIR – Crops Research institute and CSIR – Animal Research Institute. As a result, a new breed of lecturers, researchers and students are using conventional and biotechnological tools for crop and animal improvement. To us in the developing countries, some of the outmoded technological tools in the advanced countries are novel ideas. The use of laborious and conventional breeding methods with its attendant long duration have given way to evaluation and selection using marker assisted breeding, mutation breeding, use of tissue culture to select somaclonal variants and disease elimination, production of clean planting materials, and mass production of clonal planting material by means of tissue culture.
\n\t\t\tThe application of modern biotechnology in developing countries especially in Africa, has great prospects. All the necessary efforts have to be employed in the form of financing, policies, technologies, collaboration etc. These will help us to realize the inherent potentials and immense contributions to the scientific advancement worldwide. All stakeholders are needed to play their various roles to ensure the responsible application of biotechnology in developing countries. The case of Ghana with respect to the CSIR-CRI alone stated above gives the clear indication that, consistency, great leadership, team work, human and infrastructural capacity building, good networking and collaboration are keys to establishing a sustainable system. Presently, under the West African Agriculture Productivity Program (WAAPP), with sponsorship from the World Bank, a multipurpose biotechnology facility is being constructed to facilitate root and tuber research activities in the sub-region. It is hopeful that the impetus will keep building up, and more innovative strategies will be put in place to harness utilization of biotechnology tools in the sub-region.
\n\t\tThe authors wish to acknowledge the following persons for the crucial roles they played in training human resource and advocating for funds for the advancement of biotechnology in Ghana, name; Dr. Elizabeth Acheampong, Dr. M. Egnin, Dr. C. Bonsi, Prof. P. Berjak, Dr, Hans Adu-Dapaah, Prof. A Oteng-Yeboah, Dr. Y. Difie Osei, Prof. Walter Alhassan, Prof Boampensem, Dr. J. Asafo-Adjei, just to mention a few. The CGIARs are also duly acknowledged for their immense contribution in training human resource capacity, as well as improving infrastructural capacity.
\n\t\tMicrowave and millimetre-wave dielectric materials [1, 2, 3, 4, 5, 6] have been investigated for a wide range of telecommunication applications, such as mobile and smartphones, wireless local area network (LAN) modules and intelligent transport system (ITS). Millimetre-wave dielectric materials with high quality factor Q and low dielectric constant εr are required for the next 5G telecommunication applications used for noncondensed high data transfer on LAN/ personal area networks (PAN) and the higher frequency radar on autonomous cars.
\nIn microwave dielectrics, there are three fundamental dielectric properties: quality factor (Q), dielectric constant (εr) and temperature coefficient of resonant frequency (TCf/τf) [1, 2, 6]. Microwave dielectrics have been used as the critical constituents of wireless communications [7, 8, 9, 10], such as resonators, filters and temperature-stable capacitors with a near zero ppm/°C TCεr (temperature coefficient of the dielectric constant). Among the dielectric properties, the most essential property is Q, the inversion of the dielectric loss (tanδ); thus Q = 1/tanδ. The dielectric losses of microwave dielectrics should be small. So, most of the microwave dielectrics are paraelectrics with inversion symmetry i, while most of the electronic materials are ferroelectrics with spontaneous polarity showing substantial dielectric losses [11, 12, 13]. The microwave dielectrics attract attention as a high potential material, which have an over-well-proportional rigid crystal structure with symmetry. That is, the structure should be without electric defects, nondistortion and without strain.
\nUnder the influence of an electric field, four types of polarisation mechanisms can occur in dielectric ceramics, that is, interfacial, dipolar, ionic and electronic. In general, the microwave dielectric properties such as εr and Q are mostly influenced by ionic or electronic polarisation. The dielectric polarisation generates the dielectric losses in the presence of an electromagnetic wave. When the frequency is increased to millimetre-wave values, the dielectric losses may be increased or decreased depending on the polarisation mechanism. There are two kinds of losses: those depending on crystal structure and losses due to external factors. It was believed that the intrinsic losses are due to the ordering/disordering, symmetry and phonon vibration, while extrinsic losses are due to factors such as grain size, defects, inclusions, density and distortion from stress.
\nIn this chapter, the origins of high Q are discussed based on the intrinsic factors related to the crystal structure, such as symmetry, compositional ordering and compositional density. Although it has previously been believed that ordering based on the order-disorder phase transition brings high Q [14], the authors propose that it is primarily a high symmetry that leads to high Q [15]. The following focused studies relate to specific examples; indialite with high symmetry showing higher Q than cordierite with an ordered structure [16, 17, 18]; pseudo tungsten-bronze solid solutions without phase transition showing high Q based on the compositional ordering [19, 20, 21]; complex perovskite compounds with order-disorder transitions depending on density and grain size [22, 23] and complex perovskites with composition deviated from the stoichiometric depending on the compositional density showing a high Q [24, 25, 26, 27, 28, 29].
\nCordierite (Mg2Al4Si5O18) has two polymorphs: cordierite and indialite, as shown in Figure 1(a) and (c), respectively [30, 31]. Cordierite is of low symmetry form: orthorhombic crystal system Cccm (No. 66), which has Si4Al2O18 six-membered tetrahedron rings with ordered SiO4 and AlO4 tetrahedra as shown in Figure 1(b). On the other hand, indialite is of high symmetry form: hexagonal crystal system P6/mcc (No. 192), which has disordered Si4Al2O18 equilateral hexagonal rings as shown in Figure 1(c).
\nSchematic representation of cordierite (a), six-membered tetrahedron ring with ordered SiO4 and AlO4 (b) and indialite (c).
Cordierite shows a lower εr of 6.19 which depends on the silicates and a near-zero TCf of −24 ppm/°C [32] as compared to other silicates as shown in Figure 2(a). Based on these properties, Terada et al. carried out initiative research on these microwave dielectrics [16]. They reported an excellent Qf by substituting Ni for Mg as shown in Figure 2(b). The Qf was improved from 40 × 103 GHz to 100 × 103 GHz by Ni substitution of x = 0.1 in (Mg1−xNix)2Al4Si5O18. The Ni substitution did not change the εr value considerably, but the TCf was degraded from −24 to −30 ppm/°C [16]. For x > 0.1, the properties were affected by the formation of the secondary phase of NiAl2O4.
\nCordierite with near zero ppm/°C deviated from other compounds (a). Ni-substituted cordierite Qf (b), volume of AlO4 and SiO4 (c) and covalencies of Si-O and Al-O as a function of composition x (d).
Terada et al. also analysed the crystal structure by the Rietveld method [33] to clarify the origin of the improved Qf value. The X-ray powder diffraction (XRPD) pattern was obtained by a multi-detector system (MDS) [34] in the synchrotron radiation “Photon Factory” of the National Laboratory for High Energy Physics in Tsukuba, Japan. Figure 3(a)–(d) shows the crystal structures of Ni-substituted cordierite (Mg1−xNix)2Al4Si5O18 with x = 0, 0.05, 0.1 and 0.15. The crystal structure showed a tendency to deform to indialite with high symmetry on the hexagonal ring composed of corner-sharing of (Si, Al)O4 tetrahedra in the a-b plane. Ni-substituted cordierite (Mg1−xNix)2Al4Si5O18 with composition x = 0.1 (Figure 3(c)) was obviously closer to equilateral hexagonal rings compared to (Mg0.95Ni0.05)2Al4Si5O18 (Figure 3(b)) and Mg2Al4Si5O18 (Figure 3(a)).
\nCrystal structure of Ni-substituted cordierite: (Mg1−xNix)2Al4Si5O18 with composition x = 0 (a), 0.05 (b), 0.1 (c) and 0.15 (d).
The transformation from cordierite to indialite, represented by the ratio of disordering between the SiO4 and AlO4 tetrahedra, is based on the volumes and covalencies of the SiO4 and AlO4 tetrahedra [35]. The volume was calculated using atomic coordinates obtained by Rietveld crystal structural analysis as shown above. The covalency (fc) of the cation-oxygen bond was estimated from the following equation [36].
The empirical constants a and M depending on the inner-shell electron number 10 are 0.54 v.u. and 1.64, respectively [37], where s is the bond length obtaining from the following equation:
where, R is defined as the bond length, and R1 and N are the measured parameter reliant on the cation site and each cation-anion pair, respectively.
\nFigure 2(c) and (d) depicts the calculated volume and covalency of SiO4 and AlO4 octahedra, respectively. These figures show the phase changing from cordierite to indialite as substitution of Ni in the Mg site. In the cordierite Mg2Al4Si5O18 (Figure 1(a)), Si/Al ions in the tetrahedra are ordered. Therefore, the volume and covalency of tetrahedra are different values, but the values are becoming similar to the substitution of Ni in the Mg site. This is due to the disordering of Si/Al ion phase transition in the cordierite (Figure 1(a)) to indialite (Figure 1(c)). In the indialite, the disordered Si4Al2O18 equilateral hexagonal rings with 6-ford axis are the main framework as analysed by the Rietveld method as shown in Figure 3(d). The improvement of Qf as shown in Figure 2(b) should be based on the disordering due to high symmetry instead of an ordering of SiO4 and AlO4 tetrahedra by order-disorder transition. It is one example of high symmetry bringing a higher Q than ordering by the order-disorder transition [18].
\nAs described in the previous section, the Qf value of indialite derived by substituting Ni for Mg was improved to three times that of cordierite. Based on the new knowledge, Ohsato et al. proposed the synthesis of indialite with superior microwave dielectric properties [17]. The indialite, being a high-temperature form, could not be synthesised by the solid-state reaction because the order-disorder phase transition is hindered by the incongruent melting to form mullite and liquid. On the other hand, indialite is an intermediate phase during the crystallisation process from glass with a cordierite composition to cordierite, as shown in Figure 4. Therefore, fabrication of indialite glass ceramics has been attempted [17, 39]. Although the indialite is a metastable phase transforming to cordierite at higher temperatures, it is a relatively stable phase which occurs in nature formed by the crystallisation of natural glass. As this occurrence is in India, the mineral was named indialite. Another phase of μ-cordierite precipitating in the early stage of the crystallisation of cordierite glass is β-quartz solid solutions. The naming of μ-cordierite is not correct because of the different crystal structure, so the name that should be used is β-quartz solid solutions [38].
\nPolymorphism of cordierite: indialite is the high temperature/high symmetry form, and cordierite is the low temperature/low symmetry form. In addition, indialite is an intermediate phase during crystallisation from glass to cordierite.
The cordierite composition was melted at 1550°C and was cast into a cylindrical rod with the diameter φ = 10 mm and l = 30 mm in a graphite mould. In order to avoid fracture due to internal strain, the cast glass rod was annealed at 760°C below the glass transition point of 778°C [38]. The 10 mm diameter glass rod was cut to form a resonator with a height of 6 mm. The glass pellets were crystallised at temperatures in the range 1200–1470°C/10 and 20 h. The crystallised pellets had two problems: deformation by the formation of glass phase and cracking by anisotropic crystal growth from the surface (Figure 5(a)) [39]. Figure 5(b) and (c) shows photographs taken by a polarising microscope of a thin section of the crystallised samples. The needle-like crystals grown from the surface had an orientation with c-axis elongation. The microwave dielectric properties of the sample with cracking had a wide scattering range of the data [17, 39].
\nCracking of crystallised pellets (a) and anisotropic crystal growth of the pellets under the crossed polars with a sensitive test plate (b) and (c).
Figure 6(a) shows the volume of indialite/cordierite examined by the Rietveld method [40], which is estimated with two phases such as indialite and cordierite. Hereabout, the residual % is compared to that of cordierite. At 1200°C, the precipitated phase of indialite was about 96.7%. The volume of indialite reduced as the temperature and to 17.1% (82.9% for cordierite) at 1400°C. Figure 6(b) and (c) shows the microwave dielectric properties of indialite/cordierite glass ceramics and remarkably high Qf value of more than 200 × 103 GHz at 1300°C/20 h [17]. This is much better than the highest Qf value of 100 × 103 GHz obtained by substitution with Ni using the conventional solid-state reaction as previously described (Figure 2(b)) and is feasible for millimetre-wave dielectrics. The Qf values decreased as crystallisation temperature. In comparison with the amount of indialite as shown in Figure 6(a) [39] and its Qf values as shown in Figure 6(b) and (c) [17], it is clear that the indialite glass ceramics present a higher Qf than that of cordierite. The εr was the lowest among the silicates, about 4.7 as shown in Figure 6(b) and (c), and the TCf was −27 ppm/°C as shown in Figure 6(b). Therefore, from these figures, indialite shows a higher Qf than cordierite. This TCf value of −27 ppm/°C is better than that of other silicates having a low TCf of approximately −60 ppm/°C [39].
\nAmount of indialite (a) and microwave dielectric properties of crystallised indialite at 1200–1440°C for 10 (b) and 20 (c) hours.
\n
Indialite/cordierite glass ceramics are one of the examples of high symmetry bringing a higher Q than ordering by order-disorder transition. Indialite glass ceramics with disordered high symmetry have higher Qf properties than cordierite with ordered low symmetry.
Cordierite with substituted Ni for Mg synthesised by solid-state reaction exhibited an improved Qf from 40 × 103 to 100 × 103 GHz (Figure 2(b)). Rietveld crystal structure analysis showed that the cordierite was transformed to indialite [16].
A novel idea from glass ceramics suggested the fabrication of indialite as an intermediate phase. Glass ceramics crystallised at 1200°C were almost completely indialite at 96.7% with a high Qf of 150 × 103 GHz, and those crystallised at 1400°C were cordierite at 82.9% with a lower Qf of 80 × 103 GHz. (Figure 6) [17, 39].
Indialite/cordierite crystallised from cordierite glass at 1300°C/20 h showed good microwave dielectric properties of εr = 4.7, Qf > 200 × 103 GHz and TCf = −27 ppm/°C (Figure 6) [17, 39].
The pseudo tungsten-bronze solid solutions Ba6−3xR8+2xTi18O54 (R = rare earth) located on the tie-line of BaTiO3-R2Ti3O9 are shown in Figure 7(a) and have been utilised in mobile phones because of their high dielectric constant of 80–90 [20, 21]. This solid solution was first reported by Varfolomeev et al. [41], based on Nd and Sm systems. The composition ranges 0.0 < < x < < 0.7 for R = Nd and 0.3 < < x < < 0.7 for Sm [42] were reported by Ohsato et al. [19] and Negas et al. [43]. The composition range of the solid solutions becomes narrower with the decrease in the ionic radius of the R-ion, and Ga and Eu form only BaO·R2O3·4TiO2 composition [44].
\nA part of the BaO-R2O3-TiO2 ternary phase diagram with pseudo tungsten-bronze type solid solutions (a).Oscillation photograph along c-axis of pseudo tungsten-bronze type solid solutions (b). Electron density map (Fourier map) of the fundamental structure superimposed on a superstructure framework (c) and TiO6 tilting octahedra along the c-axis on the super-lattice (d) deduced from the splitting of oxygen in the fundamental structure (c), and the splitting of oxygen atoms based on the tilting of octahedra as shown in left side figure of the fundamental lattice (d). Right side schematic figure: super structure produced by tilting octahedral (d).
Ohsato et al. and Negas et al. reported the microwave dielectric properties for the Sm, Nd, Pr and La systems as a function of composition x as shown in the Figure 8(a) [20, 43, 45] and Fukuda et al. reported the Pr system [46]. On the solid solutions, the composition with x = 2/3 was found by Ohsato et al. [42], at which the Qf value becomes the highest due to the ordering in the rhombic and pentagonal sites. The dielectric constants εr and TCf (Figure 8(b) and (c)) are decreased as a function of the composition x and are affected by volume and tilting angle of the TiO6 octahedra and the polarizabilities of R and Ba ions [20]. The Clausius-Mosotti equation determined the temperature coefficient of the dielectric constant TCεr as a function of the ratio of the mean radii (ra/rb) of A- and B-site ions by Valant et al. [47]. Hither, ra/rb is connected to the tilting of the TiO6 octahedra. In this study, on the system without order-disorder phase transition that is without symmetry change, it is discussed that the ordering especially compositional ordering brings high Qf.
\nQf (a), εr (b) and TCf (c) of Sm, Nd, Pr and La system as a function of composition x.
The crystal structure of the pseudo tungsten-bronze Ba6−3xR8+2xTi18O54 (R = rare earth) solid solutions [48, 49, 50, 51] includes the perovskite blocks of 2 × 2 unit cells with rhombic (A1) sites and pentagonal (A2) sites, as shown in Figure 9, which are named after the tetragonal tungsten-bronze structure with 1 × 1 perovskite blocks and pentagonal sites [20, 48, 50]. On this compound, two large sites including Ba- and R-ions are placed such as A1 and A2. The Ba-ions engaged on the pentagonal A2-sites and R-ions A1-sites on the perovskite blocks. Two more sites, B and C are positioned on the tungsten-bronze crystal structure. The B-site is the same as the TiO6 octahedral place in the perovskite, and the C-site is a triangular site which is usually empty. This crystal structure of this compound has a special relationship with the perovskite structure. If the two ions are the same size, the structure will change to perovskite with only an A1-site owing to the combination of the pentagonal A2-site and the trigonal C-sites [20, 52]. The crystal data are as follows: orthorhombic crystal system of space group Pbnm (No. 62), point group mmm and lattice parameters a = 12.13, b = 22.27, c = 7.64 Å, Z = 2 and Dx = 5.91 g/cm3.
\nCrystal structure of the pseudo tungsten-bronze solid solutions. Rhombic (A1) sites located in 2 × 2 unit cells of perovskite blocks, and pentagonal (A2) and trigonal sites (C).
The structure has a super lattice along the c-axis with a double lattice of perovskite as shown in Figure 7(b) of an oscillation photograph with super diffraction lines [53, 54]. The crystal data of the fundamental lattice are as follows: orthorhombic crystal system of space group Pbam (No. 55), point group mmm and lattice parameters a = 12.13, b = 22.27, c = 3.82 Å, Z = 1 and Dx = 5.91 g/cm3. The super lattice is depending on the tilting of TiO6 octahedra as shown in Figure 7(d). The tilting was endowed in the density map (Figure 7(c)) which is of the fundamental lattice superimposed on a superstructure framework. The top oxygen ions (O(1), O(4), O(6), O(8) and O(14)) of octahedra are separated into two along the c-axis. The left figure of Figure 7(d) shows the reason for splitting of the top oxygen [20]. However, this super lattice is not depending on the order-disorder phase transition as complex perovskite as explained at 2.3 section. The tilting of octahedra might be depending on the size of A-ion in the perovskite block.
\nThe chemical formula of the solid solutions is Ba6−3xR8+2xTi18O54, and the structural formula is [Ba4]A2[Ba2−3xR8+2x]A1Ti18O54. Here, the amount of Ba in the A1-sites becomes zero (2 − 3x = 0), that is, x = 2/3. This composition is special as the following sentence: the structural formula is [Ba4]A2[R8+4/3]A1Ti18O54 which is occupied separately by Ba in A2 and by R in A1 as shown in Figure 10(b). This special composition is called “compositional ordering” [20, 21, 42].
\nStructure of disordering (a), compositional ordering (b) and defects in A2-sites (c), depending on the x values of Ba6−3xR8+2xTi18O54.
Figure 8 shows the microwave dielectric properties of the solid solutions as a function of composition x of Ba6−3xR8+2xTi18O54 [20, 21, 42]. The quality factor (Qf) changes nonlinearly and has the highest value at particular point x = 2/3 with compositional ordering specified above [55]. The highest Qf value might be depending on the internal strain. Figure 11(a) confers internal strain η obtained from the slope of equation βcosθ = r/t + 2ηsinθ. The internal strain η of the special point x = 2/3 is the lowest with the compositional ordering as a function of composition x as shown in Figure 11(b). The internal strain comes from the fluctuation of d-spacing of the lattice broadening the full width at half maximum (FWHM) [20, 21, 56].
\nInternal strain η values obtained from the slope of equation βcosθ = r/t + 2ηsinθ as a function of sinθ for x = 0.3, 0.5, 2/3 and 0.7 (a) and strain η (d-spacing) as a function of composition x (b).
The Qf value at the special point x = 2/3 shows the highest of 10.5 × 103 GHz in the Sm system, 10.0 × 103 GHz in the Nd system and 2.0 × 103 GHz in the La system as depicted in Figure 8(a) [20, 21, 56]. The Qf values reducing in the order of Sm, Nd, Pr and La are depending on the ionic radius relating size difference between Ba and R [57], and that of La is deviating from the Qf line through the Sm, Nd and Pr as shown in Figure 12. If the sizes are similar, the crystal structure should become perovskite structure. In the case of Sm, the difference is maximum which introduces the stability of the crystal structure. The size of La ion is similar to Ba, so the structure might be unstable to be low Qf.
\nMicrowave dielectric properties as a function of ionic radius of R ion.
On the microwave dielectrics, high Q has been brought by a high potential material, which has an over-well-proportional rigid crystal structure with symmetry [11, 12, 13]. That is, the structure should be without electric defects, nondistortion and strain. Complex perovskites were described later, it is believed that ordering by long time sintering brings high Q, but we are pointing out symmetry is the predominant factor [14, 15]. In the case of indialite/cordierite, indialite with high symmetry shows higher Q than cordierite with ordering [17, 18, 39]. This case has an order-disorder phase transition. On the other hand, in the case of pseudo tungsten-bronze solid solutions which has no phase transition, one of ordering that is the compositional ordering brings high Q [20, 21]. In the case of no symmetry change, ordering is predominant.
\n\n
The pseudo tungsten-bronze solid solutions have been used for mobile phones for miniaturisation based on their high Qf and high εr.
The compound has a unique point of x = 2/3 on the Ba6−3xR8+2xTi18O54 chemical formula which shows the highest Qf value.
The special point of x = 2/3 on the structural formula of [Ba4]A2[Ba2−3xR8+2x]A1Ti18O54 is the composition at which Ba-ions disappear on the A1-sites because 2 − 3x = 0. That is the point of compositional ordering.
The compositional ordering brings high Q by maintaining the stability of the crystal structure.
There are many kinds of complex perovskites such as 1:1, 1:2 and 1:3 type in B-site and 1:1 type in A-sites [21]. In this chapter, 1:2 type complex perovskite compounds A2+(B2+1/3B5+2/3)O3 are presented such as Ba(Zn1/3Ta2/3)O3 (BZT), Ba(Mg1/3Ta2/3)O3 (BMT) and Ba(Zn1/3Nb2/3)O3 (BZN). These complex perovskite compounds have order-disorder phase transitions (Figure 13(a) and (b)) [58]. The ordered phase that appears at low temperatures is a trigonal (rhombohedral) structure of space group P\n
Complex perovskite crystal structure composed by Mg/TaO6 octahedra located between BaO3 closed packing layer, showing relationship between cubic and trigonal crystal lattice. Perspective figure (a) and (110) plane (b).
Kawashima et al. [14] presented that ordering brings a high Q based on BMT with long duration sintering, which showed high Qf and ordering. This has previously been believed to be the case because long duration sintering samples generally show high Qf and ordering. However, some examples have arisen that contradict this relation, such as BMT-Ba(Co1/3Ta2/3)O3 [59], BMT-BaZrO3 [60], BMT-BaSnO3 [61] and BZT-(SrBa)(Ga1/2Ta1/2)O3 [62]. Koga et al. [23, 24, 25, 26] presented the relationship between high Qf and the ordering ratio as determined by the Rietveld method, the high Qf samples with disordered structure synthesised by spark plasma sintering (SPS) [63] and the effects of annealing of disordered BZN with an order-disorder transition point of 1350°C [26]. HRTEM and Rietveld studies confirmed the ordering and disordering of BZN samples [64]. Partial ternary phase diagrams such as BaO-ZnO-Ta2O5, BaO-MgO-Ta2O5 and BaO-ZnO-Nb2O5 were studied on the composition with high Qf that deviated from the stoichiometric composition of BZT/BMT/BZN by Kugimiya et al. [22, 27], Koga et al. [24, 26] and Kolodiazhnyi [29]. Kugimiya pointed out that the solid solutions with high density and high Qf located on the tie-line BMT-Ba5Ta4O15, which have completed the ideal chemical formula without oxygen defects. It is one of the conditions for high Q that the high compositional density brings high Qf.
\nIn this section, it is explained that ordering has no relation with Qf based on the following three sets presented by Koga et al. [23, 25, 26, 63].
\nThe ordering of BZT was observed on the samples with high Qf sintered at 1350°C [23] over 80 h. Figure 14 presents the XRPD patterns (a) with super lattice lines (asterisked), and the high angle diffraction patterns (b) which depicts splitting of 420 cubic diffraction peak into two peaks, namely 226 and 422 in the trigonal system. These data are consistent with the report by Kawashima et al. [14].
\nXRPD patterns of BZT ceramics with different sintering times at 1350°C (a), here, asterisks are super lattice diffractions, and Magnified XRPD patterns around 2θ = 115° in which 420 diffraction peak split to 226 and 422(b).
Koga et al. investigated the amount of BZT ceramic as ordering ratio by the Rietveld method [23], which is shown in Figure 15(a). The ordering ratio saturates at about 80%, but the Qf values increase up to 100 × 103 GHz. This shows that the effect of ordering on the Qf is not so significant. However, the Qf values are affected by density and grain size as shown in Figure 15(b) and (c), respectively [15, 23].
\nThe Qf as functions of ordering ratio (a), density (b) and grain size (c) of BZT ceramics.
Many complex perovskites such as BMT and BZT have the order-disorder phase transition at high temperature, and the order-disorder transition is not so clear. On the other hand, BZN shows clearly the phase transition at lower temperature 1350°C [26]. Figure 16(a) shows Qf as a function of sintering temperature. Under the transition temperature such as 1200 and 1300°C, the sintered samples show order with under 50 × 103 GHz of Qf. Moreover, at 1400°C, higher than the transition temperature, the Qf values increased to 90 × 103 GHz with disordering structure. This shows that the high symmetry form with disorder performs higher Qf than ordering form. Moreover, the sample annealed at 1200°C/100 h transformed to order form, but the Qf value did not improve and slightly decreased. Grain size and densities as shown in Figure 16(b) and (c) also increased as the sintering temperature from 1200 to 1400°C [15, 26]. As if the sample sintered at 1400°C annealed at 1200°C/100 h, the grain size and densities were not changed. Because of annealing, the slight decrease in Qf might be a result of the low symmetry that accompanies order. On the contrary, Wu et al. [65] presented annealing of BZN at 1300°C brings high Qf with ordering. The annealing temperature is high enough for sintering, so sintering was proceeded with ordering the same as Kawashima’s results [14].
\nQf (a), grain size (b) and density (c) as a function of sintering temperature of BZN ceramics.
The BZN samples A and B are also studied by XRPD and HRTEM, which sintered at 1400°C/100 h above the order-disorder phase transition point and subsequently annealed at 1200°C/100 h below the transition point, respectively [26, 64]. The two samples were identified by conventional XRPD as shown in Figure 17(a). As the super lattice lines are not clear, the high angle XRPD patterns around 2θ~115° were measured (Figure 17(b)). On the XRPD pattern, the sample A shows a single peak of the 420 diffraction, so it was confirmed as disorder phase. On the other hand, the sample B shows the peak splitting of 422 and 226 depending ordering. These results are comparable with Koga’s data [23]. These two samples were analysed by the Rietveld method.
\nXRPD patterns for BZN ceramics sintered at 1400°C (sample A) and annealed at 1200°C (sample B) (a) and magnified high angle XRPD patterns around 2θ~115° (b).
HRTEM figures as shown in Figure 18 for most area of sample A (Figure 18(a)) and B (Figure 18(c)) are disordered and ordered area along the [111]c direction, respectively. A fast Fourier transform (FFT) image is inserted in Figure 18(a) of a disordered area without further reflections along the [111]c direction and in Figure 18(c) of a ordered area with additional two reflection points for super lattice. In the both sample A and B, mixed area of disordered and ordered area existed in Figure 18(b), and in the sample B, ordered area showing twin-related anti-phase domain boundary also existed as shown in Figure 18(d). The FFT image of twin area shows superimposed of ordered diffractions with four additional points.
\nHRTEM images of sample A and B with FFT image along the [111]c direction: disordered area in sample A (a), mixed area of disordered and ordered area in sample A (b), ordered area in sample B (c) and twin related anti-phase domain boundary in sample B (d).
Figure 19 depicts the high-resolution XRPD pattern of sample A and B using synchrotron radiation [64]. The super lattice diffraction 100 t peaks (reciprocal lattice plane 100 in the trigonal crystal system) are observed in both samples. The diffraction intensity of sample A is lower than that of sample B. These super lattice diffraction intensity peaks are comparable with the ordering ratios, that is the sample A and B have the value of 27.6 and 54.2%, respectively, obtained by the Rietveld method. Although the degree of ordering of sample B is large compared to that of sample A, it was assumed about 80% ordering for a whole sample, as in the case of BZT [23].
\nHigh-resolution synchrotron XRPD patterns (λ = 0.82718 Å) for sample A and B with super lattice peak 100t. Here, subscript t is trigonal, and c is cubic.
It is revealed that the degree of ordering increased from 27.6 to 54.2% due to the annealing. However, the Qf values, grain size and the density have no influence on the degree of ordering (Figure 16). While the disordered area of sample A (sintered above the transitional temperature) changes to the low-temperature phase with ordering by the annealing, the Qf values were expected to be increased. However, the Qf values changed only somewhat from 95.7 × 103 GHz to 95.0 × 103 GHz [64]. The effect of ordering is not acceptable to change the Qf value considerably.
\nThe ordered and disordered BZT ceramics can be achieved by varying the sintering duration in the conventional solid-state reaction (SSR). A high density and high Q ceramics of ordered BZT were obtained by SSR with a long sintering time of over 80 h, while the disordered BZT was not possible to fabricate by using SSR. Koga et al. [63] reported the high density disordered BZT ceramics for a short sintering time of 5 mins by using spark plasma sintering (SPS). Figure 20(a) presents the Qf as a function of the densities of BZT fabricated using SSR and SPS [15, 63]. The fabricated SPS samples were shown to be disordered cubic type of perovskite as depicted in the XRPD pattern (Figure 20(b)) with a peak of 420 reflection in compared with the ordered trigonal type with peaks separations of 422 and 226 when sintered using SSR (1400°C 100 h). The ceramics were sintered at the temperature between 1150 and 1300°C under 30 Mpa pressure [63].
\nQf of BZT by solid-state reaction (SSR) and spark plasma sintering (SPS) as a function of density, Disordered BZT by SPS shows high Qf (a). Nonsplitting XRPD patterns around 420 diffraction of BZT sintering by SPS with different sintering temperatures compared with ordered sample by SSR with splitting pattern (b).
This may result in the disordered BZT with a high density of 7.62 g/cm3, which is approximately 20% higher than that of low-density samples of 5.0–6.0 g/cm3 synthesized by conventional SSR. The full width at half maximum (FWHM) of the 420 peak became narrower with an increase in the temperature from 1100 to 1300°C (Figure 20(b)) indicates that the degree of crystallisation of the disordered cubic phase is improved without the need for conversion to the ordered trigonal phase. Regardless of the method of synthesis, Qf is strongly dependent on density, and Qf values were improved with increasing density. The dense disordered BZT ceramics synthesized by SPS showed a significantly high Qf (= 53.4 × 103 GHz) comparable to that of the ordered BZT with the same density (= ca. 7.5 g/cm3) synthesized by SSR. The crystallisation with densification of BZT ceramics should play a more critical role in the improvement of the Q factor in the BZT system rather than the structural ordering.
\nIn a BaO-Mg/ZnO-Ta2O5 partial ternary ceramic (BMT/BZT system), complex perovskite such as BMT and BZT are forming solid solutions, and the Qf values varied intrinsically based on the crystal structure in the solid solutions depending on the density and defects. In this section, the crystal structure and properties on the varied compositions from the stoichiometric complex perovskite composition are reviewed for high Qf research.
\nKugimiya [22, 27] presented the highest Qf composition with intrinsic compositional density on the Ta and Ba rich side near the BMT-Ba5Ta4O15 tie-line in a BaO-MgO-TaO5/2 partial system (BMT system), as shown in Figure 21. He presented three areas divided by the following two lines as shown in Table 1 and Figure 21.
BaO-MgO-TaO5/2 partial system (BMT system).
α | \nChemical formula | \nVacancy | \n
---|---|---|
α > 5γ/4 | \nBa1+α(Mg1/3Ta2/3+γVα −γ)O3+α+5γ/2 V2α −5γ/2 | \nA: fill, B, O: vacancy | \n
α = 5γ/4 | \nBa1+α(Mg1/3Ta2/3+4α/5Vα/5)O3+3α | \nA, O: fill, B: vacancy | \n
5γ/4 > α > γ/2 | \nBa1+αV5γ/6 −2α/3(Mg1/3Ta2/3+γ Vα/3−γ/6) O3+α+5γ/2 | \nA, B: vacancy, O: fill | \n
α = γ/2 | \nBa1+αVα(Mg1/3Ta2/3+γ)O3+6α | \nA: vacancy, B, O: fill | \n
α < γ/2 | \nBa1+αVγ−α(Mg1/3Ta2/3+γ)O3+α+5γ/2 Vγ/2−α | \nA, O: vacancy, B: fill | \n
The chemical formula for three areas divided by two lines: α = 5γ/4 and α = γ/2, here, α and γ are in BaαTaγOα+5γ/2 and vacancies on the A-, B- and O-sites [22].
Here, α and γ are as written in the formula αBaO·γTaO5/2. On the α = 5γ/4 line, Ba1 + α(Mg1/3Ta2/3 + 4α/5Vα/5)O3+3α solid solutions are formed as the ideal compositions without vacancies in the A- and O-sites. In the B-site, the vacancy is neutralized and without charge.
\nIn Figure 21, the composition with intrinsic compositional high density shows the highest Q of 50.0 × 103 on the tie-line between BMT and Ba5Ta4O15 (𝛼 = 5𝛾/4). The contour lines in Figure 21 show Q values from 2.0 × 103 in the outer area to 25.0 × 103 in the centre. The contour is elongated parallel to the Q max line as drawn in Figure 21, and it changes steeply on the perpendicular to this line. So, the compositions without oxygen vacancy and with neutralised charge vacancies are ideal for microwave dielectrics, and the density is high due to the partial substitution of Ta in the site of Mg, which is denoted as intrinsic compositional density [28]. Other regions have some defects degrading the Qf values, which were explained on the references [21, 22, 27, 28].
\nKoga et al. [24, 25] showed the highest Qf composition shifted from the stoichiometric BZT composition. The ordering ratio of the deviated composition was not higher than that of the stoichiometric composition, which was calculated by the Rietveld method. These results were presented by the study of the phase relations in the vicinity of BZT in the BaO-ZnO-Ta2O5 ternary system, as shown in Figure 22 [24, 25]. These samples were sintered at 1400°C/100 h as reported in Koga’s paper. These diffraction patterns fit the Rietveld method well [23, 24]. Ordering ratios obtained are shown in Figure 23(a). Three areas in the vicinity of BZT are presented as shown in Figure 22. 1st one (I) is ordering area with BZT single phase, the 2nd one (II) is ordering area with secondary phase and 3rd one (III) is disordering area with BZT single phase.
\nPhase relations in the vicinity of BZT in the BaO-ZnO-Ta2O5 ternary system.
Ordering ratio (a), Qf (b) and density (c) as a function of composition deviation from stoichiometric BZT.
The first area (I) is characterised as a BZT single phase with an ordered structure and a high Qf. The varied compositions E and K have high Qf values about 50% higher than that of the stoichiometric BZT composition A. The ordering ratios at E and K are lower than that of stoichiometric BZT at A, but the density at E is the same as that of A [25]. The second (II) is composed by an ordered BZT accompanied by a secondary phase BaTa2O6 with a specific amount of Zn determined by X-ray microanalyser (XMA). The ordering ratio in this area is high at about 70–80% (Figure 23(a)). Although the structure is ordered, the Qf values decrease in the order of A-N-O-P from stoichiometric BZT (Figure 23(b)). The ordered BZT with the secondary phase is located on the Ta2O5 rich side as a eutectic phase diagram system. The third (III) with a disordered single phase shows low Qf and low density (Figure 23(c)). The low density comes from the numerous pores.
\nKolodiazhnyi [29] also found the highest Qf of 330 × 103–340 × 103 GHz positions deviated from the stoichiometric BMT composition which is located in the BMT-Ba5Ta4O15-Ba3Ta2O8 compositional triangle (CT) as shown in Figure 24. The positions located in the single-phase BMT, which was indicated by green line. The position is close to the BMT-Ba5Ta4O15 tie-line. A to H eight CTs are formed by BMT and five stable compounds, such as Ba5Ta4O15, MgO, BaO, Ba9MgTa14O45 and Mg4Ta2O9, and three metastable compounds, Ba6Ta2O11, Ba4Ta2O9 and Ba3Ta2O8. In A, B and C-CTs, although the samples demonstrated high density and a high degree of order, they showed low Qf values, attributed to the possible presence of the Ba9MgTa14O45 second phase. Moreover, in D, E and F-CTs, as the samples were very low density, no electromagnetic resonance peaks were detected.
\nPart of the BaO-MgO-Ta2O5 phase diagram in the vicinity of BMT divided into eight CTs. Small black dots indicate the target samples. Green line indicates an approximate boundary of the single-phase BMT.
Koga’s data [24] and Kolodiazhnyi’s [29] data are comparable with Kugimiya’s BMT data [22]. The area (I) and the H-CT with the highest Qf as shown in Figures 22 and 24, respectively, are located on the opposite side of Kugimiya’s data against the BMT-Ba5Ta4O15 tie-line (Figure 21). These compositions will be comparable with that of the ideal crystal structure Ba1+α(Mg1/3Ta2/3+4α/5Vα/5)O3+3α, as stated before in section (2.3.3.1) [22]. The formula is rewritten as Ba(Mg1/3−α/3Ta2/3+2α/15Vα/5)O3 solid solutions on the tie-line BMT-Ba5Ta4O15. The crystal structure in the composition region is ideal, without defects, and with an intrinsic high compositional density as described above. Surendran et al. [66] also reported a composition with high Qf deviated from stoichiometric BMT reviewed in detail in Intech Open Access Book [21].
\n\n
Ordering brings high Qf in the complex perovskite because of the long duration sintering. This situation has been bereaved for a long time. However, many examples contradicting this relation were presented.
Koga et al. presented that Qf values of BZT did not depend on the ordering, preferably depending on the density and grain size.
BZN with an order-disorder transition point at 1350°C (sample A) showed high Qf in the high-temperature disordered form. Moreover, annealing of the disordered sample B brings the ordered form, but the Qf does not improve. The both samples are analysed by the Rietveld method and HRTEM. The HRTEM presented the order form, disorder form and anti-phase domain by the FFT.
Disordered samples with high density could not be synthesised by the solid-state reaction, but could be by SPS. The samples with disordered structure showed high Q. The ordering phenomenon is the only barometer of sintering in the solid-state reaction.
Compositions deviated from stoichiometric complex perovskites such as BZT and BMT showed higher Qf and lower ordering than the stoichiometric composition. Based on these points, the ordering is not the reason for high Qf, and it is the only barometer of sintering.
Intrinsic compositional density brings high Qf. On the BMT-Ba5Ta4O15 tie-line, solid solutions are formed by the substitution Ta for Mg, which include high Qf compositions. The chemical composition with the highest Qf is Ba1+α(Mg1/3Ta2/3+4α/5Vα/5)O3+3α, which is an ideal solid solutions without oxygen defects and neutralised vacancies (Table 1).
Compositions deviated from stoichiometric BMT/BZT towards BaO and the Ta2O5 rich areas showing high Qf, as presented by Koga et al. [24], Kolodiazhny [29] and Surendran et al. [64], are comparable with intrinsic compositional density with high Qf as presented by Kugimiya [22].
The microwave dielectrics are the perfect, ideal and well-proportional crystal structures for low dielectric losses. Most of them belong to paraelectrics with inversion symmetry i and showing high symmetry and nondefects. In this chapter, the effects of ordering and symmetry were presented as follows: there are two types of ordering conditions. One is a case of nonphase transition such as pseudo tungsten-bronze solid solutions. These compounds show compositional ordering at a unique point of x = 2/3 on the Ba6−3xR8+2xTi18O54 system, which shows the highest Qf without degradation of crystal symmetry. The other is a case of order-disorder phase transition such as indialite/cordierite. Indialite with a disordered structure and a high symmetry of 6/mmm point group has a higher Qf than cordierite with an ordered structure and low symmetry of mmm point group. It is clarified that the effect of high symmetry is predominant for high Qf. In the case of complex perovskite, a long sintering time of more than 80 h brings a high Qf accompanying ordering. It was clarified that the ordering is not necessary for high Qf and only a barometer of sintering in the solid-state reaction. Moreover, compositions deviated from stoichiometric complex perovskite showed higher Qf than the stoichiometric composition which has substituted Ta-ions for Mg/Zn-ions. The substitution brings a high density that is the compositional density. It was clarified that high compositional density brings high Qf.
\nThe authors are grateful to Professors and graduate students of NIT, Meijo University and Hoseo University, and Doctors and researchers in the many companies, which collaborated with NIT. Visiting Professor Hitoshi Ohsato is grateful to the following projects: (1) support industries of Japan by Ministry of Economy, Trade and Industry (METI), Japan, (2) JSPS KAKENHI Grant Number 22560673, 25420721, JP16K06735 and (3) Nokia Foundation 2016 for Nokia Visiting Professors Project 201700003. Professor Heli Jantunen and Dr. Jobin Varghese are grateful to European Research Council Project No. 24001893 for financial assistance. The authors would also like to thank Honorary Research Professor Arthur E Hill of Salford University for valuable discussion and improving English during the preparation of this manuscript.
\nThis is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9362},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!0,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:null,bookSignature:"Dr. Syed Ali Raza Naqvi, Dr. Muhammad Babar Imran, Dr. Giuliano Mariani and Dr. Derya İlem Özdemir",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editedByType:null,editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8215",title:"Statin Therapy",subtitle:null,isOpenForSubmission:!0,hash:"54a28e4392966359cf69388e02245fbf",slug:null,bookSignature:"Dr. Maria Suciu and Dr. Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/8215.jpg",editedByType:null,editors:[{id:"198005",title:"Dr.",name:"Maria",surname:"Suciu",slug:"maria-suciu",fullName:"Maria Suciu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8733",title:"Side-effects of Penicilin",subtitle:null,isOpenForSubmission:!0,hash:"bcb5e7b509de6ba98f7ed4eeff208df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8733.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9084",title:"Antiretroviral Therapy",subtitle:null,isOpenForSubmission:!0,hash:"3ce259d84d2dc1226dca8e0b75714dae",slug:null,bookSignature:"Dr. Olanrewaju Oladimeji, Dr. Daniel Adeyinka and Dr. Anthony Ajayi",coverURL:"https://cdn.intechopen.com/books/images_new/9084.jpg",editedByType:null,editors:[{id:"160349",title:"Dr.",name:"Olanrewaju",surname:"Oladimeji",slug:"olanrewaju-oladimeji",fullName:"Olanrewaju Oladimeji"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9086",title:"Drug Repurposing",subtitle:null,isOpenForSubmission:!0,hash:"5b13e06123db7a16dcdae682eb47ac66",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/9086.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9088",title:"Use and Effects of Ketamine",subtitle:null,isOpenForSubmission:!0,hash:"1357b823596bb8115442f6befde8b65f",slug:null,bookSignature:"Prof. Antigona Hasani",coverURL:"https://cdn.intechopen.com/books/images_new/9088.jpg",editedByType:null,editors:[{id:"85076",title:"Prof.",name:"Antigona",surname:"Hasani",slug:"antigona-hasani",fullName:"Antigona Hasani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9090",title:"Polypeptide Antibiotics",subtitle:null,isOpenForSubmission:!0,hash:"75b858c1de03e1ce95b72bbd6e1abccb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9090.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9092",title:"Valproate",subtitle:null,isOpenForSubmission:!0,hash:"aa8be2b0f1bad1cdfb8641d067302af6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9092.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9093",title:"Placebo Effect",subtitle:null,isOpenForSubmission:!0,hash:"a006d32ce12502a03c96291bc0578d39",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9093.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9095",title:"Aspirin",subtitle:null,isOpenForSubmission:!0,hash:"4085ca473fcce49848e4409e88c51be4",slug:null,bookSignature:"Dr. Ozcan Basaran and Dr. Murat Biteker",coverURL:"https://cdn.intechopen.com/books/images_new/9095.jpg",editedByType:null,editors:[{id:"178766",title:"Dr.",name:"Ozcan",surname:"Basaran",slug:"ozcan-basaran",fullName:"Ozcan Basaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9099",title:"Psychoactive Drugs / Psychotropic Drugs",subtitle:null,isOpenForSubmission:!0,hash:"8b9d6242cf531a58a3acede8ecadae0b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9099.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9103",title:"Anthrax",subtitle:null,isOpenForSubmission:!0,hash:"f77feaa4be71c48289f5e12d01ca6e6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9103.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:34},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:31},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:73},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:136},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:4},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:19},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:20},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4392},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"469",title:"Investment",slug:"investment",parent:{title:"Mercantilism",slug:"mercantilism"},numberOfBooks:0,numberOfAuthorsAndEditors:0,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"investment",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[],booksByTopicTotal:0,mostCitedChapters:[],mostDownloadedChaptersLast30Days:[],onlineFirstChaptersFilter:{topicSlug:"investment",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/81572/george-stan",hash:"",query:{},params:{id:"81572",slug:"george-stan"},fullPath:"/profiles/81572/george-stan",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()