Oxygen storage capacity of variable nanostructures.
\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
Deterioration of environment by excessive dependency on fossil fuel reservoirs encounters an array of challenges for our ecological system. Presently, some other practices such as producing harmful pharmaceuticals, hazardous by-products in manufacturing, etc., results in the severe environmental problems [1]. To encounter these challenges catalysts are needed, but their multiplicity and complexity demand a breakthrough in the approaches in which these catalysts are designed and used [2]. In chemical reactions, catalysts act as unsung heroes which have marked impact on human society [3]. By approaching recent catalytic constituents, moving beyond simple modifications and making efforts to understand the elementary principles, it has been made possible to synthesize and choose suitable catalysts for a provided set of reactants to obtain desired products [4]. These challenges can be resolved by utilizing various techniques like computational modeling, atomic resolution microscopy and atomic scale measurements [5]. With the enhancements in chemical sciences, the property which is named as catalysis adorns the chemical reactions in appropriate aspects. Discussions regarding differentiation between homogeneous and heterogeneous catalysts have dominated research in the recent years [6, 7, 8]. Therefore, in this chapter we explore novel catalytic systems, which fulfill the specifications of both homogeneous and heterogeneous catalysts like higher activity and better reproducibility.
\nAt this point, nano catalysis comes into the picture and dramatically shaped queries on combining the properties of both the catalytic systems in recent years. As considering nanodimensions, nanocatalysts possess high surface area which provide a better surface to reactants and this property resembles to homogeneous catalysis. The catalyst can act like heterogeneous due to the insolubility in the reaction solvent and hence carried out an adequate separation from the reaction mixture. In view of these significances, nanocatalysts has propelled to the forefront in investigations in recent years. Much attention has been drawn to explore a lot in the field of nanocatalysis and synthesis of nanomaterials for organic transformations. This encourages researchers to develop a simple, efficient, mild, environmentally benign, ligand free, heterogeneous, and reusable nanocatalyst for organic transformations [6]. Prior research has thoroughly investigated nanoscale catalysts in several reactions [9]. It has been recently studied that due to the high surface area and high activity, nanoparticles (NPs) find much importance in catalysis.
\nRare earth metals and their complexes exhibit rich variety of solid-state properties and characteristic behavior which make them interesting subjects for catalyzing many organic transformations. There are 14 lanthanides included in the rare earths which include yttrium and scandium also. Among all the rare earths, several researchers corroborate cerium in the field of catalysis. The abundance of cerium in the upper crust is 64 ppm which is relatively higher than copper, tin and any other rare earth elements. Nanoceria has been regarded as the potential catalyst by employing under ligand free conditions in the form of metal, metal oxides for various organic reactions. Cerium due to its outstanding catalytic efficiency and enough abundance makes it useable for a variety of reactions which makes it the selective element for validating the catalytic conversion of the exhaust system of automobiles in automotive industry [10]. Several studies carried out have revealed that due to the high surface area and reactive morphologies of ceria-based nanomaterials can be effectively used as catalysts for organic transformation reactions such as oxidation, reduction, hydrogenation, coupling reactions and many more [11, 12, 13] as represented in Figure 1. The rare earth elements occur in many minerals inside the earth’s crust with quite higher abundance. Being actively investigated, cerium oxide is most imperative and well-known among light rare earth oxides, especially its use in catalysis [14]. Jons Jakob Berzelius and Wilhelm Hisinger were first who discovered elemental cerium in 1803. The exact values of crustal abundance of cerium (average concentration in the earth’s crust) are still contentious. For instance, Kleber and Love stated 46 ppm for the cerium crustal abundance in 1963, while Jackson and Christiansen reported the value of 70 ppm in 1993; McGill reported a wide range from 20 to 46 ppm in 1997. Lide reported the value of 66.5 ppm in 1997, representing the intermediate of the various reported values, was commonly accepted for present discussions [15]. Light rare-earth metals occur mainly in the minerals of fluorocarbonate form called bastnasite and phosphate form called monazite. The elemental distribution varies in both minerals and locations. In bastnasite, cerium content is 49.1% with respect to all the rare earth content from Mountain Pass, California, U.S.; while the content is 50.0% located in Bayan Obo, Inner Mongolia, China. The cerium content is 45.8% in monazite minerals at North Staradbroke, Australia and 47% in East Coast Brazil [16]. In the lanthanide group, Cerium is an element with an atomic number of 58. Cerium often shows +3 oxidation state, where it acts as typical rare earth and it also exceptionally has a stable +4 oxidation state.
\nNanostructured ceria catalyzed organic transformations.
Metallic cerium, Ce(OH)3 and other oxosalts of cerium like oxalate, nitrate allowed to heat in air or oxygen for the production of its oxide form, i.e., cerium (IV) oxide (CeO2) [17]. CeO2 is a well-known cerium compound which is pale yellow/white powder synthesized by cerium oxosalts calcination and generally used as a catalyst or as three-way catalysts (TWCs). The ceria with fluorite structure has tetrahedral holes with oxide ions residing within it, which are formed by the face-centered cubic array of cerium ions, and vacancies are at the octahedral holes. Each cerium ion equivalently surrounded by eight oxygen anions and four cerium cations are tetrahedrally coordinated to these anions. The lattice constant of each unit cell is 5.411 Å. These eight coordination sites are occupied by a cerium cation. It is determined that its structure possess large vacant octahedral holes which intensify its further applications. Ce(III) trioxide (Ce2O3) also occurs under ambient conditions [18]. Ce2O3 is very unstable against oxidation and as a pressure of 10–40 atm of oxygen is applied, it gets oxidized and then CeO2 begins to form. Characterization techniques such as X-ray diffraction studied at different temperatures reveals that Cerium oxide have also been observed in other phases. For example, a disordered non-stoichiometric fluorite-related phase of α-phase cerium oxide, is stable above 685°C (CeOx, 1.714 < x < 2) [19, 20]. A β-phase formed at room temperature with a rhombohedral structure (CeOx, 1.805 < x < 1.812) remains stable until 400°C [21, 22].
\nOver the last years, cerium’s price has continually dropped as compared to the other rare earth elements. Although fascinating, the cost of cerium oxide cost is going below the price of lanthanum oxide and has observed a sheer incline in its application. CeO2 has been focused for a plethora of studies both in industry and in academia [23].
\n2014 and 2015 are the most profused years which have recorded about 2300 publications related to ceria materials. It must be because 1301 publications on catalytic applications in 2015 mark a booming interest in ceria catalysis for the first time become 50% of the total [24, 25, 26, 27, 28, 29, 30]. Though, it is worthy to reveal the number of studies on the utilization of ceria in new scientific areas such as biology and pharmaceuticals. Ceria has been used as a support for stem cells cultured in vitro [31] or as a vehicle for intracellular drug delivery [32]. One more noteworthy study reveals that ceria nanoparticles could treat ischemia as well as reduce ischemic brain damage by interruption of the blood-brain barrier after ischemia [33]. Even more fascinatingly, the thermal water and CO2 splitting by the employment of CeO2 in solar reactors for fuel generations has been evolving as a novel and exciting investigation topic while accumulation of ceria-based compounds in photocatalysis which merits special mention is another rising field [34, 35].
\nStructure and morphology play a key role in determining the application of the material by influencing its surface properties. Extensive studies have been conducted to unveil different applications which depend on morphology of nanocrystals. The crystal plane is one of the most common morphological parameters being considered in cerium oxide crystals. The surface of materials is important in various physical and chemical processes that involve the reaction on inorganic oxides such as catalysis and crystallization [29]. CeO2 in cubic fluorite structure possesses three low-index planes: (100), (110) and (111) as shown in Figure 2. The (100) planes contain scattered charged planes which establish a dipole moment perpendicular to the surfaces which are not stable. However, they could be sustained by charge-counteracting species for example, ligands or surfactants or by defects present. The (110) surfaces are charge neutral which consists of anions and cations in stoichiometric proportions in each plane, which exhibit negligible dipole moment perpendicular to the surface. The (111) surfaces also results no dipole moment perpendicular to the surface. Unlike the (110) planes, (111) surfaces consist of a neutral three-plane replicating subdivision ended with a single anion plane. The (100) facet exhibits 2.0 eV of surface energy, the highest one among these three low-index facets and the (111) plane is calculated as the most stable facet irrespective of different potentials used in simulation, both before and after relaxation according to the work done by Vyas. While (110) plane is the other highly stable facet, comprising a surface energy of 1.5 eV from Butler potential calculation [36]. Hence, different shapes of nanostructured ceria particles have different crystal surfaces and plane properties, which further enhances their performances in different systems including catalysis by affecting the interactions between the ceria surface and adsorbed molecules. Fronzi et al. stated similar results on the three low-index surfaces of CeO2 as they performed density functional theory (DFT) investigations. The stoichiometric (111) surface is the most stable surface structure with a surface free energy of 0.060 eV under oxygen rich conditions calculated by “ab initio atomistic thermodynamics.” The subsurface oxygen vacancies of (111) surface has been found to be the most stable one with a surface free energy of −0.001 eV/Å2 in a reducing environment. While in a highly reducing environment, a Ce-terminated (111) surface is the most stable one. CeO2 (110) surface with surface oxygen vacancies has 0.012 eV/Å2 surface free energy, which is 0.006 eV higher than CeO2 (111) surface with same oxygen vacancies. The surface free energies of CeO2 (100) surface having the same type and amount of surface oxygen vacancies terminated with oxygen and cerium are 0.575 and 0.016 eV/Å2 respectively, which are both larger than those of CeO2 (111) and CeO2 (110) surface [37]. Sayle and coworkers reported the surface energies of 11.577 and 2.475 J/m2 for (331) planes before and after relaxation through applying energy minimization code MIDAS [38]. Other crystal planes of cerium oxides, such as (200), (220), (331) planes, etc., have also been investigated and characterized in both experimental and simulation studies [10, 13]. For example, {220} facets were found in a slightly truncated cerium oxide nanocubes with predominate (100) facets synthesized by Kaneko et al. [39, 40]. Moreover, the feasibility of tailoring the metal oxide morphology have upgraded due to recent advancements in materials chemistry, and the required crystal planes of the cerium oxide materials can be favorably exposed through precise control of the growth kinetics. However, these three low-index planes are the most commonly observed and the most studied facets on synthesized cerium oxide structures [30, 41, 42]. It is also reported that perception about the nanocatalysis must be explained by intrinsic properties of nanoparticles which include (Figure 3) (i) quantities such as bond length and binding energy; (ii) quantities related to cohesive energy per discrete atom and the activation energy for atomic dislocation and diffusion, etc.; (iii) properties such as the Hamiltonian which demonstrate band structure, band gap and (iv) properties from the combined effect of binding energy density and atomic cohesive energy like surface area, surface strength, etc. [43].
\nDiagrammatic representation of CeO2 facets (100), (110), and (111). Cerium and oxygen ions are represented by red and gray spheres. Reprinted with permission from Ref. [42]. Copyright 2017 American Chemical Society.
Intrinsic properties affecting catalytic activity of nanomaterials.
In the growing field of catalysis, ceria attributed oxygen storage capacity (OSC) as its fortune. CeO2 shows multi valence nature which give large number of oxygen vacancies to produce under stoichiometric CeO2-x at reducing temperatures, which can be oxidized back to CeO2 in an atmosphere containing oxygen. As cerium (III) (Ce3+) switches to cerium (IV) (Ce4+) states, it results in high oxygen mobility in the ceria lattice that in turn leads to a strong catalytic potential and it happens without any structural modification of the fluorite ceria lattice. The change in energy can cause largely a surface effect to heterogeneous catalyst [44, 45, 46].
\nThus, scientists have been looking for maximizing the formation of oxygen vacancies of ceria-based catalysts to improve their activity, which needs high temperatures and a reducing atmosphere. Yan’s group had made the first observation during the study of preparation of ceria nanostructures, which depict that as compared to octahedral ceria nanoparticles, nanocubes and nanorods had a higher capacity to store and release oxygen at high temperature. Recently, the precise fabrication of functional nanostructured ceria is turn out a routine. Though, some other materials also demonstrate very discrete catalytic activity due to defect sites effect and exposed crystal facet, even from materials which have similar structures [16, 47, 48, 49, 50, 51]. The values which are reported in Table 1 display the exposure of {100} and {110} planes in nano-size ceria accompanying the improved oxygen storage capacity (OSC) and show the following order of OSC nanocubes > nanorods ≫ nanopolyhedra [41]. An appropriate comparison is done with determined hypothetical surface area-normalized OSC which is calculated on more reducible surfaces and specify that OSC is not only defined to the surface, but it also takes place in the bulk [52]. On introduction of defects into the lattice, it is investigated that through controlling synthetic and postproduction parameters, preferred crystal orientation is précised. It is also noticed that the reactivity of the surface of crystal is greatly affected by variable lattice defects critically.
\n\n | OSCa (μmol O/g) | \nOSC/B.E. T (μmol O/m2) | \nCalcd OSCb (μmol O/m2) | \n
---|---|---|---|
Nanopolyhedra | \n318 | \n5.1 | \n6.2 | \n
Nanorods | \n554 | \n9.1 | \n4.9 | \n
Nanocubes | \n353 | \n10.6 | \n5.7 | \n
Vacancies included in the lattice defects are (a) oxygen vacancy defects, (b) self-interstitials, (c) interstitial impurity atoms and (d) edge dislocations [53]. In the fluorite lattice of ceria, the degree of oxygen mobility accredited to its size, dispersion, and value of oxygen vacancy defects (OVD) [54, 55, 56, 57]. The empty 4f states of cerium located electrons by surrounding a vacancy in the ceria support lattice establishes defect sites [17, 58, 59, 60, 61]. These defects are shown to be mobile with high oxygen mobility and arise around cerium (III) ions only. On introducing subsurface vacancies into the lattice, the mobility of the vacancies, and therefore the defects, is decreased significantly. The formation of vacancy clusters is in the three or six surrounding cerium ions of the material’s surface. An oxygen vacancy defect tends to form under low partial pressure of oxygen [17]. After approaching a favorable oxygen by another oxygen, a bond is formed, and from the surface of the crystal the oxygen molecule can diffuse away. Respectively, the oxygen molecule that is obtained, further diffuses away from the surface and two electrons are left back to be distributed between three cerium atoms. Due to this, cerium atoms undergo partial reduction to a valency between the 3+ and 4+ states. It occurs in a manner to leave behind triads of vacancies which are surrounded by nine cerium atoms sharing eight electrons [62, 63, 64, 65]. It is widely proposed that change in the adsorption energy regarding carbon monoxide and oxygen can cause the change in activity of a surface with lattice strain. It is noteworthy that the similar researches reported a lesser increment in the adsorption energy related to carbon dioxide [66, 67]. The adsorption energy for oxygen is about five times superior than for carbon monoxide. Furthermore, the activation barriers respecting to dissociation of oxygen and formation of carbon dioxide are greatly dropped. However, the ease of formation of the oxygen vacancies facilitate the reaction. A molecule of carbon monoxide adsorbs on the surface of the ceria and readily reacts with oxygen existing on its surface and further diffuses away in the form of carbon dioxide leaving an oxygen vacancy. This oxygen vacancy results in a weakened bond between the oxygen atoms, as it allows an adsorbed oxygen molecule to react with the surface. Across the surface of the catalyst, a carbon monoxide diffuses until it encounters the excess oxygen and diffuses away from the surface [68, 69, 70, 71].
\nThe vast expansion of the usage of the nanomaterials offer is just incredible. Nanotechnology revolution has revolutionized the research arena as matter of the fact that it creates the vast possibilities to fabricate the materials with nanodimensions. Catalysis, fuels and microelectronics are different fields of applications where nanostructured cerium oxides grow rapidly and reflecting their importance in enhancing the performances of those systems. Variable morphologies of ceria nanoconstructs have been explored in these applications, for instances nanocubes, nanorods, octahedron polyhedron, tube and many more. Ceria nanostructures with various shapes possess the different crystal planes and surface morphologies, which influences the interactions between the ceria surface and adsorbed molecules, and hence changes the performances in different systems. Zhou et al. described many strategies for synthesis of well-controlled morphologies of nanostructured ceria. Now, Ce-based materials with controlled morphologies which exhibit zero-, one-, two-, and three-dimensional structures are possibly synthesized. (Figure 4). The categories defined on basis of number of dimensions which cannot be restricted to the nano-range (<100 nm).
\n1D, 2D and 3D nanostructures. Reprinted with permission from Ref. [2]. Copyright 2010 Springer Nature.
Nanostructured ceria with Zero-dimensional (0D) possessing isotropic cubic phase of the fluorite structure can be observed distinctively. According to results, it presented a lack of fortunate growth direction of seeding crystals. Hence, (0D) nanostructures have most straightforward synthesis. Mono-dimensional (1D) CeO2 nanoparticles possess the different properties due to which they have been explored more than the 2D and 3D architectures and a variety of synthesis procedures were proposed. 1D hexagonal Ce2O nano-rods (NRs) synthesized by template-free electrochemical growth method on a Ti substrate which mainly exposes the {110} planes and displayed outstanding photocatalytic activity in hydrogen evolution, with H2 yield reaching 741 mmol g−1 [26].
\nThe preparation of 2D and 3D architectures are drawing significant attention and they also evolving as good alternatives in various catalytic and energy applications. For the construction of a spongy mesoporous CeO2 microspheres an analogous concept was assumed in which in-situ formation of the removable template by graft polymerization reaction between acrylamide and glucose takes place [72]. Ceria nanocubes synthesis is important because their possession of high surface energies usually exhibit specific activities due to the unsaturated coordination atoms, atomic steps and ledges [73, 74, 75]. Numerous fabrication methods have been reported for spherical nanostructures [76, 77, 78, 79]. Planes in ceria octahedron have gained much attention as these planes are exposed on their surfaces [80]. Nanostructured ceria with different morphologies, such as nanotubes, spindles, nanosheets, etc. have been synthesized [45, 80, 81]. Due to their enormously developed activities ceria nanorods have increased wide-ranging interest than those of ceria with other shapes in many different reactions, such as CO oxidation, NO reductions and 1,2-dichloroethane and ethyl acetate oxidation [57, 82, 83]. By means of the most stable (111) planes on the surface, ceria octahedra demonstrated the least catalytic activity being studied when compared to the activities of nanocubes, nanorods and other shapes in many reactions, such as CO oxidation and ethyl acetate oxidation [80, 83], Notable progress has been made to achieve these ceria nanomaterials. However, synthesizing these morphologically different nanostructures with well-controlled size and homogeneity is still difficult due to their uncommon shapes. For instance, it is difficult to prepare nanosheets due to their exceptionally small thickness and possible quantum size effects [84].
\nIn Prospect, the synthesis of ceria NPs requires the interaction with metal nanoparticles that act as the “active sites” for catalysis. Schelter and co-workers reported a ligand to vary the stability of the Ce (III)/Ce (IV) redox couple, in their synthesized 1,3-bis [(20 tertbutyl) hydroxyamino phenyl]-benzene Ce complex, [85]. Recently, a hydrothermal process has been used for the synthesis of Au@CeO2, presenting core-shell systems grounded on other precious metal core-shell [86], while Ag@CeO2 was also synthesized by reverse micelle/redox reaction [86, 87, 88, 89, 90]. Among different characterization, an exclusive strength of the STM technique is the ability to enquire the atomic structure of surfaces, down to the level of distinct defects and adsorbates. Figure 5 shows one such image, obtained on the surface of a CeO2 (111)/Pt (111) system [91].
\nSTM image of the CeO2 (111)/Pt (111). Reprinted with permission from Ref. [91]. Copyright 2010 American Chemical Society.
Catalytic characteristics of supported metal nanoparticles depend on the role of the support as well as on the composition, shape, particle size, and chemical state too. The catalytic reactivity is directly related to the atomic interaction within support and metal nanoparticles which is termed as metal-support interaction which has attained significant attention nowadays (Figure 6). Due to the possession of unique properties by the ceria by virtue of which it makes oxygen species readily available to the metal site which make its outstanding applications in large number of catalytic reactions. This way, noble metals on ceria are activated for various oxidation reactions at low temperatures [92].
\nMetal-oxide configurations used in studies with ceria model catalysts. Reprinted with permission from Ref. [92]. Copyright 2017 Royal Society of Chemistry.
A pivotal role is played in the activity of catalysts by the nature of their support. Vayssilov et al. has studied the origin of interactions proposed between the various support effects like the active (metal) phase and support which include interaction of electrons among both components [93], destabilization or stabilization of particle sizes or shapes [94], surface transport of adsorbates through the boundary (spillover, reverse spillover capture zone effects); [95] and the stabilization/destabilization of oxidized active phases by the support or strong “metal-support interactions” relating movement of partially reduced oxides onto the active phase [96, 97, 98]. The metal oxide intervenes in the catalytic process as well as an inert support [99].
\nPure ceria, CeO2, undergo degradation with time at elevated temperatures which minimize its performance due to reduction in its surface area as well as oxygen storage capacity (OSC), also it has been presented that pure ceria accommodate “active” weakly bound oxygen species, which relates bulk rather than to the surface by using steady-state CO oxidation kinetics and/or temperature-programmed desorption (TPD) [100, 101, 102]. Thus, development of CeO2 based nanocatalysts for chosen activities is surely done with a keen understanding about metal-ceria support interaction in supported metal catalysts (Figure 7). E. Mamontov used pulsed neutron diffraction to investigate the nature of these “active” oxygen species in pure ceria. The study of oxygen position in oxides by neutron diffraction demonstrates a comparable scattering contrast of oxygen and metal ions. In the real space the oxygen defects in CeO2 examined by both pulsed neutron diffraction data and atomic pair-distribution function (PDF) analysis whereas in the reciprocal space, it is analyzed by the Rietveld refinement [103].
\nZirconia, ZrO2, has been actively investigated in many studies and have been characterized. The enhanced OSC of ceria-zirconia related to ceria as well as known to improve partial degradation of ceria at high temperatures. It is also probable that the necessary oxygen mobility which is essential for the functioning of CeO2 as a catalytic support is provided by the interstitial oxygen ions which act as “active” sites [104, 105, 106, 107, 108, 109, 110, 111].
\nReal (STM, LEEM) and reciprocal space (LEED) of ceria structures on a range of metals. Reprinted with permission from Ref. [112]. Copyright 2016 American Chemical Society.
CeO2 impart high oxygen storage and release capacity and it is predicted as the finest supporting material for catalysis at Au NPs following other properties such as facile oxygen vacancy formation, and narrow Ce f-band. Au gets oxidized once in contact with CeO2. The atomic and electronic interaction between reduced CeO2 and supported Au NPs is highly contributed by the electrons located on the occupied 4f-orbital of Ce3+ ions. Ceria particles were also deposited on the surfaces of Au, Pt, Re, Rh, Ru, Cu to produce inverse oxide/metal catalysts and these supports can cause dramatic effect on the structure of ceria islands in an inverse catalyst [112, 113]. The electron transfer is induced from metal to the support because of the presence of platinum over ceria nanoparticles leading to the formation of a small fraction of Ce3+ cations. Among transition metal core-Pt shell nanoparticles, altering Au NPs with alloying elements would be an interesting strategy for lowering CO adsorption energy, as well as deducing and enhancing saturated CO and O2 concentration, correspondingly. Vayssilov et al. studied that a crystalline atomic arrangement exhibited by the interaction of an illustrative metal cluster Pt8 with two group of model ceria nanostructures [114]. A Pt8 cluster was selected as a model which supported on a stoichiometric Ce40O80 nanoparticle. The metal group relates five Pt atoms with ceria particle found as most stable structure for Pt8/Ce40O80. Liu and colleagues [115] prophesied adsorption and dissociation of oxygen and transport processes on the two most stable Ag (111) and Ag (110) surfaces and reveals a binding energy of CeO2 catalysts and on a monolayer silver supported by CeO2 (111) surfaces with or without oxygen vacancies by DFT with PAW method. The computed energies of these reactions display that the process of oxygen reduction and the combination of the dissociated oxygen ions in the oxide electrolyte prefer taking place in the triple phase boundaries (TPB) region with oxygen vacancies [116].
\nThis segment of the chapter encompasses the detailed outline of various synthesis techniques and the conditions applied for the reaction which influences the final product. According to the applications in various fields, the synthesis of ceria nanoparticles with desired morphology is very important; therefore, thorough investigations were done by researchers to investigate several approaches. The studies on Ceria based nanoparticles demonstrated that conditional to the synthesis methodology, wide variations may occur in shape, size, crystal structure, and properties of nanostructures, as well as the physical and chemical conditions employed during the reaction process. Current literature revealed many chemical methods, such as, hydrothermal method, co-precipitation method, a micro emulsion mediated approach, and other methods like sol-gel synthesis have been employed to synthesize cerium based nanostructured materials.
\nHydrothermal method refers to the oxide synthesis and crystal growth in aqueous solutions under high temperature and pressure using a sealed heated vessel which is known as autoclave. It is well-established method for the laboratory and industrial scale synthesis of nanoceria materials. Two big advantages of this method are that: the reaction temperature is below the melting point of reactants, and the operational parameters such as reaction temperature, duration, autoclave types can be easily tuned to modify the reactivity of synthesized inorganic solids [117]. A facile hydrothermal method for the synthesis of ceria nanocubes with six {100} facets using oleic acid as the surfactant was developed by Wang and co-workers. The as-prepared ceria was single crystalline, confirmed by uniform crystal lattice fringes. The sizes were well controlled with side lengths from 9 to 17 nm [92]. A single-step hydrothermal method is utilized in the fabrication of uniform CeO2 nanoparticles with diameter approving nano-size, i.e., 13–17 nm and further, hexamethylenetetramine is added for the formation of (220)-dominated surface structure.
\nCo-precipitation synthetic method is another extensively used approach for preparing nanomaterial. The strategy is best choice for commercial synthesis of CeO2 and due to very low solubility of ceria, it attains great advantage. This method is simple and rapid preparation process which makes it easy to synthesize controllable particle size and flexible in altering overall homogeneity of the particle with its surface state [118]. The cerium precursors are generally inorganic cerium salt, such as Ce(NO3)3, CeCl3, (NH4)2Ce (NO3)6, and the precipitating agents are usually NaOH, NH4OH, hydrazine and oxalic acid [119, 120, 121, 122]. Abimanyu and coworkers performed co-precipitation method and applied ionic liquid as a template to prepare magnesium and cerium mixed oxides. To overcome the difficulty of controlling particle size, template-assisted co-precipitation, carbonate co-precipitation, redox co-precipitation, etc. have been presented in conventional co-precipitation method [118].
\nSol-gel method is highly suitable for the fabrication of metal oxides (Figure 8). This method is widely used in ceramics industry and materials science for producing solid materials such as ceramic fibers and dense films. It is easy to accomplish and does not need any special conditions and equipment [117]. The process involves conversion of metal alkoxide/chloride solution into a colloidal suspension (sol) and gelation of the sol to form discrete particles or network polymers in a continuous liquid phase (gel) [123]. Gnanam et al. successfully prepared nanocrystalline cubic fluorite/bixbyite CeO2 or α-Mn2O3 via simple sol-gel method using cerium (III) chloride/manganese (II) chloride as the precursor by using methanol as a solvent calcined at 400°C [124].
\nDiagrammatic illustration of different stages of sol-gel method. Reprinted with permission from Ref. [118].
The reverse micelle technique offers the greatest control over size and morphology. It is a wet chemical method in which pools of water are enclosed by surfactant molecules in an excess volume of oil. During synthesis procedure, surfactant molecules retain particles separated and confine particle growth this keeps control on size and shape of particles. The root for the technique is the use of a surfactant to stabilize variable aqueous droplet sizes in hydrocarbon medium. Metal salt precursors are transformed by a reactant from the hydrocarbon phase and are contained in the aqueous portion. Mutually, the structure of the surfactant and the steric size can produce metals having a wide range of grain sizes. Masui et al. [125] synthesized ceria nanoparticles by using reverse micelles and reported fluctuation of bandgap values from 3.38 to 3.44. Ganguli et al. fabricated monophasic nanoshaped oxides by performing similar versatile methodology [126, 127].
\nThe worth of morphology-activity association is clearly recognized with the implementation of different examples as breakthrough. With the advanced characterization techniques included SEM, HR-TEM, STM, uncountable studies investigated that morphology/exposed facet combination still contain some uncertainties and, so, on the mechanism of crystal growth. Some focus is also bounded by surface reactivity analysis or through TEM. The elucidation of this area is must to simplify instrumentation acquaintance [128, 129]. The powder XRD patterns of the CeO2 nanorods, nanocubes and nanopolyhedra are of pure cubic phase shows its fluorite structure with lattice constants of 5.414(3), 5.436(3), and 5.405(3) Å, respectively (Figure 9a). The enlargement of the reflections indicated their nanocrystalline nature, recognized to the polyhedron and rods distinctly. The sharper reflections for cubes implied their larger sizes as compared with the former two samples. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES) techniques investigate the oxidation state of cerium ions in ceria nanoparticles. The remark of the existence of the Ce3+/Ce4+ shifts in150 mm active region leads to the inference that the lateral electron transport and surface reaction kinetics on the thin ceria electrodes are co-limiting processes. The XPS spectrum of the CeO2 nanorods is shown in Figure 9b. It illustrates six consistent Ce 3d binding energy (BE) peaks for the rods with the former report on Ce4+, signifying +4 was the main valence of rods in cerium [41]. The surface termination of oxide-based nanoparticles can be easily determined by the transmission electron microscopy (TEM) [130, 131]. The specific surfaces of catalytic CeO2 nanostructures during a reversible beam induced redox reaction examined by combination of direct aberration corrected TEM and computational exit wavefunction restoration at ambient temperature.
\n(a) XRD patterns of CeO2 nanorods, nanocubes and nanopolyhedra and (b) XPS wide spectrum of the CeO2 nanorods. Reprinted with permission from Ref. [41]. Copyright 2005 American Chemical Society.
Mesoporous ceria being versatile attracted researchers as catalysts and catalyst-support which possess increased dispersion of active secondary components and offer high surface area (Figure 10). Additionally, an issue which is mandatory to discuss is that as surfactant is removed during synthesis procedure, it shows its poor thermal stability at elevated temperatures precepted to be caused by collapsing of structure. So, mesoporous CeO2 has been developed by a novel hydrothermal method for high performance catalysts with excellent thermal stability [72, 132, 133, 134, 135]. Hojo et al. analyze cationic reconstruction by using in-situ phase contrast HR-TEM with spherical aberration correction [136]. STEM, EELS, and theoretical calculations were performed to inspect the atomic structure of grain boundary which is selected as a model grain boundary in thin films of CeO2 [38, 137, 138].
\nIllustrative SEM images (a and b) and TEM images (c and d) of the flowerlike CeO2 microspheres. Reprinted with permission from Ref. [72]. Copyright 2006 American Chemical Society.
Organic synthesis occupied one of the most protruding places in the field of chemistry research. Additionally, the space of organocatalytic reactions is well-reviewed and widely examined. Further, initiating with certain reports to describe the organocatalytic applications of ceria nanostructures. Investigations on CeO2 as catalytic support or recently as catalyst for conversions in organic reactions are liberated in accumulated manner. Although, the versatile behavior of this material is selectively observed in various catalytic applications. By Mars-van Krevelen mechanism, computer stimulation techniques were performed to predict the higher reactivity of ceria {110} and {100} surfaces towards carbon monoxide oxidation, which stated that CO first interacts with surface ceria oxygen and produce CO2 by leaving an oxygen vacancy which is then filled with gas phase oxygen [139, 140]. The CO oxidation frequency turnover is higher on {110} as compare to {100} and {111} surfaces, presented as the opposite order of oxygen vacancy formation energy. CeO2–ZnO composite catalyst utilized in hydrogen transfer reaction by Mishra et al. for cyclohexanone with isopropanol and it showed 51.3 mol% conversion of cyclohexanone [82]. Acetalization of cyclohexanone with methanol also reported by Rose et al. using different transition metals [141]. Tamizhdurai synthesized CeO2 and inspect it with various spectroscopic and analytical techniques. Afterwards, its oxidation effect was investigated on benzyl alcohol which reveals better conversion and selectivity. The catalytic oxidation properties of ceria closely tied with its redox and oxygen storage behavior, and CO oxidation can work as a model reaction to probe the redox properties of CeO2 [142] (Scheme 1).
\n(A) CO oxidation over ceria rods, cubes, and octahedra. (B) Comparison of CO turns over frequency oversurface planes (110), (100) and (111). Reprinted with permission from Ref. [143]. Copyright 2011 Elsevier.
Zhou et al. [143] explored oxidation of carbon monoxide over ceria nanostructures in their study where they compared nanorods and irregular nanoparticles of same surface area; the former attributed exposed planes of {100} and {110} surfaces with higher proportion has higher activity. This study initiated the investigation of CO oxidation with nanoparticles, and several investigations were followed which clearly establish the correlation between ceria shapes and CO oxidation as shown in Figure 11 [143, 144, 145, 146, 147, 148, 149, 150]. CeO2 nanospheres fabricated sonochemically in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim] [Tf2N] show the best presentation for low-temperature CO oxidation [151].
\nSelective oxidation of benzyl alcohol to benzaldehyde. Reprinted with permission from Ref. [142]. Copyright 2017 Scientific Reports.
CeO2 nanoparticles explored by Deori K. for the para-xylene oxidation to terephthalic acid as a heterogenous catalyst (Scheme 2). The synthesis procedure is environmentally friendly, and water was used as a solvent during catalysis reaction. The ceria nanostructures which were synthesized acquire 15 nm sized particles and high surface area of 268 m2 g−1 [152].
\nOxidation process for para-xylene to terephthalic acid. Reprinted with permission from Ref. [152]. Copyright 2017 Royal Society of Chemistry.
Representation of oxidation process of para-chlorobenzyl alcohol/toluene to benzaldehyde by ceria nanocubes. Reprinted with permission from Ref. [153]. Copyright 2017 Royal Society of Chemistry.
The advancement in catalytic performance of the cube shaped CeO2 nanoparticles displayed by the conversion of benzyl alcohol (BA) and para-chlorobenzyl alcohol (PCBA) to their respective aldehydes (>99%) (Schemes 3). Accompanying, in toluene (PhCH3) oxidation, this CeO2 nanocube catalyst was found to be very effective, as well as being more effective than the nanorods. Besides, reusable property of CeO2 nanocatalyst also proposed for several cycles which display obtainment of the desired products without any deterioration in selectivity and activity in all cases [153].
\nCeO2 is actively used in hydrogenation reactions as a promoter or carrier of noble metal nanomaterials for many years [154, 155]. As compared to oxidation reaction on CeO2, hydrogenation owing to the specific role of adjacent oxygen on stabilizing hydroxyl intermediates is favored over low-vacancy surfaces whereas reverse effect applied for hydrogenation reactions, where nanoparticles are more active than nanocubes [156, 157]. Hydrogen activation on CeO2 is often regarded as the limiting step of the reaction, even for other functional groups which includes substituted nitroarenes [28, 158]. As already discussed, partial hydrogenation over CeO2, they have also been employed for the hydrogenation of olefins and carbonyl bonds. For example, a good yield of 1-butene can be obtained by reduction of 1,3-butadiene by Pd/CeO2 catalyst supported on alumina [159]. Ceria nanostructures evidencing their value in other more complex organic reactions, apart from oxidations and hydrogenations, in advanced and controlled fabrication, promoting it as attractive and versatile nanocatalyst. Coupling reactions including aldol condensation (Scheme 4) [160, 161], Mannich reaction (Scheme 5) [162], Suzuki-Miyaura [163], Knoevenagel condensation (Scheme 6) [164] or Sonogashira cross couplings [165] have also been reported.
\nCu supported catalysts on ceria-zirconia catalyzing cross-aldol condensation of acetone and n-butanol into aliphatic ketones. Reprinted with permission from Ref. [160]. Copyright 2017 Catalysts.
Yadav et al. [166, 167] have cast-off CeO2 in synthesis. Recent Literature exposed that very few reagents have been reported for the bis-Michael addition reactions and most of the reagents, yielded the mono-Michael addition product [168]. Javad Safaei-Ghomi progressively synthesize CeO2 nanoparticles and further utilize them by pseudo five-component reaction of acetylenedicarboxylates, phenylhydrazine and aromatic aldehydes in preparation of C-tethered bispyrazol-5-ols at 70°C in water [169]. In organic conversions, as carbon-carbon (C▬C) bond formation reactions, the catalytic activity of free-CeO2 NPs has not been studied extensively to the unsurpassed of our knowledge.
\nMannich reaction catalyzed by Sulfated CexZr1−xO2 catalyst. Reprinted with permission from Ref. [162]. Copyright 2006 Elsevier.
Possible mechanism of Knoevenagel condensation. Reprinted with permission from Ref. [164]. Copyright 2009 Elsevier.
Various synthetic strategies of Cerium oxide nanoparticles and their progress in the field of catalysis of organic transformations are selectively highlighted in this comprehensive chapter. We presented that at nano level, ceria structures are manipulated with different techniques which allows direct control over catalytic behavior in various reactions. Cerium oxide occupies widespread attention in research on new catalysts with improved properties for organic synthesis due to its very rich chemistry.
\nCeria, firstly used by Ford Motor Company as an oxygen storage component, further stepping towards growth in its applications, as consider an “inert” support can stabilize metal nanoparticles which are actively practiced for its catalytic activities, that directly takes part in the reaction with lattice oxygen, afterwards a cocatalyst, and more recently a catalyst. Applications of Ce and Ce-based nanoparticles in different forms of catalysis with recent advances in their preparation methods are properly introduced in the chapter. The synthesis section included different preparation procedures such as hydrothermal, reverse micelle, Co-precipitation and sol-gel method for synthesis of Ce and Ce-based NPs and their characterization. These procedures show their importance in designing and development of Ce-based nanostructures by controlling the morphology of these nanosystems with featured catalytic applications ranging from organic transformations to photocatalysis, and so on. The catalytic improvements of ceria-based nanostructures followed two major directions. First, the surface area is increased with the enhancement of its thermal stability. Second, the nanostructures with well controlled shape and size are obtained by the advent of nanotechnology. While ceria-based materials effectively promoted several oxidation reactions as well as other emerging applications are also proposed.
\nIn addition to this enormous applications of Ce nanocatalysts are reported for organic conversions such as hydrogenation, reduction, alkyne-azide cycloaddition, coupling reactions including A3, coupling. CeO2 has a good feature as follows: their redox ability and the acid base properties whether they are doped with transition metals or alone. The activation of complex organic molecules with further possible transformation can possibly proceed due to these parameters. Certain acid-base and redox properties can adjust with various cerium-based mixed oxides and to control the number of active sites and their strength for the specific reaction. Latest advances in ceria nanocrystals synthesis with controlled morphologies such as nanocubes, nanorods, polyhedras, etc. should be leading towards encounter of novel catalysts with better selectivities and higher activities in catalysis and organic chemistry.
\nTA thanks to CSIR (Grant No. 01(2897)/17/EMR-II) and SERB-DST (Grant No. EMR/2016/001668), New Delhi, Govt. of India for financial support to research projects. FN and UF are thankful to UGC, New Delhi for Non-NET Research Fellowship.
\nThe authors have no conflict of interest.
Internet of Things (ToT) is a form of Internet connecting into physical devices and objects. Internet of Things is a combination of several technologies such as real-time analysis and machine learning. Everyone from everywhere in this world can connect to each other via the Internet. Interactions are mostly done from the World Wide Web. It is interesting that nowadays, the Internet can not only connect to the web but can also connect to smart card, security, online banking, health care, education, and so on.
\nIn addition, the Internet of Things can generate chances for new services and sales, which can be more efficient for the business sector. For the government, according to economic growth factors, there are five main pillars for policy making: (1) hard infrastructure; (2) soft infrastructure; (3) service infrastructure; (4) digital economy; and (5) digital society and knowledge. The digital economy seems to be outstanding these days because the economic growth no longer depends on production and consumption or touchable goods; rather, it additionally depends on intangible goods.
\nThe educational system in current economic and social conditions are forced to use as in the Age of “Information Technology”. The growth rate is increasing in the area of knowledge because of the trend “lifelong learning,” which the old style may not be able to support the creation of a career for a new generation anymore. Professionals must always adjust and be ready to learn. The industry must develop the skills of employees to be appropriate.
\nThe learning style that is suitable for the information age is a model that can bring technology to use by learning appropriately with the interests and abilities of each individual. This resulting is called “New Learning Style (NLS)” such as massive open online courses (MOOCs) for the masses or other learning channels whether they are videos, audios, social media, or games. It shows a good opportunity for the new generations to choose a learning style that suits them the most.
\nWill this method be widely used in Thailand consistent with the behavior of Thai’s new generation? There is a high chance that the new generation will be able to access it, including causing learning changes in the near future.
\nThe knowledge that young generations need more is “working skills and life skills” in daily life, respectively, by means of additional knowledge using media such as videos, audios, social media, etc. with Internet connectivity. For the comments from young generations on using online media, it is recommended to have a variety of learning topics especially for the classroom in particular applied in various fields of subjects for instance, in Economics of Information Technology; it is a study of overall economics in the age of technology, structure of markets and information technologies, product and price differentiation method, costs associated with changing technologies, economies of scales, effects of network, product standards, the effects of linked product system, effects of development an transformation of technology toward the economic and industrial policies. In Creative Economy, students learn ideas of economic motivation on the fundamental of integrating between education, creativity and the use of intellectual property to link with culture and accumulated knowledge of sociology, technology and new inventions. In International Business Management, it is a study of basics theory of international business management, international merger and acquisition, opportunities for export and import, analyzing strategies and competitiveness of the international organizations, etc.
\nDigitized educational system can be used to present as creative media providing many pictures, but less content. To support on this issue, instructors should have knowledge of the subjects taught using an online media to make it more interesting and more accessible for students.
\nHowever, the major problems and obstacles in learning are related to attitude differences, individual tastes, and judgment of teachers and learners. These obstacles are a result of development of analytical thinking skills to promote learning via a combination of media-interactive learning such as social media videos, together with traditional media such as movies. Inspiration and diverse learning are main factors that can actually be a motivation to learn for the younger generation.
\nWhen implementing each learning platform, using the media selection suitable for the needs and context of the end user should be considered. One approach outstanding today is on preparing to benefit from the learning materials fully with examples of ideas to know “Massive Open Online Course (MOOCs)” [1]. To study MOOCs, learners should be provided with a mentor system, and MOOCs with industry sector practice must be implemented. With technological advances, coupled with economic and social dynamics, causing changes in all learning channels, technology is known as the key driver, whether it is artificial intelligence (AI) that causes significant changes in every platform or otherwise. Automatic chat program will be the other channel, which can be divided into the following main groups: gathering knowledge and exchanging knowledge between students with diverse knowledge and experiences.
\nSome part of the world, using the technology of games like AR VR to promote learning and in the same time using social media for the benefit of learning like technology and tools to help learning activities. Moreover, promoting the use of audio media creates equality in learning for all groups of people. It should encourage Thai people to know the source of Thai audio books for benefits.
\nNot only the university but also every government institution, all public organizations, and private sectors must follow bureaucratic frameworks to do the paper work and follow the bureaucratic forms. When a project is coming out, every procedure of the project must be written and recorded as paper work. The importance of paper work is to serve as evidence and all papers should be coded and recorded in the book. This is to confirm that every step is seen by every department and checked many times.
\nFor example, for a project proposal, first of all the budget of that activity will be planned before the year of budget (for public institutions that follow the bureaucratic frameworks, the year of budget will begin on October 1st, this year, and will end on September 30th, next year). The plan’s details need to be discussed at the conference, so papers will be printed to distribute to every member at the conference. Next, when it is time to start the project, the project needs to draw on many topics such as declaration of intentions, costs, evaluation, and schedules. After the project has been approved, all the papers are collected and kept as evidence. When the project ends, an evaluation is required. The evaluation can be in a paper form or a writing form. The number of papers in this process depends on the number of participants. All processes that have been stated are made by papers.
\nFigure 1 illustrates the process of a project procedure; every step requires paper work. After the project ends, all papers are kept as physical evidence. No or few papers are scanned and transferred into a digital file. After that, all papers become physical “dark data” or the information that we no longer use, but we cannot eliminate them completely because they will, sometimes, be used later. However, the amount of papers causes the problem of managing. Also, it becomes difficult to search the old papers. The importance of paperwork: In the bureaucratic system, it is important to keep papers because they can be used as evidence and references for other departments, private institutions, and citizens. The papers also can be used for legal protection. In addition to private sectors, some companies do not have sufficient space to keep all the papers, so they quickly adapt to the new technologies to change the forms from physical files to digital files.
\nBrief process of project procedure.
However, there are problems of having paperwork. Because these papers can be used by many people in the organization, the papers can be lost or moved. Possibly, in terms of human capital, people lack the knowledge of managing papers. In the worst case, when the organization loses papers, it is hard to find them or recreate paperwork, and cost for recovery is incurred. Hence, it is important to transfer papers into digital forms to facilitate the organization. In governmental institutions, paperwork still exits, and some of the governmental institutions fully have paperwork or few digital files. It is a risk to have only paperwork.
\nThe Faculty of Science, Srinakharinwirot University, Thailand, [2] announced that one faculty consumes 1700 ream or 850,000 pages annually. It costs about almost 200,000 baht per year 0r 6286 US dollars. If the amount of paper consumption reduces, the environment will be saved and the cost of operation inside the department can be minimized. Figures 5 and 6 show the change in society in terms of technological approach and many organizations still have remained the same. To show the evidence, according to [3], overproduction of paper cause significantly to pollution, deforestation, and greenhouse gas emissions.
\nFor the recommendation, we put the data of the projects and other information into the digital system, it will consequently reduce the cost of operation because data are transferred from physical to digital. Moreover, it makes channels of access of data better and easier, and it can reduce cost of transportation because data can be accessed everywhere. This would be beneficial to all government, business cooperation, and people in both macroeconomic and microeconomic perspectives [4]. Figure 2 shows a cloud for education. Users can log in to their accounts and upload documents, and other users who are authorized can also download the information. “Cloud is the practice of using a network of remote servers hosted on the Internet to store, manage, and process data, rather than a local server or a personal computer.”
\nCloud for education.
Moreover, if the data are transferred into the digital forms, it can be copied unlimitedly when we want to distribute. This can lead to zero marginal cost. The zero marginal cost refers to marginal cost of producing one additional unit that does not make any additional cost. The cost that we need to handle is the cost of the system [5].
\nThe importance of the educational sector must be those who play an important role in learning management for “Quality of Learners (OL)”. OL is to enable students to manage their own learning. There are push-factors to positively change the students. It may come from technological development, social changes, career changes. New generation children must have the ability to work [6, 7]—if there is a need for both advanced skills and critical thinking to support the future world.
\nFor the proper educational system, students should be assigned homework properly. The assignment needs to be adapted to meet the needs and necessities of Thai society and the young generation, focusing on developing learners to be able to create innovation and create work together with personal skills [8]. Linking the order process with innovation is essential in every part of the educational system and that must be immediately and quickly changed together with the assignment through exchange of learning.
\nDeveloping a basic service platform of communication and providing the application can make more convenience and efficiency to all people in the system as follows: E-School or Electronic-School: Faculty of Technology used to improve public administration efficiency combining with increase transparency and reliability; and Smart School.
\nE-school has been developed to the point that at least two groups such as to support staff and to enable students to connect to work learning and teaching without adhering to the boundaries of duties and responsibilities in accordance with the mission of the faculty, but taking into account the benefits of the service provider as the location [9].
\nThe goal is to deliver quality services to students in the form of “digital interaction” between departments such as Student2University (S2U); University2University (U2U); University2Student (U2S), and Student2Student (S2S).
\nAn example for convenience is that students are allowed to complete their assignment anywhere as long as it is done before the due date. Students do not have to hand in their assignment in the professor’s room. The file that they submit is an electronic file. This does not waste a natural resource like paper. In Section 2.2, the effects of using a large number of papers that could cause natural damages has already been demonstrated.
\nFigure 3 shows details of an assignment via Google Classroom (free), date of submission, and date of post by professor. This platform not only helps professors to check the date of online submission from students and but also helps to decrease paper work and wasted papers. Also, all data are recorded. Interestingly, the file that students submit can be checked and reviewed by other organizations such as
Online classroom & assignment via Google Classroom.
In an academic field, plagiarism is considered as a serious crime. Almost all institutions set serious regulations against plagiarism. Figure 4 demonstrates the similarity of the student’s paper, as shown by the Turnitin website. In general academic rule, similarity must not exceed 20–30% for undergraduate students, 10–20% for graduate students, and 10% for PhD students. This rule depends on the faculty and the professors’ consideration. It is, therefore, noticeable that merging new technologies helps teachers and learners in many aspects of academic files.
\nTable of assignment submission via Turnitin.
This does not benefit the education system only. The example intentionally aims to show how systematic the task allocation is. The platform of digital task allocation can be applied to all governmental institutions and private sectors to increase work efficiency and productivity. There is interesting statistical evidence why we should adopt a digital workplace. According to [10], approximately 64% of employees accept a lower wage if they are allowed to work away from office. Online social network generates more than 7% productivity to organizations. When the organizations use the social media tools, it increases 20% of employee satisfaction.
\nMany institutions adopt computer games as one channel of teaching; AR and VR technologies in games are used to promote learning. Teachers try to use social media for the benefit of learning unlike in the past and also use audio media creating equality in learning for all groups of students. Future classrooms should be brought up to speed to change educational system [11]. There are three significant aspects: The first is children; the environment around the children involves a lot of technology, which has both disadvantages and advantages; however, most disadvantages are causing children to become more hyperactive and autistic. The second is the use of smartphones all the time, adversely affecting their own health. The third aspect is the positive development of gadgets including the rapid emergence of features resulting in the behavior of people changing and making the classroom more attractive.
\nIn recent times, the young generation thinks that having a classroom or learning from school is unnecessary. The young generation can learn via smartphone causing the question ‘If we allow technology to play a role and learn too much classes or platforms, knowledge based on schools or universities, will be depleted and important. Earlier there would be awareness about the educational reform system, but focused on teacher development. No one could talk about the classroom, where the teachers were irreplaceable.
\nThe teacher is like a warrior fighting to win, but he or she must make a good army commander, but we forgot to develop weapons for teachers—they are left with a weapon that is like the rusting spear to the warrior. When he or she does a career related to the design experience, there is a lot of knowledge about using modern technology media. The right discussion will meet good results. The variables normally use to comment be skills, experiences and knowledge which those should be used to make the classroom considered as “a weapon development for teachers” in the modern age.
\nIn addition to this classroom set, there will be special characteristics that allow teachers and students to learn together. The technology available in the room will help spark creativity that can be lead to displaying creative ideas [12]. For example, the room has a laser projector projected in bright light with an image extension technology. Can those be connected to a creative environment for students to see the real thing? The actual size is better than sitting on the chair and reading only the textbook. To support the technology that will plug and support dimensionless classroom activities, teachers and students must hold hands and walk together. There are so many activities that the teachers can change the classroom and make it look like an exhibition, allowing students to work on their own experiences. The process of real work will help students to discover their identity and aptitude including the practicing skills to deal with tasks.
\nHigh school and university are different. University students focus deeper in their interested fields than when they were high school. University’s structures: Instructors or professors are responsible for the students in many ways. It is more than just coming to teach and check everything the students finish. The professors have to prepare lecture notes, research, do quality assurance of the course, draft and organize the university activities, be an advisor, and teach. That is why professors do not just only teach and do research as many people believe they should do.
\nFigure 5, [13], shows the percentage of population using the Internet for the period 2010–2016. In 2010, only 22% of Thai population accessed the Internet. Six years later, in 2016, the number of Thai population accessing the Internet is 47%, which is higher than the 45% of the world population. [14] Figure 6 also goes in the same direction as Figure 5 and shows the number of mobile cellular subscriptions that has been increasing. Especially, in Thailand, the number has long been raising beyond the world’s average. In other words, 1 Thai person probably has more than 1 mobile phone.
\nIndividuals using the Internet (% of population).
Mobile cellular subscriptions (per 100 people).
It is interesting that Thailand has adapted to the Internet and smart phones faster than the rest of the world’s average. From this statistical evidence, we can expect that Thailand would have probably transferred analogue system to the digital system. However, for the educational system, Thailand has just started to turn the education system into the digital system.
\nTo illustrate the statement above, almost every Thai university is a national university, which has been highly supported by Thai government to become “autonomous university.” The term “autonomous university” refers to be an independent organization under the bureaucratic framework. In other words, being an autonomous university lets the university to re-engineer itself to be stay with the flow and up-to-date based on the current market demands, which are changing all the time and faster than before. However, online education and “mobile students” seem to be far from here though it should have been fundamentally implemented already. Thai universities have long offered traditional classes that students have to attend, and some courses still use paper works for the entire period of the course. Because of being autonomous universities, some universities have made their system stricter than before. The term “strict” means that every procedure and process inside the university must be recorded and printed out. Some procedures that should not be with the paper work still appear. The paper work actually takes time and effort. The paper work can cost a high opportunity cost relative to other work that the Thai professor should do. The opportunity cost means the loss of gain from other alternatives. For example, you spend 4 hours for the paper work, but you can exercise and read some good books for 4 hours.
\nMoreover, professors have various tasks in one day. As it has been stated before, Thai professors do not just teach and do research. In addition, every student must have a professor as an advisor for his entire student life. Professors must spare their time for other students who enroll to their course.
\nFigure 7 illustrates from the survey that university students make an appointment and request on meeting with professors face-to-face. The results from survey are interesting that every Thai university student chose face-to-face. However, for other ways to communicate with professors, we have new technologies to make easier communication such as Line Application and E-mail, but less than or equal half of the numbers of students use these applications.
\nThe ways Thai university students contact their professors.
When we compare the growth number of accessibility of Internet and mobiles with the way students contact their professors, the number of digital tools and digital services that students use for contacting their professors go in different directions. From previous illustrations, we can see some inefficiencies from not adapting new technologies. For example, in students’ side, students do not much adopt the digital technology in the educational way, and it can convey to how professional they are. For professors’ point of view, it is difficult to manage their schedule because students come to ask for face-to-face appointments. Sometimes, professors can possibly get distracted when they are working in their room. Additionally, this can be a major problem for professors if the class they teach contains a large number of students.
\nThis, therefore, comes to the recommendation that the university should promote and announce digital techniques to the class and add some regulations. This can reduce the difficulty of professors. Students also benefit from this such as knowing how to formally contact with professors, becoming more professional, and using a way to communicate while they are in the university to apply for the jobs. Some research points out that using digital goods and digital services assists better learning experience as the digital goods and services represent a medium for communication [15].
\nHowever, the table of survey can be conveyed beyond the university concerns. Educational institutions should fundamentally be a pusher to everyone to perceive and learn to use new technologies. Also, they should provide some skills to all learners. The learners are not limited to students only.
\nThai education guidelines should be managed to solve problems appropriately and creatively. It will be able to proceed in many ways, especially integrating the content of digital learning in the context. Knowledge management in institutions has a variety of characteristics, depending on the context of the organization. Some institutions look to manage their knowledge when they are related to strategies or practices, so they focus on knowledge generation and knowledge storage. If it focuses on practice, we can apply the knowledge by integrating the factors involved in information technology conjunction with the importance of personnel in the institutions. Therefore, it is a form of knowledge management from the foundations by bringing ideas from different sources to adapt in the context of their own institutions.
\nI am grateful to all those I have had the pleasure to work with during writing of this book chapter. Each of the members of my teaching assistant team, especially Mr. Jirayut, has provided me extensive professional guidance and supported me a great deal with scientific academic articles in general. I would especially like to thank MS. Nina Kalinic Babic, Author Service Manager. As a supporter, she has given us credit for writing the book chapter.
\nThe members of my family have been more important to me in the pursuit of this book chapter. I would like to thank my parents whose love and guidance are with me in whatever I pursue. They are the ultimate role models. Most importantly, I wish to thank my loving and supportive husband, Sa-ard, and my single wonderful child, Thanapat, who provide unending inspiration.
\nEdited by Jan Oxholm Gordeladze, ISBN 978-953-51-3020-8, Print ISBN 978-953-51-3019-2, 336 pages,
\nPublisher: IntechOpen
\nChapters published March 22, 2017 under CC BY 3.0 license
\nDOI: 10.5772/61430
\nEdited Volume
This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\\n\\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\\n\\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\\n\\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\\n\\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\\n\\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\\n\\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\\n\\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\\n\\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\\n\\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\\n\\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\\n\\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\\n"}]'},components:[{type:"htmlEditorComponent",content:'This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\n\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\n\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\n\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\n\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\n\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\n\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\n\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\n\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\n\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\n\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\n\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5706},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10249},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15658}],offset:12,limit:12,total:117458},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"23"},books:[{type:"book",id:"9538",title:"Demographic Analysis - Selected Concepts, Tools, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f335c5d0a39e8631d8627546e14ce61f",slug:null,bookSignature:"Ph.D. Andrzej Klimczuk",coverURL:"https://cdn.intechopen.com/books/images_new/9538.jpg",editedByType:null,editors:[{id:"320017",title:"Ph.D.",name:"Andrzej",surname:"Klimczuk",slug:"andrzej-klimczuk",fullName:"Andrzej Klimczuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse - an Interdisciplinary Approach",subtitle:null,isOpenForSubmission:!0,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:null,bookSignature:"Dr. Ersi Abaci Kalfoglou and Dr. Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:null,editors:[{id:"68678",title:"Dr.",name:"Ersi Abaci",surname:"Kalfoglou",slug:"ersi-abaci-kalfoglou",fullName:"Ersi Abaci Kalfoglou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10811",title:"Urban Transition - Perspectives on Urban Systems and Environments",subtitle:null,isOpenForSubmission:!0,hash:"4885cfa30ba6184b0da9f575aee65998",slug:null,bookSignature:"Ph.D. Marita Wallhagen and Dr. Mathias Cehlin",coverURL:"https://cdn.intechopen.com/books/images_new/10811.jpg",editedByType:null,editors:[{id:"337569",title:"Ph.D.",name:"Marita",surname:"Wallhagen",slug:"marita-wallhagen",fullName:"Marita Wallhagen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10911",title:"Higher Education",subtitle:null,isOpenForSubmission:!0,hash:"c76f86ebdc949d57e4a7bdbec100e66b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10913",title:"Indigenous Populations",subtitle:null,isOpenForSubmission:!0,hash:"c5e8cd4e3ec004d0479494ca190db4cb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Racism",subtitle:null,isOpenForSubmission:!0,hash:"0737383fcc202641f59e4a5df02eb509",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:11},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5156},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10116",title:"Nano- and Microencapsulation",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"8d92c5999718734b36a0cc3a6af7c7f6",slug:"nano-and-microencapsulation-techniques-and-applications",bookSignature:"Nedal Abu-Thabit",coverURL:"https://cdn.intechopen.com/books/images_new/10116.jpg",editedByType:"Edited by",editors:[{id:"308436",title:"Associate Prof.",name:"Nedal",middleName:null,surname:"Abu-Thabit",slug:"nedal-abu-thabit",fullName:"Nedal Abu-Thabit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9394",title:"Genotoxicity and Mutagenicity",subtitle:"Mechanisms and Test Methods",isOpenForSubmission:!1,hash:"9ee7e597358dbbfb5e33d0beb76e6fff",slug:"genotoxicity-and-mutagenicity-mechanisms-and-test-methods",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/9394.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"810",title:"Acoustical Engineering",slug:"mechanical-engineering-acoustical-engineering",parent:{title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:13,numberOfAuthorsAndEditors:386,numberOfWosCitations:345,numberOfCrossrefCitations:185,numberOfDimensionsCitations:428,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mechanical-engineering-acoustical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6722",title:"Acoustic Emission Technology for High Power Microwave Radar Tubes",subtitle:null,isOpenForSubmission:!1,hash:"ef80c9b4123e022ea69a4bf777088522",slug:"acoustic-emission-technology-for-high-power-microwave-radar-tubes",bookSignature:"Narayan R. Joshi, Ayax D. Ramirez, Stephen D. Russell and David W. Brock",coverURL:"https://cdn.intechopen.com/books/images_new/6722.jpg",editedByType:"Authored by",editors:[{id:"95431",title:"Dr.",name:"Narayan",middleName:"R.",surname:"Joshi",slug:"narayan-joshi",fullName:"Narayan Joshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"5774",title:"Underwater Acoustics",subtitle:null,isOpenForSubmission:!1,hash:"f9be56d90357c40ec87f7a9fcaa3c5cf",slug:"advances-in-underwater-acoustics",bookSignature:"Andrzej Zak",coverURL:"https://cdn.intechopen.com/books/images_new/5774.jpg",editedByType:"Edited by",editors:[{id:"16539",title:"Dr.",name:"Andrzej",middleName:null,surname:"Zak",slug:"andrzej-zak",fullName:"Andrzej Zak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5240",title:"Advances in Noise Analysis, Mitigation and Control",subtitle:null,isOpenForSubmission:!1,hash:"929b0158c16444b60c079e02adb434b4",slug:"advances-in-noise-analysis-mitigation-and-control",bookSignature:"Noor Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/5240.jpg",editedByType:"Edited by",editors:[{id:"6371",title:"Dr.",name:"Noor",middleName:null,surname:"Ahmed",slug:"noor-ahmed",fullName:"Noor Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2188",title:"Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices",subtitle:null,isOpenForSubmission:!1,hash:"ae0f011b5180f0cc414a30ec559cb421",slug:"modeling-and-measurement-methods-for-acoustic-waves-and-for-acoustic-microdevices",bookSignature:"Marco G. Beghi",coverURL:"https://cdn.intechopen.com/books/images_new/2188.jpg",editedByType:"Edited by",editors:[{id:"41947",title:"Prof.",name:"Marco G.",middleName:null,surname:"Beghi",slug:"marco-g.-beghi",fullName:"Marco G. Beghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3518",title:"Acoustic Emission",subtitle:"Research and Applications",isOpenForSubmission:!1,hash:"eb280b2594730e4f14ca390eb2a29f72",slug:"acoustic-emission-research-and-applications",bookSignature:"Wojciech Sikorski",coverURL:"https://cdn.intechopen.com/books/images_new/3518.jpg",editedByType:"Edited by",editors:[{id:"86930",title:"Dr.",name:"Wojciech",middleName:null,surname:"Sikorski",slug:"wojciech-sikorski",fullName:"Wojciech Sikorski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3093",title:"Wave Propagation",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"6aaba717814f53ebd3aa01547267c59b",slug:"wave-propagation-theories-and-applications",bookSignature:"Yi Zheng",coverURL:"https://cdn.intechopen.com/books/images_new/3093.jpg",editedByType:"Edited by",editors:[{id:"146846",title:"Dr.",name:"Yi",middleName:null,surname:"Zheng",slug:"yi-zheng",fullName:"Yi Zheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3121",title:"Advances in Vibration Engineering and Structural Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"d33871d33d96c0a96ee0a3d0f1de6361",slug:"advances-in-vibration-engineering-and-structural-dynamics",bookSignature:"Francisco Beltran-Carbajal",coverURL:"https://cdn.intechopen.com/books/images_new/3121.jpg",editedByType:"Edited by",editors:[{id:"10444",title:"Dr.",name:"Francisco",middleName:null,surname:"Beltran-Carbajal",slug:"francisco-beltran-carbajal",fullName:"Francisco Beltran-Carbajal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"904",title:"Underwater Acoustics",subtitle:null,isOpenForSubmission:!1,hash:"edc0886f0fcec6e5b87ff1fc53145762",slug:"underwater-acoustics",bookSignature:"Salah Bourennane",coverURL:"https://cdn.intechopen.com/books/images_new/904.jpg",editedByType:"Edited by",editors:[{id:"94217",title:"Prof.",name:"Salah",middleName:null,surname:"Bourennane",slug:"salah-bourennane",fullName:"Salah Bourennane"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"903",title:"Ultrasonic Waves",subtitle:null,isOpenForSubmission:!1,hash:"647c5e74bfd1e31a69e95758a9995206",slug:"ultrasonic-waves",bookSignature:"Auteliano Antunes dos Santos Júnior",coverURL:"https://cdn.intechopen.com/books/images_new/903.jpg",editedByType:"Edited by",editors:[{id:"106405",title:"Dr.",name:"Auteliano",middleName:"Antunes Dos",surname:"Santos Jr.",slug:"auteliano-santos-jr.",fullName:"Auteliano Santos Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1606",title:"Acoustic Emission",subtitle:null,isOpenForSubmission:!1,hash:"cc8b94f6002f9f928cb9224f7da17a0a",slug:"acoustic-emission",bookSignature:"Wojciech Sikorski",coverURL:"https://cdn.intechopen.com/books/images_new/1606.jpg",editedByType:"Edited by",editors:[{id:"86930",title:"Dr.",name:"Wojciech",middleName:null,surname:"Sikorski",slug:"wojciech-sikorski",fullName:"Wojciech Sikorski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"866",title:"Noise Control, Reduction and Cancellation Solutions in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7219da94d49d88629388cfcd200075ae",slug:"noise-control-reduction-and-cancellation-solutions-in-engineering",bookSignature:"Daniela Siano",coverURL:"https://cdn.intechopen.com/books/images_new/866.jpg",editedByType:"Edited by",editors:[{id:"9960",title:"Dr.",name:"Daniela",middleName:null,surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"66",title:"Advances in Sound Localization",subtitle:null,isOpenForSubmission:!1,hash:"3d2ef1f3f506c287ecd134041c20952c",slug:"advances-in-sound-localization",bookSignature:"Pawel Strumillo",coverURL:"https://cdn.intechopen.com/books/images_new/66.jpg",editedByType:"Edited by",editors:[{id:"20143",title:"Prof.",name:"Pawel",middleName:null,surname:"Strumillo",slug:"pawel-strumillo",fullName:"Pawel Strumillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,mostCitedChapters:[{id:"31676",doi:"10.5772/29804",title:"Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides",slug:"modelling-the-generation-and-propagation-of-ultrasonic-signals-in-cylindrical-waveguides",totalDownloads:3816,totalCrossrefCites:23,totalDimensionsCites:44,book:{slug:"ultrasonic-waves",title:"Ultrasonic Waves",fullTitle:"Ultrasonic Waves"},signatures:"Fernando Seco and Antonio R. Jiménez",authors:[{id:"79391",title:"Dr.",name:"Fernando",middleName:null,surname:"Seco",slug:"fernando-seco",fullName:"Fernando Seco"},{id:"129814",title:"Dr.",name:"Antonio Ramón",middleName:null,surname:"Jiménez Ruiz",slug:"antonio-ramon-jimenez-ruiz",fullName:"Antonio Ramón Jiménez Ruiz"}]},{id:"12018",doi:"10.5772/9714",title:"Frequency-Domain Numerical Modelling of Visco-Acoustic Waves Based on Finite-Difference and Finite-Element Discontinuous Galerkin Methods",slug:"frequency-domain-numerical-modelling-of-visco-acoustic-waves-based-on-finite-difference-and-finite-e",totalDownloads:3994,totalCrossrefCites:10,totalDimensionsCites:16,book:{slug:"acoustic-waves",title:"Acoustic Waves",fullTitle:"Acoustic Waves"},signatures:"Romain Brossier, Vincent Etienne, Stephane Operto and Jean Virieux",authors:null},{id:"45574",doi:"10.5772/53197",title:"Utilizing Malaysian Natural Fibers as Sound Absorber",slug:"utilizing-malaysian-natural-fibers-as-sound-absorber",totalDownloads:2739,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"modeling-and-measurement-methods-for-acoustic-waves-and-for-acoustic-microdevices",title:"Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices",fullTitle:"Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices"},signatures:"Mohammad Hosseini Fouladi, Mohamed H. Nassir,\nMasomeh Ghassem, Marwan Shamel, Sim Yeng Peng,\nSin Yi Wen, Pang Zong Xin and Mohd Jailani Mohd Nor",authors:[{id:"143661",title:"Dr.",name:"Mohammad",middleName:null,surname:"Hosseini Fouladi",slug:"mohammad-hosseini-fouladi",fullName:"Mohammad Hosseini Fouladi"},{id:"151813",title:"Dr.",name:"Mohamed",middleName:null,surname:"Nassir",slug:"mohamed-nassir",fullName:"Mohamed Nassir"},{id:"157702",title:"Dr.",name:"Marwan",middleName:null,surname:"Shamel",slug:"marwan-shamel",fullName:"Marwan Shamel"},{id:"157703",title:"Dr.",name:"Sim Yeng",middleName:null,surname:"Peng",slug:"sim-yeng-peng",fullName:"Sim Yeng Peng"},{id:"157708",title:"Dr.",name:"Sin Yi",middleName:null,surname:"Wen",slug:"sin-yi-wen",fullName:"Sin Yi Wen"},{id:"157709",title:"Dr.",name:"Pang Zong",middleName:null,surname:"Xin",slug:"pang-zong-xin",fullName:"Pang Zong Xin"},{id:"157710",title:"Dr.",name:"Masomeh",middleName:null,surname:"Ghassem",slug:"masomeh-ghassem",fullName:"Masomeh Ghassem"},{id:"157711",title:"Dr.",name:"Mohd Jailani",middleName:null,surname:"Mohd Nor",slug:"mohd-jailani-mohd-nor",fullName:"Mohd Jailani Mohd Nor"}]}],mostDownloadedChaptersLast30Days:[{id:"15118",title:"Spatial Audio Applied to Research with the Blind",slug:"spatial-audio-applied-to-research-with-the-blind",totalDownloads:2796,totalCrossrefCites:1,totalDimensionsCites:15,book:{slug:"advances-in-sound-localization",title:"Advances in Sound Localization",fullTitle:"Advances in Sound Localization"},signatures:"Brian FG Katz and Lorenzo Picinali",authors:[{id:"19955",title:"Dr.",name:"Lorenzo",middleName:null,surname:"Picinali",slug:"lorenzo-picinali",fullName:"Lorenzo Picinali"},{id:"278731",title:"Dr.",name:"Brian FG",middleName:null,surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}]},{id:"42681",title:"Shear Wave Propagation in Soft Tissue and Ultrasound Vibrometry",slug:"shear-wave-propagation-in-soft-tissue-and-ultrasound-vibrometry",totalDownloads:4967,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"wave-propagation-theories-and-applications",title:"Wave Propagation",fullTitle:"Wave Propagation Theories and Applications"},signatures:"Yi Zheng, Xin Chen, Aiping Yao, Haoming Lin, Yuanyuan Shen, Ying Zhu, Minhua Lu, Tianfu Wang and Siping Chen",authors:[{id:"146846",title:"Dr.",name:"Yi",middleName:null,surname:"Zheng",slug:"yi-zheng",fullName:"Yi Zheng"},{id:"149163",title:"Prof.",name:"Aiping",middleName:null,surname:"Yao",slug:"aiping-yao",fullName:"Aiping Yao"},{id:"149165",title:"Mr.",name:"Haoming",middleName:null,surname:"Lin",slug:"haoming-lin",fullName:"Haoming Lin"},{id:"149166",title:"Prof.",name:"Tianfu",middleName:null,surname:"Wang",slug:"tianfu-wang",fullName:"Tianfu Wang"},{id:"149167",title:"Prof.",name:"Siping",middleName:null,surname:"Chen",slug:"siping-chen",fullName:"Siping Chen"},{id:"158679",title:"Prof.",name:"Xin",middleName:null,surname:"Chen",slug:"xin-chen",fullName:"Xin Chen"},{id:"158680",title:"Prof.",name:"Minhua",middleName:null,surname:"Lu",slug:"minhua-lu",fullName:"Minhua Lu"},{id:"158682",title:"Ms.",name:"Yin",middleName:null,surname:"Zhu",slug:"yin-zhu",fullName:"Yin Zhu"},{id:"158683",title:"Dr.",name:"Yuanyuan",middleName:null,surname:"Shen",slug:"yuanyuan-shen",fullName:"Yuanyuan Shen"}]},{id:"42683",title:"Radio Wave Propagation Phenomena from GPS Occultation Data Analysis",slug:"radio-wave-propagation-phenomena-from-gps-occultation-data-analysis",totalDownloads:2059,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wave-propagation-theories-and-applications",title:"Wave Propagation",fullTitle:"Wave Propagation Theories and Applications"},signatures:"Alexey Pavelyev, Alexander Pavelyev, Stanislav Matyugov, Oleg Yakovlev, Yuei-An Liou, Kefei Zhang and Jens Wickert",authors:[{id:"148118",title:"Dr.",name:"Alexander",middleName:null,surname:"Pavelyev",slug:"alexander-pavelyev",fullName:"Alexander Pavelyev"},{id:"149111",title:"Dr.",name:"Jens",middleName:null,surname:"Wickert",slug:"jens-wickert",fullName:"Jens Wickert"},{id:"149113",title:"Prof.",name:"Yuei-An",middleName:null,surname:"Liou",slug:"yuei-an-liou",fullName:"Yuei-An Liou"},{id:"149114",title:"Dr.",name:"Stanislav",middleName:null,surname:"Matyugov",slug:"stanislav-matyugov",fullName:"Stanislav Matyugov"},{id:"149115",title:"Prof.",name:"Oleg",middleName:null,surname:"Yakovlev",slug:"oleg-yakovlev",fullName:"Oleg Yakovlev"}]},{id:"40863",title:"Vibration of Satellite Solar Array Paddle Caused by Thermal Shock When a Satellite Goes Through the Eclipse",slug:"vibration-of-the-satellite-s-solar-array-paddle-induced-by-the-thermal-shock-when-the-satellite-goes",totalDownloads:2309,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-vibration-engineering-and-structural-dynamics",title:"Advances in Vibration Engineering and Structural Dynamics",fullTitle:"Advances in Vibration Engineering and Structural Dynamics"},signatures:"Mitsushige Oda, Akihiko Honda, Satoshi Suzuki and Yusuke Hagiwara",authors:[{id:"153905",title:"Prof.",name:"Mitsushige",middleName:null,surname:"Oda",slug:"mitsushige-oda",fullName:"Mitsushige Oda"}]},{id:"12012",title:"The Eigen Theory of Waves in Piezoelectric Solids",slug:"the-eigen-theory-of-waves-in-piezoelectric-solids",totalDownloads:2412,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"acoustic-waves",title:"Acoustic Waves",fullTitle:"Acoustic Waves"},signatures:"Shaohua Guo",authors:null},{id:"42689",title:"Ray Launching Modeling in Curved Tunnels with Rectangular or Non Rectangular Section",slug:"ray-launching-modeling-in-curved-tunnels-with-rectangular-or-non-rectangular-section",totalDownloads:2222,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wave-propagation-theories-and-applications",title:"Wave Propagation",fullTitle:"Wave Propagation Theories and Applications"},signatures:"Émilie Masson, Pierre Combeau, Yann Cocheril, Lilian Aveneau, Marion Berbineau and Rodolphe Vauzelle",authors:[{id:"148945",title:"Dr.",name:"Marion",middleName:null,surname:"Berbineau",slug:"marion-berbineau",fullName:"Marion Berbineau"},{id:"149794",title:"Dr.",name:"Emilie",middleName:null,surname:"Masson",slug:"emilie-masson",fullName:"Emilie Masson"},{id:"149795",title:"Dr.",name:"Yann",middleName:null,surname:"Cocheril",slug:"yann-cocheril",fullName:"Yann Cocheril"},{id:"149796",title:"Associate Prof.",name:"Pierre",middleName:null,surname:"Combeau",slug:"pierre-combeau",fullName:"Pierre Combeau"},{id:"149799",title:"Prof.",name:"Rodolphe",middleName:null,surname:"Vauzelle",slug:"rodolphe-vauzelle",fullName:"Rodolphe Vauzelle"},{id:"149800",title:"Dr.",name:"Lilian",middleName:null,surname:"Aveneau",slug:"lilian-aveneau",fullName:"Lilian Aveneau"}]},{id:"45578",title:"Ray Trace Modeling of Underwater Sound Propagation",slug:"ray-trace-modeling-of-underwater-sound-propagation",totalDownloads:6271,totalCrossrefCites:1,totalDimensionsCites:8,book:{slug:"modeling-and-measurement-methods-for-acoustic-waves-and-for-acoustic-microdevices",title:"Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices",fullTitle:"Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices"},signatures:"Jens M. Hovem",authors:[{id:"46063",title:"Prof.",name:"Jens",middleName:"Martin",surname:"Hovem",slug:"jens-hovem",fullName:"Jens Hovem"}]},{id:"42685",title:"Wave Iterative Method for Electromagnetic Simulation",slug:"wave-iterative-method-for-electromagnetic-simulation",totalDownloads:1885,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wave-propagation-theories-and-applications",title:"Wave Propagation",fullTitle:"Wave Propagation Theories and Applications"},signatures:"Somsak Akatimagool and Saran Choocadee",authors:[{id:"146909",title:"Dr.",name:"Sarun",middleName:null,surname:"Choocadee",slug:"sarun-choocadee",fullName:"Sarun Choocadee"},{id:"147774",title:"Dr.",name:"Somsak",middleName:null,surname:"Akatimagool",slug:"somsak-akatimagool",fullName:"Somsak Akatimagool"}]},{id:"43424",title:"Otoacoustic Emissions",slug:"otoacoustic-emissions",totalDownloads:2337,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"acoustic-emission-research-and-applications",title:"Acoustic Emission",fullTitle:"Acoustic Emission - Research and Applications"},signatures:"Giovanna Zimatore, Domenico Stanzial and Maria Patrizia Orlando",authors:[{id:"165038",title:"Ph.D.",name:"Giovanna",middleName:null,surname:"Zimatore",slug:"giovanna-zimatore",fullName:"Giovanna Zimatore"},{id:"165041",title:"Dr.",name:"Maria Patrizia",middleName:null,surname:"Orlando",slug:"maria-patrizia-orlando",fullName:"Maria Patrizia Orlando"},{id:"165044",title:"Dr.",name:"Domenico",middleName:null,surname:"Stanzial",slug:"domenico-stanzial",fullName:"Domenico Stanzial"}]},{id:"51959",title:"New Processes and Technologies to Reduce the Low‐Frequency Noise of Digital and Analog Circuits",slug:"new-processes-and-technologies-to-reduce-the-low-frequency-noise-of-digital-and-analog-circuits",totalDownloads:1238,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"advances-in-noise-analysis-mitigation-and-control",title:"Advances in Noise Analysis, Mitigation and Control",fullTitle:"Advances in Noise Analysis, Mitigation and Control"},signatures:"Philippe Gaubert and Akinobu Teramoto",authors:[{id:"181697",title:"Dr.",name:"Philippe",middleName:null,surname:"Gaubert",slug:"philippe-gaubert",fullName:"Philippe Gaubert"},{id:"182487",title:"Prof.",name:"Akinobu",middleName:null,surname:"Teramoto",slug:"akinobu-teramoto",fullName:"Akinobu Teramoto"}]}],onlineFirstChaptersFilter:{topicSlug:"mechanical-engineering-acoustical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/5683/jorge-pomares",hash:"",query:{},params:{id:"5683",slug:"jorge-pomares"},fullPath:"/profiles/5683/jorge-pomares",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()