Review of heat transfer coefficient correlations for different evaporator design and operation conditions.
\r\n\tIn order to understand the detailed content, these parameters are also divided into different classes such as inert, readily biodegradable, soluble COD, etc. However, still we do not possess detailed knowledge on organics in water sources or wastewater streams. Therefore, during the last decade, scientists tried to divide organics into different classes and understand their treatment potential and natural pathways. This book aims to fill out a very significant gap in this research field. Different treatment processes, monitoring and water determination chapters on dissolved organics, emerging organic pollutants, endocrine disruptors, emerging disinfection by-products, microplastic etc. in water or wastewater are welcome to this book project.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"358ff11fd43b59f3a36498ef0494189d",bookSignature:"Associate Prof. Taner Yonar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8934.jpg",keywords:"COD, BOD, TOC, treatment, toxicity, fire retardents, bioacumulaion, treatment, pesticides, hormones, sources of microplastics, effects on health",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 11th 2019",dateEndSecondStepPublish:"July 2nd 2019",dateEndThirdStepPublish:"August 31st 2019",dateEndFourthStepPublish:"November 19th 2019",dateEndFifthStepPublish:"January 18th 2020",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar",profilePictureURL:"https://mts.intechopen.com/storage/users/190012/images/system/190012.jpg",biography:"Prof. Dr. Taner Yonar is a professor in the Engineering Faculty, Environmental Engineering Department, Bursa Uludağ University, Turkey, where he received his BSc in Environmental Engineering in 1996 and MSc and Ph.D. in Environmental Technology in 1999 and 2005, respectively. He completed his post-doctoral research in the Chemical Engineering and Advanced Materials Department, Newcastle University, United Kingdom in 2011. He teaches graduate- and undergraduate-level courses on water and wastewater treatment and advanced treatment technologies. He has been working to transfer his academic experience to the industry with Envora R&D Engineering Co., which began as a start-up initiative in 2020. He works on advanced oxidation technologies, membrane processes, and electrochemical processes. Dr. Yonar is the editor of five books and the author of more than eighty research papers.",institutionString:"Bursa Uludağ University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10026",title:"Electrodialysis",subtitle:null,isOpenForSubmission:!1,hash:"ffef55f8ffe48f096acaa5f6329ed76f",slug:"electrodialysis",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/10026.jpg",editedByType:"Edited by",editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"56066",title:"Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design",doi:"10.5772/intechopen.69299",slug:"development-of-falling-film-heat-transfer-coefficient-for-industrial-chemical-processes-evaporator-d",body:'\nIn process industries such as the refineries, food and desalination plants, the need of high-performance evaporators is paramount to minimize irreversibilities due to high heat transfer as well as to reduce footprint area of associated components. A falling film evaporator is one of the key design components which are associated with not only high heat transfer rates but are also immune to change in feed qualities. In particular, for present desalination application, the falling film evaporative process could augment heat transfer rates involving brines which inherently reduce the equipment cost because of compact design.
\nIn this chapter, a horizontal tube falling film evaporator is studied for low-temperature applications, particularly for the desalination industry. The first part of this chapter focuses on advantages of horizontal tube falling film evaporators over flooded evaporators and vertical tube evaporators and its applications. In the second part of the chapter, a literature review on falling film evaporation heat transfer coefficient (FFHTC) to the extent necessary for this work is provided. A novel FFHTC for low-temperature (below ambient) applications and for different salt concentrations is developed in the third part of this chapter. The comparison of proposed correlation with traditional Han and Fletcher [1] correlation and the effect of different operational parameters on heat transfer is discussed in the last section of the chapter.
\nFlooded evaporators have been used in desalination industry for long time. Recently, there is a thrust of horizontal tubes falling film evaporators over the flooded evaporators because of their advantages. They also replaced the vertical tube evaporators because of its unique characteristics. Falling film evaporators in general, are highly responsive to operational parameters, such as energy supply, pressure levels, feed rate, and salt concentrations in the feed. The fact that falling film evaporators can be operated across small temperature differences make them amenable to the application in multiple effect configurations. The advantages of falling film evaporators are outlined in the section below.
\nThe main advantages of falling film evaporators over flooded evaporators are as follows:
High heat transfer coefficient and resulting compact design.
More uniform overall heat transfer coefficient value across the tube bundle.
Reduction in working fluid requirement to about one-third as compared to flooded evaporators.
Short product contact times, typically just a few seconds per pass.
Minimization of salt deposition on tubes surface that helps in cleaning the tubes.
The potential advantages of horizontal tube evaporators over vertical tubes evaporators are as follows:
Heat transfer coefficients for horizontal tubes are higher than those for vertical tubes since the heated flow length is much shorter.
External enhancements are available for tubes in copper, copper-nickel and stainless steel, etc. for up to a 10-fold increase in evaporation coefficient.
A horizontal tube bundle can have multiple tube passes of the heating fluid to significantly increase its heat transfer coefficient as compared to vertical tubes evaporators with single pass.
A larger Length to diameter ratio (L/D) ratio horizontal shell evaporator can be designed as compared to small L/D ratio of vertical evaporator that helps to prevent the dry out and flooding in the tubes.
The two pass (U-tube) design in horizontal tube evaporators is much more efficient, cheaper and easier to maintain compared to the single pass floating head in vertical tubes.
Flow length of liquid film in a horizontal tube evaporator minimizes the liquid hold-up time and residence time during operation.
Horizontal tubes bundle arrangement reduces the unit height that helps to reduce the piping work.
Horizontal arrangement reduces the footprint for large-capacity plant because the evaporators can be arranged in double tier arrangement.
Although the horizontal tubes falling film evaporators have advantages over flooded and vertical tubes evaporators, the main limitation is the lack of heat transfer data particularly at low temperature, i.e., below 323 K.
\nA critical appreciation of the thermal performance is essential for the optimum design of falling film horizontal tube evaporators especially for desalination industry. A large number of empirical and theoretical heat transfer coefficients correlations are available in literature. The majority of those available correlations are for different refrigerants, and few of them are for pure water and limited to saturation temperatures more than 323 K.
\nMany researchers provided the detailed overview of available correlations. A critical review is published by Ribatski and Jacobi [2] who tabulated the heat transfer correlations in terms of dimensionless numbers as developed by many researchers. They also provided heat transfer coefficient values for water and different refrigerants with single-tube and multi-tube evaporators. They concluded that every correlation has a limited validation governed by operating parameters under which they developed, and efforts are needed to generalize these correlations. Adib et al. [3] conducted the experiment with vertical tube falling film evaporator, and they calculated the heat transfer coefficient value using correlation available in literature [4, 5, 6, 7, 8] and found good agreement with experimental results. Uche et al. [9] compared the heat transfer correlations at different inlet brine temperatures and for different mass velocities for horizontal and vertical tube evaporators. They also compared their results with different available correlations [1, 10, 11, 12, 13, 14] and found that Parken correlation can be used for nonboiling conditions, and Han and Fletcher’s correlation is good for boiling conditions. A falling film evaporation analytical model is developed by Fujita et al. [15, 16, 17] using R-11, and they analysed the drip pattern, droplets, and sheet modes. They found that accuracy of their model is within ±20%.
\nTable 1 summaries heat transfer correlations of many researchers found in the literature. This table also highlights the limitations of applications of these correlations, such as the types of working fluids, pressures and the temperature ranges and evaporator geometry.
\nReferences | \nCorrelation | \n
---|---|
\n \n \nDeionized water, 50°C, horizontal copper tubes evaporator. | \n|
for 1st tube: \n \n \nFor 2nd to 5th tubes: \n \n \nFreon R-11, electrically heated five horizontal copper tubes, OD-25 mm | \n|
\n \n \nPure water, 49–127°C, electrically heated single horizontal tube, OD-50.8 mm, thickness-1.7 mm, Length-254 mm | \n|
\n \n \nPure water, 60 and 90°C, Polypropylene horizontal tubes aero-evaporator , OD-25.4 mm, | \n|
\n \n \nPure water, 46–118°C, electrically heated single vertical tube, OD-28.58 mm, thickness-0.1 mm, Length-292 mm | \n|
For laminar region: \n \n \nFor combine: \n \n \nPropylene glycol and water | \n|
\n \n \nPure water, electrically heated single vertical tube, OD-25.40 mm, Length-781 mm | \n|
\n \n \nR245fa, 5 and 20°C, horizontal smooth tubes. | \n
Review of heat transfer coefficient correlations for different evaporator design and operation conditions.
Since operational and design parameters are the key factors to maximize the evaporator performance, so researches are provided extensive data on it. Film modes are controlled by film Reynolds numbers, and different heat transfer coefficient behaviours are noticed by researchers for smooth tubes as Reynolds number changes [15, 18, 19, 20, 21]. They observed three kinds of behaviour such as (1) heat transfer coefficient decreases to its minimum value and then increases again, (2) it increases with Reynolds number, and (3) heat transfer coefficient increases to its maximum value and then drops. Lorenz and Yung [22] investigated that film evaporation on a single tube is different to an array of tubes, and it may be due to turbulence of inter-tube evaporation. They also found that critical Reynolds number affects the evaporation heat transfer, and for below 300, the heat transfer coefficient value for a single tube is higher as compared to an array of tubes. Thome et al. [23] conducted the experiments for falling film heat transfer coefficient for four types of tubes, such as plain, turbo-BII HP, Gewa-B and high-flux tubes. They concluded that for different inter-tube flow modes, there is no discernible difference in heat transfer coefficients in respective flow zone. Fujita et al. [15] investigated that the heat transfer value is low on the top row of tubes which is due to direct expose to feed supply. They also investigated the effect of feeder type on heat transfer coefficient. They used refrigerant R-11 on horizontal tube evaporators. Liu et al. [18] performed falling film heat transfer experiments for different tubes surfaces, and they concluded that the value is from 3-to 4-folds higher for roll-worked tubes as compared to smooth tubes. They also found that both the flow conditions and tubes spacing have negligible effect on the heat transfer coefficient. Aly et al. [24] conducted the tests for deposit film thickness effects, and they found drastic decrease in heat transfer with increase in deposition thickness. Moeykens et al. [25, 26] and Chang et al. [27] performed falling film experiment tests for R-123, R-134a, R-22, and R-141b, and they found that it can be enhanced by adding the collection tray under each tube row. The falling film correlations developed by researchers [26, 28, 29, 30] for refrigerants R-22, R-123, R-134a, and R-141b are having uncertainty of 20–25% by using four different apparatuses. Bourouni et al. [31] performed the experiments with aero-evaporator, and they reported that increase in characteristic dimensions of heat exchanger results in a significant increase in the evaporative performance. Yang and Shen [32] found that the heat transfer coefficient is a strong function of heat input and increases with heat input. The vapour flow effect due to liquid drag and dry out of tubes is studied by Ribatski and Jacobi [2]. The effect of dynamics of film on heat transfer is investigated by Xu et al. [33] and Yang and Shen [34]. They found that increase in liquid load causes perturbation in film that enhances the heat transfer. They also reported that increase in tube diameter does not favour heat transfer which can be due to more turbulence in film on smaller diameter tubes. For horizontal tubes falling film evaporators, Han and Fletcher [1] is the most famous correlation, whereas Chun and Seban [35] is used for vertical tube. Both of these famous correlations are for pure water and for saturation temperatures of 322 K or more.
\nIt can be seen from the above discussion that Han and Fletcher’s correlation is most frequently used for film boiling on horizontal tubes. This correlation is developed with pure water evaporating at temperatures 322 K and above. There is a lack of data for evaporative film boiling typically below ambient condition. The boiling data pertaining to saline solution of 15,000–90,000 mg/l or ppm are also scarce, and yet these conditions are particularly important for the designing of falling film evaporators for processes industries and desalination plants, such as food and beverage, multi-effect desalination (MED) and multi-stage flash evaporation (MSF). Many manufacturers, perhaps due to competition reason, are not revealing their proprietary film boiling data at these conditions. We designed experiments to develop falling film heat transfer coefficient for low-temperature evaporator typically from 279 to 300 K and pressure from 0.93 to 3.60 kPa. The new proposed correlation will be applicable for wide range of concentration evaporator design. We also presented the effect of salt concentration on heat transfer and log mean temperature difference (LMTD). The proposed designed experiments will help process industries to design falling film evaporators for wide range of operation.
\nThe methodology used here is to adopt Han and Fletcher’s correlation for film boiling on horizontal tubes and to enhance its use by incorporating the effects of salinity and by expanding the range of temperatures of its application for horizontal tubes falling film evaporation.
\nThe non-dimensional terms in Han and Fletcher correlation model, namely, the Reynolds, Prandtl and Nusselt numbers are adequate to describe the surface evaporation from liquid film due to thermal effect. At low saturation pressures, the vapour specific volume rapidly increases, and this could possibly leads to enhancement of heat transfer. Han and Fletcher model is revisited to capture this additional heat transfer enhancement phenomenon. At a low saturation temperature the micro-bubble generated at tube surface can lift up quickly because of high specific volume and break through the thermal barrier within liquid film. The traditional heat transfer models are unable to define this augmentation of heat transfer enhancement by buoyancy fortified bubble agitation.
\nThe Han and Fletcher correlation given in Table 1 can also be expressed in a more familiar form as shown in Eq. 1
\nwhere indices and the constant term are found for the boundary conditions of film boiling. For the determination of the overall heat transfer coefficient, the total heat transfer is computed via heat transferred to circulating water, i.e.
\nUsing the concept of log mean temperature difference (LMTD) and the saturation temperature of evaporator, the overall heat transfer coefficient (
The local falling film heat transfer coefficient on film side (
The pipe wall resistance (stainless steel 316) is negligible due to small thickness (0.7 mm). The evaporation heat transfer coefficient is calculated by using overall heat transfer coefficient given in Eq. 5
\nThe experimental program is planned for capturing the two unknown parameters in above Eq. 5.
\nAdsorption desalination (AD) plant existing in air-conditioning laboratory is used to conduct the experiments. Figures 1 and 2 show the AD plant installed in National University of Singapore (NUS) and plant operational schematic.
\nPictorial view of adsorption desalination plant installed in NUS.
Detailed operational schematic of adsorption desalination plant schematic.
There are five main components of AD plant namely: (1) evaporator, (2) adsorber/desorber beds, (3) condenser, (4) conditioning facility and (5) pre-treatment facility. The evaporator shell and tubes are fabricated with stainless steel and are arranged horizontally details of which are shown in Figure 3.
\nAdsorption desalination cycle evaporator detailed design.
The evaporator tubes are arranged in four rows with 12 tubes in each row. This evaporator is 4 pass using a ‘water box’ arrangement at the ends of the heat exchanger. Special profiled tubes are used in evaporator to enhance the heat transfer. The details of the tube are shown in Figure 4.
\nCross section of end-cross tube used in evaporator of adsorption desalination plant.
A precise electrical thyristor controller is installed to supply the chilled water to evaporator at constant inlet temperature. This thyristor maintains the temperature fluctuations at inlet of coolant water to less than ±0.15 K. The chilled water supply is regulated at 48 l/min. Since experiments are conducted at different salt concentrations, and constant salt concentration condition in evaporator is maintained by re-circulation of the condensate back to evaporator via U-tube. To maintain a constant liquid film on tube surface, a spray pump is used to discharge fine water droplets (nominally 0.1–0.15 mm diameter) through nozzles on top of tube bundle. The design parameters of evaporator are given in Table 2.
\nParameters | \nValues | \nUnits | \n
---|---|---|
Number of tubes | \n48 | \n\n | \n
Length of each tube | \n1900 | \nmm | \n
Tube outer diameter | \n16 | \nmm | \n
Tube thickness | \n0.7 | \nmm | \n
No of passes | \n4 | \n\n | \n
Shell diameter | \n558.8 | \nmm | \n
Shell length | \n2000 | \nmm | \n
Design parameters of adsorption desalination system evaporator.
Experimental procedure can be categorized into operation of individual components namely: (1) evaporator, (2) Vacuum system, (3) adsorber/desorber and (4) condenser.
\nThe evaporator operation can be divided into two circuits namely: (1) feed water circuit and (2) chilled water circuit.
\nThe seawater/feed first enters into a pre-treatment facility to remove particulates and suspensions and then to the de-aeration tank to de-aerate. In the de-aeration tank, the dissolved non-condensable is removed before the feed enters to AD evaporator. The de-aerated feed is then pumped into the evaporator via feed pump. A spray pump is installed with evaporator to spray the feed on to the tube bundle via spray nozzles. This is special magnetic pump that can operate in vacuum environment. The reflux from condenser maintains the salt concentration level inside the evaporator. This feed water line is provided with flow meter and valve to regulate the feed flow.
\nThe chilled water is the heat source that is circulated inside the tubes of evaporator. An electrical heater is installed to maintain the coolant temperature. This heater is controlled by a thyristor controller to maintain its inlet temperature. Chilled water circuit is equipped with regulating valve and flow meter to adjust the flow rate such that the evaporator can be operated under different conditions. The operation parameters are given in Table 3.
\nParameters | \nValues | \nUnits | \n
---|---|---|
Chilled water flow rate | \n48 | \nLPM | \n
Sea water flow rate (Г) | \n1.1 | \nLPM/m of tube length | \n
Evaporator saturation temperature | \n279–300 | \nK | \n
Evaporator saturation pressure | \n0.93–3.60 | \nkPa | \n
Feed water salinity range | \n15,000–90,000 | \nppm | \n
Operational parameters of adsorption desalination cycle.
A water vapour tolerant vacuum pump is necessary since the operation of AD system is under vacuum. Prior running an experiment vacuum holding capacity of the system is tested for 36 h, and it is found that the vacuum leak is negligible. During an experiment vacuum pump helps to maintain the desired saturation pressure inside the evaporator by pulling the air in case it ingress into the system. To ensure that the film on the tube surface is evaporating all the time, it is imminent to maintain the saturation temperature which is always lower than chilled water temperature inside the tubes.
\nThe evaporator is connected to adsorber bed filled with silica gel via pneumatic valves to adsorb the water vapour. The adsorption of water vapour sustains the continuous evaporation in the evaporator. The heat of adsorption is removed by circulation of cooling water inside the adsorber coolant flow channel.
\nSimilarly, a desorber bed is connected to a condenser and heat of desorption is supplied by a heater controlled by a thyristor controller.
\nThe desorber bed is connected to a condenser where the desorbed vapours are condensed on shell side. The cooling water circulated through the tubes of condenser is regenerated in a cooling tower at roof top.
\nThe apparatus is fully instrumented to capture all required data. A Yokogawa pressure transmitter of range 0–60 KPa abs. (accuracy ±0.25%) is installed on the evaporator for saturation pressure readings. The OMEGA 5 kΩ type thermistors (accuracy ±0.15 K) are used for all temperature measurements. The KROHNE Flow meters (accuracy ±0.5% of reading) are used for flow measurements. All temperature, pressure and flow readings are continuously monitored by a data logger unit at intervals of 1 min.
\nA high speed camera is installed on the evaporator to observe the film behaviour over the tubes. It is observed that there is ample turbulence in liquid film on the tubes due to bubble formation on tube surface. The evidence of film turbulence is captured by camera shown in Figure 5, and more clear explanation by a film model is also presented.
\nBubbles formation in liquid film on tube surfaces and film agitation effect captured by camera.
There is a natural temperature gradient within liquid film on the tubes and the micro-bubble generation on tube surface agitates the liquid film when it tries to break through the thermal barrier. The micro-bubble generation and agitation phenomenon is explained in Figure 6. This bubble agitation has two useful effects: first, it breaks the thermal barrier between the liquid film and tube surface that enhances the local heat transfer coefficient and second, when a micro-bubble moves up to the tube surface due to its very high specific volume, it also draw the heat from tube surface which further helps to enhance the heat transfer. An additional benefit is agitation within the liquid film due to the bubble movement.
\nFilm agitations due to bubbles movement and effect on conventional thermal gradient.
Figure 7 shows the experimental overall heat transfer coefficient values. The heat source temperatures vary from 10 to 40°C and salt concentration is 45,000 ppm. It can be seen from the results that overall heat transfer first drop with increase in chilled water temperature and then increase again at 40°C. A similar overall heat transfer trend is observed for 60,000 ppm (60 ppt) salt concentration as shown in Figure 8.
\nTypical experimental overall heat transfer coefficient profiles at 45000 ppm salt concentration.
Typical experimental overall heat transfer coefficient profiles at 60000 ppm salt concentration.
The saturation temperature of evaporator and overall heat transfer coefficient values from experimental data at different chilled water inlet temperature and at different salt concentration are tabulated as shown in Table 4.
\nSalinity | \nU | \nSalinity | \nU | \n||||
---|---|---|---|---|---|---|---|
C | \nC | \nW/m2K | \nC | \nC | \nW/m2K | \n||
5.9 | \n1025.45 | \n5.9 | \n937.61 | \n||||
13.1 | \n953.28 | \n13.3 | \n833.69 | \n||||
20.3 | \n885.17 | \n19.7 | \n776.62 | \n||||
27.3 | \n963.33 | \n26.2 | \n896.47 | \n||||
5.9 | \n998.31 | \n5.9 | \n848.06 | \n||||
13.1 | \n920.78 | \n13.0 | \n751.47 | \n||||
19.7 | \n853.40 | \n19.6 | \n733.78 | \n||||
25.7 | \n906.96 | \n26.9 | \n893.53 | \n||||
5.6 | \n970.78 | \n5.5 | \n815.94 | \n||||
12.9 | \n881.81 | \n12.9 | \n728.17 | \n||||
19.3 | \n798.17 | \n19.3 | \n694.79 | \n||||
25.1 | \n895.15 | \n27.3 | \n898.97 | \n
Experimental overall heat transfer coefficient values and different saturation temperatures and at different salt concentrations.
The evaporative heat transfer coefficient is calculated from experimental overall heat transfer coefficient by formulation as explained in theoretical model section. Figure 9 shows the three-dimensional plot of evaporative heat transfer coefficients for assorted evaporator saturation temperatures and salinity level.
\nExperimental film evaporation heat transfer coefficient profiles at different saturation temperature and different salt concentrations.
It can be seen from the plot that the heat transfer coefficient varies with saturation temperature and with salt concentration. It can be observed that at any salt concentration, it approaches the minimum value at 295 K and then with further decrease in saturation temperature the evaporation heat transfer coefficient value increases very sharply. It is also observed that specific volume of vapour increases very rapidly below at 295 K and above that temperature the change in specific volume of vapour is very small as shown in Figure 10.
\nChange in vapour-specific volume with saturation temperature.
It can be concluded that the sharp increase in evaporator heat transfer coefficient below 295 K may be due to bubble agitation. The micro-bubble produced on the tube surface from within the liquid film moves up quickly due to its very high specific volume and breaks the thermal barrier due to film agitation. This unique phenomenon is called ‘bubble assisted evaporation’.
\nIn film evaporation, ‘micro-bubble agitation’ plays an important role to enhance the heat transfer by reducing the thermal resistance between the liquid and tube surface barrier (model is shown in Figure 6). The traditional falling film evaporation heat transfer coefficient correlations (i.e. Han and Fletcher) do not capture this unique phenomenon and only capture the thermal driven film evaporation at saturation temperatures greater than 322 K.
\nA new falling film heat transfer coefficient with inclusion of ‘bubble-assisted evaporation’ for application at low saturation temperatures is proposed based on the experimental data. The above presented models (Eqs. 1–5) were written in FORTRAN to develop new correlation. The operational parameters namely: film velocity, salt concentration and heat flux are also included as additional parameters in the new correlation. In addition, to capture the effect of vapour specific volume, the gas volume term is also incorporated. The new correlation is given in Eq. 3.6. Figure 11 shows a comparison of Eq. 6 against the experimental data. It can be seen that new correlation has good agreement with experimental result. The measured heat transfer coefficient from experimental data has uncertainty of less than 8%. The Root mean square (RMS) error of regressed data is 3.5%. The additional terms used in the proposed correlation permit the limits of salinity and temperature to be accounted for, and a reference temperature,
Falling film heat transfer coefficients values: experimental and proposed correlation.
The above correlation is suitable for sub-atmospheric conditions from 0.93 to 3.60 kPa (corresponding to saturation temperatures 279–300 K) and feed water salinity ranges from 15,000 to 90,000 ppm. The film Reynolds number ranges 45< ReГ < 90 and Prandtl number ranges 5< Pr < 10. In proposed superposition of effects in correlation, the first term is for film surface evaporation thermally driven and the second term is due to enhancement by the bubble assisted boiling effect.
\nThe proposed falling film heat transfer coefficient is compared with Han and Fletcher correlation extrapolated to a region outside its validation range. The Han and Fletcher correlation is for pure water. It can be seen from Figure 12 that Han and Fletcher correlation is only suitable for thermally driven surface evaporation for saturation temperatures 322 K and above.
\nFalling film heat transfer coefficient values: experimental and proposed correlation compared with Han and Fletcher correlation extrapolated region.
A unique feature of the present correlation is the capture of ‘bubble-assisted evaporation’ which boosts the heat transfer coefficient by two to three folds at low saturation temperature. This additional effect seems to be significant only at a low saturation temperature 295 K or below. As a consequence, for situations where cooling and desalination are required simultaneously, the design of such an evaporator is likely to be more compact than at present.
\nThis proposed falling film heat transfer coefficient is useful for falling film evaporator design for the process industries. It also includes concentration factor to accommodate operational variables for proper heat transfer area design.
\nThe effects of operational parameters namely: (1) salt concentration and (2) saturation temperature on heat input and LMTD are also investigated. Figure 13 shows the effect of these parameters on heat input. It can be seen that heat input increases with saturation temperature and it is due to increase in temperature difference of heat source. It can also be observed that salt concentration effect is negligible on heat input. Figure 14 shows the effect of saturation temperature and salt concentration on LMTD. It can be observed that LMTD also increases with saturation temperature which is due to higher temperature differences at high saturation temperatures.
\nEffect of evaporator saturation temperature and feed salt concentration on heat input to evaporator.
Effect of evaporator saturation temperature and feed salt concentration on LMTD.
The salt concentration effect is minimal as can be seen from plot. The measured accuracy of log mean temperature difference (LMTD) and the heat input (Q) is 8%.
\nHorizontal tube falling film evaporators can replace flooded and vertical tube evaporators because of their inherent advantages. Although horizontal falling film evaporators are advantageous, there is a lack of research data related to the heat transfer coefficient especially at low saturation temperatures less than 323 K. The heat transfer coefficient for low saturation temperature (typically in the zone of below ambient) and for a horizontal tube evaporator of special interest to desalination applications is essential.
\nExperiments are conducted to investigate the heat transfer coefficient for low saturation temperatures of 279–300 K corresponding to pressure ranges of 0.93–3.60 kPa. Salt concentration in the evaporator is investigated in the range of 15,000–90,000 ppm. The heat transfer coefficient calculated from experimental data is plotted for different salt concentrations.
\nAt low saturation temperatures, below 298 K, the tendency for liquid film to flash into vapour is made easier by the rapid increase in the specific volume of vapour. For a given thermal gradient across the liquid film, the micro-bubble is readily generated at suitable nucleation sites, such as the grooved surfaces on the tubes. This conjecture of ‘bubble-agitation boiling’ is backed up by photographic evidence which indicates the presence of micro-bubble generation beneath the liquid layer. The effect of micro-bubble during film boiling reduces the thermal barrier within liquid film which is responsible for enhancement of heat transfer. At low saturation temperature, the evaporation is done by two mechanisms namely: thermally driven evaporation and bubble agitation-assisted evaporation. The basic domain of validation of traditional Han and Fletcher correlation is now extended through to capture the bubble-assisted evaporation. There is heat transfer enhancement due to bubble-assisted evaporation that increases the heat transfer coefficient value from two- to four-fold
\nA new falling film evaporation heat transfer coefficient is proposed with parameter regression including two basic mechanisms observed during experiments. The measured heat transfer coefficient from experimental data has uncertainty of less than 8%. The RMS error of regressed data is 3.5%. The effects of operational parameters namely salt concentration and saturation temperature on heat input and LMTD are also investigated. The proposed correlation can be used for the designing of low-pressure horizontal tubes falling film evaporators for process industry.
\nμ1 = Liquid viscosity (kg/m-sec) | ρl = Liquid density (kg/m3) |
k1= Liquid conductivity (W/m K) | ReΓ = Film Reynolds number |
Pr = Prandtl number | S = Feed water salinity (ppm) |
So= Reference sea water salinity (30,000 ppm) | q = input heat flux (W/m2) |
Tevap = Evaporator saturation temperature (K) | |
Tsaturation = Evaporator saturation temperature (K) | |
Tref= Reference saturation temperature (K) (Tref = 322.15 K) | |
Tch,in = Chilled water inlet temperature (K) | |
vg = vapour specific volume (m3/kg) | (vref = 52. 65 m3/kg at 295 K) |
Δ T = Tch,in − Tevap | |
FFEHTC | Falling film evaporation heat transfer coefficient |
MED | Multi-effect desalination |
MSF | Multi-stage flash evaporation |
AD | Adsorption desalination |
LMTD | Log mean temperature difference |
Ppm | Part per million |
In most of the fluid flows of interest in nature and technology (i.e., geophysical flows, blood flow in the human circulation as well as flows in turbomachinery and around vehicles) the presence of turbulence in normally observed; therefore, their reproducibility and repeatability have always represented a crucial issue. In this regard, it is widely recognized that laboratory experiments represent a valid tool for the simulation and investigation of complex fluid flows under controlled conditions. With the improvement of measuring techniques, the possibility of acquiring huge high-resolution data sets in space and time is continually increasing. It is then fundamental to consider procedures suitable for a proper analysis of these data aimed at the definition and the characterization of the main flow pattern and of their evolution. In this contribution, we consider two examples of different contests of importance in applied fluid mechanics: 1) β-plane turbulence in the framework of large-scale almost 2D atmospheric and oceanic flows and 2) effect of artificial valves on the flow in the left ventricle in the framework of an in vitro model of human blood circulation. In both cases, the complexity of the flow arises from the embedded non-linear phenomena i.e., interaction of structures at different scales, the interplay between vortices waves and turbulence, anisotropy in the energy transfers, and in transport phenomena. Due to chaotic advection, the Lagrangian motion of passive particles can be very complex even in regular, i.e., non-turbulent, flow fields [1] as in the situations here discussed in which we considered almost 2D and time-periodic velocity fields. The chapter is organized as follows. In Section 2, we describe the case studies and the considered experimental apparatus. Theory, its application to the experiments, and the different post-processing methodology are described in Section 3, Section 4 contains some results. We discuss and give our conclusions in Section 5.
We provide below the description of the experimental models designed to reproduce: 1) turbulent flows affected by a
In rotating turbulent flows, the latitudinal variation of the Coriolis parameter, the so-called
In this contest, in addition to the characteristic scales of 2D turbulence [7] associated with the small-scale forcing
To deeply investigate these features, we carried out several experimental campaigns in a rotating tank facility available at the Hydraulics Laboratory of the Sapienza University of Rome. As reported in previous papers [9, 10], the experimental setup consists of a square tank 1 m in diameter placed on a rotating table whose imposed rotation is counter-clockwise in order to emulate flows in the Northern hemisphere of a planet. To simulate the dynamics associated with the latitudinal variation of the Coriolis parameter in the Polar Regions, we consider the effects induced by the parabolic shape assumed by the free surface of a rotating fluid. In fact, it is represented by a quadratic variation in
In particular, a local Cartesian frame of reference at the midlatitude of the tank (
We perform a set of runs in which the magnets are located along an arc of latitude in the range 180° <
The overall functionality of the heart pump is strongly related to the intraventricular flow features. Complexity in the ventricular flow is mainly due to fluid-wall interactions and turbulence onset in correspondence of the boundaries, three-dimensionality, and asymmetry in the pattern development. Here, the focus is on the investigation of the flow in the left ventricle (LV) during a cardiac cycle: it consists of an intense jet forming downstream of the mitral valve and in the development of the related coherent structures i.e., a vortex ring, which grows up during the systole, impinges on the ventricle walls and vanishes almost completely during the systole. A deeper analysis of the flow pattern evolution has shown on one hand that the observed flow structure appears to be favorable to ejection through the aortic valve during the systole [16] and on the other hand the mutual relationships between the formation and development of coherent structures in the LV and its functionality. Actually, one of the main reasons for the deviation from physiological conditions is represented by the replacement of the mitral valve with a prosthetic one, which obviously causes deep modifications in the hemodynamics and, consequently, in the associated flow pattern [17, 18, 19].
We reproduce in the laboratory the ventricular flow by means of a pulse duplicator widely described in previous papers [19, 20, 21], below we summarize its working principle. A flexible, transparent sack made of silicone rubber (wall thickness ∼ 0.7 mm) simulates the LV allowing at the same time for the optical access. The model ventricle is fixed on a circular plate, 56 mm in diameter, and connected to a constant-head tank by means of two Plexiglas conduits. Along the outlet (aortic) conduit a check valve was mounted, whereas different types of valves were placed on the inlet (mitral) orifice.
We consider three different scenarios: a) the inlet was designed in order to obtain a uniform velocity profile at the orifice mimicking physiological conditions, b) a monoleaflet (Bjork–Shiley monostrut) in mitral position 3) a bileaflet bicarbon prosthetic valve in mitral position; both valves were 31 mm in nominal diameter. The model of the LV was placed in a rectangular tank with Plexiglas (transparent) walls; its volume changed according to the motion of the piston, placed on the side of the tank. The piston was driven by a linear motor, controlled by means of a speed-feedback servo-control. The motion assigned to the linear motor was tuned to reproduce the volume change by clinical data acquired in vivo by echo-cardiography on a healthy subject [20].
Two-dimensional velocity fields are measured by means of an image analysis technique called Feature Tracking, FT [22, 23]. The measurement chain can be summarized in the following steps: 1) identification of a proper measurement plane in the fluid domain; 2) seeding of the working fluid with a passive tracer; 3) illumination of the measurement plane previously identified; 4) image acquisition; 5) image pre-processing of the acquired images; 6) particle detection and temporal tracking to isolate particles and track them in consecutive frames; 7) data post-processing to obtain the relevant flow parameters. Obviously, flow images are acquired at a certain space–time resolution, depending on the characteristic time and length scales of the investigated phenomena, the details for each apparatus are provided in the corresponding subsection.
Pre-processing includes the sequence of operations carried out to improve the quality of acquired images for the subsequent core of the processing phase. Basically, the procedure implies the background removal as well as the removal of parts of the image which are not significant for the flow analysis as for instance regions close to the boundaries. In fact, the glares due to the interaction between the lighting system and the domain walls may affect the processing algorithm.
FT is a multi-frame algorithm based on the assumption of image light intensity conservation in space and time between two successive frames and in the neighborhood of the seeding particles; this assumption holds for small time intervals. The algorithm essentially considers measures of correlation windows between successive frames and evaluates displacements by considering the best correspondence (in terms of a defined matching measure) of selected interrogation windows between subsequent images. Sparse velocity vectors are then obtained by dividing the displacement by the time interval between two frames; FT then provides a Lagrangian description of the velocity field. These sparse data can be interpolated on a regular grid through a resampling procedure allowing for the reconstruction of the instantaneous and time-averaged Eulerian velocity fields as well. The advantage of having at the same time both the Lagrangian and the Eulerian description of the flow is evident; in addition, if compared to other tracking algorithms, FT is not constrained by low seeding density, so it provides accurate displacement vectors even when the number of tracer particles within each image is very large [22].
As mentioned before, in these jet flows waves and eddies co-exist; to highlight the propagation of the traveling structures in the physical space, we consider both a measure based on Hovmöller diagrams and the theoretical phase speed of the Rossby wave.
As for the former, we map the time evolution of the stream function
then the net speed of the propagating structures is evaluated by subtracting the mean zonal velocity from
where
As for the theoretical speed, we have shown in [14] how to derive the dispersion relation of a linear Rossby wave in polar coordinates; here, we reported the final expression:
being R the radius of the device (in this case the radius of the circle inscribed in the square tank),
In oceanography, one of the most popular methods used to detect coherent long-lived coherent structures, such as mesoscale eddies, is based on the estimation of the Okubo-Weiss parameter [24, 25]. This quantity describes the relative dominance of deformation with respect to rotation of the flow and it is defined as:
where
Finite-Time Lyapunov Exponents (FTLE) represents a powerful tool suitable to track coherent structures and to unveil their connections to energetic and mixing processes, in fact, it has been used extensively in different contexts, including biological and geophysical flows [28, 29]. Basically, the FTLE measure the maximum linearized growth rate of the distance among initially adjacent particles tracked over a finite integration time. In brief, the computation of FTLE follows from the definition of the flow map
mapping a material point x(t) at time t to its position at t +
Since the maximum stretching occurs when the initial separation is aligned with the maximum eigenvalue of Δ, the FTLE is defined as:
Where
In addition, Lagrangian Coherent Structures (LCS) can be inferred from FTLE, [31]. LCS analysis represents a very powerful tool in cardiovascular fluid dynamics [32]; allowing for the identification of stagnant fluid areas, which are associated with an increased risk of thrombus as well as with blood cell damage. In addition, it helps to discern the regions directly affected by the vortices within the fluid domain and, possibly, their, modifications related to pathologies. FTLE investigation was successfully applied to the analysis of data sets obtained from both numerical simulations [27] and in vitro study [33] of a mechanical heart valve, as well as for the in vitro investigation of coherent structures educed from two-dimensional velocity fields in a LV model [21]. Recently, FTLE is also being used in the analysis of data sets collected in vivo [34, 35] and have been recognized as one of the main methods for the analysis of Lagrangian transport in blood flows [36, 37].
Before running each experiment, the fluid surface is seeded with styrene particles (mean size
In Figures 1 and 2 we plot the instantaneous and time-averaged flow fields obtained in one run (I = 4A) of the experiments WW and EW; the plots are shown hereafter refer to experiments performed using the same forcing amount. Figure 1 clearly shows a meandering jet squeezed between westward propagating eddies in the instantaneous flow field; on the contrary, the averaged field reveals strong alternating zonal jets and no eddies. These experimental features resemble ocean observations that highlight numerous westward propagating eddies on short time scales [12]. At the difference, the eastward jet is not associated with eddy shedding and traveling structures and the instantaneous and averaged flow appear to be rather similar (Figure 2).
Instantaneous (left) and time mean (right) normalized stream function superimposed on the streamlines for a WW flow.
Instantaneous (left) and time mean (right) normalized stream function superimposed on the streamlines for a EW flow.
To characterize the traveling structure observed in the WW case, we map the velocity stream function
Azimuthal Hovmöller diagram of the stream function
From left to right: Azimuthal Hovmöller diagram of the stream function
As discussed in Section 3.1, by measuring the slope of the lines of the same color, we were able to estimate experimentally the speed of the propagating structures relative to the zonal flow with Eq. (2); we then calculate the theoretical speed using Eq. (3) and compare the obtained values. The comparison shows that the relative error, i.e. the ratio between the measured and the expected speed, is minimum in correspondence of
In order to compare our method to evaluate the eddies propagation speed with a method widely used in the applications we also applied an OW-based method to our experimental data sets. At first, we evaluated OW parameter through Eq. (4) at each time instant. Then, using a threshold of OW0 = 0.5
Instantaneous fields of vorticity field
Finally, once identified the coherent vortices, we detected the center of each structure and tracked them in the considered time interval. We found values of the propagating speed close to the ones found through the Hovmöller diagrams. We conclude that waves and propagating eddies coexist in the zonal pattern and confirm their duality nature [14]. The application of the same procedure of analysis overall the EW experiments is actually in progress [38].
The estimation of flow characteristic length scales is crucial to identify the flow regime in rotating turbulent flows with a
Run | |||
---|---|---|---|
1.41 | 2.20 | 1.55 | |
1.09 | 1.75 | 1.60 | |
0.94 | 1.16 | 1.70 | |
1.19 | 1.90 | 1.59 | |
0.85 | 1.45 | 1.70 | |
0.74 | 1.29 | 1.75 |
Characteristic scales and zonostrophy index estimated from experimental data.
According to the classification provided in [8] we conclude that all our experiments reproduced flows in a transitional regime.
To perform flow measurements in the LV, the vertical symmetry plane aligned with the mitral and aortic valve axes is illuminated by a 12 W, infrared laser. The working fluid inside the ventricle (distilled water) is seeded with neutrally buoyant particles (
For the dynamic similarity, we consider the Reynolds number
We use the public domain code NEWMAN [39] to compute the FTLEs from the planar velocity dataset above described, for the details see [40]. We remark that FTLE fields are computed from 2D measurements even if it is well known that the observed phenomenon is 3D; indeed, as the measurement plane is a plane of symmetry the assumption of two-dimensionality is quite acceptable.
Figure 6 shows backward FTLE at the end of the E-wave for the three simulated conditions. Backward FTLE ridges correspond to the front of the diastolic jet, sharply separating the fluid which just entered the ventricle from the receiving fluid.
Velocity fields and backward FTLE at the end of E-wave (the small inset shows the current time in the cardiac cycle as a black dot): Left: Physiological configuration, center: Monoleaflet valve, and right: Bileaflet valve.
The analysis of the FTLE patterns throughout the cardiac cycle (not shown here) highlights how in the physiological configuration the observed coherent structures appear to be optimal for the systolic function. Indeed, the modifications in the transmitral flow due to the presence of a prosthetic valve deeply impact on the interaction between the coherent structures generated during the first phase of the diastole and the incoming jet during the second diastolic phase. We observed that while the flow generated by a bileaflet valve preserves most of the beneficial features of the top hat inflow, downstream of a monoleafleat one the strong jet forming at the end of the diastole prevents the permanence of large coherent structures within the LV (Figure 7).
Same as above in correspondence of the systolic peak.
In order to complete the FTLE analysis, we reconstruct the trajectories of a number (O(104)) of synthetic fluid particles entering the ventricle through the mitral orifice during the LV filling by numerically integrating the experimental velocity fields; for each run, synthetic particles were released during each time step of the diastolic waves from the mitral orifice section and were subsequently tracked during the cardiac cycle. The aim was to further clarify the role of LCS by overlapping the particle positions on the FTLE maps, and to verify if and how LCS may act as pseudo-barriers for transport and mixing. An example is reported in Figure 8.
Syntetic particles overlapped on FTLE maps at the end of the a wave.
We finally compute the shear stress experienced by the particles along their trajectories in order to emphasize the differences among the simulated conditions and to clarify the possible implications on the hemodynamics. Results corresponding to the end of the A wave are shown in Figure 9.
Synthetic particles entered through the mitral orifice during diastolic waves colored according to the shear stress cumulated until the end of the A-wave (the color bar values correspond to the non-dimensional maximum shear stress).
The plots show that, in case (a) the stress magnitudes induced by the smoother flow pattern are lower than values measured in case (b) and (c). In fact, while in physiological conditions particles characterized by the highest shear are washed out by the systolic wave, in presence of prosthetic valves they tend to be advected towards regions of the LV not affected by the systolic ejection (see Figure 3).
In this work, we review a set of methodologies suitable for the characterization of time-periodic complex flows; in particular, here, the focus is on rotating flows affected by a
The authors would like to thank the Sapienza University of Rome (Research program SAPIEXCELLENCE SPC: 2021-1136-1451-173491), the European Union’s Horizon 2020 research and innovation program (Marie Sklodowska–Curie Grant Agreement No. 797012) and the Italian Ministry of Research (project PRIN 2017 A889FP).
The authors declare no conflict of interest.
As this section deals with legal issues pertaining to the rights of individual Authors and IntechOpen, for the avoidance of doubt, each category of publication is dealt with separately. Consequently, much of the information, for example definition of terms used, is repeated to ensure that there can be no misunderstanding of the policies that apply to each category.
",metaTitle:"Copyright Policy",metaDescription:"Copyright is the term used to describe the rights related to the publication and distribution of original works. Most importantly from a publisher's perspective, copyright governs how authors, publishers and the general public can use, publish and distribute publications.",metaKeywords:null,canonicalURL:"/page/copyright-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\\n\\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\\n\\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\\n\\nAgreement samples are listed here for the convenience of prospective Authors:
\\n\\nDEFINITIONS
\\n\\nThe following definitions apply in this Copyright Policy:
\\n\\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\\n\\nWork - a Chapter, including Conference Papers, a Scientific Article and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\\n\\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\\n\\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\\n\\nScientific Journal – Periodical publication intended to further the progress of science.
\\n\\nJournal Article/Scientific Article – Publication based on empirical evidence. It can support a hypothesis with original research, describe existing research or comment on current trends in a specific field.
\\n\\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\\n\\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings, Scientific Journals and Videos.
\\n\\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\\n\\nTERMS
\\n\\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported and Creative Commons 4.0 International License, a license which allows for the broadest possible reuse of published material.
\\n\\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\\n\\nAnd for any purpose, provided the following conditions are met:
\\n\\nAll Works are published under the CC BY 3.0 and CC BY 4.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\\n\\n\\n\\n
LICENSE | \\n\\t\\t\\tUSED FROM - | \\n\\t\\t\\tUP TO - | \\n\\t\\t
\\n\\t\\t\\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \\n\\t\\t\\t | \\n\\t\\t\\t1 July 2005 (2005-07-01) | \\n\\t\\t\\t3 October 2011 (2011-10-03) | \\n\\t\\t
\\n\\t\\t\\t Creative Commons Attribution 3.0 Unported (CC BY 3.0) \\n\\t\\t\\t | \\n\\t\\t\\t5 October 2011 (2011-10-05) | \\n\\t\\t\\tCurrently | \\n\\t\\t
\\n\\t\\t\\t Creative Commons 4.0 International (CC BY 4.0) – for Journal Articles \\n\\t\\t\\t | \\n\\t\\t\\t15 March 2022 | \\n\\t\\t\\tCurrently | \\n\\t\\t
The CC BY 3.0 and CC BY 4.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nRepublishing – More about Attribution Policy can be found here.
\\n\\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\\n\\nDISCLAIMER: Neither the CC BY 3.0 license, CC BY 4.0, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\\n\\nAll rights to Books and Journals and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\\n\\nThe copyright to Books, Journals and other compilations is subject to separate copyright from those that exist in the included Works.
\\n\\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\\n\\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\\n\\nUnder the following terms:
\\n\\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\\n\\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\\n\\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\\n\\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\\n\\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\\n\\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\\n\\nShare — copy and redistribute the material in any medium or format
\\n\\nUnder the following terms:
\\n\\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\\n\\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\\n\\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\\n\\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\\n\\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\\n\\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\\n\\nPolicy last updated: 2016-06-08
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\n\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\n\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\n\nAgreement samples are listed here for the convenience of prospective Authors:
\n\nDEFINITIONS
\n\nThe following definitions apply in this Copyright Policy:
\n\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\n\nWork - a Chapter, including Conference Papers, a Scientific Article and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\n\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\n\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\n\nScientific Journal – Periodical publication intended to further the progress of science.
\n\nJournal Article/Scientific Article – Publication based on empirical evidence. It can support a hypothesis with original research, describe existing research or comment on current trends in a specific field.
\n\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\n\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings, Scientific Journals and Videos.
\n\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\n\nTERMS
\n\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported and Creative Commons 4.0 International License, a license which allows for the broadest possible reuse of published material.
\n\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\n\nAnd for any purpose, provided the following conditions are met:
\n\nAll Works are published under the CC BY 3.0 and CC BY 4.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\n\n\n\n
LICENSE | \n\t\t\tUSED FROM - | \n\t\t\tUP TO - | \n\t\t
\n\t\t\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \n\t\t\t | \n\t\t\t1 July 2005 (2005-07-01) | \n\t\t\t3 October 2011 (2011-10-03) | \n\t\t
\n\t\t\t Creative Commons Attribution 3.0 Unported (CC BY 3.0) \n\t\t\t | \n\t\t\t5 October 2011 (2011-10-05) | \n\t\t\tCurrently | \n\t\t
\n\t\t\t Creative Commons 4.0 International (CC BY 4.0) – for Journal Articles \n\t\t\t | \n\t\t\t15 March 2022 | \n\t\t\tCurrently | \n\t\t
The CC BY 3.0 and CC BY 4.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nRepublishing – More about Attribution Policy can be found here.
\n\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\n\nDISCLAIMER: Neither the CC BY 3.0 license, CC BY 4.0, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\n\nAll rights to Books and Journals and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\n\nThe copyright to Books, Journals and other compilations is subject to separate copyright from those that exist in the included Works.
\n\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\n\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\n\nUnder the following terms:
\n\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\n\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\n\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\n\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\n\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\n\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\n\nShare — copy and redistribute the material in any medium or format
\n\nUnder the following terms:
\n\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\n\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\n\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\n\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\n\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\n\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\n\nPolicy last updated: 2016-06-08
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:417},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4428},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"19",title:"Pharmacology, Toxicology and Pharmaceutical Science",slug:"pharmacology-toxicology-and-pharmaceutical-science",parent:{id:"3",title:"Health Sciences",slug:"health-sciences"},numberOfBooks:95,numberOfSeries:0,numberOfAuthorsAndEditors:2355,numberOfWosCitations:3048,numberOfCrossrefCitations:1952,numberOfDimensionsCitations:4741,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"19",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9829",title:"Biosimilars",subtitle:null,isOpenForSubmission:!1,hash:"c72171c1d1cf6df5aad989cb07cc8e4e",slug:"biosimilars",bookSignature:"Valderilio Feijó Azevedo and Robert Moots",coverURL:"https://cdn.intechopen.com/books/images_new/9829.jpg",editedByType:"Edited by",editors:[{id:"69875",title:"Dr.",name:"Valderilio",middleName:"Feijó",surname:"Feijó Azevedo",slug:"valderilio-feijo-azevedo",fullName:"Valderilio Feijó Azevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10234",title:"High-Throughput Screening for Drug Discovery",subtitle:null,isOpenForSubmission:!1,hash:"37e6f5b6dd0567efb63dca4b2c73495f",slug:"high-throughput-screening-for-drug-discovery",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10234.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11038",title:"Vaccine Development",subtitle:null,isOpenForSubmission:!1,hash:"2604d260662a3a3cc91971ea07beca61",slug:"vaccine-development",bookSignature:"Yulia Desheva",coverURL:"https://cdn.intechopen.com/books/images_new/11038.jpg",editedByType:"Edited by",editors:[{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10736",title:"Neurotoxicity",subtitle:"New Advances",isOpenForSubmission:!1,hash:"50dfa1a8daaa4a6171a0f6fde2e8d651",slug:"neurotoxicity-new-advances",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10736.jpg",editedByType:"Edited by",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10502",title:"Aflatoxins",subtitle:"Occurrence, Detoxification, Determination and Health Risks",isOpenForSubmission:!1,hash:"34fe61c309f2405130ede7a267cf8bd5",slug:"aflatoxins-occurrence-detoxification-determination-and-health-risks",bookSignature:"Lukman Bola Abdulra’uf",coverURL:"https://cdn.intechopen.com/books/images_new/10502.jpg",editedByType:"Edited by",editors:[{id:"149347",title:"Dr.",name:"Lukman",middleName:"Bola",surname:"Bola Abdulra'Uf",slug:"lukman-bola-abdulra'uf",fullName:"Lukman Bola Abdulra'Uf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10357",title:"Drug Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"3bd3ae5041cab45020555b49152b1ddc",slug:"drug-metabolism",bookSignature:"Katherine Dunnington",coverURL:"https://cdn.intechopen.com/books/images_new/10357.jpg",editedByType:"Edited by",editors:[{id:"232694",title:"Dr.",name:"Katherine",middleName:null,surname:"Dunnington",slug:"katherine-dunnington",fullName:"Katherine Dunnington"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10735",title:"Metformin",subtitle:"Pharmacology and Drug Interactions",isOpenForSubmission:!1,hash:"fee7e27a0fa000d000c459ff6e4b749e",slug:"metformin-pharmacology-and-drug-interactions",bookSignature:"Juber Akhtar, Usama Ahmad, Badruddeen and Mohammad Irfan Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10735.jpg",editedByType:"Edited by",editors:[{id:"345595",title:"Prof.",name:"Juber",middleName:null,surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",isOpenForSubmission:!1,hash:"6d200cc031706a565b554fdb1c478901",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",bookSignature:"Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:"Edited by",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10716",title:"Corticosteroids",subtitle:"A Paradigmatic Drug Class",isOpenForSubmission:!1,hash:"d600ff66a3b0544bcbb713ea46287590",slug:"corticosteroids-a-paradigmatic-drug-class",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/10716.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10578",title:"Pharmacogenetics",subtitle:null,isOpenForSubmission:!1,hash:"ca2bc2ff6e15a7b735d662d9664086b1",slug:"pharmacogenetics",bookSignature:"Islam A. Khalil",coverURL:"https://cdn.intechopen.com/books/images_new/10578.jpg",editedByType:"Edited by",editors:[{id:"226598",title:"Dr.",name:"Islam",middleName:null,surname:"A. Khalil",slug:"islam-a.-khalil",fullName:"Islam A. Khalil"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:95,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"64762",doi:"10.5772/intechopen.82511",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:10236,totalCrossrefCites:100,totalDimensionsCites:229,abstract:"Several heavy metals are found naturally in the earth crust and are exploited for various industrial and economic purposes. Among these heavy metals, a few have direct or indirect impact on the human body. Some of these heavy metals such as copper, cobalt, iron, nickel, magnesium, molybdenum, chromium, selenium, manganese and zinc have functional roles which are essential for various diverse physiological and biochemical activities in the body. However, some of these heavy metals in high doses can be harmful to the body while others such as cadmium, mercury, lead, chromium, silver, and arsenic in minute quantities have delirious effects in the body causing acute and chronic toxicities in humans. The focus of this chapter is to describe the various mechanism of intoxication of some selected heavy metals in humans along with their health effects. Therefore it aims to highlight on biochemical mechanisms of heavy metal intoxication which involves binding to proteins and enzymes, altering their activity and causing damage. More so, the mechanism by which heavy metals cause neurotoxicity, generate free radical which promotes oxidative stress damaging lipids, proteins and DNA molecules and how these free radicals propagate carcinogenesis are discussed. Alongside these mechanisms, the noxious health effects of these heavy metals are discussed.",book:{id:"7111",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"57717",doi:"10.5772/intechopen.71923",title:"In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages",slug:"in-vitro-cytotoxicity-and-cell-viability-assays-principles-advantages-and-disadvantages",totalDownloads:14761,totalCrossrefCites:74,totalDimensionsCites:144,abstract:"Cytotoxicity is one of the most important indicators for biological evaluation in vitro studies. In vitro, chemicals such as drugs and pesticides have different cytotoxicity mechanisms such as destruction of cell membranes, prevention of protein synthesis, irreversible binding to receptors etc. In order to determine the cell death caused by these damages, there is a need for cheap, reliable and reproducible short-term cytotoxicity and cell viability assays. Cytotoxicity and cell viability assays are based on various cell functions. A broad spectrum of cytotoxicity assays is currently used in the fields of toxicology and pharmacology. There are different classifications for these assays: (i) dye exclusion assays; (ii) colorimetric assays; (iii) fluorometric assays; and (iv) luminometric assays. Choosing the appropriate method among these assays is important for obtaining accurate and reliable results. When selecting the cytotoxicity and cell viability assays to be used in the study, different parameters have to be considered such as the availability in the laboratory where the study is to be performed, test compounds, detection mechanism, specificity, and sensitivity. In this chapter, information will be given about in vitro cytotoxicity and viability assays, these assays will be classified and their advantages and disadvantages will be emphasized. The aim of this chapter is to guide the researcher interested in this subject to select the appropriate assay for their study.",book:{id:"6310",slug:"genotoxicity-a-predictable-risk-to-our-actual-world",title:"Genotoxicity",fullTitle:"Genotoxicity - A Predictable Risk to Our Actual World"},signatures:"Özlem Sultan Aslantürk",authors:[{id:"211212",title:"Dr.",name:"Özlem Sultan",middleName:null,surname:"Aslantürk",slug:"ozlem-sultan-aslanturk",fullName:"Özlem Sultan Aslantürk"}]},{id:"66259",doi:"10.5772/intechopen.85270",title:"Antioxidant Compounds and Their Antioxidant Mechanism",slug:"antioxidant-compounds-and-their-antioxidant-mechanism",totalDownloads:7489,totalCrossrefCites:53,totalDimensionsCites:135,abstract:"An antioxidant is a substance that at low concentrations delays or prevents oxidation of a substrate. Antioxidant compounds act through several chemical mechanisms: hydrogen atom transfer (HAT), single electron transfer (SET), and the ability to chelate transition metals. The importance of antioxidant mechanisms is to understand the biological meaning of antioxidants, their possible uses, their production by organic synthesis or biotechnological methods, or for the standardization of the determination of antioxidant activity. In general, antioxidant molecules can react either by multiple mechanisms or by a predominant mechanism. The chemical structure of the antioxidant substance allows understanding of the antioxidant reaction mechanism. This chapter reviews the in vitro antioxidant reaction mechanisms of organic compounds polyphenols, carotenoids, and vitamins C against free radicals (FR) and prooxidant compounds under diverse conditions, as well as the most commonly used methods to evaluate the antioxidant activity of these compounds according to the mechanism involved in the reaction with free radicals and the methods of in vitro antioxidant evaluation that are used frequently depending on the reaction mechanism of the antioxidant.",book:{id:"8008",slug:"antioxidants",title:"Antioxidants",fullTitle:"Antioxidants"},signatures:"Norma Francenia Santos-Sánchez, Raúl Salas-Coronado, Claudia Villanueva-Cañongo and Beatriz Hernández-Carlos",authors:[{id:"143354",title:"Dr.",name:"Raúl",middleName:null,surname:"Salas-Coronado",slug:"raul-salas-coronado",fullName:"Raúl Salas-Coronado"},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez"},{id:"193718",title:"Dr.",name:"Beatriz",middleName:null,surname:"Hernández-Carlos",slug:"beatriz-hernandez-carlos",fullName:"Beatriz Hernández-Carlos"},{id:"278133",title:"Dr.",name:"Claudia",middleName:null,surname:"Villanueva-Cañongo",slug:"claudia-villanueva-canongo",fullName:"Claudia Villanueva-Cañongo"}]},{id:"40253",doi:"10.5772/50486",title:"Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development",slug:"lipid-nanoparticulate-drug-delivery-systems-a-revolution-in-dosage-form-design-and-development",totalDownloads:11245,totalCrossrefCites:21,totalDimensionsCites:103,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Anthony A. Attama, Mumuni A. Momoh and Philip F. Builders",authors:[{id:"142947",title:"Prof.",name:"Anthony",middleName:null,surname:"Attama",slug:"anthony-attama",fullName:"Anthony Attama"}]},{id:"42016",doi:"10.5772/55187",title:"Why are Early Life Stages of Aquatic Organisms more Sensitive to Toxicants than Adults?",slug:"why-are-early-life-stages-of-aquatic-organisms-more-sensitive-to-toxicants-than-adults-",totalDownloads:3477,totalCrossrefCites:35,totalDimensionsCites:99,abstract:null,book:{id:"3408",slug:"new-insights-into-toxicity-and-drug-testing",title:"New Insights into Toxicity and Drug Testing",fullTitle:"New Insights into Toxicity and Drug Testing"},signatures:"Azad Mohammed",authors:[{id:"147061",title:"Dr.",name:"Azad",middleName:null,surname:"Mohammed",slug:"azad-mohammed",fullName:"Azad Mohammed"}]}],mostDownloadedChaptersLast30Days:[{id:"64762",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:10236,totalCrossrefCites:100,totalDimensionsCites:229,abstract:"Several heavy metals are found naturally in the earth crust and are exploited for various industrial and economic purposes. Among these heavy metals, a few have direct or indirect impact on the human body. Some of these heavy metals such as copper, cobalt, iron, nickel, magnesium, molybdenum, chromium, selenium, manganese and zinc have functional roles which are essential for various diverse physiological and biochemical activities in the body. However, some of these heavy metals in high doses can be harmful to the body while others such as cadmium, mercury, lead, chromium, silver, and arsenic in minute quantities have delirious effects in the body causing acute and chronic toxicities in humans. The focus of this chapter is to describe the various mechanism of intoxication of some selected heavy metals in humans along with their health effects. Therefore it aims to highlight on biochemical mechanisms of heavy metal intoxication which involves binding to proteins and enzymes, altering their activity and causing damage. More so, the mechanism by which heavy metals cause neurotoxicity, generate free radical which promotes oxidative stress damaging lipids, proteins and DNA molecules and how these free radicals propagate carcinogenesis are discussed. Alongside these mechanisms, the noxious health effects of these heavy metals are discussed.",book:{id:"7111",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"49459",title:"Pharmacokinetics of Drugs Following IV Bolus, IV Infusion, and Oral Administration",slug:"pharmacokinetics-of-drugs-following-iv-bolus-iv-infusion-and-oral-administration",totalDownloads:15401,totalCrossrefCites:15,totalDimensionsCites:22,abstract:null,book:{id:"4491",slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"Tarek A. Ahmed",authors:[{id:"175649",title:"Dr.",name:"Tarek A",middleName:null,surname:"Ahmed",slug:"tarek-a-ahmed",fullName:"Tarek A Ahmed"}]},{id:"29240",title:"Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability",slug:"oral-absorption-intestinal-metabolism-and-human-oral-bioavailability-",totalDownloads:27075,totalCrossrefCites:27,totalDimensionsCites:57,abstract:null,book:{id:"672",slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Ayman El-Kattan and Manthena Varma",authors:[{id:"85539",title:"Dr.",name:"Ayman",middleName:null,surname:"El-Kattan",slug:"ayman-el-kattan",fullName:"Ayman El-Kattan"},{id:"88221",title:"Dr.",name:"Manthena",middleName:null,surname:"Varma",slug:"manthena-varma",fullName:"Manthena Varma"}]},{id:"66259",title:"Antioxidant Compounds and Their Antioxidant Mechanism",slug:"antioxidant-compounds-and-their-antioxidant-mechanism",totalDownloads:7490,totalCrossrefCites:53,totalDimensionsCites:135,abstract:"An antioxidant is a substance that at low concentrations delays or prevents oxidation of a substrate. Antioxidant compounds act through several chemical mechanisms: hydrogen atom transfer (HAT), single electron transfer (SET), and the ability to chelate transition metals. The importance of antioxidant mechanisms is to understand the biological meaning of antioxidants, their possible uses, their production by organic synthesis or biotechnological methods, or for the standardization of the determination of antioxidant activity. In general, antioxidant molecules can react either by multiple mechanisms or by a predominant mechanism. The chemical structure of the antioxidant substance allows understanding of the antioxidant reaction mechanism. This chapter reviews the in vitro antioxidant reaction mechanisms of organic compounds polyphenols, carotenoids, and vitamins C against free radicals (FR) and prooxidant compounds under diverse conditions, as well as the most commonly used methods to evaluate the antioxidant activity of these compounds according to the mechanism involved in the reaction with free radicals and the methods of in vitro antioxidant evaluation that are used frequently depending on the reaction mechanism of the antioxidant.",book:{id:"8008",slug:"antioxidants",title:"Antioxidants",fullTitle:"Antioxidants"},signatures:"Norma Francenia Santos-Sánchez, Raúl Salas-Coronado, Claudia Villanueva-Cañongo and Beatriz Hernández-Carlos",authors:[{id:"143354",title:"Dr.",name:"Raúl",middleName:null,surname:"Salas-Coronado",slug:"raul-salas-coronado",fullName:"Raúl Salas-Coronado"},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez"},{id:"193718",title:"Dr.",name:"Beatriz",middleName:null,surname:"Hernández-Carlos",slug:"beatriz-hernandez-carlos",fullName:"Beatriz Hernández-Carlos"},{id:"278133",title:"Dr.",name:"Claudia",middleName:null,surname:"Villanueva-Cañongo",slug:"claudia-villanueva-canongo",fullName:"Claudia Villanueva-Cañongo"}]},{id:"66742",title:"Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life",slug:"introductory-chapter-alkaloids-their-importance-in-nature-and-for-human-life",totalDownloads:4035,totalCrossrefCites:14,totalDimensionsCites:29,abstract:null,book:{id:"6828",slug:"alkaloids-their-importance-in-nature-and-human-life",title:"Alkaloids",fullTitle:"Alkaloids - Their Importance in Nature and Human Life"},signatures:"Joanna Kurek",authors:[{id:"214632",title:"Dr.",name:"Joanna",middleName:null,surname:"Kurek",slug:"joanna-kurek",fullName:"Joanna Kurek"}]}],onlineFirstChaptersFilter:{topicId:"19",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82439",title:"Cellular Cytotoxicity and Multiple Sclerosis",slug:"cellular-cytotoxicity-and-multiple-sclerosis",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.105681",abstract:"Multiple sclerosis (MS) is an autoimmune disease in which discrete central nervous system lesions result from perivascular immune cell infiltration associated with damage to myelin (demyelination), oligodendrocytes and neurons. This culminates in debilitating neurological symptoms, primarily affecting women in their child-bearing years. Both the innate and adaptive branches of the immune system have been implicated in disease initiation and progression, and although the underlying cause remains elusive, there is compelling evidence for a complex interaction between genetic and environmental factors, leading to inflammation and neurodegeneration. Both direct cellular toxicity and antibody-dependent cellular cytotoxicity (ADCC) involving several cell types have been identified in playing major roles. These cells and their interactions in the pathogenesis of MS will be discussed.",book:{id:"11678",title:"Cytotoxicity",coverURL:"https://cdn.intechopen.com/books/images_new/11678.jpg"},signatures:"Annie M.L. Willson and Margaret A. Jordan"},{id:"82226",title:"Early Signal Detection: Data Mining of Mental Disorders with Statins",slug:"early-signal-detection-data-mining-of-mental-disorders-with-statins",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105504",abstract:"Statins are widely prescribed to treat dyslipidemias. It is well-known adverse reaction of these active ingredients related to rhabdomyolysis and myalgia, but there are other signals to be aware of, such as mental disorders. Pharmacovigilance tools help to trace known risks and detect early other unknown effects that appear over time. Data of all the reported suspected adverse drug reactions for statins from the international World Health Organization (WHO) repository Vigibase were analyzed with an adaptation of data mining Bayesian methodology to search for positive signals, threshold of false discovery rate (FDR) < 0.05, and listed candidates for priority clinical investigation. Among positive mental signals observed, some were currently stated as adverse reactions in technical factsheets as insomnia, depression, dementia, and nightmares, but others have not reached this condition as bipolar, psychotic, and emotional disorders or symptoms and suicide. Other diverse central positive signals that can be confounded with mental conditions obtained and not stated were senses impairment, such as blindness, deafness, balance disorder, and events related to suicide. Worrying positive signals proposed as candidates to further investigation are insomnia for pitavastatin, pravastatin, and simvastatin; dementia for atorvastatin and rosuvastatin; and suicide and psychotic disorders for atorvastatin, lovastatin, pravastatin, rosuvastatin, and simvastatin.",book:{id:"11679",title:"Pharmacovigilance and Regulations",coverURL:"https://cdn.intechopen.com/books/images_new/11679.jpg"},signatures:"Maria-Isabel Jimenez-Serrania"},{id:"82398",title:"Computer-Aided Drug Design and Development: An Integrated Approach",slug:"computer-aided-drug-design-and-development-an-integrated-approach",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105003",abstract:"Drug discovery and development is a very time- and resource-consuming process. Comprehensive knowledge of chemistry has been integrated with information technology to streamline drug discovery, design, development, and optimization. Computer-aided drug design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, and optimize the absorption, distribution, metabolism, excretion, and toxicity profile. Regulatory organizations and the pharmaceutical industry are continuously involved in the development of computational techniques that will improve the effectiveness and efficiency of the drug discovery process while decreasing the use of animals, cost, and time and increasing predictability. The present chapter will provide an overview of computational tools, such as structure-based and receptor-based drug designing, and how the coupling of these tools with a rational drug design process has led to the discovery of small molecules as therapeutic agents for numerous human disease conditions duly approved by the Food and Drug Administration. It is expected that the power of CADD will grow as the technology continues to evolve.",book:{id:"11091",title:"Drug Development Life Cycle",coverURL:"https://cdn.intechopen.com/books/images_new/11091.jpg"},signatures:"Neelima Dhingra"},{id:"81186",title:"Germicidal and Antineoplastic Activities of Curcumin and Curcumin-Derived Nanoparticles",slug:"germicidal-and-antineoplastic-activities-of-curcumin-and-curcumin-derived-nanoparticles",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.103076",abstract:"Curcumin is a major constituent of turmeric and has been shown to have a plethora of health benefits, which include, among many, antimicrobial, anticancer, and reduction of cholesterol. However, it has also been reported that curcumin has less bioaccumulation and is quickly metabolized and cleared from the body. Nanoparticle formulations are known to increase curcumin biocompatibility and targeting. Additionally, the antimicrobial activity of curcumin has been extensively studied and the mechanism of action provides clues for the development of new drugs for drug-resistant microbes. Thus, this chapter will review the biomedical application of curcumin and its nanoformulations against different microbes and other diseases, including cancer.",book:{id:"11323",title:"Antimicrobial and Pharmacological Aspects of Curcumin",coverURL:"https://cdn.intechopen.com/books/images_new/11323.jpg"},signatures:"Lilian Makgoo and Zukile Mbita"},{id:"82304",title:"Nonbiodegradable Hospital Waste Burden and Implications",slug:"nonbiodegradable-hospital-waste-burden-and-implications",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105009",abstract:"Hospitals and other healthcare facilities are very essential for the cure and care of persons suffering from health issues and also to promote health in society. As the health care services are improving and increasing their reach even in underdeveloped countries, so is the problem of health care waste (HCW) as hospitals generate a relatively huge amount of HCW, which consists of general as well as hazardous waste. The persons handling HCW are at immediate risk, followed by persons residing near HCW dumping/processing areas and the general public. Infectious HCW is a major threat to the health of humans and animals as it has the potential to spread various infectious diseases to the human and animal population. Due to the uncontrolled use of disposable nonbiodegradable materials by healthcare systems and their processing or lack of it, the HCW has emerged as one of the major sources of environmental pollution including the emission of the significant amount of greenhouse gases, which stands from 3 to 10% of total emissions of nations. HCW also leads to leaching chemicals, heavy metals like Pb, Cd, Cr, radioactive substances, and even generating carcinogens like dioxin in the environment contaminating air, soil, and water in general and especially in areas surrounding HCW dumping or processing affecting health and quality of life of not only of humans but cohabiting flora and fauna in those areas. Thus, the HCW is becoming one of the major sources of environmental pollution and collectively contributing to the problem of global warming. The HCW needs to be given the desired attention and priority in actions and policy. The chapter focuses on sources, types, and various environmental and health hazards related to HCW, its global environmental impact and management strategies for minimum effects with an eco-friendly and sustainable approach.",book:{id:"11329",title:"The Toxicity of Environmental Pollutants",coverURL:"https://cdn.intechopen.com/books/images_new/11329.jpg"},signatures:"Deepak S. Khobragade"},{id:"82246",title:"Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms",slug:"heavy-metal-contamination-of-water-and-their-toxic-effect-on-living-organisms",totalDownloads:17,totalDimensionsCites:0,doi:"10.5772/intechopen.105075",abstract:"Water has become a major threat in today’s world. Collection of heavy metals, a few of them, is potentially toxic and these get distributed to different areas through different pathways. With an increase in the earth’s population, development and industrialization are taking place rapidly and these get the major source of water contamination. With heavy metals in lakes, rivers, groundwater, and various water sources, water gets polluted by the increased concentration of heavy metals and metalloids through release from the suddenly mine tailings, disposal of high metal wastes, growing industrial areas, leaded gasoline and paints, usage of fertilizers inland, animal manures, E-waste, sewage sludge, pesticides, wastewater irrigation, coal, etc. Exposure to heavy metals has been linked to chronic and acute toxicity, which develops retardation; neurotoxicity can damage the kidneys, lead to the development of different cancers, damage the liver and lungs; bones can become fragile; and there are even chances of death in case of huge amount of exposure. This chapter mainly focuses on heavy metal pollution in water and its toxic effect on living organisms.",book:{id:"11329",title:"The Toxicity of Environmental Pollutants",coverURL:"https://cdn.intechopen.com/books/images_new/11329.jpg"},signatures:"Anubhav Singh, Anuj Sharma, Rohit K. Verma, Rushikesh L. Chopade, Pritam P. Pandit, Varad Nagar, Vinay Aseri, Sumit K. Choudhary, Garima Awasthi, Kumud K. Awasthi and Mahipal S. Sankhla"}],onlineFirstChaptersTotal:66},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null,scope:"\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA. Dr. Stavropoulos received her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a Faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"