Heat stress is considered to induce a wide range of physiological and biochemical changes that cause severe damage to plant cell membrane, disrupt protein synthesis, and affect the efficiency of photosynthetic system by reducing the transpiration due to stomata closure. A brief and mild heat shock is known to induce acquired thermo tolerance in plants that is associated with concomitant production of heat shock proteins’ (HSPs) gene family including HSP70. The findings from different studies by use of technologies have thrown light on the importance of HSP70 to heat, other abiotic stresses and environmental challenges in desserts. There is clear evidence that under heat stress, HSP70 gene stabilized the membrane structure, chlorophyll and water breakdown. It was also found that under heat stress, HSP70 decreased the malondialdehyde (MDA) content and increased the production of superoxide dismutase (SOD) and peroxidase (POD) in transgenic plants as compared to non-transgenic plants. Some reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are also synthesized and accumulated when plants are stressed by heat. Hence HSP70 can confidently be used for transforming a number of heat tolerant crop species.
Part of the book: Advances in Plant Defense Mechanisms