In this chapter, the ability of artificial neural networks was evaluated to predict the influence of amphiphiles as additive upon the electrical percolation of dioctyl sodium sulfosuccinate (AOT)/isooctane/water microemulsions. In particular, water/AOT/isooctane microemulsion behaviour has been modelled. These microemulsions have been developed in presence of 1-n-alcohols, 2-n-alcohols, n-alkylamines and n-alkyl acids. In all cases, a neural network has been obtained to predict with accuracy the experimental behaviour to identify the physico-chemical variables (such as additive concentration, molecular mass, log P, pKa or chain length) that exert a greater influence on the model. All models are valuable tools to evaluate the percolation temperature for AOT-based microemulsions.
Part of the book: Properties and Uses of Microemulsions