\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"813",leadTitle:null,fullTitle:"New Advances in Stem Cell Transplantation",title:"New Advances in Stem Cell Transplantation",subtitle:null,reviewType:"peer-reviewed",abstract:"This book documents the increased number of stem cell-related research, clinical applications, and views for the future. The book covers a wide range of issues in cell-based therapy and regenerative medicine, and includes clinical and preclinical chapters from the respected authors involved with stem cell studies and research from around the world. It complements and extends the basics of stem cell physiology, hematopoietic stem cells, issues related to clinical problems, tissue typing, cryopreservation, dendritic cells, mesenchymal cells, neuroscience, endovascular cells and other tissues. In addition, tissue engineering that employs novel methods with stem cells is explored. Clearly, the continued use of biomedical engineering will depend heavily on stem cells, and this book is well positioned to provide comprehensive coverage of these developments.",isbn:null,printIsbn:"978-953-51-0013-3",pdfIsbn:"978-953-51-6798-3",doi:"10.5772/1322",price:159,priceEur:175,priceUsd:205,slug:"new-advances-in-stem-cell-transplantation",numberOfPages:596,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"3da60ac77b0741e395276bcaaf911246",bookSignature:"Taner Demirer",publishedDate:"February 24th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/813.jpg",numberOfDownloads:69793,numberOfWosCitations:19,numberOfCrossrefCitations:6,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:21,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:46,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 25th 2011",dateEndSecondStepPublish:"February 22nd 2011",dateEndThirdStepPublish:"June 29th 2011",dateEndFourthStepPublish:"July 29th 2011",dateEndFifthStepPublish:"November 26th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"67350",title:"Prof.",name:"Taner",middleName:null,surname:"Demirer",slug:"taner-demirer",fullName:"Taner Demirer",profilePictureURL:"https://mts.intechopen.com/storage/users/67350/images/3670_n.jpg",biography:"Dr Demirer graduated from Ankara University Medical School in Turkey in 1984. He then went on to train in the USA from 1987-1997. He was given the title of ‘Fellow of American College of Physicians (FACP)’ by ACP in July of 1996. During his career, he has written many papers in the medical journals and books in regard to stem cell mobilization kinetics, factors influencing the stem collection and engraftment, as well as HDC in patients with multiple myeloma, breast, and ovarian cancer. He was Chair of the EBMT Solid Tumors Working Party (STWP) between 2001-2007. Dr. Demirer is currently a professor of Medicine and Hematology/Oncology at the Ankara University Medical School in Ankara, Turkey.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Ankara University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"990",title:"Stem Cell Research",slug:"medicine-cell-biology-stem-cell-research"}],chapters:[{id:"29654",title:"Generation of Patient Specific Stem Cells: A Human Model System",doi:"10.5772/35918",slug:"generation-of-patient-specific-stem-cells-a-human-model-system",totalDownloads:2409,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Stina Simonsson, Cecilia Borestrom and Julia Asp",downloadPdfUrl:"/chapter/pdf-download/29654",previewPdfUrl:"/chapter/pdf-preview/29654",authors:[{id:"106347",title:"Dr.",name:"Stina",surname:"Simonsson",slug:"stina-simonsson",fullName:"Stina Simonsson"}],corrections:null},{id:"29655",title:"Importance of Non-HLA Gene Polymorphisms in Hematopoietic Stem Cell Transplantation",doi:"10.5772/25420",slug:"importance-of-non-hla-gene-polymorphisms-in-hematopoietic-stem-cell-transplantation-",totalDownloads:2162,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jeane Visentainer and Ana Sell",downloadPdfUrl:"/chapter/pdf-download/29655",previewPdfUrl:"/chapter/pdf-preview/29655",authors:[{id:"63282",title:"PhD.",name:"Jeane",surname:"Visentainer",slug:"jeane-visentainer",fullName:"Jeane Visentainer"},{id:"64275",title:"Dr.",name:"Ana",surname:"Sell",slug:"ana-sell",fullName:"Ana Sell"}],corrections:null},{id:"29656",title:"Relevance of HLA Expression Variants in Stem Cell Transplantation",doi:"10.5772/26757",slug:"relevance-of-hla-expression-variants-in-stem-cell-transplantation",totalDownloads:2407,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Britta Eiz-Vesper and Rainer Blasczyk",downloadPdfUrl:"/chapter/pdf-download/29656",previewPdfUrl:"/chapter/pdf-preview/29656",authors:[{id:"67742",title:"Dr.",name:"Britta",surname:"Eiz-Vesper",slug:"britta-eiz-vesper",fullName:"Britta Eiz-Vesper"},{id:"72037",title:"Prof.",name:"Rainer",surname:"Blasczyk",slug:"rainer-blasczyk",fullName:"Rainer Blasczyk"}],corrections:null},{id:"29657",title:"The T-Cells’ Role in Antileukemic Reactions - Perspectives for Future Therapies’",doi:"10.5772/25891",slug:"the-t-cells-role-in-anti-leukaemic-reactions-perspectives-for-future-therapies-",totalDownloads:1750,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Helga Maria Schmetzer and Christoph Schmid",downloadPdfUrl:"/chapter/pdf-download/29657",previewPdfUrl:"/chapter/pdf-preview/29657",authors:[{id:"64883",title:"Prof.",name:"Helga",surname:"Schmetzer",slug:"helga-schmetzer",fullName:"Helga Schmetzer"},{id:"125644",title:"Dr.",name:"Christoph",surname:"Schmid",slug:"christoph-schmid",fullName:"Christoph Schmid"}],corrections:null},{id:"29658",title:"Determination of Th1/Th2/Th17 Cytokines in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation",doi:"10.5772/26029",slug:"determination-of-th1-th2-th17-cytokines-in-patients-undergoing-an-allogeneic-hematopoietic-stem-cell",totalDownloads:1746,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Adriana Gutiérrez-Hoya, Rubén López-Santiago, Jorge Vela-Ojeda, Laura Montiel-Cervantes, Octavio Rodríguez-Cortes and Martha Moreno-Lafont",downloadPdfUrl:"/chapter/pdf-download/29658",previewPdfUrl:"/chapter/pdf-preview/29658",authors:[{id:"65309",title:"Dr.",name:"Martha C.",surname:"Moreno-Lafont",slug:"martha-c.-moreno-lafont",fullName:"Martha C. Moreno-Lafont"}],corrections:null},{id:"29659",title:"Licensed to Kill: Towards Natural Killer Cell Immunotherapy",doi:"10.5772/27482",slug:"licensed-to-kill-towards-natural-killer-cell-therapy",totalDownloads:2268,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Diana N. Eissens, Arnold van der Meer and Irma Joosten",downloadPdfUrl:"/chapter/pdf-download/29659",previewPdfUrl:"/chapter/pdf-preview/29659",authors:[{id:"70311",title:"Prof.",name:"Irma",surname:"Joosten",slug:"irma-joosten",fullName:"Irma Joosten"},{id:"119873",title:"Dr.",name:"Diana",surname:"Eissens",slug:"diana-eissens",fullName:"Diana Eissens"},{id:"119874",title:"Dr.",name:"Arnold",surname:"Van Der Meer",slug:"arnold-van-der-meer",fullName:"Arnold Van Der Meer"}],corrections:null},{id:"29660",title:"Dendritic Cells in Hematopoietic Stem Cell Transplantation",doi:"10.5772/25913",slug:"dendritic-cells-in-hematopoietic-stem-cell-transplantation",totalDownloads:2024,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yannick Willemen, Khadija Guerti, Herman Goossens, Zwi Berneman, Viggo Van Tendeloo and Evelien Smits",downloadPdfUrl:"/chapter/pdf-download/29660",previewPdfUrl:"/chapter/pdf-preview/29660",authors:[{id:"64957",title:"Dr.",name:"Evelien",surname:"Smits",slug:"evelien-smits",fullName:"Evelien Smits"},{id:"71494",title:"Dr.",name:"Khadija",surname:"Guerti",slug:"khadija-guerti",fullName:"Khadija Guerti"},{id:"71495",title:"Dr.",name:"Yannick",surname:"Willemen",slug:"yannick-willemen",fullName:"Yannick Willemen"},{id:"78017",title:"Prof.",name:"Zwi",surname:"Berneman",slug:"zwi-berneman",fullName:"Zwi Berneman"},{id:"118891",title:"Prof.",name:"Viggo",surname:"Van Tendeloo",slug:"viggo-van-tendeloo",fullName:"Viggo Van Tendeloo"},{id:"118892",title:"Prof.",name:"Herman",surname:"Goossens",slug:"herman-goossens",fullName:"Herman Goossens"}],corrections:null},{id:"29661",title:"Mesenchymal Stem Cells as Immunomodulators in Transplantation",doi:"10.5772/27637",slug:"mesenchymal-stem-cells-as-immunomodulators-in-transplantation",totalDownloads:2620,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Nadia Zghoul, Mahmoud Aljurf and Said Dermime",downloadPdfUrl:"/chapter/pdf-download/29661",previewPdfUrl:"/chapter/pdf-preview/29661",authors:[{id:"70914",title:"Dr.",name:"Mahmoud",surname:"Aljurf",slug:"mahmoud-aljurf",fullName:"Mahmoud Aljurf"},{id:"83887",title:"Dr.",name:"Said",surname:"Dermime",slug:"said-dermime",fullName:"Said Dermime"},{id:"83903",title:"Dr.",name:"Nadia",surname:"Zghoul",slug:"nadia-zghoul",fullName:"Nadia Zghoul"}],corrections:null},{id:"29662",title:"Endovascular Methods for Stem Cell Transplantation",doi:"10.5772/26291",slug:"endovascular-methods-for-cell-transplantation",totalDownloads:1981,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Johan Lundberg and Staffan Holmin",downloadPdfUrl:"/chapter/pdf-download/29662",previewPdfUrl:"/chapter/pdf-preview/29662",authors:[{id:"66141",title:"Prof.",name:"Staffan",surname:"Holmin",slug:"staffan-holmin",fullName:"Staffan Holmin"},{id:"119151",title:"Dr.",name:"Johan",surname:"Lundberg",slug:"johan-lundberg",fullName:"Johan Lundberg"}],corrections:null},{id:"29663",title:"Dynamic Relationships of Collagen Extracellular Matrices on Cardiac Differentiation of Human Mesenchymal Stem Cells",doi:"10.5772/27170",slug:"dynamic-relationships-of-extracellular-matrices-on-cardiac-differentiation-of-human-mesenchymal-stem",totalDownloads:1929,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Pearly Yong, Ling Qian, YingYing Chung and Winston Shim",downloadPdfUrl:"/chapter/pdf-download/29663",previewPdfUrl:"/chapter/pdf-preview/29663",authors:[{id:"69052",title:"Dr.",name:"Winston",surname:"Shim",slug:"winston-shim",fullName:"Winston Shim"}],corrections:null},{id:"29664",title:"Sources of Hematopoietic Stem Cells",doi:"10.5772/25480",slug:"sources-of-hematopoietic-stem-cells",totalDownloads:2330,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Piotr Rzepecki, Sylwia Oborska and Krzysztof Gawroński",downloadPdfUrl:"/chapter/pdf-download/29664",previewPdfUrl:"/chapter/pdf-preview/29664",authors:[{id:"63469",title:"Dr.",name:"Sylwia",surname:"Oborska",slug:"sylwia-oborska",fullName:"Sylwia Oborska"},{id:"70988",title:"Prof.",name:"Piotr",surname:"Rzepecki",slug:"piotr-rzepecki",fullName:"Piotr Rzepecki"},{id:"70990",title:"Dr.",name:"Krzysztof",surname:"Gawronski",slug:"krzysztof-gawronski",fullName:"Krzysztof Gawronski"}],corrections:null},{id:"29665",title:"Cryopreservation of Hematopoietic and Non-Hematopoietic Stem Cells – A Review for the Clinician",doi:"10.5772/26448",slug:"cryopreservation-of-hematopoietic-and-non-hematopoietic-stem-cells-a-review-for-the-clinician",totalDownloads:5704,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"David Berz and Gerald Colvin",downloadPdfUrl:"/chapter/pdf-download/29665",previewPdfUrl:"/chapter/pdf-preview/29665",authors:[{id:"66651",title:"Prof.",name:"David",surname:"Berz",slug:"david-berz",fullName:"David Berz"}],corrections:null},{id:"29666",title:"Hematopoietic Stem Cell Transplantation for Adult Acute Lymphoblastic Leukaemia",doi:"10.5772/28970",slug:"hematopoietic-stem-cell-transplantation-for-adult-acute-lymphoblastic-leukaemia",totalDownloads:2567,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Pier Paolo Piccaluga, Stefania Paolini, Francesca Bonifazi, Giuseppe Bandini, Giuseppe Visani and Sebastian Giebel",downloadPdfUrl:"/chapter/pdf-download/29666",previewPdfUrl:"/chapter/pdf-preview/29666",authors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"},{id:"79487",title:"Dr.",name:"Giuseppe",surname:"Visani",slug:"giuseppe-visani",fullName:"Giuseppe Visani"},{id:"119687",title:"Dr.",name:"Stefania",surname:"Paolini",slug:"stefania-paolini",fullName:"Stefania Paolini"},{id:"119688",title:"Dr.",name:"Giuseppe",surname:"Bandini",slug:"giuseppe-bandini",fullName:"Giuseppe Bandini"},{id:"119689",title:"Dr.",name:"Francesca",surname:"Bonifazi",slug:"francesca-bonifazi",fullName:"Francesca Bonifazi"},{id:"119691",title:"Prof.",name:"Sebastian",surname:"Giebel",slug:"sebastian-giebel",fullName:"Sebastian Giebel"}],corrections:null},{id:"29667",title:"Treatment Options in Myelodysplastic Syndromes",doi:"10.5772/27194",slug:"treatment-options-in-myelodysplastic-syndromes",totalDownloads:2071,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Klara Gadó and Gyula Domján",downloadPdfUrl:"/chapter/pdf-download/29667",previewPdfUrl:"/chapter/pdf-preview/29667",authors:[{id:"69128",title:"Dr.",name:"Klara",surname:"Gadó",slug:"klara-gado",fullName:"Klara Gadó"}],corrections:null},{id:"29668",title:"Mantle Cell Lymphoma: Decision Making for Transplant",doi:"10.5772/38966",slug:"mantle-cell-lymphoma-decision-making-for-transplant",totalDownloads:2210,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yener Koc and Taner Demirer",downloadPdfUrl:"/chapter/pdf-download/29668",previewPdfUrl:"/chapter/pdf-preview/29668",authors:[{id:"67350",title:"Prof.",name:"Taner",surname:"Demirer",slug:"taner-demirer",fullName:"Taner Demirer"}],corrections:null},{id:"29669",title:"Autologous Peripheral Blood Purified Stem Cells Transplantation for Treatment of Systemic Lupus Erythematosus",doi:"10.5772/25425",slug:"autologous-peripheral-blood-purified-stem-cells-transplantation-for-treatment-of-systemic-lupus-eryt",totalDownloads:2133,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ledong Sun and Bing Wang",downloadPdfUrl:"/chapter/pdf-download/29669",previewPdfUrl:"/chapter/pdf-preview/29669",authors:[{id:"63291",title:"Prof.",name:"Ledong",surname:"Sun",slug:"ledong-sun",fullName:"Ledong Sun"},{id:"119829",title:"Dr.",name:"Bing",surname:"Wang",slug:"bing-wang",fullName:"Bing Wang"}],corrections:null},{id:"29670",title:"Allogeneic Hematopoietic Cell Transplantation for Paroxysmal Nocturnal Hemoglobinuria",doi:"10.5772/26075",slug:"allogeneic-hematopoietic-cell-transplantation-for-paroxysmal-nocturnal-hemoglobinuria",totalDownloads:2105,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Markiewicz Miroslaw, Koclega Anna, Sobczyk-Kruszelnicka Malgorzata, Dzierzak-Mietla Monika, Zielinska Patrycja, Frankiewicz Andrzej, Bialas Krzysztof and Kyrcz-Krzemien Slawomira",downloadPdfUrl:"/chapter/pdf-download/29670",previewPdfUrl:"/chapter/pdf-preview/29670",authors:[{id:"65460",title:"Dr.",name:"Miroslaw",surname:"Markiewicz",slug:"miroslaw-markiewicz",fullName:"Miroslaw Markiewicz"},{id:"71260",title:"Dr.",name:"Malgorzata",surname:"Sobczyk-Kruszelnicka",slug:"malgorzata-sobczyk-kruszelnicka",fullName:"Malgorzata Sobczyk-Kruszelnicka"},{id:"71262",title:"Dr.",name:"Monika",surname:"Dzierzak-Mietla",slug:"monika-dzierzak-mietla",fullName:"Monika Dzierzak-Mietla"},{id:"71263",title:"Dr.",name:"Patrycja",surname:"Zielinska",slug:"patrycja-zielinska",fullName:"Patrycja Zielinska"},{id:"71264",title:"Dr.",name:"Anna",surname:"Koclega",slug:"anna-koclega",fullName:"Anna Koclega"},{id:"71265",title:"Dr.",name:"Andrzej",surname:"Frankiewicz",slug:"andrzej-frankiewicz",fullName:"Andrzej Frankiewicz"},{id:"71266",title:"Prof.",name:"Slawomira",surname:"Kyrcz-Krzemien",slug:"slawomira-kyrcz-krzemien",fullName:"Slawomira Kyrcz-Krzemien"},{id:"118332",title:"Dr.",name:"Krzysztof",surname:"Bialas",slug:"krzysztof-bialas",fullName:"Krzysztof Bialas"},{id:"119766",title:"Dr.",name:"Agata",surname:"Wieczorkiewicz-Kabut",slug:"agata-wieczorkiewicz-kabut",fullName:"Agata Wieczorkiewicz-Kabut"}],corrections:null},{id:"29671",title:"Intensified Chemotherapy with Stem Cell Support for Solid Tumors in Adults: 30 Years of Investigations Can Provide Some Clear Answers?",doi:"10.5772/26627",slug:"intensified-chemotherapy-with-stem-cell-support-for-solid-tumor-30-years-of-investigations-can-provi",totalDownloads:1518,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Paolo Pedrazzoli, Giovanni Rosti, Simona Secondino, Marco Bregni and Taner Demirer",downloadPdfUrl:"/chapter/pdf-download/29671",previewPdfUrl:"/chapter/pdf-preview/29671",authors:[{id:"67350",title:"Prof.",name:"Taner",surname:"Demirer",slug:"taner-demirer",fullName:"Taner Demirer"}],corrections:null},{id:"29672",title:"Hematopoietic Stem Cell Transplantation for Malignant Solid Tumors in Children",doi:"10.5772/25848",slug:"hematopoietic-stem-cell-transplantation-for-malignant-solid-tumors-in-children",totalDownloads:2965,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Toshihisa Tsuruta",downloadPdfUrl:"/chapter/pdf-download/29672",previewPdfUrl:"/chapter/pdf-preview/29672",authors:[{id:"64743",title:"Dr.",name:"Toshihisa",surname:"Tsuruta",slug:"toshihisa-tsuruta",fullName:"Toshihisa Tsuruta"}],corrections:null},{id:"29673",title:"Stem Cells in Ophthalmology",doi:"10.5772/26055",slug:"stems-cells-in-ophtamology",totalDownloads:6222,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Sara T. Wester and Jeffrey Goldberg",downloadPdfUrl:"/chapter/pdf-download/29673",previewPdfUrl:"/chapter/pdf-preview/29673",authors:[{id:"65383",title:"Dr.",name:"Sara",surname:"Wester",slug:"sara-wester",fullName:"Sara Wester"},{id:"71250",title:"Prof.",name:"Jeffrey",surname:"Goldberg",slug:"jeffrey-goldberg",fullName:"Jeffrey Goldberg"}],corrections:null},{id:"29674",title:"Limbal Stem Cell Transplantation and Corneal Neovascularization",doi:"10.5772/26870",slug:"limbal-stem-cell-deficiency-and-corneal-neovascularization",totalDownloads:4695,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Kishore Reddy Katikireddy and Jurkunas V. Ula",downloadPdfUrl:"/chapter/pdf-download/29674",previewPdfUrl:"/chapter/pdf-preview/29674",authors:[{id:"68078",title:"Dr.",name:"Kishore Reddy",surname:"Katikireddy",slug:"kishore-reddy-katikireddy",fullName:"Kishore Reddy Katikireddy"},{id:"68079",title:"Prof.",name:"Ula",surname:"Jurkunas",slug:"ula-jurkunas",fullName:"Ula Jurkunas"}],corrections:null},{id:"29675",title:"Bone Marrow Stromal Cells for Repair of the Injured Spinal Cord",doi:"10.5772/28301",slug:"bone-marrow-stromal-cells-for-repair-of-the-injured-spinal-cord",totalDownloads:1992,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"D. S. Nandoe Tewarie Rishi, Oudega Martin and J. Ritfeld Gaby",downloadPdfUrl:"/chapter/pdf-download/29675",previewPdfUrl:"/chapter/pdf-preview/29675",authors:[{id:"73437",title:"Dr.",name:"Rishi",surname:"Nandoe Tewarie",slug:"rishi-nandoe-tewarie",fullName:"Rishi Nandoe Tewarie"},{id:"120205",title:"Dr.",name:"Martin",surname:"Oudega",slug:"martin-oudega",fullName:"Martin Oudega"},{id:"120206",title:"MSc.",name:"Gaby",surname:"Ritfeld",slug:"gaby-ritfeld",fullName:"Gaby Ritfeld"}],corrections:null},{id:"29676",title:"What Do We Know About the Detailed Mechanism on How Stem Cells Generate Their Mode of Action",doi:"10.5772/25871",slug:"stem-cell-transplantation-in-traumatic-brain-injury",totalDownloads:1652,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Peter Riess and Marek Molcanyi",downloadPdfUrl:"/chapter/pdf-download/29676",previewPdfUrl:"/chapter/pdf-preview/29676",authors:[{id:"64818",title:"Dr.",name:"Peter",surname:"Riess",slug:"peter-riess",fullName:"Peter Riess"}],corrections:null},{id:"29677",title:"Autologous Stem Cell Infusion for Treatment of Pulmonary Disease",doi:"10.5772/27733",slug:"five-cases-of-autologous-stem-cell-infusion-for-treatment-of-pulmonary-disease",totalDownloads:3711,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Neal M. Patel and Charles D. Burger",downloadPdfUrl:"/chapter/pdf-download/29677",previewPdfUrl:"/chapter/pdf-preview/29677",authors:[{id:"71318",title:"Dr.",name:"Charles",surname:"Burger",slug:"charles-burger",fullName:"Charles Burger"}],corrections:null},{id:"29678",title:"Neurologic Sequealae of Hematopoietic Stem Cell Transplantation (HSCT)",doi:"10.5772/26186",slug:"neurologic-sequelae-of-hematopoietic-stem-cell-transplantation",totalDownloads:2079,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ami J. Shah, Tena Rosser and Fariba Goodarzian",downloadPdfUrl:"/chapter/pdf-download/29678",previewPdfUrl:"/chapter/pdf-preview/29678",authors:[{id:"65784",title:"Dr.",name:"Ami",surname:"Shah",slug:"ami-shah",fullName:"Ami Shah"},{id:"73936",title:"Dr.",name:"Fariba",surname:"Goodarzian",slug:"fariba-goodarzian",fullName:"Fariba Goodarzian"},{id:"73937",title:"Dr.",name:"Tena",surname:"Rosser",slug:"tena-rosser",fullName:"Tena Rosser"}],corrections:null},{id:"29679",title:"Adenoviral Infection – Common Complication Following Hematopoietic Stem Cell Transplantation",doi:"10.5772/25863",slug:"adenoviral-infection-common-complication-following-hematopoietic-stem-cell-transplantation-",totalDownloads:2394,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Iwona Bil-Lula, Marek Ussowicz and Mieczysław Woźniak",downloadPdfUrl:"/chapter/pdf-download/29679",previewPdfUrl:"/chapter/pdf-preview/29679",authors:[{id:"64803",title:"Dr.",name:"Iwona",surname:"Bil-Lula",slug:"iwona-bil-lula",fullName:"Iwona Bil-Lula"},{id:"70971",title:"Dr.",name:"Marek",surname:"Ussowicz",slug:"marek-ussowicz",fullName:"Marek Ussowicz"},{id:"70972",title:"Prof.",name:"Mieczysław",surname:"Woźniak",slug:"mieczyslaw-wozniak",fullName:"Mieczysław Woźniak"}],corrections:null},{id:"29680",title:"A Systematic Review of Nonpharmacological Exercise-Based Rehabilitative Interventions in Adults Undergoing Allogeneic Hematopoietic Stem Cell Transplantation",doi:"10.5772/27717",slug:"exercise-based-rehabilitative-interventions-in-adults-with-haematological-disease-undergoing-allogen",totalDownloads:2157,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"M. Jarden",downloadPdfUrl:"/chapter/pdf-download/29680",previewPdfUrl:"/chapter/pdf-preview/29680",authors:[{id:"71242",title:"Dr.",name:"Mary",surname:"Jarden",slug:"mary-jarden",fullName:"Mary Jarden"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"4609",title:"Progress in Stem Cell Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"abbff25d9b960e013b0623b89cdf7367",slug:"progress-in-stem-cell-transplantation",bookSignature:"Taner Demirer",coverURL:"https://cdn.intechopen.com/books/images_new/4609.jpg",editedByType:"Edited by",editors:[{id:"67350",title:"Prof.",name:"Taner",surname:"Demirer",slug:"taner-demirer",fullName:"Taner Demirer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"216",title:"Stem Cells in Clinic and Research",subtitle:null,isOpenForSubmission:!1,hash:"5a31b9aa4ace99ed56f02e53a74d068e",slug:"stem-cells-in-clinic-and-research",bookSignature:"Ali Gholamrezanezhad",coverURL:"https://cdn.intechopen.com/books/images_new/216.jpg",editedByType:"Edited by",editors:[{id:"29557",title:"Dr.",name:"Ali",surname:"Gholamrezanezhad",slug:"ali-gholamrezanezhad",fullName:"Ali Gholamrezanezhad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"388",title:"Embryonic Stem Cells",subtitle:"Basic Biology to Bioengineering",isOpenForSubmission:!1,hash:"75fab84c1c8e75f1882393bd48c0e7a5",slug:"embryonic-stem-cells-basic-biology-to-bioengineering",bookSignature:"Michael S. Kallos",coverURL:"https://cdn.intechopen.com/books/images_new/388.jpg",editedByType:"Edited by",editors:[{id:"62719",title:"Prof.",name:"Michael S.",surname:"Kallos",slug:"michael-s.-kallos",fullName:"Michael S. Kallos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"694",title:"Advances in Hematopoietic Stem Cell Research",subtitle:null,isOpenForSubmission:!1,hash:"a8456364ad683155bfd97bb74960d66a",slug:"advances-in-hematopoietic-stem-cell-research",bookSignature:"Rosana Pelayo",coverURL:"https://cdn.intechopen.com/books/images_new/694.jpg",editedByType:"Edited by",editors:[{id:"74711",title:"Dr.",name:"Rosana",surname:"Pelayo",slug:"rosana-pelayo",fullName:"Rosana Pelayo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3263",title:"Pluripotent Stem Cells",subtitle:null,isOpenForSubmission:!1,hash:"8e3646a06bb8ba1da33cb5ccb0867062",slug:"pluripotent-stem-cells",bookSignature:"Deepa Bhartiya and Nibedita Lenka",coverURL:"https://cdn.intechopen.com/books/images_new/3263.jpg",editedByType:"Edited by",editors:[{id:"139427",title:"Dr.",name:"Deepa",surname:"Bhartiya",slug:"deepa-bhartiya",fullName:"Deepa Bhartiya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"56",title:"Embryonic Stem Cells",subtitle:"The Hormonal Regulation of Pluripotency and Embryogenesis",isOpenForSubmission:!1,hash:"c2a19ef174e6fb5df273830efe6b72da",slug:"embryonic-stem-cells-the-hormonal-regulation-of-pluripotency-and-embryogenesis",bookSignature:"Craig Atwood",coverURL:"https://cdn.intechopen.com/books/images_new/56.jpg",editedByType:"Edited by",editors:[{id:"16945",title:"Prof.",name:"Craig",surname:"Atwood",slug:"craig-atwood",fullName:"Craig Atwood"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3427",title:"Neural Stem Cells",subtitle:"New Perspectives",isOpenForSubmission:!1,hash:"43e043afc3a3af46076832b4f784dcca",slug:"neural-stem-cells-new-perspectives",bookSignature:"Luca Bonfanti",coverURL:"https://cdn.intechopen.com/books/images_new/3427.jpg",editedByType:"Edited by",editors:[{id:"154282",title:"Dr.",name:"Luca",surname:"Bonfanti",slug:"luca-bonfanti",fullName:"Luca Bonfanti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1706",title:"Methodological Advances in the Culture, Manipulation and Utilization of Embryonic Stem Cells for Basic and Practical Applications",subtitle:null,isOpenForSubmission:!1,hash:"859182731e564430697a4299a78f0548",slug:"methodological-advances-in-the-culture-manipulation-and-utilization-of-embryonic-stem-cells-for-basic-and-practical-applications",bookSignature:"Craig Atwood",coverURL:"https://cdn.intechopen.com/books/images_new/1706.jpg",editedByType:"Edited by",editors:[{id:"16945",title:"Prof.",name:"Craig",surname:"Atwood",slug:"craig-atwood",fullName:"Craig Atwood"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1319",title:"Embryonic Stem Cells",subtitle:"Differentiation and Pluripotent Alternatives",isOpenForSubmission:!1,hash:"c4c71a60be196f817c6cd33ff82e5088",slug:"embryonic-stem-cells-differentiation-and-pluripotent-alternatives",bookSignature:"Michael S. Kallos",coverURL:"https://cdn.intechopen.com/books/images_new/1319.jpg",editedByType:"Edited by",editors:[{id:"62719",title:"Prof.",name:"Michael S.",surname:"Kallos",slug:"michael-s.-kallos",fullName:"Michael S. Kallos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1699",title:"Embryology",subtitle:"Updates and Highlights on Classic Topics",isOpenForSubmission:!1,hash:"286d68a97eec4805184885e4e85f6946",slug:"embryology-updates-and-highlights-on-classic-topics",bookSignature:"Luis Antonio Violin Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/1699.jpg",editedByType:"Edited by",editors:[{id:"106080",title:"Prof.",name:"Luis",surname:"Violin Pereira",slug:"luis-violin-pereira",fullName:"Luis Violin Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65666",slug:"erratum-metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia",title:"Erratum - Metrology Organic Solvents in the Shoes Industry to Sfax City (Tunisia)",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65666.pdf",downloadPdfUrl:"/chapter/pdf-download/65666",previewPdfUrl:"/chapter/pdf-preview/65666",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65666",risUrl:"/chapter/ris/65666",chapter:{id:"62241",slug:"metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia-",signatures:"Imed Gargouri and Moncef Khadhraoui",dateSubmitted:"October 10th 2017",dateReviewed:"May 4th 2018",datePrePublished:null,datePublished:"January 30th 2019",book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",fullName:"Imed Gargouri",slug:"imed-gargouri",email:"imed.gargouri@fmsf.rnu.tn",position:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"230836",title:"Dr.",name:"Khadhraoui",middleName:null,surname:"Moncef",fullName:"Khadhraoui Moncef",slug:"khadhraoui-moncef",email:"montunisia@yahoo.com",position:null,institution:null}]}},chapter:{id:"62241",slug:"metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia-",signatures:"Imed Gargouri and Moncef Khadhraoui",dateSubmitted:"October 10th 2017",dateReviewed:"May 4th 2018",datePrePublished:null,datePublished:"January 30th 2019",book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",fullName:"Imed Gargouri",slug:"imed-gargouri",email:"imed.gargouri@fmsf.rnu.tn",position:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"230836",title:"Dr.",name:"Khadhraoui",middleName:null,surname:"Moncef",fullName:"Khadhraoui Moncef",slug:"khadhraoui-moncef",email:"montunisia@yahoo.com",position:null,institution:null}]},book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11023",leadTitle:null,title:"Mycotoxins and Food Safety - Recent Advances",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe attempt to produce and store as much as possible of plants producing food for humans and animals (cereals, seeds, nuts, etc.) has led to the development of mycotoxins. Known as mold, mycotoxins are metabolites of fungi capable of having acute carcinogenic, toxic, mutagenic, immunotoxic, teratogenic, and estrogenic effects in both humans and animals. These toxins can develop during production, harvesting, or storage. They can be present in meat, eggs, or milk through feed or in various foods through the raw material, and thus become a food safety hazard in these products. However, food chain operators must provide safe food. The risk assessment must be done independently of risk management.
\r\n\r\n\tTherefore, this book aims to bring together the latest information on mycotoxins, their diversity, and their presence in plants and foods, in line with food safety and health risks associated with humans. Topics can range from segregation, production, and types of mycotoxins in food crops and food processing, to toxicity, contamination prevention, contamination management to food safety regulation on mycotoxins or economic implications of mycotoxins and food safety.
",isbn:"978-1-83962-904-4",printIsbn:"978-1-83962-903-7",pdfIsbn:"978-1-83962-918-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"e3c0677806b9ac145fbc53d2cd5b752a",bookSignature:"Dr.Ing. Romina Alina Marc",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11023.jpg",keywords:"Mycotoxins Types, Mycotoxins Production, Mycotoxin Contamination, Mycotoxins in Food, Culture, Storage, Risk, Evaluation, Disease, Regulations, Food Safety, Economic Implications",numberOfDownloads:271,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 25th 2021",dateEndSecondStepPublish:"September 22nd 2021",dateEndThirdStepPublish:"November 21st 2021",dateEndFourthStepPublish:"February 9th 2022",dateEndFifthStepPublish:"April 10th 2022",remainingDaysToSecondStep:"8 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Romina Alina Marc is a researcher in the field of food control and safety, holder of 9 patent applications, and author of over 40 research papers on the development of innovative food products, food safety, and bioactive compound traceability during processing.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"275077",title:"Dr.Ing.",name:"Romina Alina",middleName:null,surname:"Marc",slug:"romina-alina-marc",fullName:"Romina Alina Marc",profilePictureURL:"https://mts.intechopen.com/storage/users/275077/images/system/275077.jpeg",biography:'Romina Alina Marc has completed her Ph.D. (Agronomy) in 2015 at the University of Agricultural Sciences and Veterinary Medicine (UASVM) of Cluj-Napoca, Romania. She is PhD Eng., Lecturer and she is responsible for the research activity in the Vegetable food quality control, Rheology in the food industry, Quality management systems and Food safety of the Faculty of Food Science and Technology, UASVM Cluj-Napoca. She has published 40 research articles on the development of innovative food products, food safety and bioactive compound traceability during processing in reputed journals, 36 international conferences, 9 patent applications, 3 chapters in international books, and 1 scientific book. She was responsible for 7 research projects, member in 7 research projects, won 2 national awards and 70 international awards. He is the publisher of an international book "Food Processing", 2020, IntechOpen Publishing House, ISBN 978-1-78985-894-5. Member in professional associations: Slow Food International; Association of Food Industry Specialists in Romania (ASIAR), from education, research and production; Association of Specialists in Milling and Baking in Romania.',institutionString:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"80942",title:"Mycotoxin Decontamination of Foods Using Nonthermal Plasma and Plasma-Activated Water",slug:"mycotoxin-decontamination-of-foods-using-nonthermal-plasma-and-plasma-activated-water",totalDownloads:37,totalCrossrefCites:0,authors:[null]},{id:"79410",title:"Food Safety Endangers the Potential Escherichia coli Contamination on Currencies",slug:"food-safety-endangers-the-potential-escherichia-coli-contamination-on-currencies",totalDownloads:45,totalCrossrefCites:0,authors:[null]},{id:"80725",title:"Implications of Mycotoxins in Food Safety",slug:"implications-of-mycotoxins-in-food-safety",totalDownloads:56,totalCrossrefCites:0,authors:[{id:"275077",title:"Dr.Ing.",name:"Romina Alina",surname:"Marc",slug:"romina-alina-marc",fullName:"Romina Alina Marc"}]},{id:"81871",title:"The Influence of Some Contaminants in Food Quality",slug:"the-influence-of-some-contaminants-in-food-quality",totalDownloads:1,totalCrossrefCites:0,authors:[null]},{id:"80268",title:"Animal Feeds Mycotoxins and Risk Management",slug:"animal-feeds-mycotoxins-and-risk-management",totalDownloads:50,totalCrossrefCites:0,authors:[null]},{id:"79582",title:"Cunninghamella bertholletiae’s Toxins from Decomposing Cassava: Mitigation Strategy for Toxin Reduction Using Nepenthes mirabilis ‘Monkey Cup’ Digestive Fluids",slug:"cunninghamella-bertholletiae-s-toxins-from-decomposing-cassava-mitigation-strategy-for-toxin-reducti",totalDownloads:84,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"441704",firstName:"Ana",lastName:"Javor",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/441704/images/20009_n.jpg",email:"ana.j@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors, and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9020",title:"Food Processing",subtitle:null,isOpenForSubmission:!1,hash:"4ec2cdd3d6127695e24ca587a854e6a9",slug:"food-processing",bookSignature:"Romina Alina Marc, Antonio Valero Díaz and Guiomar Denisse Posada Izquierdo",coverURL:"https://cdn.intechopen.com/books/images_new/9020.jpg",editedByType:"Edited by",editors:[{id:"275077",title:"Dr.Ing.",name:"Romina Alina",surname:"Marc",slug:"romina-alina-marc",fullName:"Romina Alina Marc"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"28046",title:"Immunosuppressive Therapy After Cardiac Transplantation",doi:"10.5772/26031",slug:"immunosuppressive-is-therapy-after-cardiac-transplantation",body:'\n\t\tIn contrast to renal or pancreas transplantation graft failure after heart transplantation (HTx) is associated with the death of the patient if re-grafting or mechanical support (MCS) is not possible immediately. Since the beginning of modern transplantation medicine one of the highest priorities were preventing and treating graft rejection. Over the last decades experimental, animal and clinical research resulted in the development of new immunosuppressive (IS) drugs leading to an improved patient and graft survival. The efforts of transplant professions to develop new IS protocols trying to reduce the toxic side effects, resulted in an improvement of quality of life (QoL) for transplant recipients.
\n\t\tAt the beginning of the twentieth century research work by Alexis Carrel on performing surgical anastomosis [1, 2] allowed organ revascularization and marked one of the pre-conditions for organ transplantation. It was the Stanford group of Lower and Shumway who first started to study the problems of HTx [3-5] leading to the first human HTx by Banard in 1967 [6]. Within the next year over 100 HTx were done worldwide. Even if technical successful the great enthusiasm for this new therapy decreased rapidly when the poor survival rate became obvious [7]. One of the biggest problem was preventing and controlling graft rejection. Corticosteroides and Azathioprine (AzA) were the main drugs used for IS at that time. The Standford group added rabbit antithymocyte globulin (ATG) to the protocol gaining acceptable survival rates [8]. The main breakthrough came a decade later with a drug called Cyclosporine (CsA). The great advantage of CsA was the selective immunoregulation of T cells in contrast to the non-selective inhibition of cell proliferation by AzA and corticosteroids. CsA was first used in clinical organ transplantation in 1978 [9] and in 1983 it was approved for clinical use to prevent graft rejection in transplantation. Today transplant professions throughout the world contribute the great success of HTx to the introduction of CsA into clinical practice. Four years after the first use of CsA Kino reported of a new IS agent even more potent compared to CsA called FK 506 [10]. It was Starzl and the Pittsburgh Group who but much effort in the establishment of FK 506 into IS protocols [11]. In the recent FK 506 is more frequently used compared to CsA [12].
\n\t\t\tAs early as 1896, mycophenolate acid (MPA), the activated form of mycophenolate mofetil (MMF) was extracted from Penicillium stoloniferum (Gosio, B. 1896. Ricerche batteriologiche chimiche sulle alterazioni del mais. Riv. Igiene Sanita Pub. Ann.7:825-869. 16. Jaureguiberry). The cytostatic effect was reported by Brewin in 1972 and was first used in the treatment of neoplasia [13]. The first report of MMF use as IS drug in animal research was in a heterotopic HTx model in rats [14].
\n\t\t\tLately a new category named proliferation signal inhibitors (PSI), including Rapamycin (Rapa) and Everolimus (EvE) have been introduced to clinical practice. Rapa was discovered in 1965 but it took years before it was introduced to transplantation medicine. The research work of Rapa led to the discovery of the action of the mammalian target of Rapamycin (mTOR).
\n\t\tStarting with the exploration of CsA the field of IS agents has evolved drastically resulting in the possibility of more combinations for different indications. All IS agents have a narrow therapeutic window in common. Transplant physicians have to find an optimal balance avoiding allograft rejection and avoid toxic side effects. There are mainly three categories for IS therapy: first its use as induction therapy, second to maintain the organ allograft (maintenance therapy) and finally if needed to treat acute rejection episodes (anti-rejection therapy). In the following we focus on the recent used IS agents, acting at T cell mediated processes of rejection. Further agents focusing on the role of antibody mediated rejection may be found in the next chapter.
\n\t\t\tThe highest number of rejection episodes will be within the first months after HTx; therefore up to 50% HTx centres worldwide are using a protocol with high IS for the early post-operative period (=Induction therapy or augmented IS therapy) [12].
\n\t\t\tInteractions of IS drugs and other medications may be extensively and categorised in minor, moderate and major interactions. Here only the most important and major interactions will be mentioned.
\n\t\tPolyclonal Antibodies are derived mainly from rabbits or horses, after the animals have been immunized with human lymphocytes (ALS) or thymocytes (ATG). Polyclonal antibodies have multiple distinct antigen-combining sites resulting in the depletion of circulating T-cells, apoptosis of activated T cells and modulation of cell surface receptor molecules. The IS potential of heterologous antibodies has been demonstrated early [15] and the first clinical use of an antilymphocyte glogulin (ALG) is reported by Starzel in 1967 [16]. The heavily contamination with anti-red cells and anti-platelet antibodies was resolved by the use of human thymocytes as the antigen source, resulting in antithymocyte globulin (ATG). First studied in renal transplantation, ATG was established as fix part in the Stanford protocol for HTx [8]. They used rabbit ATG intramusculary for the first three days after HTx and then every other day. The goal was a reduction of T cells to less than 5% in peripheral blood sample.
\n\t\t\tPolyclonal Antibodies have strong IS effect but its use is limited by the production of human antibodies against the xenogeny protein fraction allowing only a short term of use. This also explains the need for corticosteroids and the use of histamine antagonist therapy to reduce the rates of anaphylactic shock. Antipyretic medication should be added when ATG/ALS is given as fever and shivering are some of the prominent side effects. Further side effects are thrombocytopenia, leucocytopenia and anemia due to antibody cross reactions. The rate of opportunistic infections might be as high as 30%. It should be administered intravenously using a dialysis catheter or a central venous access. When administered intravenously using a peripheral vein, phlebitis may result and when given intramuscular local painful swelling leading to an abcess can occur. The goals of use of ATG/ALS in modern IS protocols are: Reducing or even avoiding CNIs due to their nephrotoxic side effects for the first days after HTx establishing a CNI free induction therapy, avoiding under-immunosuppression in the first postoperative days and treating acute cellular rejections when other regimes fail. Monitoring of polyclonal antibody treatment is difficult as the effectiveness might vary from charge to charge. Monitoring was done by achieving leucopenia later followed by using the rosette test [18]; nowadays the fluorescence activated cell sorter (FACS) analyses and T cell counts may be used. Most centres use a fixe dose regime.
\n\t\tAgents who specific block the interleukin 2 (IL-2) receptor on activated T-cells, were developed to be more effective compared to non-selective polyclonal or monoclonal antibodies. An activated IL-2 receptor leads to rapid T cells proliferation and finally to the activation of B cells resulting in the production of antibodies against the allograft. The IL-2 receptor consists of three transmembrane protein chains: α (CD25), β (CD122), and γ (CD132). Basiliximab (trade name Simulect) and daclizumab (trade name Zenapax) are humanized antibodies produced by recombinant DNA technology; both composite of about human (90%) and murine (10%) antibody sequences. They are derivate from non-human species and are monoclonal antibodies to the alpha (CD 25) subunit of the IL-2 receptor. The subunit where the IL-2 receptor blocker binds to is only expressed on activated but not on resting lymphocytes. Both drugs were first used in renal transplantation and are now increasingly used in HTx recipients either as induction therapy or for the treatment of graft rejection. FDA approval for dacluzimab was in 1997 and for basiliximab in 1998. Both drugs are given intravenously and should be given within 2 to 24 hours after transplantation. Repetition should be done within 4 days (basiliximab) or 2 weeks (daclizumab). Due to the different half life time of the agents: 7.2 days for basiliximab and 20 days for daclizumab. Serum levels may be measured by ELISA and are recommended for basiliximab 0.2 ug/ml (about 20mg two times in four days) and for daclizumab 5 to 10 ug/ml to achieve a proper saturation of the receptors. When given 2.5 to 25 mg of basiliximab twice (day 0 and 4) approximately 90% of available IL-2 receptors on T lymphocytes are blocked. Saturation maintained with basiliximab for 4 to 6 weeks, with daclizumab for about 90 to 120 days. It was shown that anti-IL-2 receptor antibodies when combined with standard triple druge regime for induction therapy compared to placebo reduces rejection episodes [19, 20]. In a trial using daclizumab 1 mg per kg within 24 hours after HTx and repeated every two weeks for a total dosage of five, less rejection rates compared to placebo were seen [19]. In a later study it was shown that two doses of daclizumab are similar effective in preventing rejection as five doses, with no negative effects on patient survival [21]. Specific blockade of IL-2 receptor may prevent rejection without inducing global immunosuppression; but even if in the initial studies no increased opportunistic infections rates were observed alike to all IS agents increased risk of infection is still present. Similar to polyclonal antibodies allergic reactions are serious side effects. Anti-IL-2 receptor antibodies are only part of a multiple drug regime. There is a higher risk of lymphoma. Other side effects like nausea, vomiting, diarrhea, tremor, insomnia, headache, tremors, flu symptoms or swelling of peripheral tissue have been reported. A cytocine release syndrome has been reported as well. If anti-IL-2 receptor antibodies are as effective as polyclonal antibodies is still controversial [22, 23].
\n\t\tCalcineurin (CN) is an enzyme dephosphorylating the nuclear factor of activated T-cells complex (NF-ATC) which is in charge for the transcription promotor of Interleukin 2 (IL-2) production. CN is activated when an antigen-presenting cell interacts with a T cell receptor leading to an up-regulation of IL-2 production. IL-2 itself activates T-helper lymphocytes and stimulates the production of cytokines [24]. It is discussed that the absolute amount of produced IL-2 influences the extent of the immune system. Drugs blocking CN are named Calcineurin Inhibitors (CNIs); Cyclosporine A (CsA) and Tacrolimus (TAC) are the most prominent agents out of this group. For all CNIs nephrotoxic and neurologic side effects are an issue and dose reduction or even avoidance of CNIs in HTx protocols have been studied extensively. Nevertheless CNIs are still a major part of IS therapy after HTx.
\n\t\t\tCyclosporine A (CsA) is a lipophil, cyclic polypeptide consisting of 11 amino acids. It binds to cyclophylin (CpN), forming a complex which blocks C, resulting it, resulting in a suppression of activated T-cells and B-cell function. In 1971 CsA was isolated from the fungus Tolypocladium inflatum, found at the Hardanger Vidda in Norway. It was first investigated as anti-fungal antibiotic but the antibiotic spectrum was too narrow for clinical use. Its immunosuppressive activity found in 1972 was first reported in 1976 by Borel [25]. Thereafter the effectiveness in animal and human studies was investigated by Calne and his group in Cambridge [26]. They soon discovered that CsA improved heterogenic heart allografts in rats [27]. The effectiveness of CsA was confirmed in human studies in the filed of renal transplantation reported by Calne [28, 29]. These studies already recognizing the disadvantages of CsA, like the high rate of lymphoma [28] and its nephrotoxic side effects [30, 31]. It was the Stanford group who introduced CsA into clinical practice for HTx [17]. After animal research with heterotopic and orthotopic HTx in monkey, they introduced CsA to 66 patients and achieved a one year survival of 80%. At that time the starting dose of CsA was 18mg/kg per day combined with AzA and corticosteroids. European countries followed this protocol [32, 33]. Today when starting CsA recommended dosages are: intravenously (i.v.) application: either 2 to 4 mg/kg once a day continuous over 24 hours or over 4 to 6 hours, 1 to 2 mg/kg twice a day over 4 to 6 hours; oral application: 8 to 12 mg/kg/day in 2 divided doses is common. Afterwards dosage is adjusted to target trough levels and dosage reduction is aimed as low as 3 to 5 mg/kg/day.
\n\t\t\t\tWhen CsA is given per oral it is resorbed in the upper intestinal tract 30 to 60 minutes after the drug intake. The resorption is influenced by ingestion especially by grapefruit juice. The resoprtion half time is about 60 minutes. CsA is metabolized by the p450-3A enzyme in the intestinal wall epithelium. After passing the portal blood stream only 30% of the original CsA suspension will be in the systemic blood stream. The first commercially available oral formulation was very variable on absorption and blood concentration and it was tried to overcome this effect [34]. At the beginning of the 1990ies a new Cyclosporine microemulsion (Sandimmun Neoral, Novartis, Basel, Switzerland) was developed, resulting in a higher bioavailability and reducing the individual deviation attributed to ingestion. The new suspension reaches the maximum blood concentration after 1.5 to 2 hours [35, 36]. CsA is lipophil and the highest concentrations are found in the adipose tissue and in the liver. It is eliminated with a mean half time of 6 to 8 hours mainly across the liver, only 6% across the kidney. Elimination half time in children and lower in women or patients with chronic liver disease [37].
\n\t\t\t\tWhen CsA was introduced to clinical practice the rejection monitoring and drug monitoring was at its beginning. Clinical practice rejection monitoring was done by series of ECG to see voltage drops. Drug monitoring was done by the toxic side effect of AzA, monitoring the absolute T-cell number to see a severe depression. None of these methods were practicable for CsA monitoring as it is not affecting the T cell count. It became clear that a better monitoring of drug availability and a better monitoring of rejection episodes are necessary. The introduction of endomyocardial biopsy (EMB) made histologic examination possible [38]. CsA treatment and rejection monitoring with EMB resulted in a significant reduction of rejection episodes but incidence of malignant lymphoma and early renal dysfunction increased drastically [17, 28, 29, 39]. Measurement of CsA concentration in the blood stream was initiated; at first hindered as there are over 20 metabolits of CsA and the concentration itself in the blood stream is low. Today tow different methods are used for CsA measurement: In clinical practice the immunoassay (IA) is the most practicable. Different IAs have been introduced, like the radioimmunoassy, enzyme-multiplied immunoassay and florescence-polarisations immunoassay; all are using antibodies to CsA. The more specific method is the high-performance liquid chromatography (HPLC) which may be combined with mass spectrometry (MS). Measuring CsA concentration may be done before the patient takes the drug (pre-dose level, C0 measrument) or 2 hours after the intake of the drug (C2 measurement, 2 hours post dose). The C0 level is the more frequent and commonly used measurement but the C2 shows better correlation with the area under the curve and acute rejection episodes. A better prediction of long-term graft survival by C2 measurement was reported as well [40].
\n\t\t\t\tFinding the optimal dose and blood level for CsA treatment was and is still a challenge. The The initial Stanford protocol included ATG, corticosteroids and CsA with an initial dose of 18mg/kg followed by 10mg/kg per day [7]. The protocol was modified and CsA was adapted to the measurements of CsA blood trough levels, using a target area of 100 to 300 ng/ml, followed by a further decrease to 100 to 300 ng/ml for the first month and then lowered to 50 to 150 ng/ml in combination with AzA and ATG (for the first 7 days after HTx). This trend of avoiding high dosage of CsA to reduce the incidence of lymphoma and avoid CNI-induced nephrotoxicity has not ended yet. With the introduction of Everolimus a further dosage reduction of CsA without losing effectiveness was possible [41, 42].
\n\t\t\t\tCo-administration with CsA will increase serum levels of HMG-CoA reductase-inhibitors, strong inhibitors of CYP450-3A4 significantly increase the blood concentrations of CsA. Sulfonamides, rifampin and carbamacepine reduce CsA concentrations.
\n\t\t\tTacrolimus (TAC) blocks the CN by forming a complex with the FK506 binding protein resulting in the suppression of T-lymphocyte activation and cytokine production (IL2, 3, 4, Interferon and tumor necrosis factor [TNF]). The structure of the macrolide antibiotic isolated from Streptomyces tsukubaensis is more similar to Rapamycin than to CsA. TAC was described seven years after the introduction of CsA [10] and found to be 100 times more potent [43]. It was first clinical used in 10 HTx recipients at the University of Pittsburgh in combination with steroids [44, 45]. When given per oral its absorption half-life is about 5 to 6 hours and the bioavailability is about 20%, depending on the intake of food (fat food reduces the bioavailability, grapefruit juice increases the blood concentration); it is mainly absorbed in the duodenum and jejunum, far less in the ileum and colon. 75 – 99% bind to proteins and the elimination half-life is 11.7 hours. Its bioavailability is higher in patients with impaired liver function. TAC has a large inter- and intraindividual variation in the pharmacokinetics. Extraction is mainly through the stool and it can not be removed by dialysis. Similar to CsA TAC should be given in two divided dose every 12 hours starting orally with 0.1 to 0.3 mg/kg/day, intravenously 0.01-0.03 mg/kg/day. Intravenously dosage in pediatric HTx might be raised up to 0.03 to 0.05 mg/kg/day.
\n\t\t\t\tMonitoring of the trough level is commercially done by an enzyme-linked immunosorbent assay (ELISA) or microparticulate enzyme immunoassay. Drug interactions are similar to CsA (inhibitor or inducers of P4503A4 may alter TAC level).
\n\t\t\t\tTAC seems to reduce the numbers of rejection episodes compared to CsA; in 1992 an actuarial freedom from rejection in the TAC group at 90 days after HTx of 41% and 28% of recurrent rejection was reported [44]. Especially in children TAC is increasingly used [46].
\n\t\t\t\tUntil recently TAC was marked as Prograf (Astellas Pharma US, Inc., Deerfield, IL) and had to be taken twice a day similar to CsA (Sandimune Neoral, Novartis Pharmaceuticals, Basel, Switzerland); now a retard drug was released named Advagraf (Astellas Pharma US, Inc., Deerfield, IL), which may be taken just once a day. It was studied in renal and liver transplant patients; approval for HTx is investigated.
\n\t\t\t\tEven if very close related to CsA there are clinical relevant differences especially regarding side effects of the drug. TAC has a higher incidence of de-novo diabetes mellitus, a higher rate of anaemia and is increasing the tonus of the muscle. CsA on the other side leads to gingival hyperplasia, arterial hypertension, hirsuitsm, and increases liver laboratory values.
\n\t\t\tPurine synthesis inhibitors (also called Antimetabolites) can halt cell growth and cell division either in a very unselective way (Azathiporine, [AzA]) or a more specific way (Mycophenolate Mofetil, Enteric-coated mycophenolate mofetil). Since the beginning of modern transplantation medicine purine synthesis inhibitors (AzA) have been part of the IS protocol. Between 2000 and 2009 the reported use of purine synthesis inhibitors to the international registry for heart and lung transplantation (International Society for Heart and Lung Transplantation, ISHLT) as maintenance therapy in HTx recipients was over 85% [12].
\n\t\t\tThe pro-drug of 6-Mercaptopurin, a thiopurin substance, called Azathioprine (AzA) is a purine analogue IS drug which has antiproliverative effects especially on fast growing cells; i.e. T-cells and B-cells. AzA is metabolized to 6-Mercaptopurin which is less effective [47, 48]. AzA blocks the mitosis of cells resulting in an inhibition of proliferation of activated T and B lymphocytes and it seems that AzA is blocking the production of IL2 too. Nevertheless its complete mechanism of action is still not fully understood. The antiprolivaertive effect is not limited to T and B cells but also on bone marrow, hepatic or other cells. This leads to its severe side effects: bone marrow depression resulting in leucopenia and thrombocytopenia and its hepatotoxic side effects. Other side effects like nausea, vomiting or diarrhoea have been reported mainly at higher doses. Long term treatment might be associated with acute pancreatitis.
\n\t\t\t\tAzA was one of the first drugs used to prevent allograft rejection and its first human use in HTx was reported by the Stanford group [49]. The Standford protocol used AzA 1.5-2.5 mg/kg per day combined with corticosteroids. Today starting dosage recommendations is once a day 3 to 5 mg/kg orally or i.v. and may be reduced to 1 to 3mg/kg as maintenance therapy.
\n\t\t\t\tIts peak plasma concentration is reached within 1 to 2 hours after oral intake and its plasma half-life time is 3 to 6 hours. AzA is eliminated mainly by the kidney.
\n\t\t\t\tOne of the weak points of AzA treatment is the unspecific monitoring. Daily dosage administration is still adapted depending on the toxic side effects trying to target the white blood cell count between 4000mm3 and 6000mm3. Lately there are reports of monitoring AzA treatment by blood concentrations of 6-thioguanin [50]. When AzA is combined with allopurinol the dose should be reduced to 75% to avoid severe pancytopenia as allopurinol affects the metabolism of 6-Mercaptopurine. AzA may reduce the anticoagulant effect of Warfarin [51].
\n\t\t\t\tAzA had a major positive impact on post-transplant outcome but due to its unspecific way of action, severe side effects and the disadvantage of specific monitoring AzA was replaced in many IS protocols. On the other hand it is increasingly used in evolving countries due to its lower costs.
\n\t\t\tMycophenolic acid (MPA) is the activated IS species of mycophenolate mofetil (MMF). MPA is derived from the fungus Penicillium stoloniferum and was marked as MMF. To improve its bioavailability mycophenolate sodium was developed (see 3.4.2.1). MMF is a dehydrogenase controlling the synthesis rate of guanine monophosphate resulting in an inhibition of purines. Compared to AzA it specifically suppresses proliferation of T and B lymphocytes without severe bone marrow depression. In large multicentre trails the superiority of MMF over AZA was reported resulting in a progressively replacement of AzA by MMF [2,52,53,54].
\n\t\t\t\tFollowing oral administration it is rapidly metabolised 100% to MPA in the intestinal tract and the liver. No plasma MMF concentration will be measured in the blood, only MPA. MPA is bound 97% to albumin and metabolized in the liver and intestinal tract to a stable phenolic glucuronide (MPAG) which is not pharmacologically active. The maximum plasma concentration of MPA is reached about 1 hour after oral intake and its half-life time is around 16 hours (the same is true for MPAG). Over 90% of MPA is extracted by the kidney but MPAG is extracted by the bile. MPAG enters the enterohepatic cycling process; it is metabolised in the intestinal tract back to MPA and reabsorbed. This leads to a second peak in the plasma concentration after 6 to 12 hours of intake. No dosage adjustment in patient with renal impairment or haemodialysis is needed. In patients with a reduced glomerular filtration rate (GFR) a 3-to 6-fold higher MPAG area under the curve values were reported [55, 56]. In combination with TAC a 50% lower dose of MMF compared to a combination with CsA is recommended as CsA inhibits the hepatic extraction of MPAG leading to a reduced rate of enterohepatic recirculation.. MPA/MPAG can not be removed by hemodialysis. Side effects of MMF are vomiting, diarrhoea and other gastrointestinal side effects [57]. Diabetes and necrosis of bones have been related to MMF. A study were MMF was tested in pediatric HTx recipients showed that genetic polymorphism can directly Influence adverse events of MMF [58].
\n\t\t\t\tInitial trials using MMF used standard dosage of 1g in combination with CsA and did not use therapeutic drug monitoring; today dosage recommendation is 1g to 1.5 g twice a day orally or i.v. but when given i.v. dosage shoulkd be given at least over two hours.
\n\t\t\t\tDue to the complex pharmacokinetics of MPA and not adequately reflected MPA trough concentrations when combined with TAC, drug level measurement of MPA is still not widely common. HPLC with ultraviolet detection and mass spectrometric may be used to measure free MPA concentrations. Some centres describe the use of an enzyme-multiplied immunoassay technique. Simultaneouse application of acyclovir, ganciclovir and high doses of salicylates are enhancing plasma concentrations of MPAG; antacids, colestyramin and CsA are lowering it. To reduce the gastrointestinal side effects of MMF it was coated (see 3.4.2.1).
\n\t\t\t\tEnteric-coated Mycophenolate sodiumfortic (EC-MPS) is an enterie formulation of mycophenolate sodium (a prodrug of MPA). MPA reversible inhibits the inosine monophosphate dehydrogenase and the pathway of guanosine nucleotide synthesis which affects B and T lymphocytes whereas other cell types can utilize salvage pathyways for purine synthesis. The coating of mycophenolate sodium should reduce the gastrointestinal side effects [59]. In renal transplant recipients a dosage of 720 mg EC-MPS twice a day was therapeutically equivalent to MMF 1000 mg twice a day with comparable safety profile [60]. Dosage recommendation in HTx recipients is 720mg twice a day either orally or intravenously. Optimal measurement of EC-MPS plasma concentration due to its delay in reaching maximal blood concentrations compared to MMF, is yet not clarify (C0, C2, C4, C6).
\n\t\t\t\tProliferation signal Inhibitors (PSI) (also named mammalian target of rapamycin (mTOR) inhibitors) include two important drugs currently available for organ transplantation: Rapamycin (Rapa) or Sirolimus (SRL) and Everolimus (EvE). Four decades ago Rapa was extracted and its antifungal effects reported [61]. Intensive research resulted in the discovery of the target of rapamycin named mTOR. mTOR is a serine-threonine kinase which is a transducer of information from growth factors and energy sensors within the cell. Both drugs form a complex with the intracellular binding protein FKBP-12, (similar to FK 506) but contrarily to TAC the PSIs inhibit the activity of mTOR. This leads to an arrest of a cell cycle in the mid-to-late G1 phase [61, 62]. While FK 506 is suppressing lymphokine production and blocking activation of T-cells, PSIs inhibit cells proliferation by impairing their response to growth-promoting lymphokines [63, 64]. They are also used in other areas of medicine like oncology or interventional cardiology (drug eluting stents).
\n\t\t\tRapamycin (Rapa) is a macrocyclic lactone with antifungal, antibiotic and IS properties. It was discovered in 1965, extracted out of soil taken from Rapa Nui in New Zeeland [65]. Its IS effects were discovered in the 1990s [61]. During the approval studies for Rapa the anti-tumor effects of Rapa and its analogues like EvE were found introducing them in oncology and for the prevention of restenosis after percutaneous coronary angioplasty.
\n\t\t\t\tRapa has structural similarities to FK 506 binding protein but it forms complex with FKBP12 which results in an inhibitor of the mTOR [66]. This leads to suppression of T and B cells and decreases the population of dentritic cells who present antigen to T cells during activation [67].
\n\t\t\t\tThe bioavailability of Rapa is 20% and decreases with food rich in fats (see 3.5.2); 92% of Rapa binds to albumin, is metabolism extensively in intestinal wall via p-glycoprotein and in the liver by CYP3A4. Seven major metabolites are known but 90% of the IS activity is done by Rapa; close to 90% is eliminated by the liver only 2% by the kidney. In contrast to EvE half-life time of Rapa is about 62 hours ± 16 hours allowing one single daily dose.
\n\t\t\t\tA loading dose for Rapa on the first post-transplantation day is recommended; in renal transplantation the loading dose should be 3 times the estimated maintenance dose (normally 2mg), in HTx recipients 15mg are given followed by a maintenance dose of 5mg and further guided by trough levels. The total dosage must no exceed 40mg per day; if a higher dose is needed it should be divided over a period of 2 days. In children with a body weight below 40 kg initially a loading dose of 3mg/m2 and a maintenance dose of 1mg/m2 daily is recommended. If CNI therapy is reduced, Rapa dosage should be increased according to the targeted trough levels. In patient with severe hepatic impairment Rapa dosage should be reduced.
\n\t\t\t\tRoutine clinical measurement is done with chromatographic methods. Major side effects of Rapa are swelling in different tissues, prolonging healing of wounds, increasing cholesterol and triglyceride levels, proteinuria as well as blood pressure. Rapa induced interstitial lung disease like pneumonitis have been observed [68-70]. When combined with CNIs, CNIs dosage reduction is necessary otherwise worsening renal function will develop. Rapa recommended blood trough levels in combination with CNIs is between 4 to 12 ng/ml, without CsA a four times higher Rapa dosage might be needed (CsA/CNIs suppress the metebolizion of Rapa), the recommended blood trough levels is increased between 12 to 20 Ng/ml depending on the time after transplantation. This is also the reason why Rapa intake when combined with CNIs is recommended four hours after CNI administration. Otherwise Rapa enhance the toxic effect of CNIs with an increased risk of CNI induced hemolytic uremic syndrome, thrombotic thrombocytopenic purpura and thrombotic microangiogiopathy. Drugs inducing CYP3A4 (Rifampicin) will decrease, strong inhibitors (Macrolides, Ketoconazole, Itraconazole) will increase Rapa blood levels. Similarly to CNIs grapefruit juice increases plasma concentration of Rapa. According to the last ISHLT report Rapa is currently used up to 20 % of HTx recipients [12].
\n\t\t\tEverolimus (EvE) is an analogue of Rapa and differs only by one extra hydroxyethyl group at position 40; still this leads to some differences. EvE blocks growth factor-mediated proliferation of cells including vascular smooth muscle cell through a CA2+ independent signal [71]. Following oral intake EvE is rapidly absorbed and reaches its maximal blood concentrations after 1 to 2 hours. The oral bioavailability is approximately 30% [72-75] and it is altered by food; a high-fat meal is slowing down the absorption of EvE. It is recommended that EvE is taken constantly either with or without food. EvE undergoes major metabolism with none of the metabolites reaching significantly IS activity. Its half-life time is 28 hours and compared to Rapa (62 hours) much shorter. Initial dose may be 0.75 mg twice a day, no loading dose is necessary.
\n\t\t\t\tEvE has a more rapid time to steady state compared to Rapa (4 versus 6 days). EvE binds to plasma proteins about 75% to 80% and is mainly eliminated in the liver, only 5% are extracted across the kidney. In patient with severe hepatic impairment EvE dosage should be reduced. PSIs and CNIs are metabolised by cytochrome P4503A4 (CYP3A4) isoenzyme leading to reduced clearance of EvE when CNI is given. Pre-clinical research reported of no nephrotoxicity of EvE [76] but when it was first clinical used combined with full dose CsA it showed worsening renal function [77, 78]. For that reason FDA approval was refused, but the European Medicine Agency (EMEA) approved EvE for further studies. In a prospective multicentre study the possibility of dose reduction of CsA combined with EvE resulted in stable renal function without loss of efficacy [79]. Further trials confirmed this [41, 42, 80]. Besides this interaction drugs who strong induce CYP3A4 will decrease, strong inhibitors will increase EvE blood levels. Reported EvE blood trough levels are within 3 to 8 ng/ml. Drug monitoring is done by HPLC coupled with mass spectrometry and an immunoassay is being developed. EvE showed to have antiproliferative effects delaying the onset of cardiac transplant vasculopathy and reducing the rate of CMV infections [77, 81]; it is increasingly used, up to 2.6 % in HTx recipients in the years 2008 and 2009 [12]. Due to the favourable effects it may be used in children and is currently investigated (RAD 2313).
\n\t\t\tAt the beginning little was know about interaction, side-effects and combination of IS drugs. Nowadays with many different IS drugs acting at different receptors and stages of the immune system more effective and less toxic regimes may be used.
\n\t\t\tIt was revealed that the combination of different acting IS drugs with adjusted dosage enhance their effectiveness and reduce toxicity. To avoid nephrotoxic side effects of CNIs and to achieve a high IS, over 50% of the centres reporting to the ISHLT are using an induction therapy (20% using polyclonal antibodies, 30% use IL2 receptor antibodies) [12]. Conventionally for maintenance therapy patients are treated with a triple drug regimens, consisting of a CNI (CyC, TAC), antiproliferative agent (AzA, MMF) and corticosteroids. Shortly after the introduction of CsA in 1980 Griffith and colleagues used CsA in combination with low-dose steroids in HTx recipients, tapering steroids from 200mg per day to 15 mg per day similar to the regime used by Starzel in renal and liver transplant recipients [82-84]. Combining CsA, AzA and Cortocosteroides, commonly called triple-drug immunsupression, evolved and showed improved survival for short, medium and long term follow-up [85, 86]. It increased 1 years survival after HTx from 60% to 80% and became the standard regime not only in the US but also in European countries over the next 30 years [87, 88]. The triple-drug protocol, even if modified (many centres skipping corticosteroids after a certain time) is still used around the globe. Adding a forth drug to the regime has been reported but became not standard [19, 89].
\n\t\t\tStill due to the well know side effects of IS, associated with a significant morbidity, discussion about reducing IS will continue. Reduce IS therapy with a mono or dual drug regimes are investigated. Recently a retrospective study involving 150 patients within 28 days after HTx maintaining recipients only on monotherapy with TAC has been published [90]. One has to notice that in IS monotherapy compliance is paramount and could result in a disastrous outcome. The conviction of currently experts in the field of IS is, that today’s “standard” immunosuppression may be replaced by IS individualized for each patient on the basis of genomic profile, baseline risks for rejection and infection, and perhaps serial assessments of immune response after transplantation [91].
\n\t\tDifferent principles of IS treatment after organ transplantation have been established over time. After HTx numbers of rejection episodes and immune reactivity are highest within the first 3-6 months. Therefore one of the principles is to use the highest intensity of IS immediately after surgery and decrease it over the first year (Induction therapy (see 3.1), corticosteroid weaning (see 4.1.2); lowering blood concentrations of IS agents). The second principle is to rather admit more IS drugs with non-overlapping toxic side effects at a low dose rather than a higher and more toxic dose of a single drug. Therefore monitoring of the IS drug trough levels is of great interest; special caution must be paid to interaction of the drugs (lowering or increasing the blood levels) or i.e. diarrhea when orally taken. The goal is to avoid over-immunosuppression, which leads to infection and malignancy. This on the other hand may lead to late acute rejection episodes even if it is rare [92]. Corner stone of the treatment are corticosteroids, both oral or intravenous, ATG (see 3.1 Polyclonal Antibodies), IL-2 receptor blockers (see 3.2 Interleukin 2 receptor antibodies) or murine monoclonal antibody (see 4.2). The type of treatment depends on clinical status of the recipients (if the rejection is hemodynamic compromising [reduced cardiac output, decreased pulmonary artery saturation, elevated wedge pressure, reduced cardiac index]) the histology degree and severity of the rejection. Moderate to severe rejection episodes need therapy: intravenous corticosteroids for three to five days, intensify oral maintenance IS therapy and eventually change to another protocol; if there are recurrent rejection episodes TAC or EvE may be considered. In patients with hemodynamic impairment additionally polyclonal or monoclonal antibodies or plasmapheresis should be kept in mind.
\n\t\tCorticosteroids inhibit the synthesis of cytokines, but the exact mechanism of action in solving acute rejection is not jet completely understood. Steroids suppress besides i.e. IL-6, interferon gamma, TNF, the production of IL-1 resulting in a diminished production of IL-2 by activated T cells. In animal models it was reported that steroids induce lymphocytolysis which was not proved in humans. Synthetic pharmaceutical drugs with corticosteroid-like effect are used in a variety of treatments. Prednisone is the most used synthetic steroid and is five times more potent compared to cortisol. Its bioavailability is 70% when orally taken and it is metabolised in the liver. Natural steroid hormones have a very short half-life time, synthetic steroids like prednisone have a half-life time of 1 hour. The side effects of long-term corticosteroids are commonly known; dosage reduction below the cushing threshold or even weaning them off are valid options. Nevertheless for acute rejection episodes intravenously high dose corticosteroid treatment is still necessary and effective. After solving the acute phase of the rejection episode orally corticosteroids should be introduced to treatment for at least some time or if already part of the maintenance IS protocol its dosage should be increased.
\n\t\t\tOver 85% of the centres reporting to the ISHLT are currently using corticosteroids within the first year after HTx, after 5 years about 50% are still using corticosteroids [12, 46]. The negative side effects of steroids are well known such as i.e. weight gain, glucose intolerance, dyslipidemia, osteoporosis, or cartaract. Most of the rejection episodes are within the first year after HTx and most of the steroids can be taken off over a course of a few months. The rationale for diminishing the overall use of corticosteroids is the availability of new IS agents acting more selective compared to synthetic corticosteroids. Numerous protocols were established, most of them use a high dosage of corticosteroids intra-operative (when starting reperfusion) and within the first days (as part of an induction therapy). When oral dosage is given different possibilities are available such as i.e. fixed dose of 15 mg per day or prednisolon 0.05 to 2mg/kg divided by one to four doses per day. After weeks of months the dose is reduced achieving a dose below the cushing threshold. Some study groups report to take off corticosteroids as early as 8 weeks after HTx [90] or over a course for several months following a simple weaning protocol guided by daily cortisol measurments to avoid onset of adrenal insufficiency (level > 8 µg/dl continue to wean, otherwise continue steroid therapy) (Baran DA. A prospective trial of steroid discontinuation in stable heart transplant patients as guided by serum cortisol measurement. International Society for Heart and Lung Transplantation 2009, Abstract 431). Other weaning protocols decrese the daily prednisone dosage by 1mg each month starting at month 6 post HTx [93].
\n\t\t\t\tThe question why long-term use of corticosteroids is still that present may have several reasons i.e. avoiding adrenal insufficiency or other potential effects when treatment is stopped but also the ‘heritage’ of this therapy as steroids once were nearly the only immunosuppressant choice for transplant recipients.
\n\t\t\tMuromonab-CD3 (brand name: OKT3) is a monoclonal antibody against CD3 antigen resulting in an inhibition of T-cell function by down regulation of CD3 positive cells. It was the first monoclonal antibody to be approved for clinical use in humans. Similar to polyclonal antibodies its way of administration is only intravenously. Recommended dosage is 5 mg per day, in pediatric patients (< 30kg body weight) initial dosage may be lowered to 2.5mg per day. The human body will produce human anti-mice antibodies, as OKT3 is like a mice-antibody explaining the loss of effectivity if given repeatedly. Toxic side effects besides the well know from all IS agents (higher infection rate higher rate of lymphoproliferative disorders) have been reported: cytokine-mediated first-dose reaction, pulmonary edema, aseptic meningitis, haemolytic-uremic syndrome. The first-dose reaction may include fever, rigors, nausea, vomiting, and diarrhea which will decrease with repeated exposure. Nevertheless steroids, antihistamines and antipyretics should be given along with OKT3 to minimize these side effects. It takes about a week after ending the OKT3 treatment until the T cell function returns to normal.
\n\t\tOver the past decade, an enthusiastic pursuit for flexible electronics, employing both organic and inorganic semiconductor materials, with continuously improved performance has been observed [1]. The material like polymer, carbon nanotubes (CNTs), and silicon (Si) membrane are popular candidates for flexible electronics. Compared with other materials, monocrystalline Si nanomembrane released from silicon-on-insulator (SOI) emerges as one of the best choices due to its high carrier mobility, commercial availability at relatively lower cost, and mature fabrication techniques [2]. Recently, nanostructured silicon has been widely used to produce flexible electronic devices like flexible solar cells, thermal electricity, and piezoelectric generators.
\nFunctional part of flexible electronics based on silicon can be fabricated in a standard complementary metal-oxide semiconductor (CMOS) technology. A standard CMOS technology includes photolithography, etch, deposition, and doping. Moreover, frontside- and backside-release process, transfer process, and bonding process for flexible substrate are developed to generate flexible silicon membrane with functional part. For frontside-release process, deep reactive-ion etching (DRIE), buffered oxide etcher (BOE), or xenon difluoride (XeF2) etching are used to release membrane structures, while for backside-release process, lapping, chemical mechanical polishing (CMP), or XeF2 etching are employed to thin the Si substrate. After fabricating thin Si membranes with functional devices, special transfer process is up required to stick released devices on a flexible substrate like PDMS or Kapton® tape. After the release process, the released Si membrane is transferred and bonded to a flexible substrate (Figure 1).
\nSchematic diagram of Si-based nanostructures that are served as flexible thermoelectric generator, solar cells, ICs, and piezoelectric generators. As shown in the middle, Si nanowire array on plastic substrate and its cross section under scanning electron microscopy (SEM) are flexible. Images at the bottom: Reproduced with permission [
Many researchers have demonstrated flexible electronics based on polymers [9, 10] and CNT [11, 12]; however, the micromachining process with those materials is largely limited by the process temperature and compatible chemicals. Moreover, the devices are typically not scalable or almost impossible to integrate with current advanced IC technology. Compared to polymers and CNT, Si-based flexible electronics can employ the matured CMOS fabrication techniques such as photolithography, atomic layer deposition (ALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), Hydrofluoric Acid (HF) etching, reactive-ion etching (RIE), etc. However, in order to produce flexible electronics using traditional Si-based COMS process, development of release process, transfer process, and bonding process are essential for the production of flexible thin silicon membrane. To realize flexibility the oft used processes are DRIE, XeF2 dry etching, transfer through polymer stamp, process for bonding to flexible substrate, etc. On the whole, the fabrication of silicon-based flexible electronics consists of two major steps: the fabrication of functional part like photodiode, metal-oxide semiconductor field-effect transistor (MOSFET), fin field-effect transistor (FinFET), ferroelectric RAM (FeRAM), etc. and the thinning of device to realize the flexibility. In this chapter, micromachining processes are introduced and described.
\nCMOS process is a standard process used to produce integrated circuits (ICs) and form electronic circuits and system in large scale. CMOS process involves various basic fabrication processes such as wafer manufacturing, oxidation, photolithography, doping, deposition, etching, and CMP.
\nSilicon wafers are produced from raw material sand by purifying and crystallizing. The purified silicon is held in molten state at about 1500°C, and after dipping a seed crystal into the melt, the silicon ingot can be produced by gradually extracting the rod. In addition, the silicon can be lightly doped by inserting doping material into the crucible. The fabricated silicon material is used to produce the CMOS device such as MOSFET and FinFET. Figure 2a shows the fabricated traditional bulk Si wafer. Nowadays the most advanced transistors are FinFET or fully depleted silicon-on-insulator (FD-SOI) planar transistor technology that is developed at the scale smaller than 25 nm. In the fabrication of FD-SOI transistor, instead of the traditional bulk Silicon wafer, the new more expensive material called SOI wafer is employed. The SOI wafer is fabricated by either separation by implantation of oxygen (SIMOX) process or Smart-Cut process [13]. Figure 2b shows SOI wafer for FD-SOI transistor. The thickness of the silicon film is in the ranges from 10 nm to 30 nm; while the standard thickness of BOX is approximately 145 nm and the thickness of ultra thin BOX ranges from 10 nm to 30 nm [14].
\n(a) Traditional bulk silicon wafer. (b) FD-SOI starting wafer.
In the CMOS fabrication, silicon dioxide layer is used as an insulating material between different conducting layers or acts as a mask or protective layer against diffusion and high-energy ion implantation. The oxidation is performed by a chemical reaction between oxygen (dry oxidation) or water vapor (wet oxidation), and the silicon slice surface is heated in a high-temperature furnace at about 1000°C [15]. Dry oxidation is often used to produce thin and robust oxide layers, while wet oxidation is used to produce thicker and slightly porous layers.
\nWith the help of mask, the photolithography is employed to create patterned layers of different materials on the silicon wafer. Photolithography involves several steps. At first, a photosensitive emulsion (photoresist) film is coated on wafer surface using spin coat. Following that, the wafer is exposed to a pattern of intense light with the help of mask. For positive photoresist (PR), the exposed regions are soluble in the developer, while for negative photoresist, the unexposed regions are soluble in the developer. Tetramethylammonium hydroxide (TMAH) is a widely used developer to remove unwanted photoresist regions. After development, the etching is performed to remove the unwanted regions that are not protected by photoresist. In projection systems, the resolution is limited by the wavelength of the light and the ability of the reduction lens system to capture enough diffraction orders from the illuminated mask. Nowadays, the most advanced CMOS photolithography is at the scale of about 7 nm, but for flexible electronics photolithography at the scale of about 1 μm is enough for most application such as imager, temperature sensor, and humidity sensor.
\nDoping is used to produce electronic components such as diode and various transistors. After masking some area of the silicon surface, doping can be done in exposed regions. Doping can be performed by either diffusion method or ion implantation. There are two basic steps for diffusion method: predeposition and drive-in. In the predeposition step, the wafer is heated in a furnace to a certain temperature (about 1000°C), and carrier gas such as nitrogen and argon with the desired dopant such as phosphine PH3 or diborane B2H6 flow to the silicon wafer. The diffusion of dopant atoms takes place onto the surface of the silicon, and in this step we can control the dose of dopant atoms. In the drive-in step, the wafer is heated in an inert atmosphere for few hours to distribute the atoms more uniformly and to a higher depth [15]. For ion implantation method, charged dopants (ions) are accelerated in an electric field and penetrated into the wafer. The penetration depth can be precisely controlled by reducing or increasing the voltage that needed to accelerate the ions. Following ion implantation, a drive-in step is also performed to achieve uniform distribution of the ions and increase the depth of penetration. Figure 3 shows two phosphorous doping processes for SOI wafer, in which secondary ion mass spectrometry (SIMS) was used to analyze the doping profiles under two implantation conditions: one has energy/dose of 12 keV/1 × 1016 cm−3, and the other has 150 keV/4 × 1015 cm−3 [1].
\nSIMS results of phosphorous doping profiles of two implantation conditions: 12 keV/1 × 1016 cm−3 (a) before and (b) after annealing; 150 keV/4 × 1015 cm−3 (c) before and (d) after annealing. Reproduced with permission [
For MOS Fabrication, various deposition methods are used to form conducting insulating and passivation layers with a variety of materials. There are three main deposition processes: PVD, CVD, and ALD. CVD is widely used to deposit conducting layers such as polysilicon and insulating layers such as SiO2 and Si3N4. ALD is used to deposit gate dielectrics with high-k material such as hafnium dioxide HfO2 and tantalum pentoxide Ta2O5 that are necessary for FET at scale smaller than 25 nm. PVD is an established method of depositing metal contacts, barriers, and interconnects used in ICs [16]. In the advanced CMOS, a 3D stack chip structure is used to further improve the integration by using solder flip chip and through-silicon vias (TSVs). For the fabrication of TSVs, the depositions of passivation layer such as silicon nitride (SiN) and metal layer such as copper (Cu) are necessary. But some deposition processes are not more suitable for TSVs with aspect ratios more than 10:1; the capability of several deposition processes to coat the sidewalls of TSVs is limited as shown in Figure 4. Compared with ALD, the deposition coverage of CVD decreases below 20% for aspect ratios exceeding 10:1, and for aspect ratios larger than 2.5:1 the deposition coverage of PVD is already less than 20%. Moreover, molecular vapor deposition (MVD) is an alternative deposition process that is suitable for TSVs with aspect ratios larger than 10:1 [17].
\nSchematic graph of deposition coverage in comparison of PVD, CVD, and ALD deposition processes. Reproduced with permission [
Etching process is used to remove unwanted material and to create desired pattern. There are two types of etching methods: wet etching and dry etching. For wet etching, the wafer is immersed in a suitable etching solution, which can remove the exposed material leaving the material beneath the protective layer intact. For example, potassium hydroxide (KOH) is used to etch silicon, while hydrofluoric acid (HF) is used to etch SiO2. In addition, the etching mask should not dissolve or at least be etched much slower in the etchant. For example, SiO2 and Si3N4 can serve as mask for Si etching in KOH, while Si3N4 and metal are usually used as SiO2 wet etching mask. Dry etching, usually called plasma etching or reactive-ion etching (RIE), is used to remove the materials by chemical reactions (using chemical reactive gases or plasma) and by purely physical methods (e.g., sputtering and ion beam-induced etching) or with a combination of both chemical reaction and physical bombardment (e.g., RIE). For instance, SF6 and CF4 can be utilized to etch silicon anisotropically, while XeF2 etches silicon isotropically with pure chemical reaction. Depending on the selectivity and how much materials need to be etched, PR, SiO2, or metal can be used as the mask for silicon etching [19, 20].
\nEtching can be isotropic or anisotropic and therefore can form different etching profiles. Isotropic etching has the same etch rate in all directions and, anisotropic etching has different etch rates in the lateral and vertical directions. For example, silicon can be etched anisotropically by using CF4 or SF6 and can be etched isotropically using XeF2 or HF:HNO3:H2O.
\nCMP process is a combination of mechanical and chemical actions, and it has been widely used to polish and thin silicon substrate. A CMP process could be significantly influenced by many factors such as abrasives, pH, and polishing temperature [21]. The schema of CMP tool and process to polish wafer are shown in Figure 5 [22]. A wafer is firstly held by the polishing head using a vacuum and then the polishing head starts to rotate, resulting in the rotation of held wafer on the polishing pad [22]. The slurry used in the CMP process is dispensed through a slurry arm with the help of polishing pad conditioner, and the polishing pad surface is refreshed for each polishing process so that global planarization and polishing can be achieved [22]. During CMP process, the wafer is polished through abrasive and chemistry, and the complicate interaction between pad asperity, slurry, and wafer surface is described in Figure 5 in a microscale observation [22]. For CMP process, readers are directed to Refs. [21, 22] for more details.
\nThe schema of conventional CMP process [
Frontside-release process utilizes SOI wafers and, in general, consists of active device fabrication, frontside-release hole, or structure patterning, releasing protection coating and release etching. Two release etching strategies are usually employed: one way is to remove BOX layer in SOI and fully release the device layer. RIE or DRIE is used to etch the Si device layer depending on the required etching depth and expose the BOX layer to HF etchant for releasing.
\nThe other approach is to remove bulk silicon carrier in SOI and fully release the structures consisting of both device and BOX layers. Therefore, Si isotropically etching is required for releasing, and XeF2 is mostly employed. Pure SF6 plasma can also etch silicon isotropically.
\nDifferent from CMOS process, the thickness of FD-SOI device layer for MOSFET is approximately in the order of 100 nm, and the thickness of SOI device layer for flexible electronics can be as thick as 10 μm in many applications. Therefore DRIE is essential to form high aspect ratio trenches for exposure of BOX or silicon substrate to etchant. Following DRIE, the release can be achieved by either removing BOX or undercutting silicon substrate from frontside. HF etchant is used to remove BOX and XeF2 is used to undercut silicon. Moreover, for release by undercutting silicon below BOX layer, a protective layer is necessary to protect other silicon parts from etching. Deposition of the protective layer onto the sidewall of trenches must be performed. Compared to PVD and CVD, ALD method can deposit high conformal and continuous protective layer inside the trench. The protective layer can be made of silicon oxide or alumina. In the following sections, we first introduce DRIE and XeF2 RIE processes, and then we will describe how these two technique are utilized in the frontside-release processes.
\nDRIE is an extension of the traditional RIE process and is a highly anisotropic etch process. Different from traditional RIE, DRIE can be used to create vertical (90°) etch profiles, deep penetration, and holes with high aspect ratios. So far it has been used to fabricate capacitors for deep trench DRAM, TSVs, and microphotonic structures. With the help of novel thermal budget and by-product redeposition management, DRIE can pattern more than 5 μm silicon or even thru the wafer with cycling of two processes:
Plasma-induced deposition of a polymeric layer as passivation layer using C4F8 as working gas [18].
Anisotropic removal of passivation layer on the bottom followed by an isotropic Si chemical etch, and SF6 is usually employed as working gas for etching of Si [18].
The DRIE process is shown in Figure 6 and consists of six steps. At first, the polymeric passivation layer is coated overall to protect the sidewalls from chemical attack in the etching step (Figure 6a). Following that is the etching step; first the passivation layer on vertical surface (trench bottom) is removed through electrical field-accelerated ions (Figure 6b), and after the removal of passivation layer on trench bottom, the trench bottom is isotropically etched (Figure 6c). This isotropic etching usually lasts a few seconds, and the working gas mostly is a fluorine-based gas such as SF6. Followed by the etching step, a deposition step is performed for a few seconds to coat the overall polymeric passivation layer (Figure 6d), which is similar to the first step. Then the etching step is repeated (Figure 6e), which is similar to step 2 and step 3 [18]. The removal of passivation layer on vertical surfaces is much faster than on horizontal, since the ions are accelerated in vertical direction. After the removal of passivation layer on the trench bottom, the further etchants start etching the trench bottom, and simultaneously polymeric passivation layer of the sidewall slows the lateral etch rate [18]. To achieve the desired depth of TSVs, these etching and deposition steps are repeated several times (Figure 6f) [18]. The DRIE process involves six steps, and the performance of each step is controlled by a significant number of parameters such as gas flows, the power of the inductively coupled plasma or the platen source, time, etc. [18].
\nBosch process scheme. (a) Deposition of a conformal C4F8 passivation layer, (b) directed removal of the passivation layer by ions, (c) isotropic etching with SF6, (d) deposition of a conformal C4F8 passivation layer, (e) passivation removal and isotropic etching, and (f) alternating steps (b)–(e). reproduced with permission [
There are quite a few parameters that can significantly influence the DRIE process profile, such as gas flows, the power of the inductively coupled plasma or the platen source, time, etc. For 1 μm line and hole, scallops were deeper in the top (~40 nm) and none in the middle (<5 nm) and minimal (~20 nm) in the bottom for both holes and lines for the optimized recipe [23]. Figure 7 shows how the process parameters influence the DRIE process properties. Scallops in top and in the bottom showed that a lower etch time results in less scalloping. Those etches are isotropic, so lowering the time lowers the etch distance in all directions. It also appears to be a weak but somewhat significant evidence for dependence on temperature. However, these trends are in the opposite directions, so there is no optimal temperature for the minimal scalloping. SF6 flow shows no measured statistical significance to the scalloping or undercut.
\nDRIE profile scalloping prediction and desired profiles [
Xenon difluoride (XeF2), bromine trifluoride (BrF3), chlorine trifluoride (ClF3), and fluorine (F2) are widely used to etch silicon [24]. Compared to other silicon etchants, XeF2 has unique advantages like gas-phase isotropic etching, high selectivity for silicon, and ease of operation [24]. At room temperature and atmospheric pressure, XeF2 is white and in solid state [24]. However, when XeF2 is at a pressure smaller than 4 torr, the XeF2 solid will transform into a gas state [24]. Since the gas etching process is simple to operate, XeF2 etching process is widely performed by using the pulse etching system [24]. The XeF2 pulse etching process can be controlled by process parameters such as XeF2 pressure, etching time for a single cycle, and the number of etch cycles [24]. Figure 8 shows the micromachining mechanism of XeF2 etching.
\nSchema of interaction between XeF2 and Si by using XeF2 RIE to etch Si. (1) XeF2 gas diffused from the reactor to the external surface of the etching window. (2) XeF2 gas diffused from the etching window through the etched Si cavity to the silicon surface. (3) adsorption of XeF2 at the silicon surface. (4) dissociation of XeF2 molecule into fluorine atoms (F) and xenon (Xe) gas. (5) formation of Si-F bond and adsorption of SiF4 at the silicon surface. (6) SiF4 at the external surface is desorpted from Si surface. (7) the products are transferred from the wafer surface to the reactor. Reproduced with permission [
In this release process, the SOI BOX layer is patterned and exposed using RIE or DRIE, followed by HF wet etching and critical point dry to fully release the structures above the BOX layer.
\nThis release process involves three steps. In the first step, trenches are formed through RIE or DRIE to expose BOX (Figure 9b). When the silicon layer is thicker than 10 μm and aspect ratio is more than 10:1, DRIE is essential to expose BOX. For thin SOI, the exposure can also be performed by RIE. The second step is the deposition of a protective layer (Figure 9b). The Protective layer can protect other parts of silicon oxide from damage by etching, and the materials such as Si3N4 and PR can be used as a protective layer in this process. In the last step, the wafer is immersed in a HF-contained solution, which removes the exposed BOX. Figure 9c shows that the BOX is already partially removed, and Figure 9d shows that the BOX is fully removed through HF-contained solution. After the release process, the wafer will be transferred to a flexible substrate, and a bonding process will be performed to bond wafer to flexible substrate.
\nThe process flow for release through removal of BOX.
Zhou et al. utilized this release process to release their strained nanomembrane. In their paper for fast flexible electronics with strained silicon nanomembrane, the strips are released in a 4:1 diluted HF (49% HF) solution in which the BOX layer is selectively etched away [25]. Figure 10 shows the process for release of silicon nanomembrane from Si handling substrate.
\n(a) Atomic lattice schematic diagram showing the strain sharing principle. Optical images show the strained NM during release and after finishing release. (b) Process flow to implement the strain sharing principle and the release. Reproduced with permission [
This release process is achieved by undercutting silicon substrate under the BOX through XeF2 isotropic etching. DRIE is usually used to pattern top silicon device layer followed by protective coating and removal of BOX layer in RIE.
\nThis process involves four steps, and we use Figure 11 to describe this release process. At first, an oxide film such as PECVD SiO2 is deposited atop the device as an etching buffer layer (Figure 11a). Following that, with the help of a PR mask, the exposed oxide layers are removed through RIE, and then the exposure of silicon under the BOX is performed by using DRIE or RIE (Figure 11b). Following exposure septs, protective layer is coated overall to protect other parts of silicon from damage through etching (Figure 11c), and the materials such as Al, PR, GaN, and SiO2 can be used as protective layer in this process. After that, a RIE etching is performed to remove the protective layer at the bottom of the trenches. At last, the wafer is placed in XeF2 RIE to etch the silicon under the BOX. Once the undercuts meet with each other, the SOI and the BOX is completely released from the bulk substrate (Figure 11d). After the release process, the wafer will be transferred to flexible substrate, and a bonding process will be performed to bond wafer to flexible substrate.
\nDRIE process flow and fabricated monocentric imager: (a) after fabrication of photodiode circuitry, (b) pattern tessellated structures thru Si device and buried oxide layers, (c) sidewall passivation, (d) released device by XeF2 etching, (e) a released and curved device transferred into a hemispherical fixture, and (f) a mounted monocentric imager. Reproduced with permission [
Wu et al. (2016) employed this release process to fabricate a silicon-based flexible imager [26, 27, 28, 29, 30, 31, 32, 33], and Figure 11 shows the process flow to release an imager from the carrier substrate and the fabricated mounted monocentric imager. Sevilla et al. used this release process to fabricate a silicon-based flexible FinFET. Figure 12 shows the basic steps to release FinFET from the carrier substrate, the fabricated FinFET, and the flexible FinFET wafer [34].
\n(a) Spin coat of thick (7 μm) photoresist and hole patterning, (b) cavern formation beneath BOX due to XeF2 etchant, (c) top view of fins after the gate etch process, which is a complex task performed with a combination of reactive-ion etching and wet cleans, and (d) FinFET silicon fabric at minimum device scale bending radius (5 mm). Reproduced with permission [
Instead of etching the BOX and undercutting silicon substrate under the BOX, backside-release process etches the silicon substrate from the backside. Lapping, CMP, and RIE can be employed in this release process. The mechanisms of CMP and XeF2 RIE are already introduced in this chapter, and in this section the comparison between CMP, XeF2 RIE, and lapping is described. Following that, the process flow is described through the example in which lapping, CMP, and RIE are employed to thin the silicon substrate.
\nCMP, RIE, and lapping are used to realize backside-release, and we compare these tree fabrication processes to know how to choose suitable fabrication process.
\nThe mechanisms of CMP and XeF2 RIE are already introduced in previous sections, and lapping is a mechanical process in which a pad is used with polishing liquid to remove excess silicon from a wafer substrate. Lapping takes place between two counter-rotating cast iron plates and either an abrasive film or slurry. To adjust the penetration of the film/slurry, the wafers either spin faster or experience a heavier load to fit the target specification.
\nThe surface roughness of silicon is about 50 nm by using CMP, and through lapping the surface roughness of silicon can achieve 1 μm. The surface roughness of silicon by using RIE is worst about 10 μm. The cost of RIE is the most expensive, because this process needs also a working gas and vacuum environment. The CMP process is more expensive compared to lapping, because CMP consumes chemicals while lapping involves mechanical polish only. For thinning substrate, man can chose suitable process depending on the surface roughness and the cost.
\nFigure 13 shows three present backside thinning processes by using CMP, RIE, or lapping. For thinning through lapping and XeF2 RIE (Figure 13a), at first the substrate is reduced to exact thickness (usually about 50 μm) by lapping for cost saving, and after that the resulting surface micro-crack damages induced during the lapping process are removed by XeF2 etching processes with the buried oxide layer as the etch stop layer. Thinning process through anisotropic RIE (Figure 13b) possesses advantage high etch rate about 20 μm/min and disadvantage high surface roughness. At first the wafer is turned upside down, and then the substrate is thinned through RIE. The thickness of substrate is controlled by a measurement. Besides RIE and lapping, backside-release can be also performed through CMP, and Figure 13c shows this thinning process. Compared with RIE and lapping, the etch rate of CMP is much lower about 0.5 μm/min, and the surface roughness is best at about 50 nm. Usually for cost saving, before CMP process, the substrate can be thinned through lapping, and after lapping process expensive and more precise CMP is performed to further thin the substrate.
\nThe schema for three present backside thinning processes by using CMP, RIE, or lapping. (a) Thinning through lapping (first step) and XeF2 RIE (second step), the BOX serves as stop layer for XeF2 RIE, (b) thinning through RIE by using working gas such as CF4 and SF6, and (c) thinning through lapping (first step) and CMP (second step).
Lapping and XeF2 etching can thin the SOI wafer from the backside all the way to the BOX layer with a clean surface finish due to high selectivity between SiO2 and Si in XeF2 RIE. This process involves three steps. At first the wafer is coated by protective layer to protect the parts of wafer that shall not be etched from damage through isotropic XeF2 RIE. Following that, the substrate can be thinned to certain thickness by lapping. At last, the rest of Si substrate is removed by XeF2 RIE, and the BOX serves as stop layer for XeF2 RIE. With the help of XeF2 RIE and stop layer, the resulting surface micro-crack damages induced during the lapping process can be removed. After thinning process, the wafer is transferred to a flexible substrate, and a bonding process will be performed to bond wafer to flexible substrate.
\nHsieh et al. used this process to fabricate a biocompatible flexible IC. At first a wafer lapping machine is used to thin the Si wafer substrate, and the thickness is reduced to ∼50 μm [28]. Following lapping, a dry XeF2 etching process with BOX as etch stop layer is performed to remove the surface micro-crack damages that are caused by the lapping process [28]. Liu et al. employed this process to fabricate a spherical flexible CMOS retina chip. They thinned the backside Si to a thickness of around 50 μm by mechanical lapping, and after that a dry etching such as XeF2 or RIE is used to etch the Si substrate down to around 10μm thickness and remove the surface micro-crack damages induced during the lapping process [33].
\nInstead of lapping and XeF2, RIE can be directly used to thin the backside bulk silicon substrate, although it results in high roughness.
\nThis backside-release process consists of deposition of photoresist to protect wafer during etching and RIE etching with thickness measurement of the substrate. In this process, the substrate can be traditional bulk substrate or SOI substrate, because the thickness is controlled by a measurement instead of a stop layer. Moreover, the protective layer against etchant is not needed for this process, because an anisotropic RIE is used to thin substrate. The PR is coated to protect the ultrathin wafer from mechanical damage such as scrape and fracture. Working gases such as CF4 and SF6 are used to etch the silicon in RIE.
\nSevilla et al. have used this approach to fabricate a flexible nanoscale high performance FinFET [36]. Figure 14a shows wafer with FinFET before the release process. First step for this process is deposition of PR that servers as protect layer against mechanical damage (Figure 14b). After deposition of PR, the wafer is turned upside down, and the substrate is thinned through RIE (Figure 14c). The thickness of substrate is controlled by measurement; when the thickness is the same to the plan, the thinning is finished. Otherwise, the wafer is placed in RIE again for further reduction of substrate. Figure 14d shows the thinned wafer, and at last the PR layer is removed (Figure 14e). If the SOI is not very thin and the surface is hard, this PR layer is not anymore necessary for this release process.
\nProcess flow for the fabrication of flexible FinFET: (a) produced FinFET devices on SOI substrate (90 nm SOI with 150 nm BOX); (b) deposition of PR to protect chip from damages induced by back etch process; (c) FinFET devices etched from backside using RIE process; (d) Si substrate thinned to 50 μm; and (e) removal of PR. Reproduced with permission [
Besides RIE and lapping, backside-release can be also performed through pure CMP process. The etch rate of CMP is much lower than RIE and lapping, but the surface roughness is the best and in the order of 10 nm or less. Since CMP process is very slow, it usually starts with a thin substrate, for example, 100–200 μm or after a lapping process with reduced thickness for cost saving purpose.
\nDumas et al. use CMP to fabricate curved focal plane detector array for wide field cameras. To spherically curve the device, they used CMP to thin the substrate. In their experiment, the process is designed to obtain a component thickness of 50 μm [37]. They have demonstrated that 10 × 10 mm2 silicon samples thinned down to 50 μm could be curved in concave and convex shapes, down to a bending radius of 40 mm [37]. The curved detector is showed in Figure 15.
\n(Color online) Pictures of curved microbolometer. (a) The thinned curved component on a glass holder. (b) This curved bolometer is bonded onto an electrical board. Reproduced with permission [
After the release, the released membranes are transferred to flexible substrate and then bonded to flexible substrate. Now we introduce transfer process and bond technique for silicon-based flexible electronics.
\nIn this transfer process, a photoresist or similar polymer layer is deposited, and then a flat piece of polymer such as poly(dimethylsiloxane) PDMS serves as stamp, which conformally contacts the top surface of the wafer. When the stamp is in contact with the PR, it is carefully peeled up with the released thin membrane. The interface between stamp and photoresist must be strongly bonded, and the wafer is transferred on a flexible substrate. The flexible substrate can be polyimide substrate or liquid crystal polymer (LCP) substrate, and the polyimide adhesion promoter is spin coated on substrate; once the wafer is brought to polyimide, the wafer is baked to cure polyimide adhesion promoter. At last the PR and stamp are striped. This transfer process is the same to the process shown in Figure 16a.
\n(a) Process flow for transfer released silicon (μs-Si) ribbons to a plastic flexible substrate. Reproduced with permission [
Figure 16a shows a transfer process developed by Menard et al. In this process, bendable single crystal silicon thin film transistors are printed on plastic substrates. At first they brought a flat piece of PDMS that served as stamp into conformal contact with PR layer on the surface of the wafer and then carefully peeled back to pick up the released wafer with silicon (μs-Si) ribbons [38]. The interaction between the PR and the PDMS must be strong enough to bond them together for removal, with good efficiency [38]. A 180 μm thick polyethylene terephthalate (PET) plastic sheet coated with a 100 nm thick indium tin oxide (ITO) was used as the flexible substrate [38]. A dielectric layer of epoxy was used to enhance the adhesion between released wafer and flexible substrate and was spin coated on flexible substrate [38]. Bringing the PDMS with the μs-Si on its surface into contact with the warm epoxy layer and then peeling back the PDMS led to the transfer of the μs-Si to the epoxy [38].
\nKim et al. demonstrate simultaneous roll transfer and interconnection of Si-based flexible NAND flash memory (f-NAND) based on highly productive roll-to-plate ACF packaging [39]. This process is described in Figure 16b.
\nWhen thinned die or wafer is transferred on the flexible substrate, the bonding between die and flexible substrate must be performed in order to realize the electrical connection between die and other devices.
\nFlip-chip bond and adhesion method can be used to bond released dies to flexible substrate. For the flip-chip bond, polyimide or liquid crystal polymer (LCP) can be used as flexible substrate. For adhesion method, the substrate is made of polyimide, and the interconnection of die is formed through wire bonding.
\nFlip-chip bond consists of four steps. First, the bumps and pads are fabricated on flexible substrate. Following that, the die is placed on the flexible substrate and aligned. Once the die and bumps are in contact, the bumps are heated at melting temperature, and then die is bonded to substrate. At last an underfill is performed. The materials such as SnPb and SnAg can be used as bumps.
\nFor the adhesion method, a polyimide adhesion promoter such as a dielectric layer of epoxy is applied, so that the die can adhere to polyimide substrate. The polyimide adhesion promoter is spin coated on substrate, and once the wafer is brought to polyimide, the wafer is baked to cure polyimide adhesion promoter. At last the interconnection is formed through wire bonding (Figure 17).
\n(a) Process flow for flip-chip bond and (b) process flow for adhesion method.
Holland et al. [40] used flip-chip bonding to bond die to substrate. Different from our bonding process, they used immersion bump. Figure 18a shows thinned die flip-chip bonded on polyimide or LCP substrate. Moreover Holland et al. [40] used also adhesion method to bond die to substrate. Different from our adhesion method, they embed the thinned Si die in Polyimide (Figure 18b).
\n(a) Illustration of polyimide or LCP substrate and solder assembly approach. Reproduced with permission [
Menard et al. used a dielectric layer of epoxy as polyimide adhesion promoter that was spin coated on substrate to bond the die to polyimide substrate through adhesion method [38].
\nTheoretically, all devices such as transistor circuit, DRAM, NAND flash, and sensors that were fabricated through traditional Si-based CMOS process can also be fabricated in flexible forms by using appropriate release processes and transfer technique. We have mainly described two types of release processes: frontside- and backside-release. The frontside-release is realized by etching the BOX or undercutting silicon under the BOX in SOI wafer. The BOX layer etching is achieved in wet etching with HF-contained etchant, and the bulk silicon undercutting is achieved by XeF2 isotropic etching. The backside-release process etches the Si substrates through CMP, lapping, or RIE. After releasing, the Si thin membrane with active devices is transferred to a flexible substrate. Polymer stamp transfer, flip-chip bond, or adhesion method can be used to bond released dies to a flexible substrate. By leveraging those silicon-based micromachining processes, flexible electronics can be achieved on top of current standard CMOS process and scale to large volume manufacturing.
\nYou have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"13"},books:[{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12145",title:"Yeasts",subtitle:null,isOpenForSubmission:!0,hash:"262e4f155a168f8953bdbe9eb517127d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12145.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12160",title:"DNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"5a948eb875a3a62c3abf115c4b5ace84",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12160.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12161",title:"Retroviruses",subtitle:null,isOpenForSubmission:!0,hash:"0cd85c9ce7748f1211685d5add521ebb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12161.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12162",title:"Helicobacter pylori",subtitle:null,isOpenForSubmission:!0,hash:"1d5df6d5558615ea58030bb3e50ad9dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12162.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12163",title:"Escherichia coli",subtitle:null,isOpenForSubmission:!0,hash:"23a6ce1ea4992eca56018c9e85bad165",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12163.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12164",title:"Advances in Probiotics",subtitle:null,isOpenForSubmission:!0,hash:"cc0a28c4126b8d6fd1a5ebead8a0421f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12164.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12291",title:"Acidophiles",subtitle:null,isOpenForSubmission:!0,hash:"830753134a4180a8e6cf05774aefb9fb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12291.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12292",title:"New Findings on Human Papillomavirus",subtitle:null,isOpenForSubmission:!0,hash:"d2e7304c38c5e293e509ae9bd1ce8b33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12292.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12294",title:"Updates on Adenoviruses",subtitle:null,isOpenForSubmission:!0,hash:"9346d0ed80380776aab0a8ac9e503414",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12294.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:44},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:13},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"8",title:"Chemistry",slug:"chemistry",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:188,numberOfSeries:0,numberOfAuthorsAndEditors:4202,numberOfWosCitations:8457,numberOfCrossrefCitations:4317,numberOfDimensionsCitations:10862,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"8",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9937",title:"Recent Advances in Gas Chromatography",subtitle:null,isOpenForSubmission:!1,hash:"2d37a39be8412d39e729669c9c73ebb8",slug:"recent-advances-in-gas-chromatography",bookSignature:"Fabrice Mutelet",coverURL:"https://cdn.intechopen.com/books/images_new/9937.jpg",editedByType:"Edited by",editors:[{id:"186677",title:"Dr.",name:"Fabrice",middleName:null,surname:"Mutelet",slug:"fabrice-mutelet",fullName:"Fabrice Mutelet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10999",title:"Carbene",subtitle:null,isOpenForSubmission:!1,hash:"605a68d742896b92a81b245cdacc150a",slug:"carbene",bookSignature:"Satyen Saha and Arunava Manna",coverURL:"https://cdn.intechopen.com/books/images_new/10999.jpg",editedByType:"Edited by",editors:[{id:"226917",title:"Dr.",name:"Satyen",middleName:null,surname:"Saha",slug:"satyen-saha",fullName:"Satyen Saha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10884",title:"Bisphenols",subtitle:null,isOpenForSubmission:!1,hash:"d73ec720cb7577731662ac9d02879729",slug:"bisphenols",bookSignature:"Pınar Erkekoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/10884.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10581",title:"Alkaline Chemistry and Applications",subtitle:null,isOpenForSubmission:!1,hash:"4ed90bdab4a7211c13cd432aa079cd20",slug:"alkaline-chemistry-and-applications",bookSignature:"Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10581.jpg",editedByType:"Edited by",editors:[{id:"300527",title:"Dr.",name:"Riadh",middleName:null,surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",isOpenForSubmission:!1,hash:"339199f254d2987ef3167eef74fb8a38",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11072",title:"Sample Preparation Techniques for Chemical Analysis",subtitle:null,isOpenForSubmission:!1,hash:"38fecf7570774c29c22a0cbca58ba570",slug:"sample-preparation-techniques-for-chemical-analysis",bookSignature:"Massoud Kaykhaii",coverURL:"https://cdn.intechopen.com/books/images_new/11072.jpg",editedByType:"Edited by",editors:[{id:"349151",title:"Prof.",name:"Massoud",middleName:null,surname:"Kaykhaii",slug:"massoud-kaykhaii",fullName:"Massoud Kaykhaii"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10443",title:"Accenting Lipid Peroxidation",subtitle:null,isOpenForSubmission:!1,hash:"783b476008fbd1917ab059fb9f07b93c",slug:"accenting-lipid-peroxidation",bookSignature:"Pınar Atukeren",coverURL:"https://cdn.intechopen.com/books/images_new/10443.jpg",editedByType:"Edited by",editors:[{id:"54960",title:"Dr.",name:"Pınar",middleName:null,surname:"Atukeren",slug:"pinar-atukeren",fullName:"Pınar Atukeren"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10776",title:"Cellulose Science and Derivatives",subtitle:null,isOpenForSubmission:!1,hash:"947660259ce1915c3cac58bf7d990424",slug:"cellulose-science-and-derivatives",bookSignature:"Arpit Sand and Sangita Banga",coverURL:"https://cdn.intechopen.com/books/images_new/10776.jpg",editedByType:"Edited by",editors:[{id:"287032",title:"Associate Prof.",name:"Arpit",middleName:null,surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10701",title:"Alkenes",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"f6dd394ef1ca2d6472220de6a79a0d9a",slug:"alkenes-recent-advances-new-perspectives-and-applications",bookSignature:"Reza Davarnejad",coverURL:"https://cdn.intechopen.com/books/images_new/10701.jpg",editedByType:"Edited by",editors:[{id:"88069",title:"Associate Prof.",name:"Reza",middleName:null,surname:"Davarnejad",slug:"reza-davarnejad",fullName:"Reza Davarnejad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9932",title:"Analytical Chemistry",subtitle:"Advancement, Perspectives and Applications",isOpenForSubmission:!1,hash:"18f54a89cdbbafde70f56e55e122171a",slug:"analytical-chemistry-advancement-perspectives-and-applications",bookSignature:"Abhay Nanda Srivastva",coverURL:"https://cdn.intechopen.com/books/images_new/9932.jpg",editedByType:"Edited by",editors:[{id:"293623",title:"Dr.",name:"Abhay Nanda",middleName:null,surname:"Srivastva",slug:"abhay-nanda-srivastva",fullName:"Abhay Nanda Srivastva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10507",title:"Current Topics in Chirality",subtitle:"From Chemistry to Biology",isOpenForSubmission:!1,hash:"692993cd6e2996714124df690df7c2e9",slug:"current-topics-in-chirality-from-chemistry-to-biology",bookSignature:"Takashiro Akitsu",coverURL:"https://cdn.intechopen.com/books/images_new/10507.jpg",editedByType:"Edited by",editors:[{id:"147861",title:"Dr.",name:"Takashiro",middleName:null,surname:"Akitsu",slug:"takashiro-akitsu",fullName:"Takashiro Akitsu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:188,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"36171",doi:"10.5772/36942",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",totalDownloads:9182,totalCrossrefCites:128,totalDimensionsCites:368,abstract:null,book:{id:"1591",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",title:"Infrared Spectroscopy",fullTitle:"Infrared Spectroscopy - Materials Science, Engineering and Technology"},signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",slug:"liga-berzina-cimdina",fullName:"Liga Berzina-Cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",slug:"natalija-borodajenko",fullName:"Natalija Borodajenko"}]},{id:"36178",doi:"10.5772/36323",title:"Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake",slug:"applications-of-ftir-on-epoxy-resins-identification-monitoring-the-curing-process-phase-separatio",totalDownloads:20759,totalCrossrefCites:81,totalDimensionsCites:247,abstract:null,book:{id:"1591",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",title:"Infrared Spectroscopy",fullTitle:"Infrared Spectroscopy - Materials Science, Engineering and Technology"},signatures:"María González González, Juan Carlos Cabanelas and Juan Baselga",authors:[{id:"107857",title:"Prof.",name:"Juan",middleName:null,surname:"Baselga",slug:"juan-baselga",fullName:"Juan Baselga"},{id:"138113",title:"Dr.",name:"María",middleName:null,surname:"González",slug:"maria-gonzalez",fullName:"María González"},{id:"138114",title:"Dr.",name:"Juan C.",middleName:null,surname:"Cabanelas",slug:"juan-c.-cabanelas",fullName:"Juan C. Cabanelas"}]},{id:"36184",doi:"10.5772/36186",title:"Infrared Spectroscopy in the Analysis of Building and Construction Materials",slug:"infrared-spectroscopy-of-cementitious-materials",totalDownloads:7766,totalCrossrefCites:74,totalDimensionsCites:149,abstract:null,book:{id:"1591",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",title:"Infrared Spectroscopy",fullTitle:"Infrared Spectroscopy - Materials Science, Engineering and Technology"},signatures:"Lucia Fernández-Carrasco, D. Torrens-Martín, L.M. Morales and Sagrario Martínez-Ramírez",authors:[{id:"107401",title:"Dr.",name:"Lucia J",middleName:null,surname:"Fernández",slug:"lucia-j-fernandez",fullName:"Lucia J Fernández"}]},{id:"53973",doi:"10.5772/66927",title:"Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods",slug:"phenolic-compounds-in-water-sources-reactivity-toxicity-and-treatment-methods",totalDownloads:7192,totalCrossrefCites:69,totalDimensionsCites:148,abstract:"Phenolic compounds exist in water bodies due to the discharge of polluted wastewater from industrial, agricultural and domestic activities into water bodies. They also occur as a result of natural phenomena. These compounds are known to be toxic and inflict both severe and long‐lasting effects on both humans and animals. They act as carcinogens and cause damage to the red blood cells and the liver, even at low concentrations. Interaction of these compounds with microorganisms, inorganic and other organic compounds in water can produce substituted compounds or other moieties, which may be as toxic as the original phenolic compounds. This chapter dwells on the sources and reactivity of phenolic compounds in water, their toxic effects on humans, and methods of their removal from water. Specific emphasis is placed on the techniques of their removal from water with attention on both conventional and advanced methods. Among these methods are ozonation, adsorption, extraction, photocatalytic degradation, biological, electro‐Fenton, adsorption and ion exchange and membrane‐based separation.",book:{id:"6029",slug:"phenolic-compounds-natural-sources-importance-and-applications",title:"Phenolic Compounds",fullTitle:"Phenolic Compounds - Natural Sources, Importance and Applications"},signatures:"William W. Anku, Messai A. Mamo and Penny P. Govender",authors:[{id:"195237",title:"Dr.",name:"Messai",middleName:"A.",surname:"Mamo",slug:"messai-mamo",fullName:"Messai Mamo"},{id:"196465",title:"Dr.",name:"William Wilson",middleName:null,surname:"Anku",slug:"william-wilson-anku",fullName:"William Wilson Anku"},{id:"196466",title:"Dr.",name:"Penny",middleName:null,surname:"Govender",slug:"penny-govender",fullName:"Penny Govender"}]},{id:"53128",doi:"10.5772/66368",title:"Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability",slug:"phenolic-compounds-functional-properties-impact-of-processing-and-bioavailability",totalDownloads:9234,totalCrossrefCites:72,totalDimensionsCites:134,abstract:"In this chapter, we discuss the influence of the processing methods on the content of phenolic compounds in fruits and vegetables. The intake of fruits and vegetables based‐foods are associated with delayed aging and a decreased risk of chronic disease development. Fruits and vegetables can be consumed in natura, but the highest amounts are ingested after some processing methods, such as cooking procedures or sanitizing methods. These methods are directly methods are directly related to alteration on the phenolic content. In addition, the postharvest conditions may modify several phytochemical substances. Phenolic compounds are referred to as phytochemicals found in a large number of foods and beverages. The relative high diversity of these molecules produced by plants must be taken into account when methods of preparation are employed to obtain industrial or homemade products. Phenolic compounds comprise one (phenolic acids) or more (polyphenols) aromatic rings with attached hydroxyl groups in their structures. Their antioxidant capacities are related to these hydroxyl groups and phenolic rings. Despite the antioxidant activity, they have many other beneficial effects on human health. However, before attributing health benefits to these compounds, absorption, distribution, and metabolism of each phenolic compound in the body are important points that should be considered.",book:{id:"5609",slug:"phenolic-compounds-biological-activity",title:"Phenolic Compounds",fullTitle:"Phenolic Compounds - Biological Activity"},signatures:"Igor Otavio Minatel, Cristine Vanz Borges, Maria Izabela Ferreira,\nHector Alonzo Gomez Gomez, Chung-Yen Oliver Chen and\nGiuseppina Pace Pereira Lima",authors:[{id:"146379",title:"Dr.",name:"Giuseppina",middleName:null,surname:"Lima",slug:"giuseppina-lima",fullName:"Giuseppina Lima"},{id:"194002",title:"MSc.",name:"Cristine",middleName:null,surname:"Vanz Borges",slug:"cristine-vanz-borges",fullName:"Cristine Vanz Borges"},{id:"194003",title:"Prof.",name:"Igor Otavio",middleName:null,surname:"Minatel",slug:"igor-otavio-minatel",fullName:"Igor Otavio Minatel"},{id:"194004",title:"Dr.",name:"Maria Izabela",middleName:null,surname:"Ferreira",slug:"maria-izabela-ferreira",fullName:"Maria Izabela Ferreira"},{id:"194005",title:"Prof.",name:"Hector",middleName:null,surname:"Gomez-Gomez",slug:"hector-gomez-gomez",fullName:"Hector Gomez-Gomez"},{id:"194006",title:"Prof.",name:"Chung-Yen Oliver",middleName:null,surname:"Chen",slug:"chung-yen-oliver-chen",fullName:"Chung-Yen Oliver Chen"}]}],mostDownloadedChaptersLast30Days:[{id:"55500",title:"Interpretation of Mass Spectra",slug:"interpretation-of-mass-spectra",totalDownloads:12237,totalCrossrefCites:10,totalDimensionsCites:23,abstract:"The chapter includes an introduction to the main ionisation techniques in mass spectrometry and the way the resulting fragments can be analysed. First, the fundamental notions of mass spectrometry are explained, so that the reader can easily cover this chapter (graphs, main pick, molecular ion, illogical pick, nitrogen rule, etc.). Isotopic percentage and nominal mass calculation are also explained along with fragmentation mechanism. A paragraph emphasises the ionisation energy issues, the basics of ionisation voltage, the developing potential and the energy balance. A frame time of the main theoretical milestones in both theory and experimental mass spectrometry is highlighted here. In the second part of the chapter, the molecular fragmentation for alkanes, iso-alkanes, cycloalkanes, halogen, alcohols, phenols, ethers, carbonyl compounds, carboxylic acids and functional derivatives, nitrogen compounds (amines, nitro compounds), sulphur compounds, heterocycles and biomolecules (amino acids, steroids, triglycerides) is explained. Fragmentation schemes are followed by the simplified spectra, which help the understanding of such complex phenomena. At the end of the chapter, acquisition of mass spectrum is discussed. The chapter presented here is an introduction to mass spectrometry, which, we think, helps the understanding of the mechanism of fragmentation corroborating spectral data and molecular structures.",book:{id:"5735",slug:"mass-spectrometry",title:"Mass Spectrometry",fullTitle:"Mass Spectrometry"},signatures:"Teodor Octavian Nicolescu",authors:[{id:"196775",title:"Dr.",name:"Teodor Octavian",middleName:"Octavian",surname:"Nicolescu",slug:"teodor-octavian-nicolescu",fullName:"Teodor Octavian Nicolescu"}]},{id:"57909",title:"Validation of Analytical Methods",slug:"validation-of-analytical-methods",totalDownloads:6753,totalCrossrefCites:12,totalDimensionsCites:18,abstract:"Method validation is a key element in the establishment of reference methods and within the assessment of a laboratory’s competence in generating dependable analytical records. Validation has been placed within the context of the procedure, generating chemical data. Analytical method validation, thinking about the maximum relevant processes for checking the best parameters of analytical methods, using numerous relevant overall performance indicators inclusive of selectivity, specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), ruggedness, and robustness are severely discussed in an effort to prevent their misguided utilization and ensure scientific correctness and consistency among publications.",book:{id:"6379",slug:"calibration-and-validation-of-analytical-methods-a-sampling-of-current-approaches",title:"Calibration and Validation of Analytical Methods",fullTitle:"Calibration and Validation of Analytical Methods - A Sampling of Current Approaches"},signatures:"Tentu Nageswara Rao",authors:[{id:"220824",title:"Dr.",name:"Tentu",middleName:null,surname:"Nageswara Rao",slug:"tentu-nageswara-rao",fullName:"Tentu Nageswara Rao"}]},{id:"55440",title:"Solubility Products and Solubility Concepts",slug:"solubility-products-and-solubility-concepts",totalDownloads:2852,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"The chapter refers to a general concept of solubility product Ksp of sparingly soluble hydroxides and different salts and calculation of solubility of some hydroxides, oxides, and different salts in aqueous media. A (criticized) conventional approach, based on stoichiometry of a reaction notation and the solubility product of a precipitate, is compared with the unconventional/correct approach based on charge and concentration balances and a detailed physicochemical knowledge on the system considered, and calculations realized according to generalized approach to electrolytic systems (GATES) principles. An indisputable advantage of the latter approach is proved in simulation of static or dynamic, two-phase nonredox or redox systems.",book:{id:"5891",slug:"descriptive-inorganic-chemistry-researches-of-metal-compounds",title:"Descriptive Inorganic Chemistry Researches of Metal Compounds",fullTitle:"Descriptive Inorganic Chemistry Researches of Metal Compounds"},signatures:"Anna Maria Michałowska-Kaczmarczyk, Aneta Spórna-Kucab and\nTadeusz Michałowski",authors:[{id:"35273",title:"Prof.",name:"Tadeusz",middleName:null,surname:"Michalowski",slug:"tadeusz-michalowski",fullName:"Tadeusz Michalowski"},{id:"203867",title:"Dr.",name:"Anna Maria",middleName:null,surname:"Michałowska-Kaczmarczyk",slug:"anna-maria-michalowska-kaczmarczyk",fullName:"Anna Maria Michałowska-Kaczmarczyk"},{id:"203868",title:"Dr.",name:"Aneta",middleName:null,surname:"Spórna-Kucab",slug:"aneta-sporna-kucab",fullName:"Aneta Spórna-Kucab"}]},{id:"62736",title:"Radioisotope: Applications, Effects, and Occupational Protection",slug:"radioisotope-applications-effects-and-occupational-protection",totalDownloads:4432,totalCrossrefCites:7,totalDimensionsCites:14,abstract:"This chapter presents a brief introduction to radioisotopes, sources and types of radiation, applications, effects, and occupational protection. The natural and artificial sources of radiations are discussed with special reference to natural radioactive decay series and artificial radioisotopes. Applications have played significant role in improving the quality of human life. The application of radioisotopes in tracing, radiography, food preservation and sterilization, eradication of insects and pests, medical diagnosis and therapy, and new variety of crops in agricultural field is briefly described. Radiation interacts with matter to produce excitation and ionization of an atom or molecule; as a result physical and biological effects are produced. These effects and mechanisms are discussed. The dosimetric quantities used in radiological protection are described. Radiological protections and the control of occupational and medical exposures are briefly described.",book:{id:"5903",slug:"principles-and-applications-in-nuclear-engineering-radiation-effects-thermal-hydraulics-radionuclide-migration-in-the-environment",title:"Principles and Applications in Nuclear Engineering",fullTitle:"Principles and Applications in Nuclear Engineering - Radiation Effects, Thermal Hydraulics, Radionuclide Migration in the Environment"},signatures:"Sannappa Jadiyappa",authors:[{id:"239626",title:"Dr.",name:null,middleName:null,surname:"Sannappa J.",slug:"sannappa-j.",fullName:"Sannappa J."}]},{id:"58596",title:"Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability",slug:"linearity-of-calibration-curves-for-analytical-methods-a-review-of-criteria-for-assessment-of-method",totalDownloads:7815,totalCrossrefCites:17,totalDimensionsCites:39,abstract:"Calibration curve is a regression model used to predict the unknown concentrations of analytes of interest based on the response of the instrument to the known standards. Some statistical analyses are required to choose the best model fitting to the experimental data and also evaluate the linearity and homoscedasticity of the calibration curve. Using an internal standard corrects for the loss of analyte during sample preparation and analysis provided that it is selected appropriately. After the best regression model is selected, the analytical method needs to be validated using quality control (QC) samples prepared and stored in the same temperature as intended for the study samples. Most of the international guidelines require that the parameters, including linearity, specificity, selectivity, accuracy, precision, lower limit of quantification (LLOQ), matrix effect and stability, be assessed during validation. Despite the highly regulated area, some challenges still exist regarding the validation of some analytical methods including methods when no analyte-free matrix is available.",book:{id:"6379",slug:"calibration-and-validation-of-analytical-methods-a-sampling-of-current-approaches",title:"Calibration and Validation of Analytical Methods",fullTitle:"Calibration and Validation of Analytical Methods - A Sampling of Current Approaches"},signatures:"Seyed Mojtaba Moosavi and Sussan Ghassabian",authors:[{id:"216099",title:"Dr.",name:"Sussan",middleName:null,surname:"Ghassabian",slug:"sussan-ghassabian",fullName:"Sussan Ghassabian"},{id:"216101",title:"Mr.",name:"Seyed Mojtaba",middleName:null,surname:"Moosavi",slug:"seyed-mojtaba-moosavi",fullName:"Seyed Mojtaba Moosavi"}]}],onlineFirstChaptersFilter:{topicId:"8",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"80825",title:"Contribution to the Calculation of Physical Properties of BeSe Semiconductor",slug:"contribution-to-the-calculation-of-physical-properties-of-bese-semiconductor",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.102888",abstract:"We expose various physical parameters of binary compound BeSe in the stable zinc blend and NiAs structures using the functional HSE hybrid, GGA-PBE, and LDA. We deduce elastic constants, mechanical parameters, and wave velocities according to different orientations. BeSe semiconductor has Γ-X (2.852 eV) and Γ-K (0.536 eV) bandgap in zinc blend and NiAs structures. Electrons transit from Se-p site to the Be-s state and show covalent bonding. Optical absorption peaks result from electronic transitions under ultraviolet light irradiation.",book:{id:"11210",title:"Chalcogens",coverURL:"https://cdn.intechopen.com/books/images_new/11210.jpg"},signatures:"Mohamed Amine Ghebouli and Brahim Ghebouli"},{id:"80910",title:"Calorimetry to Quantify Protein-Ligand Binding",slug:"calorimetry-to-quantify-protein-ligand-binding",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.102959",abstract:"Isothermal titration calorimetry (ITC) is the preferred method used to study biochemical reactions like protein-ligand binding due to its sensitivity, accuracy, and precision. ITC measures directly the heat absorbed or released (∆H) associated with a given binding process. A typical ITC experiment allows the dissection of the binding energy of a reaction into ligand-enzyme association constant (Ka), change in enthalpy (∆H), change in entropy (∆S), change in Gibbs-free energy (∆G), and the stoichiometry of association (N). The change in heat capacity (∆Cp) is obtained from the measurements of binding enthalpy over a range of temperatures. The magnitude and signs of the thermodynamic parameters that were obtained provide insight into the nature of interactions involved in the binding process. The strength of interaction is thermodynamically favorable is determined by the Gibbs free energy. ∆G is an important thermodynamic descriptor of a binding reaction since it dictates the binding affinity and is in turn defined by the enthalpy and entropy changes expressed in the following equation: ∆G = ∆H–T∆S. Up-close, this reflects the contradistinctions of two thermodynamic effects at a molecular level—the propensity to drop to lower energy (bond formation, negative ∆H), counterbalanced by the innate thermal Brownian motion’s destructive characteristic (bond breakage, positive ∆S).",book:{id:"10696",title:"Applications of Calorimetry",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg"},signatures:"Salerwe Mosebi"},{id:"81713",title:"Transition Metals-Based Metal-Organic Frameworks, Synthesis, and Environmental Applications",slug:"transition-metals-based-metal-organic-frameworks-synthesis-and-environmental-applications",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.104294",abstract:"This work illustrates examples of metal-organic frameworks (MOFs) derived from transition metals and their environmental applications in areas of catalysis, sorption, and hydrogen evolution. Explanation of some of the techniques employed for their synthesis has been discussed. On the other hand, the advantages of the use of hybrid materials such as the metal-organic frameworks are exposed in this book as well a detailed description of the different linkers and metals used for the synthesis of this kind of porous materials going through the methodologies and techniques utilized by different authors to obtain good-quality crystalline applicable materials. Adjustments of linker geometry, length, ratio, and the functional group can tune the size, shape, and internal surface property of an MOF for a targeted application. The uses of MOFs are exploring new different areas of chemistry such as catalysis, adsorption, carrier systems, hydrogen evolution, photocatalysis, and more. Different examples of MOFs from Scandium to Zinc are well described in this book, and finally, a brief description of some common environmental applications such as metals and azo dyes sorption, hydrogen evolution, and catalyst in the transesterification process of vegetable oils to produce biodiesel is explored and commented.",book:{id:"11216",title:"Sorption - From Fundamentals to Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11216.jpg"},signatures:"Lidia E. Chiñas-Rojas, Guadalupe Vivar-Vera, Yafeth F. Cruz-Martínez, Seth Limón Colohua, José María Rivera and Eric Houbron"},{id:"81781",title:"Experimental Investigation of Mechanical and Wear Behaviour of AZ91 Magnesium Hybrid Composite Materials",slug:"experimental-investigation-of-mechanical-and-wear-behaviour-of-az91-magnesium-hybrid-composite-mater",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.104703",abstract:"In recent years, emerging requisite for advanced materials gave a path for hybrid composites. Magnesium metal matrix composites are gaining more interest and a better substitute for heavier steel, aluminium, titanium and even for plastic based materials. At present the AZ91 magnesium alloy is most widely in transport vehicle industry. However, the application of AZ91 magnesium alloys are limited due to several negative effects such as poor creep resistance, wear resistance and inferior corrosion resistance when it is exposed to atmospheric conditions. Future to improve the strength, better corrosion resistance and wear resistance are important for their extend applications of exciting alloy AZ91. The main objective of the present investigation is to achieve above mentioned properties. The AZ91 alloy was reinforced with titanium dioxide/0.5% graphene and with titanium/0.5% graphene in varying weight percentage (1%, 2%) by stir casting technique. These combinations are called hybrid metal matrix composite of materials such as AZ91 + 1%Ti +0.5% Gr (A1), AZ91 + 2%Ti +0.5% Gr (A2), AZ91 + 1%TiO2 + 0.5% Gr (B1) and AZ91 + 2%TiO2 + 0.5% Gr (B2) alloys. The following experiments such as tensile, compressive, hardness and wear tests have been carried out to find all the properties from the newly developed hybrid metal matrix composite of materials and compared with AZ91. Wear tests have been carried out by pin on disc tribometer for both dry and wet sliding condition under 20 N,40 N,60 N, and 80 N. The results indicated the AZ91–1%TiO2–0.5%Gr having high wear resistance compared to other three combinations as well as AZ91. The present experimental investigations of hybrid metal matrix composite of materials have wear resistance in the order of B1 > A2 > A1 > B2 > AZ91 and AZ91–2%TiO2–0.5% Gr showed good tensile strength and hardness. The enhanced these properties were discussed in this paper.",book:{id:"11208",title:"Current Trends in Magnesium (Mg) Research",coverURL:"https://cdn.intechopen.com/books/images_new/11208.jpg"},signatures:"Palanivel Mathiazhagan and S. Jayabharathy"},{id:"81759",title:"Isothermal Calorimetry: Molecular Interactions between Small Molecules in Organic Solvents",slug:"isothermal-calorimetry-molecular-interactions-between-small-molecules-in-organic-solvents",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.104756",abstract:"Isothermal titration calorimetry (ITC) is widely used to study protein-ligand, DNA-drug and/or protein-protein interactions but its application for small molecule complexation remains limited namely when the titration is performed in organic solvents. Compared to other dedicated spectroscopic techniques like nuclear magnetic resonance, infrared spectrometry or fluorimetry, which require a series of experiments to extract site-specific stoichiometry and affinity information, ITC provides in a single experiment a complete thermodynamic picture of the overall interaction mechanism. This chapter presents examples that support the high potential of ITC to probe interactions between small molecules in methanol, acetonitrile and methanol/water mixture on a Nano ITC Low Volume device (TA Instruments), with an emphasis on both simple (1:1) and more complex (1:1 and 1:2) interaction mechanisms.",book:{id:"10696",title:"Applications of Calorimetry",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg"},signatures:"Raquel Gutiérrez-Climente, Elise Prost, Aude Cordin, Carlos Chesta and Luminita Duma"},{id:"81761",title:"Progress in Technology of the Chromatographic Columns in HPLC",slug:"progress-in-technology-of-the-chromatographic-columns-in-hplc",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.104123",abstract:"Chromatographic column is an essential part of a any HPLC separation, and significant progress has been made in developing columns with better performance to provide better separation, a shorter separation time, resilience to a wider pH range of the mobile phase, longer lifetime, use of lower volumes of mobile phase, etc. All these characteristics were achieved by the introduction of novel technologies and improvements of the older ones. These include smaller particle used to fill the column, more homogeneous spherical particles, core-shell particles, monolithic columns, more pure silica as a stationary phase support, use of ethylene bridge silica, a wider variety of active phases, use of mixed mode stationary phases, use of polymers as stationary phase, use of various endcapping techniques, etc. Miniaturization and progress in the instrumentation played an important role for the chromatographic column development. All these aspects are summarized in the present chapter.",book:{id:"11204",title:"Analytical Liquid Chromatography - New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11204.jpg"},signatures:"Serban C. Moldoveanu and Victor David"}],onlineFirstChaptersTotal:83},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",hash:"8d41fa5f3a5da07469bbc121594bfd3e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 24th 2022",isOpenForSubmission:!0,editors:[{id:"335401",title:"Prof.",name:"Margherita",surname:"Mori",slug:"margherita-mori",fullName:"Margherita Mori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:68,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/36612",hash:"",query:{},params:{id:"36612"},fullPath:"/profiles/36612",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()