\r\n\t- BMD measurement technology
\r\n\t- Osteoporosis and fracture risk
\r\n\t- Bone growth and remodeling
\r\n\t
\r\n\tThe submission is also open to any other original study related to these research topics.
One of the motivating classes of material comprises transition metal oxides (TMO) that display an assortment of properties and structure as well (0–3). The nature of bonding present among metal and oxygen can be fluctuating from partially ionic to extremely covalent (or metallic). Owing to possess outer d-electron nature the properties of TMO are unusual. The remarkable wonder of TMO is its phenomenal array of electronic as well as magnetic properties. Therefore, oxides exhibiting metallic behavior such as RuO2, LaNiO3, and ReO3 are found at one class while oxides displaying extremely insulating properties including BaTiO3 are recognized as the other one [1, 2]. TMOs can be documented as the class of oxides that comprises of cation which has incompletely or partially filled d shell. This nature is due to their marvelous feature as they are motivating and scientifically supreme category of versatile solids. This class contains a wide-range of color, magnetic, and electric properties along with most researched classes to progress their understanding of nature. As mentioned, their bonding fluctuates from partially ionic as in case of NiO and CoO to highly covalent such as OsO4, and RuO4.
Furthermore, metallic bonding also arises such as TiO, ReO3, and NbO. The crystal structure of TMOs varies from cubic symmetry to triclinic [3, 4, 5]. Further, binary oxides with the composition pattern of MO are commonly found to attain rock salt structure; but MO2 type composition involves rutile, fluorite, distorted rutile (complex structure). Possibly, significant features of TMOs are their aptitude to bear huge withdrawal from stoichiometry that is result of cations with variable valency. As an example, a portion of cuprous ion in copper (I) oxide (Cu2O) can be oxidized to cupric form that resulted in Cu2-xO which is a metal deficient composition. Similarly, ferric ion in iron (III) oxide (Fe2O3) can be reduced to resulted ferrous form, resulted in Fe2 + xO3 which are metal-rich composition [6, 7, 8]. Withdraw from stoichiometry in the case of non-TMOs that includes MgO is usually appeared as small and in the order of 10−4% even at an extreme temperature usually greater than 1700 °C. Other than this, TiO2 can put up roughly 1% of oxygen vacancies as well as titanium interstitials. There are exemptions to precede this generalization, as an example, ZnO which does not correspond to the tree of TMOs can provide a departure from the stoichiometric composition that varies from the range 10−2 to 10−1 at the temperature of 1000 °C [9, 10, 11].
This exhibition from ZnO is due to its wurtzite crystal structure that involves unoccupied interstices in the lattice of oxygen which is accomplished of acquiescent interstitial zinc. This phenomenon exhibits the importance of variable valency and crystal structure for the determination of specific oxide to bear substantial non-stoichiometry. This involves the zone of defect chemistry that solid-state chemist has focused devotion to the TMOs, in certain with the impartial of classifying the kinds of defect that are existing and their equilibrium concentrations as well. At the low concentrations conditions such as ~10−4% and point defects that comprise vacant sites (interstitial ions or atoms) are effectively treated via statistical thermodynamics [8, 11]. Furthermore, at the higher concentrations conditions such as ~10−2%; where certain association arises, the same method can be allowed to legal. This is due to the ionic defects that origins disturbances to the crystal’s electronic structure. Moreover, an influential instrument in the study of defect chemistry contains the measurement of variations in semi-conductivity that is subsequent from fluctuations in defect concentration. These variations are followed as a function of temperature, and equilibrium oxygen partial pressure [8, 12].
Statistical thermodynamic handling of the defect equilibrium is typically unsuitable at the range of high defect concentrations that turn into the development of an identifiable superlattice. Owing to these conditions, the area of oxide covering the superlattice can be viewed as a different segment and the whole non-stoichiometry of oxide can be viewed as ascending from the mixture of such segments (two or more), instead of the arbitrary circulation of defects through single segment [8, 9]. These sorts of super-lattice assembling are thought to occur in high-temperature segment CeO2-x; this involves the dissociation upon chilling into a two-phase mixture that comprises CeO2 and Ce32O58. Meanwhile, in 1950, the idea about the crystallographic shear has been familiarized as well as recognized to designate the great withdrawals from stoichiometry detected in certain TMOs. Magnéli pronounced the nature of non-stoichiometry in the MoO3 employing these shear structures [12, 13, 14].
The bulk MO structures have been regulated with broad and extremely precise XRD crystallographic plane studies [15]. Unluckily, inorganic structural chemistry related to MO dehydrated surface around oxide sustenance cannot be evaluated with XRD owing to the nonexistence of extensive range order which is greater than 4 nm in the surface MO over the layers. Native structures of MO dehydrated surface possibly bring into being via
Inorganic chemistry of bulk vanadium with respect to its structural analysis that possesses the oxidation state of +5 is the greatest diverse between bulk MO. Additionally, this analysis has been evaluated from the broad-ranging examination of XRD. Further, Bulk vanadate (VO6) ions comprise of firstly, isolated orthovanadate (
Structures of (a) dehydrated isolated and (b) polymeric surface monoxo VO4 species [
Bulk chromates hold CrO4 coordination in isolated mono-chromate (CrO4), dichromate (Cr2O7) that termed as dimer, tri-chromate (Cr3O10) which is designated as trimer, and tetr-achromate (Cr4O13) which is named as tetramer with infinite chain CrO3 (polychromate or metachromate) structures [22]. In contrast to the respective bulk vanadates, bulk non-CrO4 comprising structures are unidentified as an example CrO5 and CrO6 (see Figure 2). The crystalline structure of CrO3 is assembled up of countless chains via connecting CrO4 entities comprised of two short bonds (0.160 nm) and two extended bonds (0.175 nm). These entities are lonely apprehended with each other via van der Waal interactions. Infrequent short MP of CrO3 is 197 °C reveals weak van der Waal forces between poly-chromate chains. Bulk CrO3 attaining faint thermal stability is also reflected in its superficial lessening and the decomposition to respective bulk Cr2O3, which contains only Cr with +3 oxidation state as cations. The Cr with an oxidation state of +6 is generally unchanging through the existence of non-reducible cations that include As, K, P, Rb, and Na. Chromium oxy-halides that correspond to gas-phase are also recognized and vibration of mono-oxo F4Cr = O are detected around 1028 cm−1, while the vibrations associated with di-oxo F2Cr(=O)2 are identified around 1006 cm−1 for
Structures of (a) dehydrated isolated and (b) polymeric surface monoxo CrO4 species [
Spectroscopic measurements of the dehydrated supported chromates with EXAFS or XANES, UV–vis, and chemiluminescence, exposed that dehydrated surface chromates hold CrO4 coordination and are stabilized as Cr(+6) at prominent temperatures through oxide supports under monolayer surface exposure. Above the monolayer surface coverage, the excess chromium oxide that resides on the surface chromium monolayer becomes reduced at elevated temperatures in the oxidizing environments and forms Cr(+3) Cr2O3 crystallites. Thus, the surface species of Cr with oxidation of +6 are lonely steady around elevated temperatures by coordination to the oxide substrates. For non-SiO2 supports, the Raman measurements and the IR fingerprints reveal two resilient bands around 1005–1010 cm−1, as well as 1020–1030 cm − 1 and the corresponding overtone, ranges for these two bands in vibrational regions of 1986–1995 plus 2010–2015 cm−1. The vibrational alteration is reliable with di-oxo functionality however; it lies faintly on the higher side [26, 27].
The bulk rhenium regarding its inorganic chemistry that possesses +7 oxidation states is slightly sparse. Numerous ortho-rhenate compounds covering isolated units of ReO4 which are somewhat common: KReO4, NaReO4, and NH4ReO4. Bulk Re2O7 holds a layered structure comprising of interchanging groups of ReO4 and ReO6, along with subunits of rings that are constituted two groups of both ReO4 and ReO6. The weak bonding among rhenium oxide groups in the layered structure of Re2O7 consequences in the effective vaporization of Re2O7 dimers that hold two groups of ReO4 bridged through one O atom for example gaseous O3Re–O–ReO3. The supreme possible surface ReO
Bulk polymolybdate chains typically comprise MoO6 coordinated units that are different from the chains of polyvanadate as well as polychromate and these chains are respectively possessed with VO4 and CrO4 groups. This reveals the liking of molybdates for greater coordination groups in comparison with vanadates and chromates units in the respective polymeric structures. Yet, certain exemptions occur to this tendency in the structural chemistry of bulk molybdate. Short coordinated molybdates exist in the dimer of MoO4 which is MgMo2O7 and in the chain of interchanging MoO4 and MoO6 units which are NaMo2O7. Coordination of isolated MoO4 is still somewhat mutual for ortho-molybdates as an example MgMoO4, CuMoO4, Na2MoO4, MnMoO4, K2MoO4, and CaMoO4. Extremely misleading coordination of isolated MoO4 is discovered in Gd2(MoO4)3, Fe2(MoO4)3, Cr2(MoO4)3, and Al2(MoO4)3. Whereas, extremely misleading units of MoO5 are existing in Bi2(MoO4)3 [20, 30]. Further, clusters of polymolybdate are constituted with 6 to 8 MoO6; whereas coordinated units are also recognized for example (NH4)4Mo8O26, (NH4)6Mo7O24, and [NH3P3(NMe2)6]2Mo6O19. Bulk MoO3 (alpha) is comprised of a 3D structure prepared up of extremely misleading units of MoO6. The great misleading existing in bulk MoO3 (alpha) origins the sixth O atom to be positioned extremely distant respected to Mo and, therefore, the structure of the relevant bulk MoO3 (alpha) is well pronounced as comprising of MoO5 units. The bulk MoO3 (beta) crystalline period is one more MoO3 3D structure fabricated up of minute misleading of MoO6 units [31]. Numerous gas-phase mon-oxo molybdenum oxyhalides (X4Mo = O) are also recognized, structural analysis illustrated in Figure 3. The Mo = O vibrations fluctuate in the range 1008–1039 cm−1 with the increment in electronegativity of halide in the order Cl
Structures of dehydrated surface monoxo MoOx species (a) isolated monoxo MoO4/MoO5 and (b) polymeric monoxo MoO6 [
For non-SiO2 supported MoO
The structure of tungsten oxide concerning its inorganic chemistry carefully reflects molybdenum oxide. Numerous ortho-tungstate compounds such as Cs2WO4, Li2WO4, Rb2WO4, Na2WO4, and Na2WO4 holds isolated sites for WO4that are identified. Infrequently tungstate compounds procedure polymeric WO4 compounds as illustrated in Figure 4. One exception related to it is MgW2O7 that involves couples of distributing WO4 units. Interchanging polymeric sites of WO4 and WO6 are existing in the poly-tungstate chains of Na2W2O7 as well as (NH4)2W2O7. Ca3(WO5)Cl2 is the compound in which presence of an isolated WO5 coordinated site has been governing. Coordinated units of Isolated WO6 are found in the Wolframite structure such as ZnWO4, FeWO4, NiWO4, MnWO4, and CoWO4. Poly-tungstate chains are consistent with coordinated units of WO6 which are existing in Li2W2O7 and Ag2W2O7. Clusters of Tungsten oxide comprises polymeric units of WO6 which have been recognized with fluctuating the number of tungstate units: 12-membered includes para-tungstate (NH4)10(H2W12O42.10H2O and meta-tungstate (NH4)6(H2W12O40), 10-membered involves NH4BuW10O32, 6-membered comprises (NBu4)2W6O19, and 4-membered consist of Ag8W4O16. Furthermore, bulk WO3 is assembled up of 3D structure of somewhat misleading WO6 units. Numerous gas-phase mono-oxo tungsten oxyhalides (X4W=O) are identified such as X = F, Cl, and Br [36, 37]. The gas-phase complex of F4W=O displays its W=O vibrations at 1055 cm−1 unfortunately the vibrations of the gas phase monoxo complexes Cl4W=O and Br4W=O have not been experimentally determined. However, it is probable to approximate the vibrational frequency through the likeness with the corresponding oxy-halides such as X4Mo = O and X3V=O that are correspondingly guided via electronegativity order of the halide ligands. This kind of assessment proposes the mono-oxo W=O vibrations for oxy-halides such as Cl4W=O and Br4W=O must arise respectively around 1024 and 1010 cm−1. Furthermore, vibrational spectra analysis of X2W(=O)2 oxy-halides (di-oxo) have not been regulated, but IR fingerprints for Br2Mo(=O)2 have been reported and display their
Structures of dehydrated surface monoxo WOx species. (a) Isolated surface monoxo (WO4 and WO5) and (b) polymeric surface monoxo surface [
To prepare transition metal oxides, a variety of routes can be employed such as high temperatures and pressures, hydrothermal conditions, controlled reducing and oxidizing atmospheres, and so on. A ceramic method is commonly utilized to prepare these oxides, involving continuous grinding and heat treatment of reactant materials (e.g. carbonates, oxides, etc). These oxides have got the attention to prepare under the suitable conditions of milder and minor energy-consumption. For homogeneous mixing of reactants on an atomic scale, precursor method has been utilized [42]. Compared to ceramic technique, diffusion distance is effectively diminishes by this approach from 10,000 Å to 100 Å. Furthermore, solid solutions of hydroxides nitrates, and carbonates, have been frequently utilized to aim for this purpose besides the precursor compounds. Novel oxides that acquire challenging scheme to prepare can also be synthesized by this method. Similarly, topochemical reactions produce rare oxides such as synthesis of MoO3 and ReO3 structure by topochemical dehydration. By this dehydration reaction, Mo1-xWxO3 has also been synthesized. Further examples of synthesizes of rare oxides by topochemical reaction are reported in the literature [43]. A worth mentioning topochemical reaction is the addition of atomic species in oxides hosts. Thus, alkali metals and lithium have been injected into the different types of oxides such as MnO2, Fe3O4, TiO2, VO2, and ReO3. In the literature, intercalation phenomenon has been reviewed sufficiently. By employing slight oxidizing conditions, deintercalation of lithium and some alkali metals can be carried out steadily. Several innovative examples of deintercalation and intercalations phenomenons are being continuously conveyed. Recently, lithium injection to W19O55 and topochemical reactions of LixNbO2 has been reported. Ion exchange can be executed in the close-packed arranges of oxides, tunnel and layered structures. These reactions are also associated as topochemical and can be executed in molten media e.g., conversion to HNbO3 from LiNbO3 with hot aqueous acid [44]. The procedure of this reaction is contrary to transformation of ReO3 to LiReO3 (rhombohedral). Hydrogen can also be injected into holes of oxide with the company of Pt catalyst. Diversities of exchange reactions are huge for synthetic purposes. In the literature, many exchange reactions have been mentioned; two recent examples are given as the exchange properties of Na4Ti9O20 (X) H2O and intercalated effect of alkylammonium ion on cation (+) exchange properties of H2Ti3O7. Preparation of layered K2Ti4O9 and metastable TiO2 using a topotactic dihydroxylation is also an interesting example [42, 45].
The vapor deposition method is a well-known technique among other synthesis methods. Complex oxides (Mo and Mo bronzes) have been synthesized by employing fused salt electrolysis. Under oxidizing conditions, the pyrochlores Bi[Ru2-x
Ended to the previous few decades, transition metal oxides nanostructures (TMON) have been extensively considered owing to attain excessive potential in optical, electronic, and magnetic applications. To accomplish extraordinary and exceptional performances, TMONs have been assimilated into the assortment of devices that consists of efficient photocatalysis, and enhanced gas sensing [49, 50]. In TMOs, although the electrons are permanently occupied in the s − shells of +ve metallic ions, the d − shells of TMOs may not be entirely occupied. This distinctive carries numerous exceptional properties in them, that comprises decent electrical characteristics [51, 52, 53] high dielectric constants [54, 55], reactive electronic transitions [56, 57], wide band gaps [58, 59], and so on. Meanwhile, TMOs owns several states including, ferrimagnetic, ferromagnetic, and semi-conductive state. Hence, TMOs are reflected in the absolute interesting functional materials. Catalysts are liquefied into liquid alloy droplets, which also comprise corresponding source metal. When alloy droplets attain supersaturated condition then the respective source metal initiates to precipitate which turns into metal oxide followed by the flow of oxygen. Generally, as−synthesized metal oxides especially rise along specific alignment, which resulted in the establishment of 1D nanostructure. Up to now, preparation approach for the metal oxide nanowires including In2O3, [60] CdO [61], TiO2 [62], ZnO [63], and SnO2 [64] have been accomplished using VLS mechanism. The VLS procedure corresponds to catalyst−aided growth whereas; VS route is attributed to the catalyst−free growth [65, 66]. The progression of VS method includes the reactants which are first heated to produce vapors followed by high temperature and then unswervingly condensed on the substrate. In this substrate, the seed crystals will be assisted to nucleation sites located and acquire shape. Facilitate directional growth followed will minimize the surface energy of product.
In 1970s, the hydrothermal route was primarily hired to synthesize the various types of crystalline structures. Using this strategy, reactants are positioned in the sealed vessel that followed water as the solvent (reaction medium). A reaction in hydrothermal approach proceeds in the presence of high temperature that causes to produce high pressure. This procedure can speed up the reactions among ions and finally endorse the hydrolysis. Eventually, self−assembly, as well as the growth and of crystals, will be succeeded as the consequence of reaction mechanism in solution. Merits of this process contain mild reaction conditions, easy monitoring, and importantly low cost. Morphology, crystallographic structure, and the properties of final product acquired through hydrothermal route can be accomplished by altering the experimental limitations that involve the variance in time, reaction medium, temperature, and pressure, etc. Surfactants are familiarized with the arrangement to advance hydrothermal route. The surfactant-promoted method has been verified to results in an efficacious manner in order to fabricate metal oxide owing to an assortment of morphologies. Three phases are always involved in the system firstly, oil phase secondly, surfactant phase, and lastly, aqueous phase. In the progression of route, surfactants can restrain the growth of final product. Meanwhile, pH value, concentration of reactants, and temperature also has necessary guidance on the structure, properties, and morphology of the product [2, 67, 68, 69].
To prepare one dimensional (1-D) metal-oxide nanostructures such as wires/fibers [70, 71], nanorods [72, 73, 74], nanotubes [75, 76], hemitubes [77], nanobelts [78, 79], and needles/tips [70, 80], enormous attempts have been made. To enhance the morphological parameters, VS and VLS are the two main growth mechanisms used in vapor phase method. By changing variables such as assisting electric field, substrate, catalyst, pre-treatment, deposition temperature, etc., morphologies of required products can be controlled. Vapor phase method in the presence of oxygen obtained WO3 1-D nanostructures which have high aspect ratios (Figure 5a) showed exceptional results in field emission display (Figure 5b) and also in some other applications such as gas sensors, photodetectors, and so on. It’s convenient to comprehend monoclinic formation (three unequal axes) of γ-WO3 phase which is stable at 17–320 °C by assuming the growth temperature under 1000 °C, transition of phase in WO3 is not completely reversible while the most stable phase reported at room temperature is γ-WO3 [2].
(a) The cross-sectional SEM image of as-prepared WO3 nanowires, and (b) Arabic numerals and Chinese characters displayed by the double-gated FED [
Heterogeneous substrates are used to grow 1-D nanostructures [70, 83], affected by the substrate surface, mostly, they exhibited {001} growth direction beside length (Figure 5c), while W + Si supported Au film or nanowires on Si wafer showed {010} or {100}/{010} growth direction (Figure 5d,e). Due to lack of oxygen gas WO2 nanowires were synthesized caused by oxidation of Ni, by restoring the substrate with Si + W succeeded by Ni film (Figure 5f) [83]. By using vapor phase method, WO3-τ (0 < τ < 1) 1-D nanostructures (e.g. W18O29) can be manufactured with poor oxygen atmosphere (react with slighter oxygen source or gas like carbon dioxde) [84, 85]. Because of closely packed planes such as {010}, one-dimensional W18O29 nanostructures (e.g. nanoneedles, nanowire, nanotip,
(a) SEM images of three-dimensionally aligned W18O49 nanowires on carbon microfibers, (b) a typical TEM image of a single W18O49 nanowire (c) selected area electron diffraction (SAED) pattern of the nanowire [
Substrates are conventionally utilized for growth of hierarchical structures in vapor phase method. On the Si substrate surface along with polystyrene spheres monolayer, 0-D and 2-D structures of α-Fe2O3 can be attained by PLD-CVD at an oxygen pressure 60 and 6 Pascal, respectively [87], as shown in Figure 7a-d. Since there is deficiency of Fe atoms and O atoms are in excess in {110} plane, so for preferential growth along {110} direction, it can be assumed to be driving force. Single dimensional-based 3-D Fe3O4 successfully synthesized in an autoclave on its wall (Figure 7e and f) through the pyrolysis of ferrocene (supercritical carbon dioxide at 450 °C) Cao
(a) SEM images of as-deposited samples at an oxygen pressure of 6 Pa (0D based, a and b) and 60 Pa; (a), (c) top surface; (b), (d) cross-section [
Multiple FeOx arranged nanostructures can be prepared through simple solution method, precursor based method, template-directed, and solvo/hydrothermal reaction in liquid phase method. By precursor based method [90, 91] and solvo/hydrothermal reaction [92], 0-D based FeOx arranged nanostructures (mesoporous particles such as spheres, cubes, super-structures, hollow spheres/bowls, etc. (Figure 8a–c) are commonly prepared. Metal–organic frameworks (MOFs) have received great attention as an advanced type of precursors with controllable properties such as shape, composition, size, and internal structure for MOX arranged nanostructures. For example, Fe2O3 microboxes synthesized by Lou
(a) A TEM image of a single Fe3O4 microsphere, with a corresponding SAED pattern (inset) [
As-synthesized Fe2O3 micro boxes having unique shell structures and distinguish cycling performance unveiled high lithium storage capacities when evaluated for lithium-ion batteries as potential anode material. Furthermore, using controlled chemical etching, hollow interiors could be generated inside the PB nanoparticles in poly (vinylpyrrolidone) presence, [96] porous nanostructures of iron oxide having hollow interiors, various phases of these PB nanoparticles (preliminary precursors) can be synthesized by controlled calcination.
Due to the potential uses in various fields like waste removal, biologically active agent protection, chemical, biological sensors, catalysis, and bimolecular-release systems, well-defined 0-D ZnO hollow structures have attracted much attention. So in past few years, many successful attempts were made to prepare hollow structures of ZnO. The template-assisted technique is now the main focus of researchers which conventionally employed spherobacteria, carbon spheres, polystyrene spheres, and so on as template for hollow structures growth of ZnO. Under hydrothermal conditions, conversion of Zn(NH3
Morphology of the hollow spheres composed of ZnO nanorods. (a) TEM image of the samples (b, c) typical magnified TEM images of hollow spheres (d, e) SEM image of the samples (f) typical magnified SEM image of a hollow sphere (g) the EDS spectrum of hollow spheres [
Over the past decade, due to unique electronic, magnetic, and optical applications metal oxide materials arising as potential candidates with fruitful functionalities have been extensively studied. These applications will be discussed briefly in this section.
In photovoltaics stable and environment-friendly metal oxide semiconductors are used in dye−sensitized solar cells (DSSCs) as photoelectrode or to design p-n junctions of metal oxide. Materials have been examined for photoelectrodes purpose in DSSCs (Figure 10) such as binary metal oxides (ZrO2, Fe2O3, TiO2, Al2O3, ZnO, Nb2O5) and ternary compounds (SrTiO3, Zn2SnO4). Due to high thermal and chemical stability, a hole blocking property, and suitable electron selectivity Nb2O5, ZnO, and TiO2 are excellent expectant as a photoelectrode [2, 99, 100].
Schematic diagram of the nanowire dye-sensitized solar cell based on a ZnO wire array [
In technology, lithium-ion batteries made up of metal oxide nanoparticles (SnO2, Co3O4, Fe2O3, TiO2, and complex metal oxides) enable superior rate capability; better cycling performance and high specific capacity are arising as the best choice for portable electronics. Its applications include electronics, electric vehicles, etc. Transition metal oxides hold boundless potential towards high-energy-density anode due to their better capacities than those which are commercially utilized as anode material such as graphite [2, 101, 102].
In most highlighted photocatalytic areas TiO2 has been the most promising material as a photocatalyst. In last 3 decades, TiO2 attracted notable scientific and technological consequences (Figure 11). Similarly, to study other photocatalytic oxidation properties metal oxides (ZnO, SnO2, Fe2O3, WO3, Cu2O, SrTiO3) have been studied in detail. High crystallinity and large surface area with more active sites reduce recombination rate of photo−generated electron–holes pairs are the properties of the best photocatalyst. For oxygen (O2) evolution by photocatalysis from H2O under irradiation of visible light, highly−arranged tungsten oxide (m − WO3) hybridized with reduced graphene-oxide has been synthesized. Tremendous photocatalytic properties have been shown by CdS nanorods/reduced graphene-oxide composites had excellent photocatalytic properties with a rate constant was around three times greater than CdS nanorods for the degradation of MO [2, 103].
Scheme of photo-induced processes at a TiO2 semiconductor/electrolyte interface [
Electrical conductance sensitive to ambient gas composition, rising from interactions of charges with volatile organic compounds, reactive gases (O2, CO, NOx), hydrocarbons, and semiconducting metal oxides (WO3, TiO2, SnO2, ZnO) are utilized for gas sensing applications. The effort was made to acquire better results towards low pollutant gas concentrations under low operating temperatures for gas sensing materials. For the detection of harmful gases and large scale, thermal stability under operating conditions of sensors SnO2 nanostructures has attracted the most attention [2, 104].
In biomedical field, magnetic metal oxides have been used with biological agents, have excellent applications. As superparamagnetic Fe3O4 can act as potent nanoprobes magnetic fluid hyperthermia (MFH), biosensors, magnetic resonance imaging (MRI) are biocompatible and stable chemically as well as magnetically. For therapy and targeted drug delivery, Ferrite MFe2O4 (where M = Mn, Zn, Ni, Co, etc.) has also been characterized and studied [105, 106, 107].
The synergic effects and complex chemical configurations of several metal species in the TMOs induce noteworthy electrochemical performance. Numerous elegant approaches including compositions and manipulation of the micro/nanostructures have been widely established, that aims to endorse utilization of TMOs in everyday energy conversion technologies and enhancement of electrochemical performance. However, each designed approach applies lonely that normally consequences in partial enhancement in of electrodes based upon TMOs with respect to their electrochemical performance. Thus, it is more fascinating to assimilate manifold stimulating design approaches, therefore aggregating their electrochemical performance to meet today’s energy demands.
The mainstream of research reports owing to the utilization of TMOs related to boost energy storage devices is primarily based on the observations of a specific experiment. A wide-ranging insight into the connection among the composition (structure) and properties of these TMOs that are related to their performance has not been systematically attained yet. Thus, effective and reliable methods and standards are necessary to develop urgently to assess the energy storage devices that are based on TMOs. Theoretical simulation and mathematical modeling are also greatly anticipated to be established in order to direct large-scale, low-cost, and facile fabrication along with the purposeful design of TMOs for greater electrochemical performance.
Realizing the unsuccessful mechanisms upon cycling in the electrodes based upon TMOs for LIBs is crucial to direct the scheme and design of progressive materials. This needs to understand the compositional parameter and structural evolution as well as consideration of electrolyte compatibility matter. The amendment of electrolytes including certain reversible redox-couples (as additives) in aqueous electrolytes has been demonstrated that could considerably progress the general electrochemical progress of pseudo-capacitive materials. Thus, we also assume that appropriate scheme and design of electrolytes could additionally elevate the electrochemical performance of TMOs for both rechargeable batteries. Additionally, the assessment of pseudo-capacitive progress of TMOs is generally accomplished in aqueous electrolytes. This accomplishment is unescapably restricts the energy density owing to a slight stable potential window of aqueous electrolytes. Several other non-aqueous electrolytes that belong to organic class have been studied to boost output operating voltage which usually delivers 2–3 times broader working voltage window as compared to aqueous ones. Hence, the investigation of ECs that are based upon TMO (using organic electrolytes) is of great significance to attain greater energy density that will significantly cover the practical implementation of ECs. Besides the assessment based on electrochemical progress, other concerns about cost, and comfort, protection, and environmental compatibility of production and manipulation must also be engaged into thoughtful concern when TMOs are developing for LIBs to make them industrially applicable. It must be stressed about the synthesis mechanism of these TMO materials as it must be definitely scalable for commercial applications.
A complex method is the electrochemical reduction of oxygen over TMO catalysts that can comprise altered mechanisms that can be regulated through the nature of TMOs, owing to their adsorption and physicochemical properties. Till now, limited studies that are mainly attentive to the effect of catalyst features, mechanism, and kinetics of complex method discussed above. Further, adsorbed oxygen on the reaction rate, the intrinsic interactions between TMO catalysts and carbonaceous matrixes are also involved. The only trouble that is associated with examining the electrochemical procedures on TMOs are related to their semiconducting properties. These properties can lead to change in the behaviors of reactions on TMOs catalysts in comparison with the metal-based catalysts. Future progress might lead to extremely effective and inexpensive TMO catalysts after some heightened between the corrosion resistance, electro-catalytic experiment, fabrication cost, thermodynamic stability, and long-term stability.
Given the difficulties ahead, there is optimism that TMOs will be the materials forum soon for overcoming many of the existing bottlenecks problems in sustainable and renewable energy storage/conversion sectors. To accomplish this purpose, momentous improvements in electrochemical efficiency and a comprehensive understanding of TMOs dynamics in energy storage/conversion applications must be established. These fascinating TMO materials will provide a new path to make desirable energy innovations that will economically feasible with continued and committed research efforts.
Authors have declared no ‘conflict of interest.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,11,14,15,17,20,22,24"},books:[{type:"book",id:"11555",title:"Ubiquitous and Pervasive Computing - New Trends and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"42b6f15e5d9044c3abd00c231efec806",slug:null,bookSignature:"Prof. Rodrigo da Rosa Righi",coverURL:"https://cdn.intechopen.com/books/images_new/11555.jpg",editedByType:null,editors:[{id:"69889",title:"Prof.",name:"Rodrigo",surname:"da Rosa Righi",slug:"rodrigo-da-rosa-righi",fullName:"Rodrigo da Rosa Righi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11551",title:"Blockchain",subtitle:null,isOpenForSubmission:!0,hash:"26f3d47bfbfd96e25e5b46001876cc48",slug:null,bookSignature:"Prof. Vardan Mkrttchian",coverURL:"https://cdn.intechopen.com/books/images_new/11551.jpg",editedByType:null,editors:[{id:"333134",title:"Prof.",name:"Vardan",surname:"Mkrttchian",slug:"vardan-mkrttchian",fullName:"Vardan Mkrttchian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11458",title:"Human-Robot Interaction - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"2003e3388833e911f610e0cd9788a5e7",slug:null,bookSignature:"Dr. Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/11458.jpg",editedByType:null,editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11506",title:"Antenna Arrays",subtitle:null,isOpenForSubmission:!0,hash:"1b378e33d6f6e73721ee0dacbbb89aa1",slug:null,bookSignature:"Prof. Hussain Al-Rizzo, Dr. Nijas Kunju and Dr. Aldebaro Klautau",coverURL:"https://cdn.intechopen.com/books/images_new/11506.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11525",title:"Wood Industry - Past, Present and Future Outlook",subtitle:null,isOpenForSubmission:!0,hash:"ccb74142053c89e0e572ac1c5d717a11",slug:null,bookSignature:"Prof. Guanben Du and Dr. Xiaojian Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/11525.jpg",editedByType:null,editors:[{id:"291315",title:"Prof.",name:"Guanben",surname:"Du",slug:"guanben-du",fullName:"Guanben Du"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11121",title:"Crystal Growth - Technologies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"81f076fab2acb567946aeaa4b7281fc1",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/11121.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:166},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"408",title:"Applied Microbiology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-applied-microbiology",parent:{id:"59",title:"Microbiology",slug:"biochemistry-genetics-and-molecular-biology-microbiology"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:131,numberOfWosCitations:157,numberOfCrossrefCitations:91,numberOfDimensionsCitations:189,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"408",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9767",title:"Acidophiles",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"083648f001eb64682f9ddb527f0e849e",slug:"acidophiles-fundamentals-and-applications",bookSignature:"Jianqiang Lin, Linxu Chen and Jianqun Lin",coverURL:"https://cdn.intechopen.com/books/images_new/9767.jpg",editedByType:"Edited by",editors:[{id:"16859",title:"Dr.",name:"Jianqiang",middleName:null,surname:"Lin",slug:"jianqiang-lin",fullName:"Jianqiang Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10214",title:"Saccharomyces",subtitle:null,isOpenForSubmission:!1,hash:"e313134fdc982e3fdc0cc0bd1b48ef59",slug:"saccharomyces",bookSignature:"Thalita Peixoto Basso and Luiz Carlos Basso",coverURL:"https://cdn.intechopen.com/books/images_new/10214.jpg",editedByType:"Edited by",editors:[{id:"139174",title:"Ph.D.",name:"Thalita",middleName:null,surname:"Peixoto Basso",slug:"thalita-peixoto-basso",fullName:"Thalita Peixoto Basso"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5691",title:"Evolutionary Physiology and Biochemistry",subtitle:"Advances and Perspectives",isOpenForSubmission:!1,hash:"1d46e40056fbbdb46c70dc255c945cf8",slug:"evolutionary-physiology-and-biochemistry-advances-and-perspectives",bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/5691.jpg",editedByType:"Authored by",editors:null,equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"5519",title:"Melanin",subtitle:null,isOpenForSubmission:!1,hash:"c20953970276d03b7d85a71b6a7b786f",slug:"melanin",bookSignature:"Miroslav Blumenberg",coverURL:"https://cdn.intechopen.com/books/images_new/5519.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2040",title:"Innovations in Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"7aa191e2ed1767776deb20916d3b6776",slug:"innovations-in-biotechnology",bookSignature:"Eddy C. Agbo",coverURL:"https://cdn.intechopen.com/books/images_new/2040.jpg",editedByType:"Edited by",editors:[{id:"91529",title:"Dr.",name:"Eddy C.",middleName:null,surname:"Agbo",slug:"eddy-c.-agbo",fullName:"Eddy C. Agbo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"54177",doi:"10.5772/67375",title:"Production of Melanin Pigment by Fungi and Its Biotechnological Applications",slug:"production-of-melanin-pigment-by-fungi-and-its-biotechnological-applications",totalDownloads:4910,totalCrossrefCites:19,totalDimensionsCites:54,abstract:"Production of the microbial pigments is one of the emerging fields of research due to a growing interest of the industry for safer products, easily degradable and eco-friendly. Fungi constitute a valuable source of pigments because they are capable of producing high yields of the substance in the cheap culture medium, making the bioprocess economically viable on the industrial scale. Some fungal species produce a dark-brown pigment, known as melanin, by oxidative polymerization of phenolic compounds, such as glutaminyl-3,4-dihydroxybenzene (GDHB) or catechol or 1,8-dihydroxynaphthalene (DHN) or 3,4-dihydroxyphenylalanine (DOPA). This pigment has been reported to act as “fungal armor” due to its ability to protect fungi from adverse conditions, neutralizing oxidants generated in response to stress. Apart from the scavenging activity, melanin exhibits other biological activities, including thermoregulatory, radio- and photoprotective, antimicrobial, antiviral, cytotoxic, anti-inflammatory, and immunomodulatory. Studies have shown that the media composition and cultivation conditions affect the pigment production in fungi and the manipulation of these parameters can result in an increase in pigment yield for large-scale pigment production. This chapter presents a comprehensive discussion of the research on fungal melanin, including the recently discovered biological activities and the potential use of this pigment for various biotechnological applications in the fields of biomedicine, dermocosmetics, materials science, and nanotechnology.",book:{id:"5519",slug:"melanin",title:"Melanin",fullTitle:"Melanin"},signatures:"Sandra R. Pombeiro-Sponchiado, Gabriela S. Sousa, Jazmina C. R.\nAndrade, Helen F. Lisboa and Rita C. R. Gonçalves",authors:[{id:"192955",title:"Dr.",name:"Sandra Regina",middleName:null,surname:"Pombeiro-Sponchiado",slug:"sandra-regina-pombeiro-sponchiado",fullName:"Sandra Regina Pombeiro-Sponchiado"},{id:"193067",title:"MSc.",name:"Gabriela Santana",middleName:null,surname:"Sousa",slug:"gabriela-santana-sousa",fullName:"Gabriela Santana Sousa"},{id:"200660",title:"Dr.",name:"Rita Cassia Ribeiro",middleName:null,surname:"Gonçalves",slug:"rita-cassia-ribeiro-goncalves",fullName:"Rita Cassia Ribeiro Gonçalves"},{id:"200661",title:"MSc.",name:"Jazmina Carolina Reyes",middleName:null,surname:"Andrade",slug:"jazmina-carolina-reyes-andrade",fullName:"Jazmina Carolina Reyes Andrade"},{id:"200663",title:"Dr.",name:"Helen Cristina Favero",middleName:null,surname:"Lisboa",slug:"helen-cristina-favero-lisboa",fullName:"Helen Cristina Favero Lisboa"}]},{id:"28707",doi:"10.5772/31466",title:"Plant Beneficial Microbes and Their Application in Plant Biotechnology",slug:"plant-beneficial-microbes-and-their-application-in-plant-biotechnology",totalDownloads:12169,totalCrossrefCites:6,totalDimensionsCites:16,abstract:null,book:{id:"2040",slug:"innovations-in-biotechnology",title:"Innovations in Biotechnology",fullTitle:"Innovations in Biotechnology"},signatures:"Anna Russo, Gian Pietro Carrozza, Lorenzo Vettori, Cristiana Felici, Fabrizio Cinelli and Annita Toffanin",authors:[{id:"87275",title:"Dr.",name:"Anna",middleName:null,surname:"Russo",slug:"anna-russo",fullName:"Anna Russo"},{id:"137466",title:"Dr.",name:"Annita",middleName:null,surname:"Toffanin",slug:"annita-toffanin",fullName:"Annita Toffanin"},{id:"137467",title:"Dr.",name:"Gian Pietro",middleName:null,surname:"Carrozza",slug:"gian-pietro-carrozza",fullName:"Gian Pietro Carrozza"},{id:"137468",title:"Dr.",name:"Lorenzo",middleName:null,surname:"Vettori",slug:"lorenzo-vettori",fullName:"Lorenzo Vettori"},{id:"137469",title:"Dr.",name:"Cristiana",middleName:null,surname:"Felici",slug:"cristiana-felici",fullName:"Cristiana Felici"},{id:"137470",title:"Dr.",name:"Fabrizio",middleName:null,surname:"Cinelli",slug:"fabrizio-cinelli",fullName:"Fabrizio Cinelli"}]},{id:"28720",doi:"10.5772/27864",title:"Biotechnology Virtual Labs: Facilitating Laboratory Access Anytime-Anywhere for Classroom Education",slug:"biotechnology-virtual-labs-facilitating-laboratory-access-anytime-anywhere-for-classroom-education",totalDownloads:3805,totalCrossrefCites:12,totalDimensionsCites:15,abstract:null,book:{id:"2040",slug:"innovations-in-biotechnology",title:"Innovations in Biotechnology",fullTitle:"Innovations in Biotechnology"},signatures:"Shyam Diwakar, Krishnashree Achuthan, Prema Nedungadi and Bipin Nair",authors:[{id:"71863",title:"Prof.",name:"Shyam",middleName:null,surname:"Diwakar",slug:"shyam-diwakar",fullName:"Shyam Diwakar"},{id:"81401",title:"Dr.",name:"Krishnashree",middleName:null,surname:"Achuthan",slug:"krishnashree-achuthan",fullName:"Krishnashree Achuthan"},{id:"81403",title:"Prof.",name:"Bipin",middleName:null,surname:"Nair",slug:"bipin-nair",fullName:"Bipin Nair"},{id:"97348",title:"Dr.",name:"Prema",middleName:null,surname:"Nedungadi",slug:"prema-nedungadi",fullName:"Prema Nedungadi"}]},{id:"28705",doi:"10.5772/28673",title:"Applications of Biotechnology in Kiwifruit (Actinidia)",slug:"applications-of-biotechnology-in-kiwifruit-actinidia-",totalDownloads:7601,totalCrossrefCites:6,totalDimensionsCites:12,abstract:null,book:{id:"2040",slug:"innovations-in-biotechnology",title:"Innovations in Biotechnology",fullTitle:"Innovations in Biotechnology"},signatures:"Tianchi Wang and Andrew P. Gleave",authors:[{id:"74933",title:"Mr.",name:"Tianchi",middleName:null,surname:"Wang",slug:"tianchi-wang",fullName:"Tianchi Wang"},{id:"83221",title:"Dr.",name:"Andrew",middleName:null,surname:"Gleave",slug:"andrew-gleave",fullName:"Andrew Gleave"}]},{id:"28708",doi:"10.5772/28220",title:"In Vivo Circular RNA Expression by the Permuted Intron-Exon Method",slug:"in-vivo-circular-rna-expression-by-the-permuted-intron-exon-method",totalDownloads:3183,totalCrossrefCites:8,totalDimensionsCites:12,abstract:null,book:{id:"2040",slug:"innovations-in-biotechnology",title:"Innovations in Biotechnology",fullTitle:"Innovations in Biotechnology"},signatures:"So Umekage, Tomoe Uehara, Yoshinobu Fujita, Hiromichi Suzuki and Yo Kikuchi",authors:[{id:"73147",title:"Dr.",name:"So",middleName:null,surname:"Umekage",slug:"so-umekage",fullName:"So Umekage"},{id:"136934",title:"Ms.",name:"Tomoe",middleName:null,surname:"Uehara",slug:"tomoe-uehara",fullName:"Tomoe Uehara"},{id:"136935",title:"Mr.",name:"Yoshinobu",middleName:null,surname:"Fujita",slug:"yoshinobu-fujita",fullName:"Yoshinobu Fujita"},{id:"136936",title:"Dr.",name:"Hiromichi",middleName:null,surname:"Suzuki",slug:"hiromichi-suzuki",fullName:"Hiromichi Suzuki"},{id:"136937",title:"Prof.",name:"Yo",middleName:null,surname:"Kikuchi",slug:"yo-kikuchi",fullName:"Yo Kikuchi"}]}],mostDownloadedChaptersLast30Days:[{id:"54177",title:"Production of Melanin Pigment by Fungi and Its Biotechnological Applications",slug:"production-of-melanin-pigment-by-fungi-and-its-biotechnological-applications",totalDownloads:4917,totalCrossrefCites:19,totalDimensionsCites:54,abstract:"Production of the microbial pigments is one of the emerging fields of research due to a growing interest of the industry for safer products, easily degradable and eco-friendly. Fungi constitute a valuable source of pigments because they are capable of producing high yields of the substance in the cheap culture medium, making the bioprocess economically viable on the industrial scale. Some fungal species produce a dark-brown pigment, known as melanin, by oxidative polymerization of phenolic compounds, such as glutaminyl-3,4-dihydroxybenzene (GDHB) or catechol or 1,8-dihydroxynaphthalene (DHN) or 3,4-dihydroxyphenylalanine (DOPA). This pigment has been reported to act as “fungal armor” due to its ability to protect fungi from adverse conditions, neutralizing oxidants generated in response to stress. Apart from the scavenging activity, melanin exhibits other biological activities, including thermoregulatory, radio- and photoprotective, antimicrobial, antiviral, cytotoxic, anti-inflammatory, and immunomodulatory. Studies have shown that the media composition and cultivation conditions affect the pigment production in fungi and the manipulation of these parameters can result in an increase in pigment yield for large-scale pigment production. This chapter presents a comprehensive discussion of the research on fungal melanin, including the recently discovered biological activities and the potential use of this pigment for various biotechnological applications in the fields of biomedicine, dermocosmetics, materials science, and nanotechnology.",book:{id:"5519",slug:"melanin",title:"Melanin",fullTitle:"Melanin"},signatures:"Sandra R. Pombeiro-Sponchiado, Gabriela S. Sousa, Jazmina C. R.\nAndrade, Helen F. Lisboa and Rita C. R. Gonçalves",authors:[{id:"192955",title:"Dr.",name:"Sandra Regina",middleName:null,surname:"Pombeiro-Sponchiado",slug:"sandra-regina-pombeiro-sponchiado",fullName:"Sandra Regina Pombeiro-Sponchiado"},{id:"193067",title:"MSc.",name:"Gabriela Santana",middleName:null,surname:"Sousa",slug:"gabriela-santana-sousa",fullName:"Gabriela Santana Sousa"},{id:"200660",title:"Dr.",name:"Rita Cassia Ribeiro",middleName:null,surname:"Gonçalves",slug:"rita-cassia-ribeiro-goncalves",fullName:"Rita Cassia Ribeiro Gonçalves"},{id:"200661",title:"MSc.",name:"Jazmina Carolina Reyes",middleName:null,surname:"Andrade",slug:"jazmina-carolina-reyes-andrade",fullName:"Jazmina Carolina Reyes Andrade"},{id:"200663",title:"Dr.",name:"Helen Cristina Favero",middleName:null,surname:"Lisboa",slug:"helen-cristina-favero-lisboa",fullName:"Helen Cristina Favero Lisboa"}]},{id:"59050",title:"Ontogenetic and Phylogenetic Approaches for Studying the Mechanisms of Cognitive Dysfunctions",slug:"ontogenetic-and-phylogenetic-approaches-for-studying-the-mechanisms-of-cognitive-dysfunctions",totalDownloads:1238,totalCrossrefCites:3,totalDimensionsCites:0,abstract:"This chapter summarizes the phylogenetic and ontogenetic approaches for studying cognitive disorders such as Alzheimer’s disease. It gives an extended example of evaluation of animal behavior and brain properties using an original model of prenatal hypoxia in rats by various physiological, behavioral, immunohistochemical, molecular biological, and biochemical techniques at different stages of postnatal development, which provide a better understanding of the pathological processes in the human brain during the development of neurodegeneration.",book:{id:"5691",slug:"evolutionary-physiology-and-biochemistry-advances-and-perspectives",title:"Evolutionary Physiology and Biochemistry",fullTitle:"Evolutionary Physiology and Biochemistry - Advances and Perspectives"},signatures:"Igor А. Zhuravin, Nadezhda M. Dubrovskaya, Natalia L. Tumanova,\n\nDmitrii S. Vasilev and Natalia N. Nalivaeva",authors:[{id:"241024",title:"Dr.",name:"Igor А.",middleName:null,surname:"Zhuravin",slug:"igor-a.-zhuravin",fullName:"Igor А. Zhuravin"},{id:"241026",title:"Dr.",name:"Nadezhda М.",middleName:null,surname:"Dubrovskaya",slug:"nadezhda-m.-dubrovskaya",fullName:"Nadezhda М. Dubrovskaya"},{id:"241027",title:"Dr.",name:"Natalia L.",middleName:null,surname:"Tumanova",slug:"natalia-l.-tumanova",fullName:"Natalia L. Tumanova"},{id:"241028",title:"Dr.",name:"Dmitrii S.",middleName:null,surname:"Vasilev",slug:"dmitrii-s.-vasilev",fullName:"Dmitrii S. Vasilev"},{id:"241029",title:"Dr.",name:"Natalia N.",middleName:null,surname:"Nalivaeva",slug:"natalia-n.-nalivaeva",fullName:"Natalia N. Nalivaeva"}]},{id:"28719",title:"Biotechnology Patents: Safeguarding Human Health",slug:"biotechnology-patents-safeguarding-human-health",totalDownloads:3179,totalCrossrefCites:0,totalDimensionsCites:3,abstract:null,book:{id:"2040",slug:"innovations-in-biotechnology",title:"Innovations in Biotechnology",fullTitle:"Innovations in Biotechnology"},signatures:"Rajendra K. Bera",authors:[{id:"77013",title:"Prof.",name:"Rajendra",middleName:null,surname:"Bera",slug:"rajendra-bera",fullName:"Rajendra Bera"}]},{id:"53118",title:"Oral Mucosal Melanosis",slug:"oral-mucosal-melanosis",totalDownloads:2779,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"In the mouth, melanin is produced by melanocytes residing in the basal cell layer of the oral epithelium. Melanin influences the colour of the oral mucosa and provides protection against reactive oxygen species and bacterial-derived enzymes and toxins and acts as a physical barrier to both microorganisms invading the oral epithelium and to other microenvironmental stressors. The functional activity of epithelial melanocytes is regulated by biological agents in the microenvironment, including proopiomelanocortin-derived peptides, and by reciprocal interactions between melanocytes on the one hand and neighbouring keratinocytes and signals from the underlying lamina propria on the other hand. Oral mucosal melanin hyperpigmentation is common and may be physiological or pathological, and in either case the pattern of distribution and the intensity of the melanosis are variable. Physiological melanin hyperpigmentation is the result of increased melanin biosynthesis by melanocytes in the basal cell layer of the oral epithelium, but pathological melanin pigmentation may be the result of increased number of normal melanocytes or atypical melanocytes, of increased melanogenic activity of normal or atypical melanocytes, or of both. Oral mucosal melanin hyperpigmentation may be secondary to disease, medications, or smoking, and physiological oral melanin hyperpigmentation may be clinically and histopathologically similar so that the differentiation between pathological and physiological oral melanosis can at times be difficult.",book:{id:"5519",slug:"melanin",title:"Melanin",fullTitle:"Melanin"},signatures:"Liviu Feller, Razia A.G. Khammissa and Johan Lemmer",authors:[{id:"193730",title:"Prof.",name:"Liviu",middleName:null,surname:"Feller",slug:"liviu-feller",fullName:"Liviu Feller"},{id:"195726",title:"Dr.",name:"Razia",middleName:null,surname:"Khammissa",slug:"razia-khammissa",fullName:"Razia Khammissa"}]},{id:"28705",title:"Applications of Biotechnology in Kiwifruit (Actinidia)",slug:"applications-of-biotechnology-in-kiwifruit-actinidia-",totalDownloads:7605,totalCrossrefCites:6,totalDimensionsCites:12,abstract:null,book:{id:"2040",slug:"innovations-in-biotechnology",title:"Innovations in Biotechnology",fullTitle:"Innovations in Biotechnology"},signatures:"Tianchi Wang and Andrew P. Gleave",authors:[{id:"74933",title:"Mr.",name:"Tianchi",middleName:null,surname:"Wang",slug:"tianchi-wang",fullName:"Tianchi Wang"},{id:"83221",title:"Dr.",name:"Andrew",middleName:null,surname:"Gleave",slug:"andrew-gleave",fullName:"Andrew Gleave"}]}],onlineFirstChaptersFilter:{topicId:"408",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"7",type:"subseries",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11403,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:175,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/343012",hash:"",query:{},params:{id:"343012"},fullPath:"/profiles/343012",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()