\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5201",leadTitle:null,fullTitle:"Microscopy and Analysis",title:"Microscopy and Analysis",subtitle:null,reviewType:"peer-reviewed",abstract:"Microscopes represent tools of the utmost importance for a wide range of disciplines. Without them, it would have been impossible to stand where we stand today in terms of understanding the structure and functions of organelles and cells, tissue composition and metabolism, or the causes behind various pathologies and their progression. Our knowledge on basic and advanced materials is also intimately intertwined to the realm of microscopy, and progress in key fields of micro- and nanotechnologies critically depends on high-resolution imaging systems. This volume includes a series of chapters that address highly significant scientific subjects from diverse areas of microscopy and analysis. Authoritative voices in their fields present in this volume their work or review recent trends, concepts, and applications, in a manner that is accessible to a broad readership audience from both within and outside their specialist area.",isbn:"978-953-51-2579-2",printIsbn:"978-953-51-2578-5",pdfIsbn:"978-953-51-5076-3",doi:"10.5772/61531",price:139,priceEur:155,priceUsd:179,slug:"microscopy-and-analysis",numberOfPages:442,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"74279489e73c2cea833dcf0a78fb1b70",bookSignature:"Stefan G. Stanciu",publishedDate:"September 21st 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5201.jpg",numberOfDownloads:29764,numberOfWosCitations:47,numberOfCrossrefCitations:22,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:50,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:119,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 19th 2015",dateEndSecondStepPublish:"November 9th 2015",dateEndThirdStepPublish:"February 13th 2016",dateEndFourthStepPublish:"May 13th 2016",dateEndFifthStepPublish:"June 12th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"17941",title:"Dr.",name:"Stefan G.",middleName:null,surname:"Stanciu",slug:"stefan-g.-stanciu",fullName:"Stefan G. Stanciu",profilePictureURL:"https://mts.intechopen.com/storage/users/17941/images/system/17941.png",biography:"Stefan G. Stanciu received his Ph.D. in Electronics Engineering and Telecommunications at University Politehnica of Bucharest (UPB) in 2011. He is currently acting as a Senior Scientific Researcher within the Center for Microscopy-Microanalysis and Information Processing of UPB. His main research interests revolve around high- and super-resolution imaging by scanning laser and scanning probe microscopies. Stefan’s current research agenda focuses on the optical characterization of biological species and advanced materials using multimodal imaging approaches, but also on the development of novel machine intelligence methods for automated analysis of microscopy datasets.",institutionString:"Polytechnic University of Bucharest",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Polytechnic University of Bucharest",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226",title:"Optoelectronics",slug:"optics-and-lasers-optoelectronics"}],chapters:[{id:"51638",title:"Quantum Image-Forming Theory for Calculation of Resolution Limit in Laser Microscopy",doi:"10.5772/63494",slug:"quantum-image-forming-theory-for-calculation-of-resolution-limit-in-laser-microscopy",totalDownloads:2108,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Here we show what determines the optical resolution in laser microscopy. We define the expanded resolution limit (spatial frequency cutoff ) that includes the classic Abbe definition as 2 NA/λ, where λ is the wavelength. The resolution limit can approximately be redefined as the frequency cutoff αNA/λ, where α is the constant that depends on the optical process occurring in the sample. In the case of the optical process originating from the linear susceptibility χ(1), the resolution limit is well known as the Abbe definition, namely, α = 2. However, when other optical processes are harnessed to form the image through laser microscopy, the resolution limit can differ. We formulate a theoretical framework that can calculate the expanded resolution limits of all kinds of laser microscopy utilizing coherent, incoherent, linear, and nonlinear optical processes.",signatures:"Naoki Fukutake",downloadPdfUrl:"/chapter/pdf-download/51638",previewPdfUrl:"/chapter/pdf-preview/51638",authors:[{id:"180665",title:"Dr.",name:"Naoki",surname:"Fukutake",slug:"naoki-fukutake",fullName:"Naoki Fukutake"}],corrections:null},{id:"50820",title:"Kinetic Model of Development and Aging of Artificial Skin Based on Analysis of Microscopy Data",doi:"10.5772/63402",slug:"kinetic-model-of-development-and-aging-of-artificial-skin-based-on-analysis-of-microscopy-data",totalDownloads:1577,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Artificial human skin is available commercially or can be grown in the laboratory from established cell lines. Standard microscopy techniques show that artificial human skin has a fully developed basement membrane that separates an epidermis with the corneal, granular, spinosal, and basal layers from a dermis consisting of fibroblasts in an extracellular matrix. In this chapter, we show how modeling can integrate microscopy data to obtain a better understanding of the development and aging of artificial human skin. We use the time-dependent structural information predicted by our model to show how irradiation with an electron beam at different times in the life of artificial human skin affects the amount of energy deposited in different layers of the tissue. Experimental studies of this type will enable a better understanding of how different cell types in human skin contribute to overall tissue response to ionizing radiation.",signatures:"Paola Pesantez-Cabrera, Cläre von Neubeck, Marianne B. Sowa and John H. Miller",downloadPdfUrl:"/chapter/pdf-download/50820",previewPdfUrl:"/chapter/pdf-preview/50820",authors:[{id:"180363",title:"Prof.",name:"John",surname:"Miller",slug:"john-miller",fullName:"John Miller"},{id:"185608",title:"Dr.",name:"Paola",surname:"Pesantez Cabrera",slug:"paola-pesantez-cabrera",fullName:"Paola Pesantez Cabrera"},{id:"185609",title:"Dr.",name:"Marianne",surname:"Sowa",slug:"marianne-sowa",fullName:"Marianne Sowa"}],corrections:null},{id:"51212",title:"Automatic Interpretation of Melanocytic Images in Confocal Laser Scanning Microscopy",doi:"10.5772/63404",slug:"automatic-interpretation-of-melanocytic-images-in-confocal-laser-scanning-microscopy",totalDownloads:1982,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The frequency of melanoma doubles every 20 years. The early detection of malignant changes augments the therapy success. Confocal laser scanning microscopy (CLSM) enables the noninvasive examination of skin tissue. To diminish the need for training and to improve diagnostic accuracy, computer-aided diagnostic systems are required. Two approaches are presented: a multiresolution analysis and an approach based on deep layer convolutional neural networks. For the diagnosis of the CLSM views, architectural structures such as micro-anatomic structures and cell nests are used as guidelines by the dermatologists. Features based on the wavelet transform enable an exploration of architectural structures at different spatial scales. The subjective diagnostic criteria are objectively reproduced. A tree-based machine-learning algorithm captures the decision structure explicitly and the decision steps are used as diagnostic rules. Deep layer neural networks require no a priori domain knowledge. They are capable of learning their own discriminatory features through the direct analysis of image data. However, deep layer neural networks require large amounts of processing power to learn. Therefore, modern neural network training is performed using graphics cards, which typically possess many hundreds of small, modestly powerful cores that calculate massively in parallel. Readers will learn how to apply multiresolution analysis and modern deep learning neural network techniques to medical image analysis problems.",signatures:"Marco Wiltgen and Marcus Bloice",downloadPdfUrl:"/chapter/pdf-download/51212",previewPdfUrl:"/chapter/pdf-preview/51212",authors:[{id:"21762",title:"Dr.",name:"Marco",surname:"Wiltgen",slug:"marco-wiltgen",fullName:"Marco Wiltgen"},{id:"181319",title:"MSc.",name:"Marcus",surname:"Bloice",slug:"marcus-bloice",fullName:"Marcus Bloice"}],corrections:null},{id:"50684",title:"Super‐Resolution Confocal Microscopy Through Pixel Reassignment",doi:"10.5772/63192",slug:"super-resolution-confocal-microscopy-through-pixel-reassignment",totalDownloads:1822,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Confocal microscopy has gained great popularity in the observation of biological microstructures and dynamic processes. Its resolution enhancement comes from shrinking the pinhole size, which, however, degrades imaging signal‐to‐noise ratio (SNR) severely. Recently developed super‐resolution method based on the pixel reassignment technique is capable of achieving a factor of 2 resolution improvement and further reaching twofold improvement by deconvolution, compared with the optical diffraction limit. More importantly, the approach allows better imaging SNR when its lateral resolution is similar to the standard confocal microscopy. Pixel reassignment can be realized both computationally and optically, but the optical realization demonstrates much faster acquisition of super‐resolution imaging. In this chapter, the development and advancement of super‐resolution confocal microscopy through the pixel realignment method are summarized, and its capabilities of imaging biological structures and interactions are represented.",signatures:"Longchao Chen, Yuling Wang and Wei Song",downloadPdfUrl:"/chapter/pdf-download/50684",previewPdfUrl:"/chapter/pdf-preview/50684",authors:[{id:"180453",title:"Dr.",name:"Wei",surname:"Song",slug:"wei-song",fullName:"Wei Song"}],corrections:null},{id:"50758",title:"Second Harmonic Generation Microscopy: A Tool for Quantitative Analysis of Tissues",doi:"10.5772/63493",slug:"second-harmonic-generation-microscopy-a-tool-for-quantitative-analysis-of-tissues",totalDownloads:2839,totalCrossrefCites:4,totalDimensionsCites:14,hasAltmetrics:0,abstract:"Second harmonic generation (SHG) is a second‐order non‐linear optical process produced in birefringent crystals or in biological tissues with non‐centrosymmetric structure such as collagen or microtubules structures. SHG signal originates from two excitation photons which interact with the material and are “reconverted” to form a new emitted photon with half of wavelength. Although theoretically predicted by Maria Göpert‐Mayer in 1930s, the experimental SHG demonstration arrived with the invention of the laser in the 1960s. SHG was first obtained in ruby by using a high excitation oscillator. After that starting point, the harmonic generation reached an increasing interest and importance, based on its applications to characterize biological tissues using multiphoton microscopes. In particular, collagen has been one of the most often analyzed structures since it provides an efficient SHG signal. In late 1970s, it was discovered that SHG signal took place in three‐dimensional optical interaction at the focal point of a microscope objective with high numerical aperture. This finding allowed researchers to develop microscopes with 3D submicron resolution and an in depth analysis of biological specimens. Since SHG is a polarization‐sensitive non‐linear optical process, the implementation of polarization into multiphoton microscopes has allowed the study of both molecular architecture and fibrilar distribution of type‐I collagen fibers. The analysis of collagen‐based structures is particularly interesting since they represent 80% of the connective tissue of the human body. On the other hand, more recent techniques such as pulse compression of laser pulses or adaptive optics have been applied to SHG microscopy in order to improve the visualization of features. The combination of these techniques permit the reduction of the laser power required to produce efficient SHG signal and therefore photo‐toxicity and photo‐damage are avoided (critical parameters in biomedical applications). Some pathologies such as cancer or fibrosis are related to collagen disorders. These are thought to appear at molecular scale before the micrometric structure is affected. In this sense, SHG imaging has emerged as a powerful tool in biomedicine and it might serve as a non‐invasive early diagnosis technique.",signatures:"Juan M. Bueno, Francisco J. Ávila, and Pablo Artal",downloadPdfUrl:"/chapter/pdf-download/50758",previewPdfUrl:"/chapter/pdf-preview/50758",authors:[{id:"180978",title:"Associate Prof.",name:"Juan M.",surname:"Bueno",slug:"juan-m.-bueno",fullName:"Juan M. Bueno"},{id:"181245",title:"Dr.",name:"Francisco J.",surname:"Avila",slug:"francisco-j.-avila",fullName:"Francisco J. Avila"},{id:"185189",title:"Prof.",name:"Pablo",surname:"Artal",slug:"pablo-artal",fullName:"Pablo Artal"}],corrections:null},{id:"50960",title:"Nonlinear Microscopy Techniques: Principles and Biomedical Applications",doi:"10.5772/63451",slug:"nonlinear-microscopy-techniques-principles-and-biomedical-applications",totalDownloads:2289,totalCrossrefCites:8,totalDimensionsCites:9,hasAltmetrics:0,abstract:"Nonlinear optical microscopy techniques have emerged as a set of successful tools within the biomedical research field. These techniques have been successfully used to study autofluorescence signals in living tissues, structural protein arrays, and to reveal the presence of lipid bodies inside the tissular volume. In the first section, the nonlinear contrast technique foundations is described, and also, a practical approach about how to build and combine this setup on a single confocal system platform shall be provided. In the next section, examples of the usefulness of these approaches to detect early changes associated with the progression of different epithelial and connective tissular diseases are presented.",signatures:"Javier Adur, Hernandes F. Carvalho, Carlos L. Cesar and Víctor H.\nCasco",downloadPdfUrl:"/chapter/pdf-download/50960",previewPdfUrl:"/chapter/pdf-preview/50960",authors:[{id:"103103",title:"Dr.",name:"Víctor",surname:"Casco",slug:"victor-casco",fullName:"Víctor Casco"},{id:"181082",title:"Dr.",name:"Javier",surname:"Adur",slug:"javier-adur",fullName:"Javier Adur"},{id:"185700",title:"Dr.",name:"Hernandes",surname:"Carvalho",slug:"hernandes-carvalho",fullName:"Hernandes Carvalho"},{id:"185701",title:"Dr.",name:"Carlos",surname:"Cesar",slug:"carlos-cesar",fullName:"Carlos Cesar"}],corrections:null},{id:"51521",title:"Skin Wound Healing Revealed by Multimodal Optical Microscopies",doi:"10.5772/64088",slug:"skin-wound-healing-revealed-by-multimodal-optical-microscopies",totalDownloads:1872,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Skin is the largest organ of our body serving as the first line defense against pathogens and toxicity. The skin can heal itself if any damage in it occur. Wounds, if not taken care properly, can become chronic and can even cause death. In the field of cosmetics and plastic reconstructive surgery, wounds, are major cause of trauma and costs, which demand proper diagnosis that can help in appropriate treatment. In conventional medicine, wound diagnosis mostly relied on the expertise and experience of physicians on the basis of non-quantitative observation of clinical signs, or invasive histochemical assessment of biopsies.",signatures:"Gitanjal Deka, Shi‐Wei Chu and Fu‐Jen Kao",downloadPdfUrl:"/chapter/pdf-download/51521",previewPdfUrl:"/chapter/pdf-preview/51521",authors:[{id:"22280",title:"Prof.",name:"Shi-Wei",surname:"Chu",slug:"shi-wei-chu",fullName:"Shi-Wei Chu"},{id:"181526",title:"Dr.",name:"Gitanjal",surname:"Deka",slug:"gitanjal-deka",fullName:"Gitanjal Deka"},{id:"181529",title:"Prof.",name:"Fu-Jen",surname:"Kao",slug:"fu-jen-kao",fullName:"Fu-Jen Kao"}],corrections:null},{id:"51404",title:"Automated Identification and Measurement of Haematopoietic Stem Cells in 3D Intravital Microscopy Data",doi:"10.5772/64089",slug:"automated-identification-and-measurement-of-haematopoietic-stem-cells-in-3d-intravital-microscopy-da",totalDownloads:1354,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Image analysis and quantification of Haematopoietic stem cells (HSCs) position within their surrounding microenvironment in the bone marrow is a fast growing area of research, as it holds the key to understanding the dynamics of HSC-niche interactions and their multiple implications in normal tissue development and in response to various stress events. However, this area of research is very challenging due to the complex cellular structure of such images. Therefore, automated image analysis tools are required to simplify the biological interpretation of 3D HSC microenvironment images. In this chapter, we describe how 3D intravital microscopy data can be visualised and analysed using a computational method that allows the automated quantification of HSC position relative to surrounding niche components.",signatures:"Reema Adel Khorshed and Cristina Lo Celso",downloadPdfUrl:"/chapter/pdf-download/51404",previewPdfUrl:"/chapter/pdf-preview/51404",authors:[{id:"181120",title:"Dr.",name:"Reema Adel",surname:"Khorshed",slug:"reema-adel-khorshed",fullName:"Reema Adel Khorshed"},{id:"181190",title:"Dr.",name:"Cristina",surname:"Lo Celso",slug:"cristina-lo-celso",fullName:"Cristina Lo Celso"}],corrections:null},{id:"50303",title:"Microscopic Investigations on Woody Biomass as Treated with Ionic Liquids",doi:"10.5772/62721",slug:"microscopic-investigations-on-woody-biomass-as-treated-with-ionic-liquids",totalDownloads:1420,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Woody biomass is one of the most promising renewable alternatives to fossil resources. However, some physical and chemical treatment is required to convert their chemical components into biofuels and valuable chemicals because of their low degradative properties. Recently, there has been considerable interest in ionic liquid treatment for biorefinery, and many fundamental studies on the reactivity of wood with ionic liquids have been performed from a chemical and morphological point of view. This chapter highlights the findings regarding morphological and topochemical features of wood cell walls in the degradation process as a result of ionic liquid treatment. Bright-field microscopy and scanning electron microscopy have revealed the swelling behavior of cell walls and the detailed ultrastructural features of wood tissues treated with ionic liquid. Polarized light microscopy and confocal Raman microscopy have clarified the changes in cellulose crystallinity and distribution of chemical compositions such as polysaccharides and lignin during ionic liquid treatment at the cellular level.",signatures:"Toru Kanbayashi and Hisashi Miyafuji",downloadPdfUrl:"/chapter/pdf-download/50303",previewPdfUrl:"/chapter/pdf-preview/50303",authors:[{id:"152817",title:"Dr.",name:"Hisashi",surname:"Miyafuji",slug:"hisashi-miyafuji",fullName:"Hisashi Miyafuji"},{id:"184025",title:"Dr.",name:"Toru",surname:"Kanbayashi",slug:"toru-kanbayashi",fullName:"Toru Kanbayashi"}],corrections:null},{id:"51150",title:"The New Youth of the In Situ Transmission Electron Microscopy",doi:"10.5772/63269",slug:"the-new-youth-of-the-in-situ-transmission-electron-microscopy",totalDownloads:1862,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The idea of in situ transmission electron microscopy (TEM) and its possible ramifications were proposed at the very dawn of electron microscopy, but the translation from theory to practice encountered many technological setbacks, which hindered the feasibility of the most elaborated approaches until recent times. However, the several technological improvements achieved in the last 10–15 years filled this gap, allowing the direct observation of the dynamic response of materials to external stimuli under a vast range of conditions going from vacuum to gaseous or liquid environment. This resulted in a blossoming of the in situ TEM and scanning TEM (STEM) techniques to a new youth for a vast, growing range of applications, which cannot be rightfully detailed in a short span; therefore, this chapter should be intended as a guide highlighting a selection of the most inspiring, recently achieved results.",signatures:"Alberto Casu, Elisa Sogne, Alessandro Genovese, Cristiano Di\nBenedetto, Sergio Lentijo Mozo, Efisio Zuddas, Francesca Pagliari\nand Andrea Falqui",downloadPdfUrl:"/chapter/pdf-download/51150",previewPdfUrl:"/chapter/pdf-preview/51150",authors:[{id:"180291",title:"Associate Prof.",name:"Andrea",surname:"Falqui",slug:"andrea-falqui",fullName:"Andrea Falqui"},{id:"181885",title:"Dr.",name:"Alberto",surname:"Casu",slug:"alberto-casu",fullName:"Alberto Casu"},{id:"181886",title:"Dr.",name:"Cristiano",surname:"Di Benedetto",slug:"cristiano-di-benedetto",fullName:"Cristiano Di Benedetto"},{id:"181887",title:"Dr.",name:"Alessandro",surname:"Genovese",slug:"alessandro-genovese",fullName:"Alessandro Genovese"},{id:"181888",title:"Dr.",name:"Sergio",surname:"Lentijo Mozo",slug:"sergio-lentijo-mozo",fullName:"Sergio Lentijo Mozo"},{id:"181889",title:"Dr.",name:"Elisa",surname:"Sogne",slug:"elisa-sogne",fullName:"Elisa Sogne"},{id:"181890",title:"MSc.",name:"Efisio",surname:"Zuddas",slug:"efisio-zuddas",fullName:"Efisio Zuddas"},{id:"186127",title:"Dr.",name:"Francesca",surname:"Pagliari",slug:"francesca-pagliari",fullName:"Francesca Pagliari"}],corrections:null},{id:"50237",title:"In Situ Transmission Electron Microscopy Studies in Gas/Liquid Environment",doi:"10.5772/62551",slug:"in-situ-transmission-electron-microscopy-studies-in-gas-liquid-environment",totalDownloads:2091,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Conventional transmission electron microscopy (TEM) typically operates under high vacuum conditions. However, in situ investigation under real-world conditions other than vacuum, such as gaseous or liquidus environment, is essential to obtain practical information for materials including catalysts, fuel cells, biological molecules, lithium ion batteries, etc. Therefore, the ability to study gas/liquid–solid interactions with atomic resolution under ambient conditions in TEM promises new insights into the growth, properties, and functionality of nanomaterials. Different platforms have been developed for in situ TEM observations in ambient environment and can be classified into two categories: open-cell configuration and sealed gas/liquid cell configuration. The sealed cell technique has various advantages over the open-cell approach. This chapter serves as a review of windowed gas/liquid cells for in situ TEM observations.",signatures:"Fan Wu and Nan Yao",downloadPdfUrl:"/chapter/pdf-download/50237",previewPdfUrl:"/chapter/pdf-preview/50237",authors:[{id:"181621",title:"Dr.",name:"Fan",surname:"Wu",slug:"fan-wu",fullName:"Fan Wu"},{id:"181641",title:"Prof.",name:"Nan",surname:"Yao",slug:"nan-yao",fullName:"Nan Yao"}],corrections:null},{id:"50344",title:"Advanced Scanning Tunneling Microscopy for Nanoscale Analysis of Semiconductor Devices",doi:"10.5772/62552",slug:"advanced-scanning-tunneling-microscopy-for-nanoscale-analysis-of-semiconductor-devices",totalDownloads:2163,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Significant attention has been addressed to high-spatial resolution analysis of modern sub-100-nm electronic devices to achieve new functions and energy-efficient operations. The chapter presents a review of ongoing research on charge carrier distribution analysis in nanoscale Si devices by using scanning tunneling microscopy (STM) employing advanced operation modes: a gap-modulation method, a molecule-assisted probing method, and a dual-imaging method. The described methods rely on detection and analysis of tunneling current, which is strongly localized within an atomic dimension. Representative examples of applications to nanoscale analysis of Si device cross-sections and nanowires are given. Advantages, difficulties, and limitations of the advanced STM methods are discussed in comparison with other techniques used in a field of device metrology.",signatures:"Leonid Bolotov and Toshihiko Kanayama",downloadPdfUrl:"/chapter/pdf-download/50344",previewPdfUrl:"/chapter/pdf-preview/50344",authors:[{id:"181405",title:"Dr.",name:"Leonid",surname:"Bolotov",slug:"leonid-bolotov",fullName:"Leonid Bolotov"},{id:"181408",title:"Prof.",name:"Toshihiko",surname:"Kanayama",slug:"toshihiko-kanayama",fullName:"Toshihiko Kanayama"}],corrections:null},{id:"50721",title:"Electron Orbital Contribution in Distance‐Dependent STM Experiments",doi:"10.5772/63270",slug:"electron-orbital-contribution-in-distance-dependent-stm-experiments",totalDownloads:1648,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Scanning tunneling microscopy (STM) is one of the most powerful techniques for the analysis of surface reconstructions at the atomic scale. It utilizes a sharp tip, which is brought close to the surface with a bias voltage applied between the tip and the sample. The value of the tunneling current, flowing between the tip and the sample, is determined by the structure of the surface and the tip, the bias voltage, and the tip‐sample distance. By scanning the tip over the surface, a tunneling current map is produced, which reflects the local atomic and electronic structures. This chapter focuses on the role of the tip‐surface distance in ultrahigh vacuum STM experiments with atomic and subatomic resolution. At small distances, i.e., comparable with interatomic distances in solids, the interaction between the tip and the surface atoms can modify their electronic structure changing the symmetry of the atomically resolved STM images and producing unusual features at the subatomic scale. These features are related to changes of the relative contribution of different electron orbitals of the tip and the surface atoms at varying distances.",signatures:"Alexander N. Chaika",downloadPdfUrl:"/chapter/pdf-download/50721",previewPdfUrl:"/chapter/pdf-preview/50721",authors:[{id:"181626",title:"Dr.",name:"Alexander",surname:"Chaika",slug:"alexander-chaika",fullName:"Alexander Chaika"}],corrections:null},{id:"51208",title:"Wavefunction Analysis of STM Image: Surface Reconstruction of Organic Charge Transfer Salts",doi:"10.5772/63406",slug:"wavefunction-analysis-of-stm-image-surface-reconstruction-of-organic-charge-transfer-salts",totalDownloads:1473,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In this chapter, the wavefunction analysis is demonstrated, applied to the organic charge transfer salts composed of electron donor and electron acceptor molecules. Scanning tunneling microscopy (STM) images of the surface donor layers in the three charge transfer salts, α-(BEDT-TTF)2I3, β-(BEDT-TTF)2I3, and (EDO-TTF)2PF6, are analyzed with the atomic π electron orbitals of sulfur, oxygen, and carbon atoms. We have deduced three different kinds of surface molecular reconstructions as follows: (1) charge redistribution in α-(BEDT-TTF)2I3, (2) translational reconstruction up to 0.1 nm in β-(BEDT-TTF)2I3, and (3) rotational reconstruction transforming the 1D axis from the a axis to the b axis in (EDO-TTF)2PF6. Finally, it is concluded that the surface reconstruction is ascribed to the additional gain of the cohesive energy of the π electron system, provoked by the reduced steric hindrance with the anions of the missing outside double layer. The investigations of the surface states provide not only interesting behaviors of the surface cation layer, but also important insights into the electronic states of a lot of similar charge transfer crystals, as demonstrated in α-(BEDT-TTF)2I3.",signatures:"Hirokazu Sakamoto, Eiichi Mori, Hideyuki Arimoto, Keiichiro Namai,\nHiroyuki Tahara, Toshio Naito, Taka-aki Hiramatsu, Hideki Yamochi\nand Kenji Mizoguchi",downloadPdfUrl:"/chapter/pdf-download/51208",previewPdfUrl:"/chapter/pdf-preview/51208",authors:[{id:"181035",title:"Emeritus Prof.",name:"Kenji",surname:"Mizoguchi",slug:"kenji-mizoguchi",fullName:"Kenji Mizoguchi"},{id:"185620",title:"Dr.",name:"Hirokazu",surname:"Sakamoto",slug:"hirokazu-sakamoto",fullName:"Hirokazu Sakamoto"},{id:"185659",title:"Mr.",name:"Eiichi",surname:"Mori",slug:"eiichi-mori",fullName:"Eiichi Mori"},{id:"185660",title:"Mr.",name:"Hiroyuki",surname:"Tahara",slug:"hiroyuki-tahara",fullName:"Hiroyuki Tahara"},{id:"185661",title:"Prof.",name:"Toshio",surname:"Naito",slug:"toshio-naito",fullName:"Toshio Naito"},{id:"185662",title:"Dr.",name:"Taka-Aki",surname:"Hiramatsu",slug:"taka-aki-hiramatsu",fullName:"Taka-Aki Hiramatsu"},{id:"185663",title:"Prof.",name:"Hideki",surname:"Yamochi",slug:"hideki-yamochi",fullName:"Hideki Yamochi"},{id:"185664",title:"Mr.",name:"Hideyuki",surname:"Arimoto",slug:"hideyuki-arimoto",fullName:"Hideyuki Arimoto"},{id:"185665",title:"Mr.",name:"Keiichiro",surname:"Namai",slug:"keiichiro-namai",fullName:"Keiichiro Namai"}],corrections:null},{id:"50823",title:"Application of Scanning Acoustic Microscopy to Pathological Diagnosis",doi:"10.5772/63405",slug:"application-of-scanning-acoustic-microscopy-to-pathological-diagnosis",totalDownloads:1716,totalCrossrefCites:1,totalDimensionsCites:7,hasAltmetrics:0,abstract:"Scanning acoustic microscopy (SAM) can obtain high-quality microscopic images of tissues and cells that are comparable with light microscopic images without staining and within only a few minutes. The speed of sound through tissues and cells is correlated with elasticity, thereby indicating their biomechanical properties. The elasticity varies according to the contents, such as collagen or elastic fibers, blood, colloids, mucin, ground substances, and cytoskeleton; therefore, SAM can follow changes in the composition of tissues and cells to determine their functions. Chemical modifications such as fixation, periodic acid-Schiff reaction, and enzymatic digestion may influence acoustic properties, and SAM can follow these changes over time in the same section to facilitate statistical comparisons based on digital values. Digital imaging using SAM is superior to analog methods for modifying images to discriminate changes, such as malignant and benign cell types. The observation ranges are shown in a colored column, and they can be manually adjusted. Thus, precise differences in acoustic properties are readily distinguished by narrowing the range. The resolution of SAM is determined by the wavelength, and it can theoretically exceed that of visible light. Combining these distinct techniques may help to elucidate the structural and functional characteristics of tissues and cells.",signatures:"Katsutoshi Miura",downloadPdfUrl:"/chapter/pdf-download/50823",previewPdfUrl:"/chapter/pdf-preview/50823",authors:[{id:"179702",title:"Prof.",name:"Katsutoshi",surname:"Miura",slug:"katsutoshi-miura",fullName:"Katsutoshi Miura"}],corrections:null},{id:"51246",title:"Applying High-Frequency Ultrasound to Examine Structures and Physical Properties of Cells and Tissues",doi:"10.5772/63732",slug:"applying-high-frequency-ultrasound-to-examine-structures-and-physical-properties-of-cells-and-tissue",totalDownloads:1548,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Medical ultrasound is a diagnostic imaging technique used for visualizing subcutaneous body structures. The frequencies used in conventional diagnostic ultrasound are typically 2–10 MHz. For scanning acoustic microscopy (SAM), the frequencies applied to image cells and tissues are >50 MHz. Increasing the frequency increases spatial resolution, but reduces the depth that can be imaged. The advantages of using SAM over conventional light and electron microscopes include imaging specimens without requiring any preparations which may kill or alter them; this provides a more accurate representation of them. SAM’s main components are similar to those found on typical light microscopes, but the lens is often replaced by a confocal transducer. The ultrasound signal encountering the specimen generally has three results: scatter, transmission, or reflection; these signals are then merged to form the image as either a B-Scan or C-Scan. The acoustic parameters determining the image quality are absorption and scattering. SAM can objectively quantify the surface characteristics of the specimen being scanned and can also study the elastic properties of cells and tissues to discern differences between healthy and affected conditions. SAM has the potential as a major instrument of detection and analyses in biomedical research and clinical studies.",signatures:"Frank Winterroth",downloadPdfUrl:"/chapter/pdf-download/51246",previewPdfUrl:"/chapter/pdf-preview/51246",authors:[{id:"179697",title:"Dr.",name:"Frank",surname:"Winterroth",slug:"frank-winterroth",fullName:"Frank Winterroth"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1326",title:"Digital Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"4aabc0c4713da53c9c996abed9fe259a",slug:"digital-image-processing",bookSignature:"Stefan G. Stanciu",coverURL:"https://cdn.intechopen.com/books/images_new/1326.jpg",editedByType:"Edited by",editors:[{id:"17941",title:"Dr.",name:"Stefan G.",surname:"Stanciu",slug:"stefan-g.-stanciu",fullName:"Stefan G. Stanciu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5200",title:"Micro and Nanotechnologies for Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"120627e94247de57cac40d044c979b64",slug:"micro-and-nanotechnologies-for-biotechnology",bookSignature:"Stefan G. Stanciu",coverURL:"https://cdn.intechopen.com/books/images_new/5200.jpg",editedByType:"Edited by",editors:[{id:"17941",title:"Dr.",name:"Stefan G.",surname:"Stanciu",slug:"stefan-g.-stanciu",fullName:"Stefan G. Stanciu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1505",title:"Scanning Electron Microscopy",subtitle:null,isOpenForSubmission:!1,hash:"3305b759b0efc22e8ed16e9048818817",slug:"scanning-electron-microscopy",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",editedByType:"Edited by",editors:[{id:"100815",title:"Dr.",name:"Viacheslav",surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3166",title:"Optoelectronics",subtitle:"Advanced Materials and Devices",isOpenForSubmission:!1,hash:"b7263978cf34e637a4b9592eb4975f3e",slug:"optoelectronics-advanced-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John M. Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/3166.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2018",title:"Recent Progress in Optical Fiber Research",subtitle:null,isOpenForSubmission:!1,hash:"c9f4716122beee57c42cff13c357a2cb",slug:"recent-progress-in-optical-fiber-research",bookSignature:"Moh. Yasin, Sulaiman W. Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/2018.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3710",title:"Advances in Solid State Lasers",subtitle:"Development and Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-lasers-development-and-applications",bookSignature:"Mikhail Grishin",coverURL:"https://cdn.intechopen.com/books/images_new/3710.jpg",editedByType:"Edited by",editors:[{id:"4862",title:"Mr.",name:"Mikhail",surname:"Grishin",slug:"mikhail-grishin",fullName:"Mikhail Grishin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"256",title:"Optoelectronics",subtitle:"Materials and Techniques",isOpenForSubmission:!1,hash:"2c0d6a2a51ac114edd58f2c667297503",slug:"optoelectronics-materials-and-techniques",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/256.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"80207",slug:"corrigendum-to-aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",title:"Corrigendum To: Aspects Regarding Thermal-Mechanical Fatigue of Shape Memory Alloys",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80207.pdf",downloadPdfUrl:"/chapter/pdf-download/80207",previewPdfUrl:"/chapter/pdf-preview/80207",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80207",risUrl:"/chapter/ris/80207",chapter:{id:"62954",slug:"aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",signatures:"Petrică Vizureanu and Dragoș-Cristian Achiței",dateSubmitted:"April 12th 2018",dateReviewed:"April 25th 2018",datePrePublished:null,datePublished:"September 26th 2018",book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"12354",title:"Prof.",name:"Petrică",middleName:null,surname:"Vizureanu",fullName:"Petrică Vizureanu",slug:"petrica-vizureanu",email:"peviz2002@yahoo.com",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"209329",title:"Dr.",name:"Mirabela Georgiana",middleName:null,surname:"Minciuna",fullName:"Mirabela Georgiana Minciuna",slug:"mirabela-georgiana-minciuna",email:"mirabela.minciuna@yahoo.ro",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"245668",title:"Dr.",name:"Dragos Cristian",middleName:null,surname:"Achitei",fullName:"Dragos Cristian Achitei",slug:"dragos-cristian-achitei",email:"dragos_adc@tuiasi.ro",position:null,institution:null},{id:"245669",title:"Dr.",name:"Manuela Cristina",middleName:null,surname:"Perju",fullName:"Manuela Cristina Perju",slug:"manuela-cristina-perju",email:"cryss_ela@yahoo.com",position:null,institution:null}]}},chapter:{id:"62954",slug:"aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",signatures:"Petrică Vizureanu and Dragoș-Cristian Achiței",dateSubmitted:"April 12th 2018",dateReviewed:"April 25th 2018",datePrePublished:null,datePublished:"September 26th 2018",book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"12354",title:"Prof.",name:"Petrică",middleName:null,surname:"Vizureanu",fullName:"Petrică Vizureanu",slug:"petrica-vizureanu",email:"peviz2002@yahoo.com",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"209329",title:"Dr.",name:"Mirabela Georgiana",middleName:null,surname:"Minciuna",fullName:"Mirabela Georgiana Minciuna",slug:"mirabela-georgiana-minciuna",email:"mirabela.minciuna@yahoo.ro",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"245668",title:"Dr.",name:"Dragos Cristian",middleName:null,surname:"Achitei",fullName:"Dragos Cristian Achitei",slug:"dragos-cristian-achitei",email:"dragos_adc@tuiasi.ro",position:null,institution:null},{id:"245669",title:"Dr.",name:"Manuela Cristina",middleName:null,surname:"Perju",fullName:"Manuela Cristina Perju",slug:"manuela-cristina-perju",email:"cryss_ela@yahoo.com",position:null,institution:null}]},book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11777",leadTitle:null,title:"LGBT Communities",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book will explore how gender and sexual minorities have created communities of meaning and political expression around the world. Through a series of case studies, historical considerations, and reflections, different communities of gender and sexual minority groups will be explored. The book will give an overview of the wide variety of experiences that people who identify as gender and sexual minority group members have used in the formation of community, both online and in person. We will see that some of these creations of the community are a reaction to the exclusion by the larger society in which members are embedded. We will also see that people create a community in the face of oppression, engage in dialogue and activities (political and social), and create meaning in their identities. We will witness how these spaces give voice to change, resilience, and survival. For all of us who are queer and trans, community means at a minimum the place in which we can thrive and be seen.
",isbn:"978-1-83969-612-1",printIsbn:"978-1-83969-611-4",pdfIsbn:"978-1-83969-613-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"e08bb222c250dcebf093b7ab595a14a7",bookSignature:"Dr. Deborah Woodman",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11777.jpg",keywords:"Lesbian, Gay, Bisexual, Trans, Queer, Online Communities, Rural Communities, Historical Communities, Rural Communities, Urban Communities, Political Communities, Identity Based",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 27th 2022",dateEndSecondStepPublish:"June 30th 2022",dateEndThirdStepPublish:"August 29th 2022",dateEndFourthStepPublish:"November 17th 2022",dateEndFifthStepPublish:"January 16th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"4 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"An active member of the queer community in Sault Ste. Marie, Ontario, Canada, this work combines my research interests in the rural communities and my volunteer work advocating for members of the Queer and Trans communities.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"463750",title:"Dr.",name:"Deborah",middleName:null,surname:"Woodman",slug:"deborah-woodman",fullName:"Deborah Woodman",profilePictureURL:"https://mts.intechopen.com/storage/users/463750/images/system/463750.jpg",biography:"Dr. Deb Woodman (she/her) teaches at Algoma University, Ontario, Canada in the department of Sociology and Anthropology housed in the Faculty of Cross Cultural Studies. She identifies as a member of the Queer community and has been engaged with volunteer work for years, creating curriculum for Queer/Trans community events as well as working with public agencies. This publication brings her interests together by combining her doctoral work on rural communities with her advocacy work with Queer and Trans folk.",institutionString:"Algoma University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Algoma University",institutionURL:null,country:{name:"Canada"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453622",firstName:"Tea",lastName:"Jurcic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"tea@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde Dorthea Grindvik",surname:"Nielsen",slug:"hilde-dorthea-grindvik-nielsen",fullName:"Hilde Dorthea Grindvik Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"78032",title:"The Tissue Plane",doi:"10.5772/intechopen.99533",slug:"the-tissue-plane",body:'‘Something old’ – it may have evolved over geological time, it may distort with congenital, surgical, traumatic or other influences, but fundamentally anatomy has been around for a long time. This was wittily expressed by Harrop-Griffiths and Denny [1] in relation to the introduction of ultrasound to regional anaesthesia when they suggested that there are ‘no new blocks, just old anatomy’. These authors would undoubtedly agree though that how we look at anatomy can change, and indeed should change as study and scholarship advances our understanding.
‘Something new’ – the ability of ultrasound to visualise tissue planes provides a new, or more accurately, a newly appreciated target. The explosion of named techniques using ultrasound guidance in the last several years bears testimony to this development in regional anaesthesia practice.
‘Something borrowed’ - The ‘tissue plane’ is a concept borrowed from surgical practice [2, 3, 4] and it forms the foundation of modern surgical dissection technique. An alternative term for the same idea is the ‘plane of dissection’. Surgeons also talk about ‘creating’ a plane of dissection or ‘getting into the correct (tissue) plane’ [4]. The key idea which surgeons are emphasising is that of dissecting between structures, and it matters little whether this is with a sharp (e.g., scalpel) or blunt (e.g., finger) instrument. In regional anaesthesia practice, the dissection occurs solely with a blunt (injected fluid) instrument and is termed ‘hydrodissection’.
‘Something blue’ – it has been routine for many years in cadaveric anatomic studies in the regional anaesthesia literature to use methylene blue as a marker to track nerve block placement. These have in effect been studying spread of fluid along tissue plane/s. Once again, we find that this is not so much a new as an under-appreciated phenomenon. A note of caution however – early post-mortem changes in collagen change the structure of connective tissues [5, 6] and therefore the cadaveric model has an inherent flaw when it comes to assessing the dynamics of the tissue plane.
This chapter is divided into the following 10 sections: The tissue plane defined, History of the tissue plane in regional anaesthesia, The modern era of the tissue plane in regional anaesthesia, Tissue plane dynamics and some misunderstandings, Dye studies on tissue plane dynamics, High-definition ultrasound studies and the tissue plane, Tissue plane blocks versus compartment blocks, Systematic reviews, Research opportunities, and Conclusion.
A tissue plane is defined as a potential space separating structures such as organs, muscles, nerves and blood vessels [7]. It frequently but not exclusively contains fine loose areolar tissue which is easily divided by both sharp and blunt dissection [2, 8]. The finer quality of these connective tissues contrasts to the much denser connective tissue that forms fascial boundaries, e.g. the prevertebral fascia. This is an important distinction as local anaesthetic will not diffuse across a fascial boundary.
Tissue planes are located throughout the body [2]. Examples include; providing a conduit for nerves, blood vessels and lymphatics from one body region to another e.g., within the femoral canal, [8]; dividing elements of a structure into its component parts, e.g., the brachial plexus [8, 9]; or where structures can be easily separated, e.g., between the fascicles of rectus abdominis muscle and the posterior rectus sheath [10].
The surgeon divides these tissues with scalpel, scissors, probe or finger and in so doing creates the plane of dissection in order to excise tissue or access an anatomic area. In surgical practice there is also a plane of dissection which creates less bleeding, the so-called ‘avascular plane’ [2]. By contrast the regional anesthesiologist injects a bolus of fluid which spreads along and through the tissue plane/s, not so much dividing as separating the tissues and then diffusing into the nerve/s to create a conduction block.
It is important to keep reminding ourselves that the tissue plane is a concept, not actual anatomy. It points towards tissues which are easily dissected/divided vs. tissues which are not. In regional anaesthesia the tissue planes of interest contain nerves. In this respect it is required to know which nerves may be blocked, where and what they innervate, how and where to access the tissue plane safely and how the tissue plane/plane of dissection will spread the injected solution.
While the tissue plane concept is fundamental to surgical dissection technique [2, 3, 4], the lack of emphasis on its importance in regional anaesthesia is perhaps ironic given the number of publications in the literature which have in fact related to it prior to the introduction of ultrasound [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Indeed, the terms ‘loss of resistance’ and ‘pop’ refer to techniques accessing tissue planes, although they have not traditionally been described in that fashion.
The lack of acknowledgement of the tissue plane concept changed abruptly in 2007 with the publication of TAP (transversus abdominis plane) block [35]. In this paper the authors described the tissue plane between the fasciae of internal oblique and transversus abdominis muscles as a ‘fascial plane’ and then called it the ‘transversus abdominis plane’. The fascial plane label stuck as did the name TAP and the search was on for others which surfaced in quick succession [36, 37, 38, 39, 40, 41, 42, 43]. This pursuit for new targets was undoubtedly promoted by the emerging use of ultrasound and it is fair to say that subsequently there has been an explosion of interest across the spectrum of practice [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]. The terms ‘fascial plane block’ and ‘interfascial plane block’ have been further promoted [84] although more recently ‘tissue plane’ has been used [9].
The common theme of course is that all of the above involves the study of tissue planes and their dynamics of solution spread. As in surgical practice the tissue plane concept has been and is fundamental to the practice of regional anaesthesia.
In the modern era, the rules have changed with the introduction of ultrasound. Now we are able to directly visualise tissue planes and at least in theory, manipulate them to our clinical advantage. While we now have a significant advantage with this development, a greater need for understanding the concept and its relevance to regional anaesthesia has arisen. A headlong rush to discover and name new blocks has often preceded the basic scientific work that should have underpinned the practice. Soft endpoints (e.g., ‘we have done 20 and they worked well’) and generic terms (e.g., ‘multimodal analgesia’) have the potential to hide the fact that a particular technique does not achieve the intended effect.
Added to this is a confused nomenclature. Surgical specialties have long used the term ‘tissue plane’ with a clear understanding of its meaning and it would seem odd to borrow this concept and claim it for regional anaesthesia under revised names. That being said, this author would also argue that for historic reasons it is important to retain the original name of individual techniques since these are the names given by authors to their techniques and which have been accepted through a peer-review process.
In the following paragraphs, we examine several of these techniques through the lens of intended clinical application versus anatomic scientific foundations.
PECS block was originally published as a technique to provide analgesia following breast surgery [37]. The name refers to the tissue plane between pectoralis major and pectoralis minor muscles, and the aim is to block the medial and lateral pectoral nerves which derive from the brachial plexus. This creates somewhat of a dilemma as the pectoral nerves do not innervate the breast. There have been modifications since, possibly reflecting that fact and correcting the record somewhat.
The pecto-intercostal fascial block was first published as an analgesic technique for breast surgery [52] and anterior chest wall trauma [53]. It aims to block the anterior cutaneous sensory branches of the intercostal nerves where they penetrate the chest wall near the edge of the sternum. Whilst the cutaneous termination of the intercostal nerves T2-T6 do innervate the skin over the medial aspect of the breast, these same cutaneous sensory nerves do not innervate the bony structures of the anterior chest wall. Further study of the relevant tissue planes is awaited.
By contrast, the superior cluneal nerve block was first published as a very different type of anatomic study [85]. These nerves derive from the first three lumbar dorsal rami and innervate the skin over the buttock area. This technique creates a plane of dissection just deep to the superficial layer of the thoracolumbar fascia in its inferolateral aspect. The authors of that paper first studied a cadaveric model, but then in recognition of the inherent flaws of such modelling repeated the block in volunteers with accompanying mapping of sensory loss against potential surgical incisions. The accompanying editorial suggested that new techniques required similar basic science study so that in the clinical environment, we know exactly what we are doing and what we can expect to achieve [86].
Erector spinae plane block (ESP block), an injection into a tissue plane deep to the erector spinae group of muscles, has quickly become one of the most popular techniques since its first description [60]. It was almost immediately accompanied by multiple case reports with dramatic claims of efficacy [87, 88, 89, 90]. There followed several quite different randomised controlled trials with claims of efficacy [91, 92, 93, 94], and the indications for the technique have multiplied almost exponentially [95]. The source of greatest debate has seemed only related to the mechanism of action. A cadaveric study [65] disputed the theory that there was adequate spread of local anaesthetic to the ventral rami and instead suggested local anaesthetic spread to the lateral cutaneous branches of the ventral rami through the lateral aspect of the tissue plane. The original authors then followed up with their own cadaveric study [66] showing spread to the ventral rami and hence providing a mechanism of action for their observed results. The tie breaker in this debate was a volunteer study [96] which demonstrated inconsistent spread of injectate to the ventral rami. Hence the enthusiasm to use ESP block has far outrun our understanding of the technique. Can this enthusiasm cause harm? Yes, by lack of effect or failure to use alternative techniques of known efficacy. Some hospitals now run programs using continuous ESP block for rib fractures – one wonders how they work when the ribs are innervated by the ventral rami, and the lateral cutaneous nerves neither pass through the erector spinae group of muscles nor innervate the ribs. Hence the exact role of ESP block remains uncertain.
Continuous rectus sheath block has re-emerged as an option for analgesia post-midline laparotomy. The modern version of placement is a surgical technique, where a plane of dissection is developed between the rectus abdominis muscle and the posterior rectus sheath with a catheter placed in the ensuing compartment for upper abdominal procedures [10], and a plane of dissection developed between the rectus abdominis and the anterior rectus sheath for lower abdominal procedures [97]. It took little time for ultrasound-guided versions of the same technique to emerge [38, 39], although for the majority of placements there is little logic in placing the catheters percutaneously after the wound has been surgically closed [98]. It is suggested that an approach with ultrasound might be indicated if there is intraabdominal sepsis or adhesions making surgical access to the tissue plane unwise or impossible. In this scenario, avoidance of lateral approaches to the rectus sheath is recommended due to the risk of perforation of the epigastric vasculature. There have now been two dye studies confirming the spread of local anaesthetic throughout the developed tissue planes for rectus sheath block [99, 100]. One study demonstrated that inferior to the arcuate line where the posterior rectus sheath is less distinct, a tissue plane containing the relevant abdominal wall nerves lies between rectus abdominis muscle and the transversalis fascia [99], while the other demonstrated the importance of volume to ensure spread of solution across the tissue plane [100]. It is important to note that both of these studies used boluses and this has management implications for continuous systems.
Pericapsular nerve group (PENG) block is a recently published tissue plane block. First described in 2018 [69] it has been accompanied by multiple clinical reports and recently a randomised controlled study in the hip fracture population [101]. Whilst it appears remarkably effective for analgesia for hip fractures, the reasons for this are yet to be fully answered. It purports to block just the sensory branches to the hip joint from the femoral and obturator nerves [69]. Could there also be spread further posteriorly to include the superior gluteal nerves? A dye study [102] sheds some light on the characteristics of spread in this tissue plane deep to iliopsoas muscle. In this study, the needle was slightly more caudad to the site of PENG block but in the same plane and suggested that restriction of spread of injectate was only possible with small volumes. Larger volumes could spread to reach the femoral nerve, defeating the purpose of the technique. In this respect, is this tissue plane limited anteriorly by iliopsoas muscle fascia or by fascia iliaca, the latter being suggested by the spread characteristics of the larger volume in the study?
The IPACK block (infiltration between the popliteal artery and the capsule of the knee) for analgesia post-total knee joint replacement was introduced in 2019 as a cadaveric study [103] although there had been keen interest in this area in the years prior but without an accepted name for the technique [104, 105, 106]. A plane of dissection is developed deep to the popliteal artery with the intention to bathe the articular sensory branches of the knee joint in local anaesthetic as they traverse this area to reach the joint capsule. Since 2019 there have been over 10 randomised controlled trials [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118] and 3 meta-analyses [119, 120, 121] reflecting widespread interest in techniques which might provide pain relief without hindrance to ambulation post-total knee joint replacement. There has also been widespread adoption of the IPACK block as reflected by reports of programmes in the literature [122, 123]. It is therefore somewhat concerning that the meta-analyses are not supportive of the technique, at least in its current format. Has enthusiasm outweighed clinical realities in this particular circumstance? Is this a technique that has yet to find its real indication? Or could the literature somehow not be accurately reflecting current effective clinical practice?
In 2006 we published a paper in Anesthesiology which was provocatively entitled ‘The Sheath of the Brachial Plexus: Fact or Fiction?’ [7]. It may have been better entitled ‘The Sheath of the Brachial Plexus: Actual Anatomy or Concept?’, as negative reaction to the title may have distracted from what we believed to be the importance of the paper. This was a discussion about tissue planes and their significance to the practice of regional anaesthesia and to our knowledge the first time this had been directly addressed in the literature.
The notion of the brachial plexus ‘sheath’ has been attributed to various authors [124, 125, 126]. Two of these authors were in fact referencing the brachial fascia which is the deep investing fascia of the arm [125, 126], and one also referenced the intermuscular septum of the arm [126]. This is confusing as neither fascia is in intimate relationship with the neurovascular bundle.
Winnie [11] subsequently suggested that the ‘sheath’ was merely the final part of a tubular prolongation of the prevertebral fascia and promoted the concept of a continuous fascia-enclosed space extending from the cervical transverse processes to several centimetres into the arm. He likened brachial plexus anaesthesia to epidural anaesthesia where, once the space had been entered only a single injection was needed, an analogy intended to stop practitioners performing multiple injections which thereby increased the chances of neural injury. Various publications subsequently presented findings which significantly modified his concept [14, 16, 18, 20, 23, 28, 68].
The discussion section in our paper addressed tissue planes and their dynamics. The tough tissues of the prevertebral fascia give way rapidly to much thinner, softer and translucent connective tissues which encircle and entwine the brachial plexus and blood vessels [8]. As a collective, these thin and translucent connective tissues form the tissue planes of the brachial plexus. Indeed, in the current age of ultrasound-guidance the presence of these tissue planes is well accepted [9].
Within the tissue planes there may be minimal room for expansion at any one point and therefore flow has to occur along the tissue planes according to resistances encountered along the way [7]. The layers of connective tissue are not homogeneous, do not necessarily interconnect, and can hinder or prevent diffusion. Injection at one point does not guarantee spread elsewhere [8]. At the level of the trunks and divisions of the brachial plexus, the neural elements reorganise significantly and their associated tissue planes interconnect. This is readily observable during surgical dissection [8]. This arrangement allows for a more even spread of solution, a feature which has indeed been observed clinically [9, 127, 128, 129, 130]. The belief that supraclavicular blocks are more effective because the neural elements are closer together [131] is better explained by the interconnection of tissue planes at this level. By contrast, at axillary level where the nerves do not interconnect and the tissue planes containing each nerve are largely separate [14, 16, 18], efficacy is lower unless each nerve was blocked separately. Side effect profiles can also be explained by spread of injectate via tissue planes, e.g., phrenic paresis with subomohyoid suprascapular nerve block [132].
The sheath concept also does not take into account the impact that surrounding rigid anatomy has on flow dynamics. Our work on the ‘axillary tunnel’ [133] calculated the dimensions of the tunnel and explained the significant impact of the varying dimensions. The injected dye did not spread as in a cylindrical tube but followed the contours of the rigid anatomy. The volume of the axillary tunnel at any one point was less than 10 ml, and so flow inevitably occurred along the tunnel. The tunnel had two constrictions and flow of injectate from the needle tip could be anterograde, bidirectional or retrograde depending on where the point of injection occurred in respect of these constrictions. The more lateral constriction was clearly the obstruction to flow at this lower level [133] rather than the head of the humerus as previously described [134]. Historic dye studies of the brachial plexus [11, 134] fitted with our predictions of flow patterns based on the contours of the rigid anatomy.
The CT dye studies from the axillary tunnel work also revealed the reason we were able to avoid the phrenic nerve during anaesthesia and analgesia for shoulder surgery [135]. We were manipulating the tissue planes of the brachial plexus by injecting into the tissue planes posterior to the artery, with retrograde spread restricted to these same tissue planes, well away from the anteriorly situated phrenic nerve. This phenomenon has subsequently been demonstrated by another group [136].
Given that brachial plexus regional anaesthesia had been based for many years on the concept of the sheath, it was unsurprising that a cadaveric study was subsequently published demonstrating apparent macroscopic evidence of the brachial plexus sheath [137]. We had significant issues with this evidence, including: 1. a significant connective tissue structure was demonstrated covering the emerging nerve roots in the root of the neck, but this was the prevertebral fascia. There were difficulties with calling this the brachial plexus sheath, partly because it already had an anatomic name. 2. the brachial plexus, as revealed prior to disappearing from view under the clavicle, was covered by a thin layer of opaque connective tissue. It was agreed by both sets of authors that this was what had been identified as the enveloping tubular structure called the sheath. This opaque connective tissue enveloping the plexus in the cadaver was remarkable for its difference to the equivalent tissue in a patient undergoing surgical dissection of the plexus [8], and we believe that this most likely reflected post-mortem changes in connective tissues [5, 6]. Interestingly, not all investigators using cadaveric specimens have encountered an opaque layer of connective tissue surrounding similar major nerves or plexuses. Indeed, they have echoed our words of ‘thin, transparent and fragile’ when describing such connective tissues [138].
We concluded that tissue planes, in conjunction with the influence of surrounding rigid anatomy, provided a better explanation for outcomes in brachial plexus regional anaesthesia than the concept of a sheath.
The regional anaesthesia literature already has a reasonably large number of dye studies [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 44, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83] and they encompass most of the techniques in current common usage. One could be forgiven for believing that we now have most of the answers, but this is an area where for various reasons there is still room for improvement. Our work on the axillary tunnel raised some generic questions to be answered in other areas – under what conditions do flow characteristics change, can flow characteristics be manipulated to clinical advantage and what anatomic features can be disadvantageous in terms of flow characteristics? These questions infer that the tissue plane is a dynamic environment and that this can be used to clinical advantage.
It has been unusual in this type of research work to use any model other than cadavers but for various reasons these cannot provide an accurate replication for clinical application. Connective tissue changes in quality and appearance very soon after death [5, 6]. As pointed out by Ivanusic et al. [65] it is also not possible to investigate for any block-related phenomenae that may be linked to physiological occurrences such as breathing in a dead body. Specific block-related positioning is not possible in cadaveric specimens. At best, with carefully planned and executed dissection, cadaveric models provide a sort of basic static road map of where fluid may spread and what nerve/s might be blocked.
In the above context a dye and latex study by Mayes et al. [139] investigated serratus anterior plane block (SAP) as a potential analgesic technique for rib fractures. It demonstrated a clear plane of dissection between serratus anterior and the external intercostal muscle/ribs, bathing the lateral cutaneous branches of the intercostal nerves in solution as per the description in the original publication [42]. This means that the technique will not provide analgesia for rib fractures, a conclusion framed by the authors in subtle language [139], because the intercostal nerves which innervate the ribs will not be blocked. Does trauma to the chest wall provide a pathway to these nerves? This is unlikely and not a dependable mechanism in this author’s opinion. Can solution track along the lateral cutaneous branches to the intercostal nerves of origin? This again is unlikely as it requires the passage of these nerves through the muscle layers of the chest wall to be the path of least resistance as the injected fluid flows through the tissue plane. It is up to those who wish to prove any of these mechanisms to create the models and test their hypotheses.
Another technical issue at play in dye studies relates to where the tip of the catheter is located when injections are made. In a study on continuous parasacral sciatic nerve block [31], the investigators used 8 ml of dye for confirmation of location of their perineural catheters. In our work on the axillary tunnel [133], we realised that we could only locate the tip of the catheter by using a much smaller volume of injectate of 2 ml, a larger volume obscuring the location.
Adductor canal block [54] has gained popularity as an analgesic technique post-total knee joint replacement due to less motor block than femoral nerve block [140] albeit with some accompanying loss of pain relief [140, 141]. There have been several dye studies examining this technique [142, 143, 144, 145], with ensuing cautions about volume used, where the injection is placed to limit spread of injectate beyond the adductor canal, and consideration of the impact of tourniquets on the spread of solution. However, there has been no work directly measuring the potential volume of the canal, nor how this might change with application of a tourniquet, nor what flow restrictions if any are present, all of which would require 3-dimensional imaging. This is a more costly investigative modality but provides much more information.
The cadaveric dye studies of ESP block [64, 65] and the subsequent volunteer study of ESP block [96] have been discussed earlier in this chapter. Perhaps this illustrates the peril of having cadaveric studies as stand-alone evidence of efficacy. The volunteer study certainly seems to be one potential bridging option to clinical practice but may not always be possible due to safety considerations. Some authors do combine their cadaveric studies with a clinical case series as additional evidence, but is this practice consistent with the current ethical standards in human research? Multiple pathways are probably likely required to establish efficacy and safety across the range of techniques and indications prior to widespread adoption in clinical practice. In this respect, randomised controlled trials are only as good as the science which underpins them.
There have now been several studies examining nerves of the upper and lower extremities and the soft tissues which surround and envelope these nerves [146, 147, 148, 149]. These have given rise to the term ‘paraneural sheath’ of the sciatic nerve [146] and brachial plexus [149] respectively. In one recent study, the sonographic imaging was correlated with histologic specimens [149] to demonstrate what the authors described as ‘fascial tissue planes’ within the paraneural sheath.
It is to be noted on the images of the brachial plexus [149] that the pectoral fascia is much more visible, i.e., it exhibits greater anisotropy, than the tissues within the plexus complex. This is not artefactual – fasciae such as the pectoral or prevertebral are much sturdier connective tissue structures than the relatively fragile connective tissues surrounding the brachial plexus. The imaging also demonstrates both the tissue planes of the plexus and the phenomenon of injected fluid separating the tissue planes as it flows through the length of the plexus complex. The ‘paraneural sheath’ has the same anisotropy as the tissue planes within the neurovascular bundle, i.e., the same type of tissue, which is quite distinct from fascial tissue. This study demonstrates very well some characteristics of the dynamics of the tissue planes of the brachial plexus.
In some literature it has been suggested that the local anaesthetic fills a compartment to achieve its effect, particularly where the injection is made within the fascia enclosing muscles such as rectus abdominis or perhaps even the erector spinae plane block [150]. The actual phenomenon can be viewed on ultrasound in real time as the injected solution can be seen to develop a plane of dissection between the muscles and the fascia or bone. Once again, the concept of the tissue plane becomes the focus of our attention.
There have been a number of systematic reviews over the last few years which have not specifically mentioned tissue planes in the context of regional anaesthesia but which clearly relate to that concept [151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164]. These have all been procedure specific and, despite apparent clinical enthusiasm for the different techniques, are quite often neutral or negative in their recommendations. This may reflect the difficulties in the development phase of various techniques to which the author has alluded earlier in this chapter.
There is a wealth of opportunity for further research in this area. Regional anaesthesia in some respects is in its infancy in understanding and manipulating tissue planes. Ultrasound allows novel tissue plane targets to emerge and the challenge is to fit these new techniques into practice in a scientifically sound fashion. Now more than ever we are required to learn anatomy from a different perspective; what nerve/s innervate this area/region? how do they get there? where can I access them? does this raise safety issues, and how are these overcome? how will the tissues spread the fluid I inject? are there potential complications from this? how do I answer these questions in a scientifically meaningful fashion? do I need to create a new technique when one already exists for my purposes?
I would venture to suggest that after the initial idea comes thoughtful reading, basic science preparation and careful analysis. This is all before consideration is given to conducting randomised controlled trials.
Although it has been suggested by many to be the era of ultrasound in regional anaesthesia, it could equally be termed the era of the tissue plane. This of course is courtesy of ultrasound, but the technology alone will not get us the results we want. It has been suggested that ‘if we can see it, we can block it’ [84], but this invites invocation of the old adage ‘primum non nocere’. Was the block necessary? Did it add real benefit? All interventions risk harm. Perhaps we could change the saying to ‘now that we can see it, how do we better understand what we are seeing, and how can this aid our practice?’ The challenge is to methodically and responsibly work our craft so that it helps us as well as our patients.
The author declares no conflict of interest.
The author wishes to thank Anne Cornish for her assistance in editing the manuscript.
Although the roots of the
From a scientific point of view, RFID has become a well-defined research field, counting more than fifteen thousand scientific papers and books indexed by IEEE, Springer, and Elsevier, and more than twenty-two thousand patents or patent applications indexed by the most essential three regional patent databases (USA, Europe, and Japan) [2]. All of these highlight a rich palette of research directions in RFID technology, such as: system implementation, design principles, chipless implementations, IoT integration, security, and so on.
An interesting aspect is that most of the RFID references cover technical aspects, applications, and protocol design, very few addressing security and privacy issues. The conclusion is that very few research papers dealing with RFID implementation or application start with security and privacy in mind. Obviously, there are RFID applications for which security and privacy are not so vital, such as human activity recognition (e.g., smart gym), environmental corrosive monitoring, soil monitoring, and so on. However, for other fields like people identification or healthcare systems [3, 4], security and privacy are crucial issues.
Attempts to improve the authentication process in RFID systems or make them resistant to physical attacks (tag corruption, for example) have led to the need to insert unclonable or tamper-evident physical objects into tags. Unclonability offers unique fingerprints to tags, while the tamper-evidence property would protect against corruption. Thus, physically unclonable functions (PUFs) [5, 6, 7] have found themself a suitable application in RFID technology and the researchers have already proposed a large spectrum of PUF-based RFID systems. However, the inclusion of PUFs in RFID systems (especially on tags) raises two key questions:
Are PUFs more efficient in implementation than ordinary cryptographic primitives?
Do PUFs provide security and privacy that standard cryptographic primitives cannot provide?
As with respect to the first question it is worth noting that an RFID implementation with strong security properties comes with increased cost for the final RFID product. This is the reason why some authors take into account the concept of
As with respect to the second question, PUFs certainly offer security features that standard cryptographic primitives cannot provide. But if these security features are not used in a corresponding way, the result may be worse than if PUFs are not included. The lack of understanding of such issues has led many authors to propose PUF-based RFID schemes that are insecure or not at all private [10, 11] when analyzed in reputable models such as Vaudenay’s security and privacy model [12, 13].
In this chapter, we want to highlight:
The need to use PUFs in the construction of secure and private RFID schemes;
The need to formalize the properties of PUFs to achieve provable security;
The erroneous use of PUFs that does nothing but lead to insecure schemes and a lack of privacy.
The whole discussion is conducted on Vaudenay’s security and privacy model. This model is currently considered one of the best RFID security and privacy models, offering a classification of the privacy of RFID schemes into eight classes. It is known that the strong privacy class cannot be obtained in this model, while the destructive privacy class can be obtained by using the PUF technology. This gives us an excellent example that justifies the opportunity to use PUFs in RFID technology.
An RFID system [14, 15] consists of a
Opposite the reader, tags are small transponder2 devices that are considered to be resource constrained. Depending on their class, they can perform only logical operations, symmetric encryption, or even public key cryptography. In practical scenarios, tags are attached to various items or carried by persons in order to facilitate some services when they are identified by readers.
The memory of a tag is typically split into
From a formal point of view, an RFID scheme is defined as follows. Let
By calling
The
An
We close the section by an example of a fundamental RFID scheme, namely the PRF-based RFID scheme proposed in [13]. To describe the scheme, let us assume that
Each tag is equipped with a random key
The protocol is given in Figure 1 (the use of “
PRF-based RFID scheme.
The design of an RFID scheme must start from consistent motivations for its usefulness and the desired security and privacy level, in a particular model of security and privacy, for the scheme to be proposed. The second desideratum requires that proofs of security and privacy accompany the proposed scheme. Ideally, the scheme designer should know in advance security and privacy models for RFID schemes and thus to offer his scheme in such a model. However, the practice shows that, although various fairly good security and privacy models have been proposed over time, many authors propose RFID schemes for which they study security and privacy in an ad hoc way without referring to the existing models. It is not surprising then that many of these schemes, analyzed in reputable models, do not reach the lowest level of security or privacy [11].
In this section, we aim to discuss one of the most critical security and privacy models for RFID, namely Vaudenay’s model. We argue that this model falls into the class of gray-box models, and then make a consistent analysis of the corruption oracle in this model. The emphasis on this oracle is more than necessary, both for ordinary tags and for tags endowed with physically unclonable functions.
The discussion in this section can also be rephrased for other models that offer the corruption ability to the adversary, such as the model based on indistinguishability proposed in [16]. However, the choice of Vaudenay’s model for the discussion in this chapter is a matter of the authors’ scientific taste and their belief that it is one of the fundamental models for studying security and privacy properties of RFID schemes.
A
The
The
The
For instance, the security model IND-CCA means that the security goal is
The black-box model does not depend on the software or hardware implementation, platform, and so on. In contrast to it, the gray-box model of attack exploits the algorithm/protocol implementation. For instance, the side-channel analysis that can be used with this model may take into account fluctuations in timing delays, power consumption, or emitted signals and radiation [19]. The result of such an analysis varies depending on the implementation, the platform on which it is implemented, the measuring devices. Side-channel analysis is local and not global.
One of the most influential security and privacy model for RFID is
Now, the oracles in Vaudenay’s model are the following:
As one can see,
It is customary to assume that the RFID tags can be corrupted to reveal not only their permanent memory but also the global temporary variables [20]. When the
Now, the adversaries are classified into the following classes, according to the access they get to these oracles:
If we further restrict the adversary to access the
Now we are ready to introduce the
An RFID scheme has the property of
An RFID scheme has the property of
A
simulates the
passively looks at the communication between
When the adversary
Given an adversary
Privacy experiment
1:
2: Set up the reader;
3:
4:
5:
6:
7: Return 1 if
where
An RFID scheme achieves privacy for a class
We thus obtain eight concepts of privacy:
Privacy and mutual authentication of RFID schemes in Vaudenay’s model without temporary state disclosure (PKC stands for public-key cryptography and RO for random oracle).
Let us take one last look at Vaudenay’s model to fit it into one of the three classes presented at the beginning of Section 3. The attack model associated with it falls in the class of gray-box models. Indeed, all the oracles except
The
The
As a conclusion:
Vaudenay’s attack model falls in the category of gray-box models. It provides the adversary with general information, including a limited amount of side-channel information that does not depend on the implementation or implementation platform;
Side-channel analysis that is not covered by Vaudenay’s model comes as an additional analysis. It depends on the implementation of the protocol, implementation platform, measuring devices, etc.
When Vaudenay’s model was proposed [13], it was somewhat unclear whether the
Purely cryptographic and mathematical techniques can provide security in a black-box or partially gray-box model. As we argued in the previous section, Vaudenay’s model is a gray-box model. Within this model, no RFID scheme is known, built only on symmetric or asymmetric cryptographic primitives, which would offer destructive privacy. No one has indeed proved the non-existence of such a scheme, but we firmly believe that there is no such scheme. However, if we add physical security objects to the RFID schemes, then we can obtain RFID schemes that are destructive private [22].
Physically unclonable functions (PUFs) are possible candidates that can provide physical security in that they can ensure the secure generation and storage of the cryptographic keys [5, 6, 7]. A PUF can be seen as a
During the last years, the PUF concept attracted the attention of the research community and industry. Many research papers and patents focusing on implementing distinct PUF architectures, larger systems employing PUFs as separate units or protocols dedicated to PUF-based implementations were proposed.
In principle, PUFs can be constructed with any physical entity or structure as long as an intrinsic mismatching or nonlinear behavior, inherent to such entity when implementing multiple alike, could be exploited.
For instance, two identical transistors designed in the same technology and on the same mask will show slightly different performances after implementing their layout (real physical circuit). The main difference will be noticed for the threshold voltage, VTH in the case of CMOS process, different for both transistors. As such, a simple CMOS PUF could be obtained when implementing an array of identical transistors, this being also the first architecture reported in literature for chip identification [23] and disclosed in a patent application filed in 1989 [24]. Based on how challenges are applied to the circuit input and the great number of distinct responses (keys) that can be obtained, this particular PUF architecture is a strong PUF, at least according to PUF properties reiterated in [25]. A similar approach, yet implemented with bipolar transistors, was disclosed in a European patent application filed in 2013 [26].
Another example, even simpler, is that of a discrete electronic part, be it through-hole or surface-mount resistor or capacitor. It is well known that there are no two identical resistors or capacitors even though they have, theoretically, the same value and tolerance and are produced by the same manufacturer. Tolerance gives us valuable information about how much less or more the resistance or capacitance value is different of its nominal value. This sort of uncertainty favors PUF applications even though is not good from design perspective. And this is how the first RC PUF came into existence [27, 28].
Looking back, many PUF architectures have been proposed during the last two decades, various intrinsic properties being exploited, with many distinct classes identified [25]. This field encompasses so many implementations, technologies and design principles that two different perspectives to classify PUF architectures were used in that review. However, taking into account the scope and field of our study, i.e. RFID, we consider that the second classification (PUF tree), based on mechanism and evaluation parameter, is more relevant. In this regard, the PUF implementations fall into four classes: electronic, optical, radio frequency and magnetic PUFs. Furthermore, since RFID tags have limited chip area and (power) design constraints, it is obvious that electronic PUF architectures, known also as silicon-PUF, are of interest for our study.
Silicon-based PUFs involve conventional integrated circuit design techniques. Two essential design hints are identified regarding the implementation of a particular silicon-based PUF architecture:
A PUF architecture should generate at its output a unique sequence, useful either for authentication or cryptographic key generation, developed based on silicon intrinsic (physical) particularities. Therefore, no memory cells are allowed to store such a (PUF response) sequence. However, a (SRAM or DRAM) memory cell could be used to implement a PUF cell and thus generate a single bit of the PUF response because we are not interested in the binary value memorized in that cell but rather of the transition speed and delay, which are specific to that particular cell;
When it comes to intrinsic behavior, PUF construction starts either at transistor or system level. In the first case, it exploits certain anomalies in transistor functionality that could identify a particular circuit similar to a fingerprint, such implementation being reported in some references as analog PUF. In the second case, it uses specific differences that appear when connecting identical logic gates, as it is the case of ring oscillators or SRAM/DRAM cells array. In such implementation, the randomness property is based on intrinsic variations, at gate level, but the property is exploited and adjusted by digital designers in such manner that the spread of generated patterns (responses) is extended as much as possible. This is the reason why, such class of PUF architectures is reported in literature as digital PUF. The system-level approach favors FPGA based PUF implementations, the FPGA having all digital gates already manufactured, hence it lacks access to the transistor level. The most part of the PUF articles published during the last decade make use of FPGA. Either way, silicon PUF implementation is uniquely favored by the tolerance inherent to manufacturing process, the leading cause of device mismatching. It seems that what deteriorates the real performances of a particular silicon product, becomes quite useful for chip identification/cloning detection and key generation.
Silicon PUFs are still the most appealing ones because they occupy a very small chip area, especially when implemented in smaller technologies (¡65 nm CMOS process), therefore they can be integrated into larger electronic units and systems (such as RFID). In addition, their design and preliminary testing on FPGA development boards ensure their proof of concept reproducibility, feasibility and success, before going deeper to implement a dedicated chip. A selection of representative silicon PUF architectures reported in literature is given below (for more details the reader may consult [6, 20, 29]):
In cryptography and security we typically build a cryptographic system and prove its security under the assumption that we have used secure ingredients (building blocks) such as
When a cryptographic construction is deployed in practice, the secure (ideal) primitives that underlie it are replaced by algorithms for which we do not have a theoretical proof of security. Instead, these algorithms are subjected to intense scrutiny by cryptographers to see if they resist all known classes of attacks and to get evidence supporting the assumption that they are secure.
PUFs have been introduced to physically supplement specific security properties that cannot be satisfactorily obtained at the software implementation level alone. The security properties offered by PUFs can only be highlighted through experiments and simulations. To be able to apply provable security to cryptographic constructions that include PUFs, it is necessary to formalize their security properties. The major problem that arises in this context is to maintain a balance between formalization and the real physical properties. The difficulty of maintaining this balance comes from the fact that it is quite challenging to capture the behavior of a physical object through a mathematical formula that is accurate or that approximates it well enough. Without such a balance, we can reach situations such as those in which either the formalization is not useful or is too strict and has no practical equivalent. As a result, the formalization must be sufficiently realistic and, at the same time, allow its use in provable security.
Among the basic properties we want from a PUF class we mention: [left=.5cm]
The choice of the PUF type to be included in a cryptographic system depends on the security properties we want to achieve, and which cannot be obtained through software techniques, as well as on the production costs. For example, the tamper-evidence feature can be handy for constructing destructive private RFID schemes. However, today’s technological development shows that only optical [48] and coating PUFs [49] can provide this property. Besides, such PUFs have high production costs, which requires a careful analysis of the environment of the utilization of the RFID schemes that would use such PUFs.
PUFs have proven to be suitable for integration into RFID systems to ensure their security in gray or white box models. So far, two significant directions for the use of PUFs in RFID systems have emerged. We dedicate this section to a discussion of the two directions and the issues that arise regarding them.
The vulnerability of RFID systems to corruption consists in the fact that an adversary with corruption abilities can extract the information from the tag’s memory and, thus, can impersonate it or, at least, destroy the privacy property. Without having a concrete proof at the moment, the researchers’ opinion is that, in Vaudenay’s model but not only, destructive privacy cannot be achieved only by using symmetric or asymmetric cryptographic primitives. Storing a private key in the tag’s memory is useless when the adversary has corruption capabilities and can use the information obtained through corruption. The use of a public key system in which the private key is stored on the reader side is also useless in Vaudenay’s model when destructive privacy is desired.
This discussion naturally leads to the idea of using a tamper-evident mechanism embedded in the tag to help the process of identifying and authenticating it. In this context, PUFs seem to be a good choice and the newest technologies show that it is possible to embed PUFs into tags. These kind of tags, with PUFs embedded into them, will be called
How PUF tags can be built can be very important in terms of tag corruption. This aspect will be touched on in the next section.
Two significant directions have emerged on the authentication protocol of PUF-based RFID schemes. The first direction treats PUFs as fingerprints [50, 51, 52, 53, 54]. This approach requires an initial configuration phase in which a PUF model or a large set of PUF challenge-and-response (CR) pairs is pre-computed and stored in the reader’s database. To identify a PUF tag, the reader queries it by some challenge, the tag evaluates its PUF on the challenge, and then the reader compares the tag’s response with the pre-computed response it already has stored in the database. There are several variants of this scenario, but regardless of these, special attention must be paid to the modeling attacks of PUFs [55]. This is because the adversary might get sufficient CR pairs in order to simulate the tag’s PUF. Anyway, the authors of this paper are not aware of any PUF-based RFID schemes based on this approach, and that would provide destructive privacy in Vaudenay’s model. Moreover, we believe that it is not possible to achieve this level of privacy through this approach because the set of CR pairs is generally polynomial in size. Then, a strong enough adversary may run the authentication protocol with a tag until it exhausts all CR pairs stored in the database. In such a situation, either a CR pair will be reused, or a reset mechanism has to be used. Regardless of the case, the privacy property might be compromised.
A second direction for the authentication protocol of PUF-based RFID schemes starts from the idea of using PUFs as cryptographic key generators or as storage methods [10, 22, 56, 57]. That is, the tag evaluates its PUF only to generate or extract a cryptographic key. Thus, the PUF is evaluated for a minimum number of challenges. This fact eliminates the shortcoming that the adversary can model the PUF, but if the PUF is noisy, then an additional overhead may be incurred by using fuzzy extractors. Assuming PUFs are tamper-evident, this second approach produces schemes that achieve destructive privacy in Vaudenay’s model (please see Section 5.3).
In order to adapt Vaudenay’s model (with or without temporary state disclosure) to PUF-based RFID schemes, we have to clarify what corruption means in this case. At least two main scenarios are possible:
By corrupting a PUF tag, the adversary gets the state of the tag, according to the type of the attack model (with or without temporary state disclosure). Besides, the tag is destroyed, but its PUF can still be evaluated. This variant does not show significant differences compared to the case of corruption of ordinary tags, because the PUF of the tag can now be seen as a public function that the adversary can evaluate as he wishes;
By corrupting a PUF tag, the adversary gets the state of the tag, according to the type of the attack model (with or without temporary state disclosure). Besides, the tag and its PUF are destroyed (in this case, the PUF cannot anymore be evaluated).
The second scenario is the most significant. Within it, the PUF tag is seen as a tamper-evident device (circuit), such as a tamper-evident PUF [58, 59]. Working in this scenario, Theorem 1 in [21], at least in its present form, cannot be applied to PUF-based RFID schemes. This leaves open the invitation to PUF-based design RFID schemes that achieve mutual authentication and higher privacy levels than narrow forward in Vaudenay’s model with temporary state disclosure. As we have already said, such schemes cannot be based on ordinary tags. A good choice is to use PUF tags, as it was done in [10, 22, 56, 57, 60]. However, the use of PUF tags does not mean that the schemes are immune to corrupting adversaries. This is because an adversary might not need the entire tag state to attack the scheme. An example in this sense is provided in [10] where it was shown that the RFID schemes proposed in [56, 57] do not achieve mutual authentication and (narrow) destructive privacy in Vaudenay’s model with temporary state disclosure, as it was claimed by authors, although they use PUF tags. The proof exploits the fact that these schemes use volatile variables to carry values between protocol steps.
As we have seen, the corruption attack in Vaudenay’s model may provide the adversary with the full state of the tag. However, this state does not include the values of the local temporary variables. The varied range of side-channel attacks includes other types of attacks, such as those called cold-boot attacks, through which the tag’s memory can be frozen. Thus the adversary can obtain the value of the local variables at a given time. This type of attack has also been discussed in RFID-oriented papers, such as [56, 57, 61]. We are not aware of any formal treatment of this scenario in Vaudenay’s model. To implement it in Vaudenay’s model, the
When the Vaudenay [12, 13] model was proposed, finding an RFID scheme to provide destructive privacy remained an open issue (please see the diagram in Figure 2). This problem was later solved by a PUF-based RFID scheme [22, 60]. The scheme, which provides unilateral authentication, is obtained from the PRF-based RFID scheme presented in Section 2, adding tamper-evident PUFs to tags to generate the key
PRF- and PUF-based RFID scheme that achieves destructive privacy and mutual authentication
As corruption with temporary state disclosure is a real threat in practice, the most natural question is how to extend the above schemes, or how to design new ones, secure and private in Vaudenay’s model under such a corruption. It is clear that ordinary tags (i.e., tags that only implement cryptographic primitives) do not help if one wants to achieve both mutual authentication and privacy (Theorem 1 in [21]). Endowing tags with PUFs is a potential solution but it is not a guarantee. It turns out that the subtlety is how to use temporary variables. This has been missed in some recently proposed RFID schemes [56, 57], which made these schemes not to achieve the privacy level claimed by authors [10]. It seems that the use of temporary variables in connection with mutual authentication and privacy is not really very well understood, especially under corruption with temporary state disclosure.
The significant impact of PUF technology in the construction of RFID systems is demonstrated by the great diversity of scientific articles and patents proposed in the last decade. The use of PUFs in the construction of RFID schemes can bring extra security and privacy at the physical level that cannot be obtained by symmetric and asymmetric cryptography at the moment. However, this requires an adequate understanding and analysis of security and privacy models for RFID to consider PUFs only if existing standard techniques cannot lead to the desired security and privacy level. Unfortunately, the literature shows us enough PUF-based RFID schemes proposed in recent years that do not even reach the weak privacy level in Vaudenay’s model. In contrast, weak privacy in this model can be achieved through standard RFID schemes that use only symmetric cryptography. This fact clearly shows that a sustained effort is needed to consolidate the understanding of the concept of security and privacy model and adapt it accordingly to PUF technology.
In this chapter, we highlighted the aspects mentioned above and emphasized the need to use formal models in the study of security and privacy properties of (PUF-based) RFID schemes. Achieving the level of destructive privacy in Vaudenay’s model through PUF-based RFID schemes clearly shows us the potential of using PUF technology in the construction of RFID systems. Even if the security and privacy proofs on PUF-based RFID schemes make use of ideal PUFs, this is not a negative aspect as long as there is practically reasonable support for idealization, and this is in the trend of technology evolution.
This chapter (structure and content) was proposed by F.L. Ţiplea, who also supervised its complete realization. Section 4.1 was prepared by C. Andriesei, as well as the second and third paragraphs of the introductory section. All the other sections of the chapter were prepared in an equal contribution by F.L. Ţiplea and C. Hristea. All authors have read and agreed to the published version of the manuscript.
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"18"},books:[{type:"book",id:"12167",title:"Neuroprotection",subtitle:null,isOpenForSubmission:!0,hash:"5b16c09a6266c3be63796aefa6828df2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12167.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12168",title:"Neuroglial Research",subtitle:null,isOpenForSubmission:!0,hash:"ce5fb5312ae2e8239b9ba2710fe3c0fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12168.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12170",title:"Hydrocephalus",subtitle:null,isOpenForSubmission:!0,hash:"2a0f7f54e5e93c674dd19336fa859f50",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12170.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12166",title:"New Topics on Electroencephalography",subtitle:null,isOpenForSubmission:!0,hash:"e6eae5162ca3ec5be1a1f2b85f007b2d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12166.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11636",title:"Neuroplasticity - Visual Cortex Reorganization From Neurons to Maps",subtitle:null,isOpenForSubmission:!0,hash:"b306ce94998737c764d08736e76d60e1",slug:null,bookSignature:"Dr. Alyssa A Brewer and Dr. Brian Barton",coverURL:"https://cdn.intechopen.com/books/images_new/11636.jpg",editedByType:null,editors:[{id:"115304",title:"Dr.",name:"Alyssa",surname:"Brewer",slug:"alyssa-brewer",fullName:"Alyssa Brewer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12300",title:"Dopamine Receptors",subtitle:null,isOpenForSubmission:!0,hash:"257af6b69ae2215cdd6327cc5a5f6135",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12300.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11637",title:"Neuropsychology of Dementia",subtitle:null,isOpenForSubmission:!0,hash:"d40f707b9ef020bb202be89404f77a1e",slug:null,bookSignature:"Dr. Devendra Kumar, Prof. Sushil Kumar Singh and Dr. Ankit Ganeshpurkar",coverURL:"https://cdn.intechopen.com/books/images_new/11637.jpg",editedByType:null,editors:[{id:"454030",title:"Dr.",name:"Devendra",surname:"Kumar",slug:"devendra-kumar",fullName:"Devendra Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12169",title:"Olfactory and Gustatory Systems",subtitle:null,isOpenForSubmission:!0,hash:"6ee31032ea51909b6995f41e16d254b2",slug:null,bookSignature:"Dr. Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/12169.jpg",editedByType:null,editors:[{id:"82613",title:"Dr.",name:"Vonnie D.C.",surname:"Shields",slug:"vonnie-d.c.-shields",fullName:"Vonnie D.C. Shields"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12165",title:"Mild Cognitive Impairment - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"908d319a0cd368c5274419678d293bb1",slug:null,bookSignature:"Dr. Shuzhen Zhu",coverURL:"https://cdn.intechopen.com/books/images_new/12165.jpg",editedByType:null,editors:[{id:"470534",title:"Dr.",name:"Shuzhen",surname:"Zhu",slug:"shuzhen-zhu",fullName:"Shuzhen Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"101",title:"Cosmology",slug:"cosmology",parent:{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:88,numberOfWosCitations:82,numberOfCrossrefCitations:67,numberOfDimensionsCitations:111,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"101",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9982",title:"Cosmology 2020",subtitle:"The Current State",isOpenForSubmission:!1,hash:"35188e364272b0f50d145f33b01931fa",slug:"cosmology-2020-the-current-state",bookSignature:"Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/9982.jpg",editedByType:"Edited by",editors:[{id:"59479",title:"Dr.",name:"Michael",middleName:"L.",surname:"Smith",slug:"michael-smith",fullName:"Michael Smith"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7389",title:"Redefining Standard Model Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"25572d83043224835eabdf8632fc64ed",slug:"redefining-standard-model-cosmology",bookSignature:"Brian Albert Robson",coverURL:"https://cdn.intechopen.com/books/images_new/7389.jpg",editedByType:"Edited by",editors:[{id:"102886",title:"Prof.",name:"Brian Albert",middleName:null,surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6693",title:"Essentials on Dark Matter",subtitle:null,isOpenForSubmission:!1,hash:"7b9819be21ab94f8d165da9b5531b6bc",slug:"essentials-on-dark-matter",bookSignature:"Abraão Jessé Capistrano de Souza",coverURL:"https://cdn.intechopen.com/books/images_new/6693.jpg",editedByType:"Edited by",editors:[{id:"52362",title:"Dr.",name:"Abraao",middleName:"Jesse",surname:"Capistrano",slug:"abraao-capistrano",fullName:"Abraao Capistrano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3211",title:"Open Questions in Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"6e4e21582afb611a1552d8493d66f82c",slug:"open-questions-in-cosmology",bookSignature:"Gonzalo J. Olmo",coverURL:"https://cdn.intechopen.com/books/images_new/3211.jpg",editedByType:"Edited by",editors:[{id:"61779",title:"Dr.",name:"Gonzalo J.",middleName:null,surname:"Olmo",slug:"gonzalo-j.-olmo",fullName:"Gonzalo J. Olmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1680",title:"Space Science",subtitle:null,isOpenForSubmission:!1,hash:"2429d8599f5c44daca7b0d12f3d70bb8",slug:"space-science",bookSignature:"Herman J. Mosquera Cuesta",coverURL:"https://cdn.intechopen.com/books/images_new/1680.jpg",editedByType:"Edited by",editors:[{id:"15074",title:"Dr.",name:"Herman J.",middleName:null,surname:"Mosquera Cuesta",slug:"herman-j.-mosquera-cuesta",fullName:"Herman J. Mosquera Cuesta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1374",title:"Aspects of Today's Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"6f152698fbe6139a2fe31a70ec8668d0",slug:"aspects-of-today-s-cosmology",bookSignature:"Antonio Alfonso-Faus",coverURL:"https://cdn.intechopen.com/books/images_new/1374.jpg",editedByType:"Edited by",editors:[{id:"62140",title:"Prof.",name:"Antonio",middleName:null,surname:"Alfonso-Faus",slug:"antonio-alfonso-faus",fullName:"Antonio Alfonso-Faus"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"400",title:"Advances in Modern Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"042beba0021ef61f561bf65a1fb2b115",slug:"advances-in-modern-cosmology",bookSignature:"Adnan Ghribi",coverURL:"https://cdn.intechopen.com/books/images_new/400.jpg",editedByType:"Edited by",editors:[{id:"58295",title:"Dr.",name:"Adnan",middleName:null,surname:"Ghribi",slug:"adnan-ghribi",fullName:"Adnan Ghribi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"41690",doi:"10.5772/52455",title:"Where Is the PdV in the First Law of Black Hole Thermodynamics?",slug:"where-is-the-pdv-term-in-the-first-law-of-black-hole-thermodynamics-",totalDownloads:3427,totalCrossrefCites:16,totalDimensionsCites:28,abstract:null,book:{id:"3211",slug:"open-questions-in-cosmology",title:"Open Questions in Cosmology",fullTitle:"Open Questions in Cosmology"},signatures:"Brian P. Dolan",authors:[{id:"155570",title:"Dr.",name:"Brian",middleName:"P.",surname:"Dolan",slug:"brian-dolan",fullName:"Brian Dolan"}]},{id:"33700",doi:"10.5772/29840",title:"Geomagnetically Induced Currents as Ground Effects of Space Weather",slug:"geomagnetically-induced-currents-as-ground-effects-of-space-weather",totalDownloads:2798,totalCrossrefCites:8,totalDimensionsCites:12,abstract:null,book:{id:"1680",slug:"space-science",title:"Space Science",fullTitle:"Space Science"},signatures:"Risto Pirjola",authors:[{id:"79589",title:"Dr.",name:"Risto",middleName:"Juhani",surname:"Pirjola",slug:"risto-pirjola",fullName:"Risto Pirjola"}]},{id:"41610",doi:"10.5772/52041",title:"Extended Theories of Gravitation and the Curvature of the Universe – Do We Really Need Dark Matter?",slug:"extended-theories-of-gravitation-and-the-curvature-of-the-universe-do-we-really-need-dark-matter-",totalDownloads:1702,totalCrossrefCites:11,totalDimensionsCites:11,abstract:null,book:{id:"3211",slug:"open-questions-in-cosmology",title:"Open Questions in Cosmology",fullTitle:"Open Questions in Cosmology"},signatures:"L. Fatibene and M. Francaviglia",authors:[{id:"154114",title:"Prof.",name:"Mauro",middleName:null,surname:"Francaviglia",slug:"mauro-francaviglia",fullName:"Mauro Francaviglia"},{id:"154550",title:"Dr.",name:"Lorenzo",middleName:null,surname:"Fatibene",slug:"lorenzo-fatibene",fullName:"Lorenzo Fatibene"}]},{id:"41682",doi:"10.5772/51807",title:"Introduction to Palatini Theories of Gravity and Nonsingular Cosmologies",slug:"-introduction-to-palatini-theories-of-gravity-and-nonsingular-cosmologies-",totalDownloads:2781,totalCrossrefCites:2,totalDimensionsCites:8,abstract:null,book:{id:"3211",slug:"open-questions-in-cosmology",title:"Open Questions in Cosmology",fullTitle:"Open Questions in Cosmology"},signatures:"Gonzalo J. Olmo",authors:[{id:"61779",title:"Dr.",name:"Gonzalo J.",middleName:null,surname:"Olmo",slug:"gonzalo-j.-olmo",fullName:"Gonzalo J. Olmo"}]},{id:"18674",doi:"10.5772/23035",title:"Warm Inflationary Universe Models",slug:"warm-inflationary-universe-models",totalDownloads:2509,totalCrossrefCites:0,totalDimensionsCites:7,abstract:null,book:{id:"1374",slug:"aspects-of-today-s-cosmology",title:"Aspects of Today's Cosmology",fullTitle:"Aspects of Today's Cosmology"},signatures:"Sergio del Campo",authors:[{id:"50288",title:"Prof.",name:"Sergio",middleName:null,surname:"Del Campo",slug:"sergio-del-campo",fullName:"Sergio Del Campo"}]}],mostDownloadedChaptersLast30Days:[{id:"66783",title:"Introductory Chapter: Standard Model of Cosmology",slug:"introductory-chapter-standard-model-of-cosmology",totalDownloads:1444,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"7389",slug:"redefining-standard-model-cosmology",title:"Redefining Standard Model Cosmology",fullTitle:"Redefining Standard Model Cosmology"},signatures:"Brian Albert Robson",authors:[{id:"102886",title:"Prof.",name:"Brian Albert",middleName:null,surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson"}]},{id:"41230",title:"Cosmological Constant and Dark Energy: Historical Insights",slug:"cosmological-constant-and-dark-energy-historial-insights",totalDownloads:3076,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"3211",slug:"open-questions-in-cosmology",title:"Open Questions in Cosmology",fullTitle:"Open Questions in Cosmology"},signatures:"Emilio Elizalde",authors:[{id:"154905",title:"Prof.",name:"Emilio",middleName:null,surname:"Elizalde",slug:"emilio-elizalde",fullName:"Emilio Elizalde"}]},{id:"18676",title:"Introduction to Modified Gravity: From the Cosmic Speedup Problem to Quantum Gravity Phenomenology",slug:"introduction-to-modified-gravity-from-the-cosmic-speedup-problem-to-quantum-gravity-phenomenology",totalDownloads:2159,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1374",slug:"aspects-of-today-s-cosmology",title:"Aspects of Today's Cosmology",fullTitle:"Aspects of Today's Cosmology"},signatures:"Gonzalo J. Olmo",authors:[{id:"61779",title:"Dr.",name:"Gonzalo J.",middleName:null,surname:"Olmo",slug:"gonzalo-j.-olmo",fullName:"Gonzalo J. Olmo"}]},{id:"41688",title:"Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model",slug:"leptogenesis-and-neutrino-masses-in-an-inflationary-susy-pati-salam-model",totalDownloads:2014,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"3211",slug:"open-questions-in-cosmology",title:"Open Questions in Cosmology",fullTitle:"Open Questions in Cosmology"},signatures:"C. Pallis and N. Toumbas",authors:[{id:"154011",title:"Dr.",name:"Constantinos",middleName:null,surname:"Pallis",slug:"constantinos-pallis",fullName:"Constantinos Pallis"},{id:"164280",title:"Dr.",name:"Nikolaos",middleName:null,surname:"Toumbas",slug:"nikolaos-toumbas",fullName:"Nikolaos Toumbas"}]},{id:"41282",title:"Plasma Vortices in Planetary Wakes",slug:"plasma-vortices-in-planetary-wakes",totalDownloads:1714,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"3211",slug:"open-questions-in-cosmology",title:"Open Questions in Cosmology",fullTitle:"Open Questions in Cosmology"},signatures:"H. Pérez-de-Tejada, Rickard Lundin and D. S. Intriligator",authors:[{id:"79235",title:"Dr.",name:"Hector",middleName:null,surname:"Perez-De-Tejada",slug:"hector-perez-de-tejada",fullName:"Hector Perez-De-Tejada"}]}],onlineFirstChaptersFilter:{topicId:"101",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"80231",title:"Dark Matter in Spiral Galaxies as the Gravitational Redshift of Gravitons",slug:"dark-matter-in-spiral-galaxies-as-the-gravitational-redshift-of-gravitons",totalDownloads:59,totalDimensionsCites:0,doi:"10.5772/intechopen.101130",abstract:"Several recent attempts to observe dark matter with characteristics similar to atomic or subatomic particles as Weakly Interacting Massive Particles (WIMPs) have failed to detect anything real over a wide energy range. Likewise, considerations of large, non-emitting objects as the source of most dark matter fall short of expectations. Here we consider the possibility that massless gravitons suffering slow redshift may be responsible for the properties of spiral galaxies attributed to dark matter. Particles such as gravitons will be extremely difficult to directly detect; the best we can envision is measuring this influence on stellar and galactic motions. Since the motions of stars and galaxies are non-relativistic, we can apply our idea to describe the expected large-scale motions using only Newtonian mechanics. Using our assumption about the importance of the graviton, we here describe the well-known Tully-Fisher relationship of spiral galaxies without resorting to hypothesizing exotic WIMPs or invoking modifications of Newtonian dynamics (MoND).",book:{id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg"},signatures:"Firmin Oliveira and Michael L. Smith"},{id:"79591",title:"Cosmology and Cosmic Rays Propagation in the Relativity with a Preferred Frame",slug:"cosmology-and-cosmic-rays-propagation-in-the-relativity-with-a-preferred-frame",totalDownloads:64,totalDimensionsCites:0,doi:"10.5772/intechopen.101032",abstract:"In this chapter, cosmological models and the processes accompanying the propagation of the cosmic rays on cosmological scales are considered based on particle dynamics, electrodynamics and general relativity (GR) developed from the basic concepts of the ‘relativity with a preferred frame’. The ‘relativity with a preferred frame’, designed to reconcile the relativity principle with the existence of the cosmological preferred frame, incorporates the preferred frame at the fundamental level of special relativity (SR) while retaining the fundamental space-time symmetry which, in the standard SR, manifests itself as Lorentz invariance. The cosmological models based on the modified GR of the ‘relativity with a preferred frame’ allow us to explain the SNIa observational data without introducing the dark energy and also fit other observational data, in particular, the BAO data. Applying the theory to the photo pion-production and pair-production processes, accompanying the propagation of the Ultra-High Energy Cosmic Rays (UHECR) and gamma rays through the universal diffuse background radiation, shows that the modified particle dynamics, electrodynamics and GR lead to measurable signatures in the observed cosmic rays spectra which can provide an interpretation of some puzzling features found in the observational data. Other possible observational consequences of the theory, such as the birefringence of light propagating in vacuo and dispersion, are discussed.",book:{id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg"},signatures:"Georgy I. Burde"},{id:"78811",title:"Black Holes as Possible Dark Matter",slug:"black-holes-as-possible-dark-matter",totalDownloads:116,totalDimensionsCites:0,doi:"10.5772/intechopen.99766",abstract:"Black holes and Dark matter are two fascinating things that are known very little. They may have non gravitational interactions, but those are definitely extremely feeble in comparison to their gravitational interactions. Nowadays some people think that one may contain the other. In this chapter we will see that some black holes may contain the dark matter. These black holes decay under Hawking radiation, but do not vanish completely. They produce stable end states due to both quantum gravitational effects and thermodynamic reasons. These end states are the replicas of what we call dark matter. We will develop the complete theory for decay of such black holes, starting from some scheme independent assumptions for the quantum mechanical nature of the black holes. We will then consider explicit examples of some black holes to show that they indeed produce replicas of dark matter at their end states. Thus this chapter is going to be a manuscript for theoretical development of black hole decay from a quantum mechanical perspective and its consequences for producing replicas of dark matter.",book:{id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg"},signatures:"Aloke Kumar Sinha"},{id:"78389",title:"Non-Keplerian Orbits in Dark Matter",slug:"non-keplerian-orbits-in-dark-matter",totalDownloads:105,totalDimensionsCites:0,doi:"10.5772/intechopen.99243",abstract:"This paper is concerned with the mathematical description of orbits that do not have a constant central gravitating mass. Instead, the attracting mass is a diffuse condensate, a situation which classical orbital dynamics has never encountered before. The famous Coma Cluster of Galaxies is embedded in Dark Matter. Condensed Neutrino Objects (CNO), which are stable assemblages of neutrinos and anti-neutrinos, are candidates for the Dark Matter. A CNO solution has been attained previously for the Coma Cluster, which allows mathematical modeling of galaxy orbital mechanics within Dark Matter, first reported here. For non-zero eccentricity galaxy orbits, each point along the trajectory sees a different gravitating central mass, akin to satellite orbits inside Earth. Mathematically, the galaxy orbits are non-Keplerian, spirographs.",book:{id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg"},signatures:"Peter D. Morley"},{id:"77754",title:"The Most Probable Cosmic Scale Factor Consistent with the Cosmological Principle, General Relativity and the SMPP",slug:"the-most-probable-cosmic-scale-factor-consistent-with-the-cosmological-principle-general-relativity-",totalDownloads:222,totalDimensionsCites:1,doi:"10.5772/intechopen.99325",abstract:"Current literature on the evolution of the cosmic scale factor is dominated by models using a dark sector, these all involve making many conjectures beyond the basic assumption that the Cosmological Principle selects a space–time metric of the Friedmann–Lemaître–Robertson–Walker type through which ordinary Standard Model of Particle Physics matter moves according to General Relativity. In this chapter a different model is made using the same basic assumptions but without making extra conjectures, it depends on following the idea introduced by Boltzmann that when physically meaningful concepts fluctuate the value which will be observed is the one which has the highest probability. This change removes the mathematically incorrect procedure of averaging the matter density before solving Einstein’s Equation, the procedure which causes the introduction of many of the conjectures. In the non-uniform era the changes are that the evolution of the scale factor is influenced by the formation of structure and removes the conjecture of having to use two inconsistent probability distributions for matter through space, one to calculate the scale factor and one to represent structure. The new model is consistent from the earliest times through to the present epoch. This new model is open and matches SNe 1a redshift data, an observation which makes it a viable candidate and implies that it should be fully investigated.",book:{id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg"},signatures:"Arthur N. James"},{id:"76451",title:"The Case for Cold Hydrogen Dark Matter",slug:"the-case-for-cold-hydrogen-dark-matter",totalDownloads:205,totalDimensionsCites:0,doi:"10.5772/intechopen.97557",abstract:"The novel ‘Cold Hydrogen Dark Matter’ (CHDM) theory is summarized in this chapter. Special attention is paid to the fact that current technology prevents us from directly observing extremely cold ground state atomic hydrogen when it is of sufficiently low density in deep space locations. A number of very recent observations in support of this theory are summarized, including cosmic dawn constraints on dark matter. The importance of the Wouthuysen-Field effect as a probable mechanism for CMB decoupling of hydrogen at cosmic dawn is also stressed. This mechanism does not require a non-baryonic dark matter intermediary. Several predictions for this theory are made for the coming decade of observations and simulations.",book:{id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg"},signatures:"Eugene Terry Tatum"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"319576",title:"Prof.",name:"Nikolay",middleName:null,surname:"Boyadjiev",slug:"nikolay-boyadjiev",fullName:"Nikolay Boyadjiev",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v4b3cQAA/Profile_Picture_2022-06-07T08:30:58.jpeg",institutionString:null,institution:{name:"Medical University Plovdiv",institutionURL:null,country:{name:"Bulgaria"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:41,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:99,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:155,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:120,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:203,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/327029",hash:"",query:{},params:{id:"327029"},fullPath:"/profiles/327029",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()