Evolution of resistance in a population of resistant weed biotypes [60].
\r\n\tDiagnostic tools are advancing: micro-and nano-diagnostics, advanced molecular genetics, and diagnosis of the aberrant clotting factor synthesis development and the options for the staging of the genetic abnormality - severe, moderate, and mild expression.
\r\n\tTreatment developments and advances start with prevention, intra-uterine approaches, genetic manipulation, genetic engineering, the high specificity of replacement factors, and recombinant technology.
\r\n\tIn addition to the above, the book will provide an update on the prevention of transmission of pathogens and potentially toxic substances used to stabilize and preserve treatment commodities. The role of big data and artificial intelligence through both machine learning and the application of deep learning and digital footprinting will also be addressed.
\r\n\tIn the developing world, there is an urgent need to collect, preserve and process plasma for the manufacturing of high yield, safe, and stabilized cryoprecipitate, or pharmaceutical fractionation of purified and specific clotting factors, as well as improvement on diagnostic and sociomedical approaches with an emphasis on patient and family care, and management of bleeding episodes.
Weed management is essential for any current system of agricultural production, especially for large monoculture areas, which exert high pressure on the environment. Soybean is among the largest monoculture registered worldwide, with 102 million hectares harvested only in 2010. The leading countries of production are Argentina, Brazil and the United States, with more than 70% of the total cultivated area. Along with China and India, these five countries represent 90% of all produced soybean. The production incentive is related to growing global demand for oil and protein for food and feed, as well as the feasibility of crops for biodiesel production, extremely important for the global economy.
Meanwhile, weeds are considered the number one problem in all major soybean producing countries. Even with advanced technologies, producers note high losses due to interference by weeds. According to estimates, weeds, alone, cause an average reduction of 37% on soybean yield, while other fungal diseases and agricultural pests account for 22% of losses [1]. In the United States, it is considered that weeds cause losses of several millions of US dollars annually. In Brazil, with an average production of 75 million tons, it is estimated that expenses on weed control represent between 3% and 5% of total production cost, which means more than US$ 1.2 billion used in that country, only for weed chemical control in soybeans.
Disregarding the high cost, weed might be controlled in soybean crop using good management practices of all available methods, combining them in an integrated weed management (IWM). Crop rotation is a rather efficient method, since it allows an easy control of the most troublesome weeds. In order to achieve success on crop rotation, weeds must be managed throughout the growing soybean season. Using full capacity of crop competition is another alternative, yet this tool is often overlooked.
Despite differences between soybean cultivars used worldwide and the main weed species which attack these cultivars, there are many resemblances in management practices and control. The species hairy fleabane,
The introduction of GR (glyphosate-resistant) soybean, genetically modified (GM), contributed to standardization of weed management. With a large adoption of this technology, there are many concerns regarding the control and the high selection pressure on common weed species in soybean. In the US, more than 93% of soybean has the GR technology. In Brazil and Argentina, these values represent 80% and 99%, respectively.
The use of very similar technologies as well as the facility of proliferation of weeds has intensified reported herbicide resistance. Since the first report of
New technologies derived from genetic alteration of cultivars resistant to herbicides are part of management alternatives to glyphosate. Many of them still under test should be available on short notice. In Brazil, both soybean resistant to ALS (acetolactate synthase) inhibitors and those resistant to 2,4-D should take up areas with a history of weed glyphosate resistance. In the US, besides soybean resistant to dicamba and that resistant to glyphosate + ALS, mixtures are used on crop pre-emergence (PRE), for example, dimethenamid and saflufenacil (new active ingredient). Spraying of encapsulated ingredients (acetochlor) at soybean POST and at weed PRE also come up as management alternatives.
Despite efforts on weed control in soybeans, the benefits of IWM based on preventive and cultural controls will always be fundamental to the maintenance of monocultures. However, it appears that much of what is discussed about IWM is slightly practical, with corrective measures mostly. This chapter aims to present some focal issues related to weed management in soybean growing areas, which include weed potential to cause severe damages and yield losses by weeds, the evolution of resistant weeds in GR soybean monoculture, the soybean management characterization in the main producing countries and discussions about the benefits of IWM use as an accurate control measure. It presents a set of information for researchers and experts on weed management service area, reporting clear and objectively the major impacts of the current management used and the outlook for soybean farming.
Weed control is a practice of great importance for obtaining high soybean yields. Weed species is a serious problem for the soybean crops and its control is needed especially in infested sides. Therefore, weed management is an integral part of soybean production. Recently, research has reported that the density and distribution of weed species in the soybean plantations are significant parameters on yield losses. This happens because the weed species competes with the sunlight, water and nutrients, and may, depending on the level of infestation and species, hamper harvesting operations and compromise the quality of soybean grains [2]. Current studies on weed biology are changing, largely due to the effects of agricultural practices on weeds, cropping systems, and the environment. Research emphasis has been altered based on the need to understand basic weed biology [3]. It is our job to predict how weed species, populations, and biotypes evolve in response to selection pressure primarily due to agricultural practices. This knowledge helps developing weed management practices in the soybean crops. Other important biological factors in weed management decisions include weed and crop density, seedbank processes, demographic variation, weed-crop competition, and reproductive biology [4]. Development of economic thresholds for weed species made significant progress in the last decade. Integrated weed management has focused on the effects of crop planting dates, row spacing, cultivators, use of cover crops and reduced herbicide rates.
Selection and adaptation of weed populations occur at the level of the individual. Weeds interfere with crop production, and the yield losses incurred are the aggregate consequence of competition between heterogeneous weed phenotypes and homogeneous crop phenotype [5]. Because weed selection results in diversity, a population of weeds on a field consists of a heterogeneous collection of genotypes and phenotypes that allows exploitation of many niches left available by crops. Weed species respond to these opportunities with an impressive array of adaptions: phenotypes plasticity in response to microsite resource availability, somatic polymorphism of plant and seed form and function, density-dependent mortality (population size adjustment), density-independent mortality (disease, predator, stress resistances), and chemical inhibition of neighbors by allelopathic interference [6]. When all else fails, many weed seeds can remain dormant and extend their life for several years in the soil seedbank, waiting for the right opportunity to grow [7].
Weed populations possess considerable heterogeneity at many levels, consequence of adaptation for colonization and survival. In order to select the most appropriate herbicides or devise the optimum weed control system, one must be able to properly identify the weeds present within a field. Weed identification immediately following emergence is essential since the effectiveness of most herbicides depends on weed size. Maps of weeds by species in fields prior to harvest will aid in the choice of herbicide program for the following year.
All the characteristics cited are essential for soybean weed management. However, starting from the identification of species, three leading questions must be answered in order to suitably handle weeds: i) What are the available tools for weed management? ii) How should one use them for reducing weed interference? and iii) When should one use them?
The available tools are those that enable the reduction of weed-crop competition. It integrates all traditional control — cultural, physical, chemical, among others — and it should be evaluated in accordance with locally grown system. Currently, due to countless resistance cases, preferences are for those that integrate cultural and physical controls together with chemical ones, and the following ones can be cited: no tillage system, crop rotation, using of cover crops, autumnal herbicide management directed to key-weeds, and new GM soybean resistant to herbicide from different modes of action.
All tools should be adapted to use availability, particularly considering the ratio income/investment. Many of these tools are easy to be used and have high impact. The no tillage system, for example, changes weed management completely, so that the mulch formed reduces weed survival [8] and also encourages the germination of negative photoblastic species [9], in addition to all other benefits found in the tropical regions of soybean production [10]. The advantages of no tillage over conventional tillage systems in improving soil quality are generally accepted, resulting in benefits for physical, chemical and biological properties of the soil [11]. Nowadays, no tillage is practiced on over 100 million ha worldwide, mostly in North and South America, but also in Australia and in Europe, Asia and Africa [12,13]. Among the advantages, one can cite the control of soil erosion, moisture conservation, favorable soil temperatures, increased efficiency in nutrient cycling, improvement on soil structure, machinery conservation and time saving in terms of human and animal labor [12,14]. The system also ensured changing among the population of arthropods, which are usually favored by the system because they find greater protection to natural enemies or use many of weed seeds as a feed source.
The crop rotation system constitutes another important management tool, often overlooked by producers. It allows the variation primarily at chemical control. Corn rotating, despite inconvenient profitability decreases, compared with soybean, allows an important POST emergent apply against glyphosate-tolerant weeds, in areas where GR corn is not used. Several studies carried out from 1970 to 1990, associated with cultivation of soybeans in crop rotation systems with diverse grasses (rice, maize, sorghum, wheat, sugar cane) and cotton, have shown that nitrogen residual effect, fixed by soybean crop and its residues, replaces partial the nitrogen on following crop, resulting in field optimization and alleviating part of the production costs [15]. In China, for example, soybean is commonly grown continuously in monoculture rather than rotated with other crops, like maize or wheat. The soybean monoculture results in yield decline, as well as its quality. The yield reduction on soybean in 2, 3 and 4-year monoculture was 15%, 20%, and 30%, respectively [16,17], highlighting the significance of rotational system in the preservation of crop production. Furthermore, several experiments suggest that carbon and nitrogen from microbial biomass (particularly nitrogen) are sensitively affected by soil- and crop-management regimens, being directly influenced by crop rotation [18].
Using cover crops between the main crops (fallow period) is also part of conservation practices and it represents a breakthrough in weed management. Besides, competing against weeds, many cover crops allow using selective herbicide in the fallow period, reducing hard-to-control species. Despite the high costs, it saves on using herbicides along cultivation years for the primary crop, as the infestation plant is reduced by ongoing practice of this system. Nutrient cycling is also favored by means of cover crops, especially for those who exhibit high mobility on the ground, such as nitrogen [19]. For other nutrients, arbuscural mycorhizal development is favored in areas in which cover plants are used. This arbuscural mycorhizal promotes phosphorus absorption [20]. Nitrate loss in annual row crops could also be significantly mitigated by the adoption of no tillage and cover crops or greater reliance on biologically based inputs, according to [21]. In general, cover crops increase the primary productivity of the system and diversify basal resources for higher trophic levels.
However, the selection of proper cover crop is essential for the success of the system. Plant-feeding nematodes, for example, were less abundant in plots with Poaceae cover crops, while bacterivorous, omnivorous and root-hair-feeding nematodes were more abundant with Fabaceae cover crops than with bare soil, indicating that cover crop identity or quality greatly affects soil food web structure [22]. Other species, such as those from genus Desmodium, may be used suppressing
Herbicides, in the broad action spectrum, are and will be essential tools in weed management, even for those with a great number of resistant weeds. But the trend is that using different herbicide is increasingly related to GM crops which show resistance to more than one active ingredient. For new GM soybean, 2,4-D and dicamba resistance traits will always be used in stacks with at least one other herbicide-resistant trait. Glyphosate and ALS trait stack, recently deregulated in the US, possibly will allow the use of ALS-inhibiting herbicides with soil residual that are too phytotoxic to use on conventional crop cultivars [24]. In reference [25], diversification may make weed management more complex, but growers must not use new GM crop resistant to herbicides in the same way that some used initial GM crops, in order to rely only on one herbicide until it is no longer effective and then switch herbicides. Research alerts that “if growers use the new GM crops and the herbicides that they enable properly, GM crops will expand the utility of currently available herbicides and provide long-term solutions to manage resistant weeds”.
Answering the question related to the period when control tools should be used, different opinions arise. Many specialists recommend to use tools, especially chemical control, only when economic loss level is reached, ie, when population density finds a minimum threshold at which costs of controlling are lower than economic damage coming from losses by weed interference. Nevertheless, by following the concept of integrated management, it is recommended the use of many available tools, even at fallow periods or at low weed densities. In reference [26], as opposed to pest and pathogens which attack crops in epidemic cycles, weeds are endemic, regenerating from the seed and/or vegetative propagules that are introduced into the soil; thus, the continuous management allows the best result. Besides, confining weed management to a narrow temporal window increases the risk of unsatisfying weed management outcomes due to unfavorable weather [27]. Coupled with this agreement, good management models for weed control may join forces to the definition of weed control periods according to their competitive ability and the local crop conditions set out during the growing (climate, cultivar, sowing density, etc).
So far, absence of management or misuse of control tools may undermine the productivity, the sustainability of system production and the agricultural activity, also interfering in the preservation and balance between species. Thus, interactions among weeds and further organisms (fungi, viruses, bacteria, mites, insects, nematodes, etc.) as well as their handling may have a direct or indirect impact into the production system.
Many studies have attempted to relate the intensification of certain pathogenic diseases of shoot plants in areas annually treated with herbicides, being placed on proof the intensive use of those mainly in no tillage system. Glyphosate, for example, is a highly effective broad-spectrum herbicide that is phytotoxically active on a large number of weeds and crop species across a wide range of taxa [28]. Glyphosate inhibits the biosynthesis of aromatic aminoacids, thereby reducing biosynthesis of proteins, auxins, pathogen defense compounds, phytoalexins, folic acid, precursors of lignins, flavonoids, plastoquinone, and hundreds of other phenolic and alkaloid compounds [29]. These effects could increase the susceptibility of glyphosate-sensitive plants to pathogens or other stress agents [30]. Engineered to express enzymes that are insensitive to or are able to metabolize glyphosate, GR crops have enabled farmers to easily apply this herbicide in soybean, corn, cotton, canola, sugar beet and alfalfa, besides controlling problematic weeds without harming the crop [28].
For glyphosate and its interspecific transfer from weeds to nontarget organisms, in [31] it was related the increasing remark number of plant diseases growing in long term [32]. But the herbicide influence on disease incidence at glyphosate-resistant crops has varied. While in [33,34] it was observed an increase of
Disease caused by
In other cases, not only herbicides, but also weeds, can supply the decrease of several crop diseases, so that their management is extremely important. In [41] it was investigate the efficacy of three common weeds, i.e.,
Some experiments found preliminary details, which suggest that the presence of weeds that serve as hosts of both tobacco rattle virus (Corky ringspot disease) and
Weed management is also associated with most pests on crop cultivation; ecological relationships set out among organisms (weeds, insects, mites, etc.) allow their maintenance and proliferation. Examples of pest and weed interactions established in soybean has been reported by [44], who found anticipation of 14 days at critical period of weed control when crop was 60% defoliated by insects. Increasing of
The integrated management of weeds and pests, despite essential, is not easy to be performed on extensive production systems, especially because there are interactions of many species having various relations, either symbiosis, predation or parasitism. Knowing the interactions and the organisms that comprise production system is the great challenge and it can bring good results. Examples can be viewed in [51], with the reporting of lepidopterous in corn, in cotton [52], in
Herbicide-resistant weeds represent the evolution of plants as a consequence of environmental changes, which are usually caused by human action. This process is aligned with the theory of evolution. The process of natural selection, according to Darwin’s theory of evolution, may be summarized by three guiding principles: i) principle of variation – there are variations in physiology, morphology and between behavior of individuals of any population, ii) principle of heredity – descendents are more similar to their parents than unrelated individuals, and iii) principle of selection – some individuals are more successful at survival and reproduction than others in a particular environment [56].
Therefore, a whole species keeps changing its composition because the individuals evolve in the same direction. The next generation will have a higher frequency of individuals that have been most successful in surviving and multiplying on environmental conditions. Frequencies of individuals within a population will change over time and those better adapted to the environment become predominant [56]. The biotype selection in a population by the same repeated herbicide application and its multiplying are shown bellow (Figure 1).
Illustration of a resistant biotype selection of a sensitive species [
Considerable evidence suggests that the appearance of herbicide resistance in a plant population comes with the selection of a resistant biotype, which is pre-existing. According to the selection pressure, this individual finds favorable conditions to reproduce [58]. The perception of resistance is only possible when the number of resistant plants or failure in control are clearly identified (Table 1). Unfortunately, for most cases, the seedbank already has seedlings of the resistant biotype in this time and eradication becomes arduous and expensive. The resistant biotypes may exhibit less ecological adaptation in these environments and become predominant due to elimination of sensitive plants. In terms of natural selection, biotypes with greater ecological adaptation reveal greater production than less adapted biotypes [59].
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
0 | \n\t\t\t1 | \n\t\t\t1,000,000 | \n\t\t\t99.9999 | \n\t\t\tunnoticeable | \n\t\t
1 | \n\t\t\t1 | \n\t\t\t100,000 | \n\t\t\t99.999 | \n\t\t\tunnoticeable | \n\t\t
2 | \n\t\t\t1 | \n\t\t\t10,000 | \n\t\t\t99.99 | \n\t\t\tunnoticeable | \n\t\t
3 | \n\t\t\t1 | \n\t\t\t1,000 | \n\t\t\t99.9 | \n\t\t\tunnoticeable | \n\t\t
4 | \n\t\t\t1 | \n\t\t\t100 | \n\t\t\t99.0 | \n\t\t\tunnoticeable | \n\t\t
5 | \n\t\t\t1 | \n\t\t\t10 | \n\t\t\t90.0 | \n\t\t\tbarely noticeable | \n\t\t
6 | \n\t\t\t1 | \n\t\t\t5 | \n\t\t\t80.0 | \n\t\t\tnoticeable | \n\t\t
7 | \n\t\t\t1 | \n\t\t\t2 | \n\t\t\t50.0 | \n\t\t\tapparent | \n\t\t
Evolution of resistance in a population of resistant weed biotypes [60].
Most of the ecological issues associated with evolution of herbicide resistance involve the understanding of relationship between adaptation, gene frequency, inheritance and gene flow [61] because the interactions among these factors shall determine the time required for resistant biotypes to become predominant.
The time for resistant plants’ appearance and resistant and non-resistant weed proportion change frequently with herbicide use and its biological effects, which may be fairly short (two years from commercial use — ALS inhibitors) or take more than 20 years, as happened with glyphosate (EPSP – 5-enolpyruvylshikimate-3 phosphate synthase inhibitors) [62] (Table 2). Weeds resistant to sulfonylureas were identified after four or five years of a continuous use of this herbicide group [63]. In Australia,
Herbicides with a high level of safety, i.e., high efficiency and specificity play a huge selective pressure. Examples include inhibitors of the enzymes ALS and ACCase (acetyl coA carboxylase), which have great chances to select resistant weed biotypes, since any change in its action point (enzyme) may result on activity losses and resistant weed increase.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
2,4-D | \n\t\t\t1948 | \n\t\t\t1957 | \n\t\t\tEUA and Canada | \n\t\t
Triazines | \n\t\t\t1959 | \n\t\t\t1970 | \n\t\t\tEUA | \n\t\t
Propanil | \n\t\t\t1962 | \n\t\t\t1991 | \n\t\t\tEUA | \n\t\t
Paraquat | \n\t\t\t1966 | \n\t\t\t1980 | \n\t\t\tJapan | \n\t\t
EPSP syntase inhibitor | \n\t\t\t1974 | \n\t\t\t1996 | \n\t\t\tAustralia | \n\t\t
ACCase inhibitor | \n\t\t\t1977 | \n\t\t\t1982 | \n\t\t\tAustralia | \n\t\t
ALS inhibitor | \n\t\t\t1982 | \n\t\t\t1984 | \n\t\t\tAustralia | \n\t\t
Year of introduction and its first confirmation of weed resistance to different herbicide action mode [64].
There are six factors related to plant population, which interact and determine the probability as well as the time of resistance evolution. They are the following:
The
The
The
Repeated use of herbicides to plant control exerts high
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
\n\t\t\t\t | \n\t\t\tChlortoluron | \n\t\t\t10 | \n\t\t
\n\t\t\t\t | \n\t\t\tDiclofop methyl | \n\t\t\t4-6 | \n\t\t
\n\t\t\t\t | \n\t\t\tTriallate | \n\t\t\t18-20 | \n\t\t
\n\t\t\t\t | \n\t\t\t2,4-D or MCPA | \n\t\t\t20 | \n\t\t
\n\t\t\t\t | \n\t\t\tParaquat or Diquat | \n\t\t\t25 | \n\t\t
\n\t\t\t\t | \n\t\t\tSulfonylurea | \n\t\t\t3-5 | \n\t\t
\n\t\t\t\t | \n\t\t\tDiclofop methyl | \n\t\t\t7 | \n\t\t
\n\t\t\t\t | \n\t\t\tDiclofop methyl | \n\t\t\t4 | \n\t\t
\n\t\t\t\t | \n\t\t\tAmitrole + Atrazine | \n\t\t\t10 | \n\t\t
\n\t\t\t\t | \n\t\t\tSethoxydim | \n\t\t\t3 | \n\t\t
\n\t\t\t\t | \n\t\t\tSimazine | \n\t\t\t10 | \n\t\t
\n\t\t\t\t | \n\t\t\tTrifluralin | \n\t\t\t15 | \n\t\t
Number of years required for natural selection of resistant biotypes of a weed population according to the herbicide used [61].
In summary, the evolution process of herbicide resistance goes through three stages: removal of biotypes highly sensitive, remaining only the most tolerant and resistant; elimination of all biotypes except those resistant and selecting them in a population with high tolerance; intercrossing among survivors biotypes, generating new individuals with higher level of resistance, which may be selected later [65]. This process resulted in 383 resistant biotypes, 208 species (122 dicotyledonous and 86 monocotyledonous) and over 570,000 fields [62].
There are no doubts that selection pressure by use of herbicides at cultivated soybean areas contributed to the increasing of resistant weeds. Among the main representative countries, Argentina, Brazil and the USA, there is a positive correlation between soybean expansion areas and intensive use of herbicides, as well as between the increasing of resistance incidence and massive adoption by the same technology in these countries, i.e., one or few herbicide action modes.
In the USA, country with the largest number of resistance cases, 139 occurrences have been recorded, approximately 119 resistant species to different states and mechanism actions. From the 139 cases, around 25.9% are resistant species to two or more herbicide mechanism actions [62]. The first resistance case in the US, to auxin herbicides, was
In Brazil, selection of tolerant or resistant species started in the 70s, with repeated metribuzin use. This herbicide was introduced to control
The control of resistant species to ALS inhibitors was solved with GR soybean. History repeated itself with glyphosate and this has become practically the only herbicide hold on soybeans, imposing great selection pressure of tolerant and resistant species. Thus, the continuous glyphosate spraying has selected tolerant weeds such as
Resistance of
For soybeans and wheat, ACCase inhibitors are the main alternative to
(a) Illustration of
In general, weed resistance to herbicides in Argentina became important after 2005 and is also related to the intensive use of glyphosate in GR soybean crop. The introduction of the RR technology in 1996 quickly masked the incipient problem of herbicide resistance in the country, marked by the appearance, in the northern part of Argentina, of an
The outlook is that the main crops (soybean, corn, cotton) from Brazil, the USA and Argentina will be resistant to glyphosate. In this context, succession and crop rotation with conventional seeds is a strong chance in the field. There is the necessity to convince farmers that repeated and continuous use of glyphosate-resistant crops in few years could cripple the weed control with the use of glyphosate-based products.
Evolution of glyphosate-resistant populations is an imminent threat in areas where there is dominance of glyphosate-resistant crops, intense selection pressure and no diversity [70]. Certainly other glyphosate-resistant weeds will be identified in the coming years. But when and how it is related to use of glyphosate-resistant crops? The use of practices to reduce selection pressure and switch mechanisms is important to protect and prolong the use of important molecules such as triazines, ALS inhibitors, ACCase, and glycines.
The first recorded experience with soybeans in Argentina was in 1862, just a few years after their introduction to the US, but back then the country was a stronghold of cattle production, and there was little interest in agriculture. The first variety trials and commercial harvests occurred during the 60s. At the turn of the century, soybeans in Argentina were reaching the 10,000,000 hectares mark, coinciding with the adoption of transgenic GR soybeans. Soybean production increased over 1000-fold to a record of 52 million metric tons in 2010. The most productive area for soybeans is comprised by the northern portion of the province of Buenos Aires, the central and southern part of the province of Santa Fe, and the southeastern part of Córdoba (humid pampas), but in recent years the expansion has been more noticeable in other provinces, like Entre Ríos, Santiago del Estero, Tucumán, Salta and Chaco, in the northern part of Argentina. Another factor influenced by the adoption of GR soybeans was the oversimplification of the weed control programs, which eventually led to the selection of resistant biotypes and hard-to-control weeds.
The development and early expansion of the crop in Argentina was accompanied by the constant introduction of new herbicide molecules. During the 70s, as farmers in Argentina were learning how to grow this crop, the most common weed control methods in soybeans were a combination of tillage and pre-emergent (PRE) herbicides such as trifluralin, dinitramine (dinitroanilines), cloramben (benzoic acid), naptalam (amide), flucloralin (chloroanilin), vernolate (thiocarbamate), metribuzin, prometrin (triazines), alaclor (chloracetamide), and linuron (phenylurea). Bentazon, one of the first post-emergent options, did not become available until the end of that decade. The dinitroanlinies, flucloralin, and vernolate were used on pre-planting incorporated (PPI) for annual grasses and broadleaves control, clormaben was one of the few burndown options for broadleaves, naptalam was applied PRE for annual grasses and broadleaves, the triazines also PRE, for small seeded broadleaves, often in combination with alachlor to improve annual grass control, and linuron offered broad spectrum control also applied PRE.
As a result of the limited choices in herbicides in soybean, there were several weed problems, such as the perennial grasses
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t |
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t |
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t |
Most important weeds in the humid pampas in 1997, before the adoption of GR soybeans [72].
*Sunflower was a common component of the rotation systems.
Usually a moldboard plow was used in the fall to incorporate the previous crop residue and destroy existing vegetation. Herbicides were part of the control methods from the beginning, given the timing of the introduction of soybeans in Argentina, so a mechanical-only technology was never developed for the region, except for specific purposes, like organic soybeans. In the spring, residual herbicides were applied after the preparation of the seedbed, incorporating them if needed. There were several escape problems given the limitation of POST options, especially with large seeded broadleaf weeds like
Special device “Chamiquera”, Rojas, Buenos Aires, circa 1980.
During the 80s and 90s, until the introduction of GR soybeans, the development of several new molecules improved the control of many weeds, but still in combination with mechanical methods, leading to a steady expansion of both the area planted with soybeans and the average yields (Figure 4). Gradually, new herbicides allowed technology developments that replaced, at least in part, mechanical control methods with chemical ones. The need of field cultivators was reduced or replaced by the application of pre-emergent combinations of alachlor and metribuzin that offered a wide spectrum of control and proven residuality, replacing other herbicides — like trifluralin — that required mechanical incorporation.
Acifluorfen became a common tool for rescuing treatment, even though it caused severe crop injury. This herbicide allowed the control of large seeded broadleaf weeds —
Soybean production, in million metric tons, from 1979 to 2012. In red: first year with commercial GR soybeans. In yellow: droughts of the 08-09 and 11-12 seasons.
New inhibitors of the protoporphyrinogen oxidase enzime herbicides were introduced during the late 90s. Carfentrazone, sulfentrazone (aryl triazinones) and flumioxazin (N-phenylphtalimides derivative) offered new options for burndown (carfentrazone) and residual control (sulfentrazone, flumioxazin), but the introduction of the GR soybean varieties prevented its adoption, thus the most dramatic expansion of soybean production in Argentina was the introduction of the glyphosate resistant varieties in 1996.
Nearly all the soybeans in Argentina are transgenic (GR1). Argentina had the fastest adoption of glyphosate-resistant soybeans in the world. This fast adoption coincided with the expansion of no tillage technology in the region, fueling a synergism between GR soybeans and no tillage. AAPRESID, the national association of no tillage farmers, had held its first national symposium a few years prior to the launching of this technology, and its members welcomed and quickly embraced a new biotech development that allowed them to fully implement their preferred technology.
Until the adoption of GR soybeans, tillage was an important weed control method, complementing chemical control options, but it had a negative impact on erosion, soil structure and organic matter mineralization. The introduction of herbicide-resistant varieties increased not only the use of glyphosate, but also the practice of no tillage as well, replacing mechanical control almost completely in soybean production. The high efficacy of this herbicide combined with the simplicity of the system resulted in a quick replacement of other herbicides used in soybeans, both over the top applications and during the chemical fallow period. In 2005, over 92% of the herbicide volume used in chemical fallow was glyphosate, while some hormonal herbicides were commonly tank-mixed with glyphosate to improve the control of thistles and other “new” weeds. Overall costs of weed control in soybeans decreased dramatically as new generic glyphosate brands entered the Argentine market. Another aspect that contributed to the simplification of the system, including soybean monoculture, was the general economic situation of the country. Corn required a higher investment, while soybeans, especially GR soybeans, as described above, allowed farmers to plan their soybean season with less financial requirements (in Argentina, the law allows farmers to save seeds for their own use) in times when the prices of commodities were uncertain and financial means were limited, or expensive.
Glyphosate effectively controlled not only the most problematic weeds in soybean fields; it replaced herbicide combinations that required a deep knowledge of the weed spectrum, careful planning to avoid escapes, tank mix problems, timing concerns and crop injury, and still did not offer the satisfaction of a field completely clean of weeds. RR technology simplified the business of growing soybeans like no other technology ever developed. Today, soybean system is characterized by over-reliance on glyphosate, low crop rotation, absence of mechanical control methods and limited monitoring (of both weeds present at the time of application and results). The lack of monitoring practices is a direct result of the high efficacy of glyphosate control in the early years of the biotech age. As a result, the weed spectrum has shifted and there are several glyphosate-resistant weeds, combined with hard-to-control ones, while the presence of weeds with resistance to other modes of action is still limited.
Glyphosate is still a very valuable weed control tool, in spite of the weed shift that Argentina has experienced due to its over-use. In [73] it was studied the effectiveness of glyphosate applications at two stages (vegetative and reproductive) on 31 weeds that represented the typical weed spectrum of the region. The herbicide had complete control on 58% of the species at both stages, complete control at the vegetative stage but deficient control at the reproductive stage on 32% of the species and poor control on only 10% of the species at either stage. Disregarding the poor control at the reproductive stage-only, which is not recommended, it is clear that glyphosate satisfactorily controlled 90% of the weeds. The remaining 10% can be managed easily combining glyphosate with the proper herbicides, providing a cost-effective complement. The control of some of these difficult weeds is improved when glyphosate is combined with atrazine or metsulfuron applied during fall [74]. For example,
The selection of herbicide-resistant biotypes was a consequence of lack of crop and herbicide rotations. Daniel Tuesca, a weed scientist in the University of Rosario, states that, in the years preceding the introduction of the GR soybean, farmers mentioned, on surveys, the use of 16 different herbicides in the fallow process and 13 on the crop (either PRE or POST), but a few years after the introduction of the technology, there were only 3 herbicides applied in fallow, and only glyphosate over the crop. From the three herbicides mentioned in the surveys, there were no specific graminicides (Table 5), so it is not a surprise that all the weeds that have been confirmed as resistant to glyphosate are grasses.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t||
Fallow applications | \n\t\t\tPicloram | \n\t\t\tFallow applications | \n\t\t\tAtrazine | \n\t\t
Flumetsulam | \n\t\t\t2,4-D | \n\t\t||
Metribuzin | \n\t\t\tMetsulfuron | \n\t\t||
MCPA | \n\t\t\t\n\t\t | ||
Dicamba | \n\t\t\t\n\t\t | ||
Atrazine | \n\t\t\t\n\t\t | ||
2,4-D | \n\t\t\t\n\t\t | ||
Metsulfuron | \n\t\t\t\n\t\t | ||
Other herbicides | \n\t\t\t\n\t\t | ||
No applications | \n\t\t\t\n\t\t | ||
PRE/Over the top | \n\t\t\tFlumioxazim | \n\t\t\tPRE/Over the top | \n\t\t\t\n\t\t |
Clorimuron | \n\t\t\t\n\t\t | ||
2,4-DB | \n\t\t\t\n\t\t | ||
Imazaquin | \n\t\t\t\n\t\t | ||
Acetochlor | \n\t\t\t\n\t\t | ||
Graminicides (FOP’s) | \n\t\t\t\n\t\t | ||
Flumetsulam | \n\t\t\t\n\t\t | ||
Diclosulam | \n\t\t\t\n\t\t | ||
Imazetapyr | \n\t\t\t\n\t\t | ||
Other herbicides | \n\t\t\t\n\t\t | ||
No applications | \n\t\t\t\n\t\t | ||
Based on individual responses to surveys, % for each answer is omitted. FOPs (aryloxyphenoxypropionate herbicide group) | \n\t\t
Herbicides, other than glyphosate, used in soybean production before and after the introduction of GR soybeans in Argentina, according to surveys with farmers.
Source: courtesy of Professor Daniel Tuesca, Universidad Nacional de Rosario, AR.
Apart from the confirmed cases of glyphosate-resistant weeds, there are several problems caused by the excessive use of glyphosate. To better understand the problem, it is important to state that in Argentina about 70% of the farming is done in rented land, and during the last decade the rental price has increased constantly. In many cases, this situation prevented the traditional early fallow procedures and resorted to burndown practices with weeds that had grown beyond their optimal control stage. One particular case is
Today, there are many efforts to revert the reliance on glyphosate and the selection of resistant biotypes and hard-to-control weeds. Universities, professional associations and the industry are advocating the rational use of herbicides with different sites of action, in a crop rotation program, to prevent the selection of new resistant biotypes, not only to glyphosate but to others as well, especially biotypes with multiple resistance. It is only fair to mention that academics from different institutions such as INTA, Universidad Nacional de Buenos Aires, Universidad Nacional de Rosario, Universidad Católica de Córdoba, Universidad Nacional de Tucumán, Estación Obispo Colombres, just to mention a few, have been working hard on this matter in the previous years, when glyphosate was still the undisputed weed control method of choice. Argentina is shifting from a simple and effective system to a more complex one that requires a stronger commitment from farmers, advisors, the academic sector and the industry. The soybean sector is facing a turning point, and this new reality will have to include more crop rotations, more herbicides and also mechanical and cultural weed control methods.
According to professor Gustavo Dutra, from Cruz das Almas, Bahia, it may be inferred that, since its introduction in the country in 1882, soybean crop has transformed the Brazilian agriculture. Initially planted in the state of Rio Grande do Sul, first recorded in 1914, in Santa Rosa, the soybean “tropicalization” has found space coming out from southern pampas to the midwestern region of the country. While only 2% of national soybean production had been recorded in this region in the 70s, more than 47% of national production was reported in midwestern region in 2010/2011 harvest. Hence, Brazil represents one of the most important regions with a growing potential in soybean production. Probable areas to produce soybean ponder between 20˚ S and 20˚ N. However, the largest portion of this production belt is concentrated in the Brazilian lands, with estimated increases of 2.3% up to the year 2020.
Weed control has bothered growers from the beginning of soybean cultivation, especially since 1950, with the expansion of southern region. Adaptation of production system allowed the satisfactory management, even when using only mechanical tools to control. Cost constraints and limitations set by this control led to its quick replacement by the chemical control, which became a primary tool of weed management. Due to its importance, Brazilian pesticide market has expanded from 1977 to 2006, on average, 10% per year. Even after many decades, the use of soybean herbicide has been restricted to spraying in incorporated pre-plant (eg triflurallin) and pre-emergence (eg metribuzin, alachlor and linuron) along with plowing and harrowing, to prepare conventional soybean field.
Few herbicides used previously restricted the implementation period, affecting more specific actions for managing the weeds emerged in advanced stages of the crop. The launch of bentazon POST herbicide revolutionized the market, allowing the control of major dicotyledonous weeds on soybean. Introduction of new molecules from the 80s and 90s afforded efficiency on the control of several species, in particular those belonging to genders Amaranthus, Digitaria, Brachiaria, Euphorbia and Bidens. The main herbicides applied belonged to the chemical groups ALS and ACCase inhibitors, with monocotyledonous and dicotyledonous actions.
Since the introduction of no tillage system, weed management has changed and, as a consequence, moved to consider factors other than chemical control on the production system. The main benefit of no tillage system is the reduction of weed germination over time [75] and greater use of crop control. Furthermore, species not commonly observed in the conventional system demand better preparation and expertise of producers. Such modifications are related to the absence of soil disturbance, favoring perennial cycle weeds, as well as changes in patterns of temperature and light incidence, influencing seeds’ mechanisms of dormancy. Cover crops result in greater amount of organic residue, with higher C/N ratios, and are more efficient in weed management, by composing a thicker layer of mulch on surface soil [76]. The weed density decreases linearly with organic residues increasing on surface soil, mainly by reduction on weed germination.
Originally, no tillage system in Brazil used 2,4-D and paraquat herbicides as burndown to prepare cultivation areas. At the time there was no product like glyphosate, with non-selective and desiccant action. Despite the effective action, there were limited control with paraquat and some residual effects of 2,4-D on soybeans, hindering the sowing immediately after spraying. With glyphosate releasing in Brazil in 1982, the technology suited local and producers’ needs, gaining the market by its control efficiency. But the POST application was still limited to the same herbicides (bentazon, imazethapyr, setoxydin, tepraloxydym, etyl-chlorimuron, diclosulam, clorasulan-methyl, etc.). Doses were necessarily higher and the number of resistance cases to ALS inhibitors started to increase, since the first record of
With the introduction of GR soybean, most of the herbicides were replaced in 2003/2004 harvest in Brazil. The system that provides a single application of glyphosate at early stages of the crop gained market for its easy adoption, undeniable efficiency in weed control and guarantee of profitability. According to data, nearly 81% of all soybeans cultivated area in Brazil is GR and its contribution to farmers is unquestionable (Figure 5). The impact of using GR soybeans has been similar to that identified in the US and Argentina, although the net savings on herbicide costs are larger in Brazil, due to higher average costs of weed control [77]. The average cost savings originated from a combination of reduced herbicide use, fewer spray runs, labor and machinery savings, were between US$30/ha and US$81/ha in the period 2003-2010, which means that the net cost saving after deduction of the technology fee (assumed to be about US$19/ha in 2010) has been between US$9/ha and US$61/ha in recent years, with increased farm income levels of US$694 million in 2010 by the GR soybean adoption.
Impact of using GR soybean on farm income (IFI), at a national level. Brazil, 1997-2010.
Unfortunately, the overuse of the technology (GR soybean + glyphosate) in tillage and no tillage system led to strong selection pressure. Apart from the variation of biotypes selectivity, the level of herbicide application also contributes to the tolerance of species. It was checked the Brazilian herbicide usage data for the periods 2001-2003 and 2007-2009, as well as information from industry and extension advisers and was concluded that the annual average use of herbicide active ingredient per ha in the early years of GR soybean was lesser than 2007-2009, an estimated difference of 0.22 kg/ha [77]. From 2007-2009 data, it was observed an average active ingredient use of 2.37 kg/ha for GR soybean compared to 1.96 kg/ha for conventional soybeans.
These data clearly illustrate the current weed management in soybean in the country. Nowadays, Brazilian producers are using sequential spraying of glyphosate in order to control species which are difficult to manage in crops, such as
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
\n\t\t\t\t | \n\t\t\tStarbur | \n\t\t\t\n\t\t\t\t | \n\t\t\tGoosegrass | \n\t\t
\n\t\t\t\t | \n\t\t\tPigweed | \n\t\t\t\n\t\t\t\t | \n\t\t\tWild poinsettia | \n\t\t
\n\t\t\t\t | \n\t\t\tHairy beggarticks | \n\t\t\t\n\t\t\t\t | \n\t\t\tSmallflower | \n\t\t
\n\t\t\t\t | \n\t\t\tAlexandergrass | \n\t\t\t\n\t\t\t\t | \n\t\t\tMorningglory | \n\t\t
\n\t\t\t\t | \n\t\t\tSandbur | \n\t\t\t\n\t\t\t\t | \n\t\t\tUrochloa maxima | \n\t\t
\n\t\t\t\t | \n\t\t\tDayflower | \n\t\t\t\n\t\t\t\t | \n\t\t\tBufflegrass | \n\t\t
\n\t\t\t\t | \n\t\t\tBermudagrass | \n\t\t\t\n\t\t\t\t | \n\t\t\tFoxtail | \n\t\t
\n\t\t\t\t | \n\t\t\tHairy fleabane | \n\t\t\t\n\t\t\t\t | \n\t\t\tSida | \n\t\t
\n\t\t\t\t | \n\t\t\tHorseweed | \n\t\t\t\n\t\t\t\t | \n\t\t\tJohsongrass | \n\t\t
\n\t\t\t\t | \n\t\t\tSourgrass | \n\t\t\t\n\t\t\t\t | \n\t\t\tButtonweed | \n\t\t
\n\t\t\t\t | \n\t\t\tJamaica crabgrass | \n\t\t\t\n\t\t\t | \n\t\t |
Some weed species on soybean Brazilian crop [2].
For the management of weeds resistant to glyphosate, the alternative control, besides herbicide mixtures, includes crop rotation, autumnal management or even return of non transgenic soybeans, as well as herbicides spray recommended in 80s and 90s. To reduce
In the US, saflufenacil is being used as a major product mixed to glyphosate for controlling resistant weeds. This PPO inhibitor empowers the action of glyphosate as desiccant and it is applied on off-season management or before crop sowing. Though, its release in Brazil has not occurred yet and it should be soon on the market to assist the producers. One of its advantages is the low residual rate in the soil at recommended doses, which allows its implementation and subsequent planting without requiring longer intervals before sowing.
The steady cost increase in weed control by intensive herbicides use and their mixtures emphasizes the need of changing. Since introduction of GR soybean technology in 2003, until 2006, there has been a reduction in herbicide application in soybeans in the country, deriving mainly from efficiency control and range of action of the glyphosate (Table 7). However, amount of active ingredients utilized on crop has risen since 2006, as a result of the intense use of glyphosate and other herbicides. New generic glyphosate brands entered the Brazilian market and it contributed to glyphosate use indefinitely.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
1997 | \n\t\t\t22,333 | \n\t\t\t0.1 | \n\t\t
1998 | \n\t\t\t111,667 | \n\t\t\t0.3 | \n\t\t
1999 | \n\t\t\t263,533 | \n\t\t\t0.7 | \n\t\t
2000 | \n\t\t\t290,333 | \n\t\t\t0.7 | \n\t\t
2001 | \n\t\t\t292,790 | \n\t\t\t0.7 | \n\t\t
2002 | \n\t\t\t389,145 | \n\t\t\t0.8 | \n\t\t
2003 | \n\t\t\t670,000 | \n\t\t\t1.2 | \n\t\t
2004 | \n\t\t\t1,116,667 | \n\t\t\t1.7 | \n\t\t
2005 | \n\t\t\t2,010,000 | \n\t\t\t2.9 | \n\t\t
2006 | \n\t\t\t2,546,000 | \n\t\t\t4.0 | \n\t\t
2007 | \n\t\t\t-5,808,563 | \n\t\t\t-8.8 | \n\t\t
2008 | \n\t\t\t-5,704,705 | \n\t\t\t-17.6 | \n\t\t
2009 | \n\t\t\t-6,642,000 | \n\t\t\t-18.7 | \n\t\t
2010 | \n\t\t\t-7,529,650 | \n\t\t\t-20.0 | \n\t\t
National level changes in herbicide use (active ingredient – ai) by GR soybean. Brazil, 1997-2010 [77].
Sources: Kleffmann & AMIS Global;
* Including herbicides (mostly glyphosate) used in no/low tillage production systems for burndown.
In spite of weed shift in Brazil, glyphosate is still a helpful weed control tool. To extend its use as a major tool in chemical control strategies on tillage and no tillage sowing, GR and no-GR soybean, current management in soybean aims to integrate methods that minimize the effects to the environment and offer adequate security control. Therefore, in addition to new technologies afforded by the chemical industry, producers should also cooperate in the process, even though this implies the return of already used tools, as the conventional soybean (no GM). Among the alternatives, there is the rotation area with conventional soybeans, the use of offseason management (autumn), the spraying of non-selective herbicides that reduce shifts on further glyphosate applications, the advanced management in spraying installment — being the first 30 days before sowing and the second between five and seven days prior of planting —, the sowing of cover crops in fallow period and the spraying of recommended herbicide doses in order to avoid progressive biotypes selection [30,80].
Soybean production in the US is undoubtedly part of the greatest productions worldwide and it has an expressive occupation of agriculture area in the country. According to the USDA projections, last average yield was around 3.7 tons/ha crop; in 2012, there will be about 29.9 million hectares crop in the country. Most of soybean cultivated area in the US (93%) uses GR soybeans. The first scientific record of soybean cultivation in the US took place in 1879 at the Rutgers Agricultural College, in New Jersey [81]. Initially, the crop was mainly used as animal fodder. However, the growing interest in culture, sponsored by the demand for oil and meat, forced soybean to expand rapidly and occupy many areas previously cultivated with corn, in the extensive Corn Belt.
Despite high yields, the country also passed through difficulties at the beginning of crop establishment. Even with great advances in farmland during the 50s, farming tools were limited, especially the ones related to weed management. There was no PRE or POST herbicides. Usual control practices were restricted to the use of mechanical weeding, fundamental on conventional crop system. Wide-row spacings were used in order to provide effective mechanical weeding and post-sowing. The 2,4-D was used over-the-top at the end of crop growing, prior to the harvest. This allowed reduction on dicotyledonous weeds and on subsequent crops, but did not control the monocotyledonous ones. These have become the main weeds and
Until glyphosate and, mainly, GR soybean advents, weed management in the US was restricted to mechanical control and some PRE and POST herbicides to monocotyledonous and dicotyledonous control. Trifularin was a major narrowleaf herbicide used for years, which was applied in autumn or in spring before sowing. Its use requires tillage system but did not aid weed management in early-season, especially
Traditionally, soybean is the rotational crop with rice in most farming areas, particularly in midsouth region. Prior to rapid rice expansion area in the 70s, the common rotation involved 2-year soybean and 1-year rice. Today, rice is often grown for 2 or 3 years before another crop, especially where the land is unsuited for other crops, and soybean is predominant. Major conventional herbicides that have been used in soybean include trifluralin, pendimethalin, metolachlor, alachlor, dimethenamid, clomazone, imazethapyr, sethoxydim, fluazifop, quizalofop, and clethodim [82]; many of them are useful against
The main herbicides such as trifluralin, pendimethalin, imazethapyr and imazaquin were widespread until the mid 90s, but with glyphosate effectiveness, mainly linked to GR soybean, there was a massive replacement of the “out-of-fashion” herbicides. During the period considered, 1995-2006, the treated areas with pendimethalin decreased from 26% to 3%; areas treated with imazethapyr suffered a reduction from 44% to 3% [83]. Especially for imazethapyr, whose decrease was greater than pendimethalin, many resistant weeds had been selected, even in the first using years, encouraging technology exchangings.
Many advantages provided by glyphosate on GR soybean weed control overlapped other management tools, leading to a replacement of herbicides and conventional soybean for the new technology. No tillage systems became widely used and weed control costs were lowered. Total applied herbicides and labor inputs declined initially and narrow-row on soybean became the standard. In 1995 the GR soybean areas treated with glyphosate were only 20%, but they took over 96% in 2006 [84]. Currently, the GR soybean represents over 94% of the soybeans grown in the US, and more than 90% of soybeans produced worldwide are considered GR.
The initial advice for GR soybean system was only one spray and its late application would not undermine crop yield. In extremely wet sites with late sowing — Iowa, for example —, weeds emerged early and single POST glyphosate spray was enough for effective control till the end of the cycle [85]. But for the midwest region, the sowing scheduled occurred earlier, thus only one application was unsuitable for weed control, usually requiring additional sprays.
Concerns about the definition of better periods of spraying, along with the appearance of the first glyphosate resistance case, registered for
As a result, a second generation of GR soybean was launched recently in the US in 2009. Although this technology offers the same soybean resistance to glyphosate as the first generation (RR1), it has a higher yield potential, between 7% and 11%. Some farmers reported no increasing yield in relation to first GR soybean generation; perhaps others found positive yield effect. In 2010, soybean farmers pointed that second GR soybean generation has, on average, about 5% of yield improvement.
Many soybean farmers currently use glyphosate mixed with residual herbicides employed previously. The increase of these mixtures permits earlier glyphosate sprays promoting weed management for a larger period. Using conventional herbicides into new GM soybeans are also essential to ensure its resilience, since new traits will be released to use with former herbicides. New technologies include GM soybeans resistant to glufosinate “Liberty Link”, to 2,4-D “Optimum GAT”, to dicamba and also to glyphosate plus ALS inhibitors. Despite the creation of technologies for landing efficiency and easy management on weed control, good practices at all soybean crop system are rather necessary. Also, weaknesses and difficulties on weed management in many regions of the US have attracted the interest for non-GM soybeans. Differentiated prices in the international market have also stimulated this substitution, yet it is constrained to small and middle producers.
Effective weed management is very important to maintain agricultural productivity. By competing for light, water and nutrients, weeds can reduce crop yield and quality and can lead to billions of dollars in global crop losses annually. Because of their ability to persist and spread through the production and dispersal of dormant seeds or vegetative propagules, weeds are virtually impossible to eliminate from any given field. The importance of weed management to successful farming systems is demonstrated by the fact that herbicides account for the large majority of pesticides used in agriculture, eclipsing inputs for all other major pest groups. To no small extent, the success and sustainability of our weed management systems shapes the success and sustainability of agriculture as a whole [86].
Integrated pest management (IPM) concept was introduced in the 60s comprising many definitions from then. The primary goals of IPM programs are to reduce pesticide use and the subsequent environmental impact and to rely more on alternative strategies to control pests [87]. Integrated weed management (IWM) comes as a secondary effect of IPM, but it has similar proposal of using multiple management tactics and incorporating the knowledge of weed biology and crop physiology into the weed management system. The goals of IWM range from maximizing profit margins to safeguarding natural resources and minimizing the negative impact of weed control practices on the environment [88].
Integrated Weed Management combines multiple management tools (biological, chemical, mechanical and others) to reduce a pest population to an acceptable level while preserving the quality of existing habitat, water, and other natural resources. The integrated management provides connection of all the involved organisms, whether weeds, pests or diseases, and should focus on decision-making with case studies. There are many practices set out in the integrated management systems, whose benefits have been extensively studied by several authors (Table 8). These studies demonstrate many benefits and the efficiency of integrated tools in crop management systems.
\n\t\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t | \n\t\t\t
Monitoring weeds in crop fields | \n\t\t\t[90,91] | \n\t\t
Use economic thresholds to determine when to apply herbicides | \n\t\t\t[91-93] | \n\t\t
Crop rotation | \n\t\t\t[80,91] | \n\t\t
Using the biological and chemical control | \n\t\t\t[94,95] | \n\t\t
Using cultural and chemical control | \n\t\t\t[96] | \n\t\t
Using mechanical and chemical control | \n\t\t\t[97] | \n\t\t
Using rotation of herbicides | \n\t\t\t[90,91] | \n\t\t
Plant cover crops | \n\t\t\t[90,98] | \n\t\t
Using the tillage, no-tillage or reduced tillage system | \n\t\t\t[90,92] | \n\t\t
Practices evaluated in previous studies as part of an Integrated Weed Management (IWM).
However, there are no more ready-made and generalized solutions without risk of errors. IWM is characterized by reliance on multiple weed management approaches that are firmly underpinned by ecological principles [89]. As its name implies, IWM integrates tactics, such as crop rotation, cover crops, competitive crop cultivars, the judicious use of tillage, and targeted herbicide application, to reduce weed populations and selection pressures that drive the evolution of resistant weeds. Under an IWM approach, a grain farmer, instead of relying exclusively on glyphosate year after year, might use mechanical practices such as rotary hoeing and interrow cultivation, along with banded PRE and POST herbicide applications in a soybean crop one year, which would then be rotated to a different crop, integrating different weed management approaches.
Earlier studies have also demonstrated that IWM strategies are effective in managing herbicide-resistant weeds. For example, glyphosate-resistant horseweed in no tillage soybean can be controlled by integrating cover crops and soil-applied residual herbicides [100]. In a recent experiment in which the integration of tillage and cover crops was evaluated for controlling glyphosate-resistant
In another experiment, it was experienced biological and chemical control to
Despite many results, researchers suggest that implementation has been slow, and that farmers rarely move beyond incorporating cost-effective, targeted pesticides application [102]. Many growers are not adopting integrated management because current assessment methods are inadequate [99]. In their study, evaluating data from eastern North Carolina, US, they considered four components of the integrated management: weed, pest, environmental and general management of the properties. The component weed had the highest percentage (79%), indicating that growers were undertaking its management.
In [97] it was evaluated a cropping system, including various combinations of seeding rate and date, herbicide timing and rate, and tillage operations, by measuring weed response to six IWM systems, in a wheat–oilseed rape–barley–pea rotation. Changes in weed communities assessed over 4 years indicated a gradual increase of
Some mathematical models are also used into IWM. It allows to model scenarios and to compare long-term economic and weed population outcomes of various integrated management tools. In southern Australia, species like
In fact, despite all the benefits, the implementation of IWM is extremely challenging for researchers and especially for farmers. In a recent paper —
Illustration of a robotic weed control using multiple tools designed [
Weed management has always been inserted into the soybean crop system, contributing decisively to the success of this crop in major producing countries nowadays. The evolution of weed management practices in Argentina, Brazil and the US has been developed similarly, by means of mechanical growers and massive use of GM soybean. However, weeds also have evolved and as new tools were used, new species or new biotypes appeared.
Despite the persistent search for weed control in the soybean areas, it is observed that management of those has increased considerably in the last 10 years. There are numerous cases of weed resistance to various chemical herbicide groups used in the crop and some weed species are resistant to more than two chemical groups.
Even with the biotechnology advances and other GM soybean introduction, history must repeat itself, since the tendency to standardize production systems favors the weeds, allowing better adaptation response as it increases the selection pressure. The application of glyphosate to GM crops like soybeans, corn, cotton, canola, wheat, among others — all resistant to this herbicide — is not the best alternative to properly manage weeds. In regions where RR technology is predominant, shifts on weed control are increasing, as well as new weed problems, including weeds resistant to glyphosate which are infesting other crops. In this case, soybean producers must use all available technologies, considering both socioeconomic and environmental efficiency.
The use of IWM is the most suitable alternative to maintain weed populations below damage threshold on the soybean crop. Besides difficulties on IWM implementation, there are concerns about farmers’ awareness and variations into each farm. The use of IWM without considering the integration of control methods of other organisms (pests and diseases) does not allow the sustainability of used practices.
Even with prediction models to IWM implementation, weed control is not indefinitely assured if it is not continuously adapted to new changes in soybean production system. In this context, there is no single solution, ready and with indeterminate validity on weed management. Choosing intelligent systems, which integrate the basic concepts of ecology and biology of species to the available tools (GM crops, herbicides, biological control, etc.), should assist weed management.
The worldwide nuclear power industry is currently dominated by light water reactor technology. However, U-235 fissile material resource utilization challenges are likely to drive the need for non-light water reactor technologies when one considers timelines extending beyond the next half century. Many alternative reactor technologies that are capable of addressing the resource constraints of light water reactors are currently being pursued.
It is frequently worthwhile to look to the past as a means of guiding the path for the future. The first demonstration nuclear power plant was influenced by the expectation that limited supplies of fissile material will necessitate breeding fissile material. The Experimental Breeder Reactor I (EBR-I) achieved initial power production operation on December 20, 1951 (see Figure 1) and produced the first significant amounts of electrical energy generated by nuclear fission. EBR-I was a sodium-potassium cooled fast neutron spectrum reactor capable of breeding more fissile material than it consumed. The reactor was part of a power plant design that included steam generation and a turbine/generator system.
Chalk message at EBR-I [
Following the success of EBR-I, the Experimental Breeder Reactor II (EBR-II) was constructed near EBR-I on the high-altitude arid Snake River Plain of southeastern Idaho in the western United States. Like EBR-I, EBR-II was a complete power plant demonstration, and it also included an attached fuel cycle facility to reprocess spent fuel using a melt refining process (see Figure 2). The reactor was a sodium cooled fast reactor (SFR) capable of producing more fissile material than it consumed. EBR-II achieved initial criticality in 1964 and operated until 1994. The reactor produced 19 MWe and supported decades of sodium cooled fast reactor development activities. The success of EBR-II provides insight into the potential benefit of future widespread use of sodium cooled fast reactors as a means of addressing fissile material resource limitation issues. It should also be noted that numerous other sodium cooled fast reactors have been developed including, but not limited to, Fermi I and the Fast Flux Test Facility in the US, Phénix and Super Phénix in France, Joyo and Monju in Japan, BN-350 in Kazakhstan, BN-600 and BN-800 in Russia, as well as sodium cooled fast reactors in India and China.
Experimental breeder reactor II [
From an industry perspective, there is a resurgence of interest into sodium cooled fast reactors. Two commercial entities have proposed the use of sodium cooled fast reactors. The TerraPower company is pursuing a sodium cooled fast reactor coupled with a molten salt heat storage capability. The reactor is capable of producing 345 MWe as well as boosting the output to 500 MWe by using heat stored in molten salt. The reactor is called Natrium, which is Latin for sodium. In October 2020, the US Department of Energy awarded TerraPower funding to demonstrate the Natrium technology. TerraPower is targeting 2023 for submission of a construction permit from the US Nuclear Regulatory Commission. The planned location for the reactor will be one of four prospective sites in the state of Wyoming in the western United States. Furthermore, the Oklo Power Company has a sodium cooled fast reactor design which produces 4 MWth and integrates significant inherent safety features into the design. Oklo Power submitted the first-ever combined construction and operation license application to the US Nuclear Regulatory Commission in March 2020.
From a US Government perspective, the US Department of Energy is pursuing the Versatile Test Reactor (VTR). The VTR is a sodium cooled fast reactor that will operate at 300 MWth. The purpose of the VTR is to provide a very high neutron flux (4 x 1015 n/cm2 sec) which will be used to test fuels and components for a wide range of advanced reactor concepts. The VTR project received Critical Decision–1 approval in September of 2020, allowing the project to proceed to preliminary design.
With this information in mind, it is worthwhile to reflect on the design and performance EBR-II since it provides tremendous knowledge and potential direction for sodium cooled fast reactors moving forward.
EBR-II was a complete power plant along with an attached fuel cycle facility. The reactor containment was centered between the sodium boiler building and the turbine/generator building. The reactor was an SFR which acted as a breeding facility and test bed for liquid metal fast breeder reactors [3]. Along with this, EBR-II produced electricity as part of its overall demonstration. Being a fast neutron spectrum reactor, the neutron chain reaction was driven primarily by fast neutrons. Fast neutrons often invalidate many assumptions commonly assumed for light water reactors. The long neutron mean free path associated with a fast neutron spectrum is indicative that much of the core is coupled, meaning there are relatively few localized reactivity effects. This often helps prevent localized peaking. The long mean free path of neutrons also means that negative reactivity insertion due to control rods in a few sections of the core provides the necessary means to shut down the reactor.
EBR-II was a pool-type SFR, meaning the core, and all supporting structures, were contained in a double walled vessel comprised of 86,000 gallons of primary sodium [4]. Due to this design, leaks in any of the primary system piping would drain into the primary coolant. This would result in a loss of plant efficiency but would not leak primary sodium outside the vessel. This design is unlike loop type reactors (i.e. Fast Flux Test Facility, Monju, SuperPhenix), where a leak in the primary coolant had the potential to cause a sodium fire and release activated sodium and would likely cause prolonged outages for repairs.
From a reactor operating perspective, sodium couples four very important properties: 1) extremely high boiling point (870 C) at atmospheric pressure, 2) outstanding heat transfer properties owing to its metallic nature, 3) relatively high atomic weight compared to neutrons leading to limited neutron moderation, and 4) a low neutron absorption cross section along with a relatively short neutron activation half-life of 15 hrs. These properties allow sodium to be used as an outstanding fast reactor coolant. The most obvious drawback of using sodium metal as a reactor coolant is the fact that it reacts with water and evolves hydrogen in the reaction process. The sodium-water reaction can be violent especially when the evolved hydrogen combines with oxygen. The reaction between sodium and water follows two primary schemes forming sodium hydroxide and sodium oxide as shown in Eqs. (1) and (2). In both reactions, hydrogen is also produced which presents a flammability and explosion hazard. It is important to keep in mind that a leak of high temperature sodium to an air atmosphere will result in dense white smoke which makes leak identification simple.
The primary coolant arrangement for EBR-II can be seen in Figure 3. This highlights the major components associated with the primary coolant. Cold coolant (~370 C) was drawn in via two primary pumps, each of which supplied ~18,000 liters per minute of coolant and was split into a high-pressure and lower pressure inlet plenum at the bottom of the core. Of special note, the two primary coolant pumps were single-stage centrifugal mechanical pumps: a first of their kind for liquid metal coolant at the time. After flowing through the core, hot coolant (~480 C) then flowed into a shared upper plenum with a single outlet (shown as a “Z” in both figures). The hot coolant then entered the heat exchanger and was discharged back into the primary coolant pool. To filter out impurities, a cold-trap system continually filtered primary coolant by reducing the sodium temperature to reduce the solubility limits and precipitate out impurities. Above the sodium was ~12 in. of argon gas providing a protective inert cover for the sodium coolant.
Primary coolant system for EBR-II [
The secondary system extracted heat from the primary system which was then used to drive a Rankine cycle for power generation [4]. The sodium flow rate for the secondary system was 23,000 liters per minute, with an inlet temperature of 310 C and an outlet temperature of 460 C. Transferring heat from the radioactive primary sodium to non-radioactive secondary sodium provided a safety enhancement and the ability to place much of the secondary system in a separate sodium boiler building, which was physically separate from the main reactor building. This separation reduced the time required in containment and reduced the potential for radioactive impurities to cause exposure. The sodium boiler building design incorporated a sacrificial plastic wall located away from the reactor building. The sacrificial wall would fail in the event of a catastrophic sodium water reaction in the sodium boiler building thereby directing the reaction energy away from the reactor building.
For the Rankine cycle, superheated steam was generated at 450 C with a pressure of 9000 kPa: this powered an off-the-shelf 20 MW turbine generator. The ability to use off the shelf components, helped reduce cost in the secondary system (one of the primary objectives of EBR-II). The secondary system allowed for a steam by-pass to continually dump heat despite any electrical needs. The overall EBR-II heat transfer pathway is shown in Figure 4.
EBR-II heat transfer pathway [
In addition to the primary and secondary systems, an auxiliary pump was used to ensure a low-pressure flow rate was always present, despite normal power failure. The auxiliary pump was attached to a DC battery system, which would last long enough to allow the EBR-II system time to convert from forced cooling to natural circulation. To aid in the natural circulation, two shutdown coolers penetrated the primary coolant tank and allowed for heat removal directly to the atmosphere. The shutdown coolers contained sodium-potassium which extracted heat from the primary system and was exposed to an air-cooled heat exchanger.
The EBR-II core used 637 hexagonal subassemblies that made up the driver, inner blanket, and outer blanket regions. Figure 5 shows the top of the reactor core prior to the introduction of sodium coolant. The driver region was where a majority of the neutron flux was generated, which meant that a majority of the power was generated in this region. In terms of an equivalent cylinder, EBR-II had a diameter of ~20 in. and a height of ~14 in. Subassemblies were generally broken up into a few major categories: driver, blanket, control, reflector, and experiment [5].
EBR-II reactor Core [
Subassembly types shared many characteristics, the most notable being the outer dimensions which allowed for subassemblies to be moved throughout the core, depending on the specific needs. Each assembly was hexagonal in shape, and had an outside flat-to-flat distance of 5.82 cm with a flow duct wall thickness of 0.10 cm. All subassemblies also had an upper adapter (this allowed for subassemblies to be placed and removed from the core), and a lower adapter. The lower adapters had slightly different configurations to ensure subassemblies were placed in the correct location.
Driver fuel assemblies were comprised of, in general, a lower adapter, fuel pin grid, and upper preassembly. Coolant flowed from the inlet plenum into the lower adapter, through fuel pin grid (where heat was transferred to the coolant), and out the upper preassembly into the outlet plenum. Multiple driver fuel designs were used throughout the lifetime of EBR-II, and as such, a brief description of the MK-II fuel assembly design is given [5]. Since these were used throughout the life of the reactor. Comprised within the fuel pin grid were 91 fuel pins in a hexagonal lattice with a fuel pitch of 0.56 cm. Fuel pins are described further in a later section. Half-worth driver assemblies where nearly identical to driver fuel assemblies, however, half of the fuel pins were replaced with stainless steel pins; this reduced the reactivity of the fuel assembly. Half-worth driver assemblies were typically placed near the center of the core to dampen peaking effects.
Blanket assemblies were used throughout the life of EBR-II, where they were initially inserted around the core to breed plutonium. Blanket assemblies contained 19 fuel pins comprised of a fuel slug (outer diameter (OD) 1.1 cm), sodium bond (OD 1.16 cm), and a stainless-steel cladding (OD 1.25 cm). Blanket fuel pins were much larger than their driver counterparts due to the lower power density and a desire to increase the fuel to sodium ratio to promote breeding in the pins. Blanket fuel pins were 1.43 m long.
EBR-II, like many SFRs, used full assembly positions for the safety and control rods (denoted control assemblies from here on). Control assemblies had an inner hexagonal duct (flat-to-flat diameter of 4.90 cm) which contained a fuel region with 61 fuel pins which could be brought into the plane of the driver fuel to add reactivity to the core. Some control rods (designated high worth control rods) had a region comprised of seven B4C pins directly above the fuel, which acted as an additional poison to ensure the reactor could shut down and remain shut down.
Reflector assemblies did not contain a pin grid section, but instead contained stacks of stainless-steel hexagonal blocks. These blocks were used to reflect neutrons back into the core and were typically placed in the periphery.
Experimental assemblies were unique in both design and contents. These assemblies maintained the hexagonal duct but could contain fuel, material, monitor, etc. experiments. Experimental assemblies are described in greater detail in a subsequent section.
Fuel pins consisted of a metallic fuel slug (OD of 0.33 cm), sodium bond (OD 0.38 cm) and stainless-steel cladding (OD 0.44 cm). The total length of the fuel pin was 62.04 cm, where the fuel slug had a length of 34.29 cm. Above the fuel slug was a helium plenum to capture fission product gasses and was often tagged with trace amounts of xenon to allow for the determination of burst fuel pins. Each fuel pin was surrounded by a wire-wrap with a diameter of 0.125 cm and an axial pitch of 15.24 cm. The wire wrap was used to ensure fuel pins did not come in contact with each other and provided additional coolant mixing to encourage heat transfer. Throughout the lifetime of EBR-II, the fuel pins changed slightly in dimensions, however, the dimensions presented provide a reasonable representation of a typical fuel slug. Figure 6 shows an arrangement of driver fuel pins along with the wire-wrap.
Fuel pin arrangement [
The fuel slugs in Mk-II subassemblies comprised a uranium-fissium alloy (95 wt. % uranium 5 wt. % fissium), meaning that the fuel was metallic in nature, compared with the typical ceramic fuel (uranium-oxide) found in light water reactors. The uranium in the fuel was enriched to between 45 wt. % and 67 wt. % U-235, again in stark contrast to the typical 5 wt. % light water reactor fuel. Fissium was comprised of elements to simulate dominant mid-fuel cycle fission products. The short-highly-enriched fuel for EBR-II created a very short-flat core, which provided multiple inherent safety benefits, described in greater detail later.
One other noteworthy feature of the EBR-II design involved a fuel storage basket located within the primary tank. The fuel storage basket contains 75 indexed storage tubes in three concentric rings. Each tube could accommodate a single fuel assembly. The fuel storage basket was accessed essentially anytime by operators including when the reactor is operating at full power. The fuel storage basket provided great operational flexibility. During reactor operation, spent fuel assemblies stored in the basket could be removed one at a time and transferred out of the reactor facility and delivered to a hot cell facility for storage and disassembly. Fresh fuel and experimental assemblies could also be loaded into the basket during reactor operation. When the reactor was shut down, operators could then quickly move spent fuel assemblies from the core into the fuel storage basket and move fresh fuel from the basket into the core making the refueling outage time as short as possible. Since the driver region of the core contained roughly 100 assemblies, the 75-assembly fuel storage basket provided ample capacity for staging fresh fuel assemblies as well as holding spent fuel assemblies removed from the core. With the fuel storage basket located within the primary tank, the sodium coolant provides sufficient heat transfer capacity to ensure the spent fuel assemblies are adequately cooled prior to their removal.
Experiments were not placed in specific assembly locations in the core. This is unlike many light water test reactors which have specific ports or testing locations. Instead, experiments were often placed in the same hexagonal duct as a typical driver fuel assembly. This meant multiple experiments could be placed in the same assembly, experiments could be intermixed with fuel pins, or experiments could be placed in an assembly with dummy stainless-steel pins. The placement of an experiment in the core was largely determined by the conditions required for the experiments. If an experiment needed a large flux of high energy neutrons in a short period of time, it could be placed in the center of the core. On the other hand, if an experiment needed to experience a large neutron fluence over a long period of time, it could be placed in the periphery of the core. Overall, an experiment could likely be placed in any assembly position within the core, with the exception of the control/safety assemblies. To compensate for any loss of reactivity due to adding experimental assemblies, additional driver assemblies were placed in the periphery of the core.
EBR-II also examined multiple endurance type testing for both fuel and cladding [7]. In the 1970’s, a series of experiments examined running fuels to cladding breach (RTCB) and running fuel beyond cladding breach (RBCB). These experiments were used to help increase the burnup capabilities for fuels and determine neutron fluence limits for these fuels. To accomplish this, an additional cover-gas cleanup system (GGCS) was installed to help remove radioisotopes that leaked from the fuel and into the argon cover gas.
In April of 1961, before EBR-II was used as a power producing or breeding facility, it underwent a series of zero power experiments (designated as less than 1 kW of power) before the primary system was filled with sodium [8, 9, 10]. To perform the dry critical experiment, fuel and blanket assemblies that would be used for normal operations were loaded into the core in a similar configuration to when sodium would be added. For this, additional driver assemblies (~87 driver assemblies compared with ~56 driver assemblies for a sodium filled core) were required achieve criticality since the lack of sodium increased neutron leakage in the core. These experiments were able to take place while construction work was being performed elsewhere in the plant.
The basis of these experiments was twofold. The first was used to determine the performance of the system without sodium, which allowed them to subsequently identify sodium effects on system neutronics. The second gathered operational data to determine if modifications or improvements were required prior to adding sodium. To gather this information, four major experiments were conducted. The first was to determine the strength of the neutron source and the neutron detector responses to ensure an adequate relationship between the two. The second was an approach to critical to verify the ability to insert assemblies and determine the dry critical mass. The dry critical mass could then be compared with the wet critical mass to determine the total reactivity worth of the sodium. The third aspect examined the neutron flux distribution and fission distribution throughout the core and provided a power calibration. The final aspect that was examined was a series of reactivity measurements. This included seven measurements ranging from the total worth of the control rods, individual control rods, to the dry isothermal temperature coefficient of reactivity.
EBR-II was originally designed as a power-producing facility which would be able to produce more fuel (in the form of plutonium) than it consumed. To accomplish this, blanket subassemblies were placed around the periphery of the core, where neutrons which leaked out would be absorbed by U-238 to produce plutonium. In addition to creating a core design which was favorable for generating fuel, additional facilities were constructed on-site to allow for fuel/experiment examination and fuel reprocessing.
The fuel cycle facility (FCF) was built to allow for post-irradiation examination of experiments placed in the core [11]. FCF allowed for experiments to be removed from one subassembly and placed in a new subassembly for further irradiation if necessary. Along with this, FCF was used to reprocess spent EBR-II fuel using a crude melt refining technique rather than a complicated and large solvent extraction process. Melt refining involved melting the spent fuel elements and mechanically separating fission products and slag from the uranium. The uranium (or other actinides) was then used to fabricate additional fuel.
The last decade of operations for EBR-II was focused on the Integral Fast Reactor (IFR) concept [12, 13]. This project encompassed nearly all aspects of life for a nuclear reactor. The IFR concept was meant to overcome many obstacles such as proliferation concerns, waste generation concerns, and reactor safety concerns. The IFR concept was meant to provide the United States (and the world) with a nuclear energy concept that could provide a nearly inexhaustible energy supply for the future. Unfortunately, in 1994, the IFR concept and indeed EBR-II was terminated, and the full realization of the IFR concept never came to pass.
One of the many advantages of fast reactor technology is the ability to “burn” to a greater extent than thermal reactor. The average burnup for a typical light water reactor is 45,000 MWD/MTHM. EBR-II demonstrated 20 atom % burnup which is the equivalent of 190,000 MWD/MTHM. These burnups are possible primarily because of the fast neutron spectrum present in the reactor. Along with the energy extracted from the fission of U-235, the fast spectrum transmutes the U-238 to higher order actinides. Those elements are subsequently fissioned, releasing energy rather than creating a problematic waste issue. The transmutation process does happen in thermal spectrum reactors, but to a far lesser extent. Given this, the extractable energy from fast reactors is fundamentally limited by the structural materials of the fuel and how long they can serve the engineering requirements under significant irradiation.
April 3rd 1986 is a date that is unknown to the general public and to large portions of the nuclear industry. The reason was that nothing newsworthy happened that day. The EBR-II functioned as designed without any damage, everyone working in the facility went home that day, and in general it was like any other day in southeast Idaho. Despite nothing being widely reported that day, one of the most significant achievements in nuclear reactor technology was demonstrated. The EBR-II was intentionally placed into an accident scenario that would have melted down any light water reactor. The accident scenario far exceeded that of Three Mile Island. The scenario was to operate the EBR-II at 100% power, disable the primary coolant pumps (for the first experiment) and the secondary cooling pumps (for the second experiment). Both experiments were conducted without SCRAM the reactor. To achieve the plant conditions listed above, EBR-II was modified to create the conditions but still remain in control in case unpredictable behavior occurred. An example of a modification was the cooling pumps. They were not directly disabled; the pump controllers were modified to simulate coast down function shapes, one of which simulated station blackout. Nominally the presented scenario would be a guaranteed melt-down for the typical US nuclear power plant. The EBR-II design, however, managed to achieve a temperature profile shown in Figure 7.
EBR-II driver temperature predicted and measured [
Figure 7 demonstrates that given a catastrophic failure of major safety mechanisms, including failure to SCRAM following the loss of primary reactor coolant pumps or secondary coolant pumps, the peak temperature remained well below the sodium coolant boiling temperature of 870 C. Additionally, the peak temperature only lasted tens of seconds before reducing to a temperature less than that of 100% power. The inherent properties of the reactor design drove the reactor response rather than any engineered active systems. In short, the large thermal mass of the primary coolant pool, the thermal expansion of the core upon heating and the properties of the metal fuel all worked together to cause the reactor to become subcritical before fuel damage occurred following termination of coolant pump operation even without reactor SCRAM. The current fleet of light water reactors subjected to a similar experiment would melt down without active cooling because the water coolant would eventually boil and the heat removal would be insufficient to prevent fuel melting.
Removal of the heat from the fuel elements and transporting that heat to the outside required several design layers. The first layer starts with the fuel elements, the metallic uranium, sodium bond, and stainless steel 316 cladding which provides an uninterrupted metallic conduction path from the uranium slugs to the sodium coolant. Sodium has one thousand times the heat conduction of water and in EBR-II’s design, allowed for the decay heat to be transported rapidly to the sodium pool. Figure 8 shows the uninterrupted metallic conduction path, the sodium is the green color.
Thermal conduction path [
The second layer was the large sodium pool that could absorb a significant amount of heat without changing temperature. Even without active cooling, the natural convection of the sodium over the fuel elements was enough to circulate cool sodium in from the pool and inject hot sodium back in the pool. Given the 337,000 liters of sodium in the pool, it would take many weeks for the pool to reach a temperature where the sodium would begin to boil.
The last layer was the natural convection heat exchanger that led pool sodium to a chimney that naturally exhausted to the outside. The heat exchanger functioned solely on the temperature differential of the pool to the outside and required no external power. The natural convection heat exchanged moderated the temperature in the pool to keep the sodium from boiling away.
In summary, the solution to a run-away heating event was to increase the thermal conduction from the fuel slugs to the outside to the point where the heat generated could not exceed the bandwidth of the heat removed to the outside.
The previous sections describe how EBR-II removed the decay heat from the fuel elements, mitigating a meltdown event. This mitigation only covered long term inherent safety, not short term. Short term transients also require mitigation due to their rapid onset. Large reactivity insertions can cause localized heating that cannot be conducted away fast enough leading to fuel melting. An example is, during fuel shuffle operations, an assembly falls into the pool. Mitigation of these events (aside from not causing them in the first place) requires a negative feedback mechanism to compensate for the reactivity change. In reactors, these are called negative reactivity coefficients. They are a result of the inherent physics of a reactor’s design and are nominally passive. For example, as a legal requirement in the US, light water reactors have a negative temperature coefficient. Meaning, the hotter the fuel, the less fission occurs, thus preventing a cascade event where heating creates more fission which creates more heating. For EBR-II several of these coefficients kept the reactor in a 100% negative feedback regime.
The first of these and most effective was the expansion of the sodium inside of the core region. The liquid sodium density reduced due to thermal expansion. Given that sodium has a moderating effect on fast neutrons, the decrease in moderation led to an overall negative reactivity feedback due to sodium temperature increases. This proved invaluable in the safety heat removal tests because as the temperature increased, there was a greater the reduction in fissions.
Second, EBR-II’s core construction allowed for thermal expansion in the core. As temperature increased the fuel assemblies were pushed away from each other. The core grid plate that locked the bottom of the assemblies would expand due to temperate having the effect of increasing the pitch. Fast reactors in general are very sensitive to geometry changes due to their high-power densities. Any expansion increases the leakage of neutrons due to the increase in effective surface area with the same neutron population.
These two negative reactivities constitute 99% of the reactivity coefficients. They kept the reactor from running away in a thermal transient allowing for thermal conduction to occur. The long-term conductive mechanisms of EBR-II then kept the reactor from melting down. With these passive mechanisms in place, the severe accident scenario described in the previous section could happen without any real consequences. It was due to the inherent safety mechanisms of EBR-II that made April 3rd 1986 just another day in southeast Idaho.
EBR-II was arguably the most significant, meaningful, and successful sodium cooled fast reactor power plant demonstration in the history of nuclear power. It must be emphatically stated that the success of EBR-II was the result of actual demonstration rather than simulation and modeling or claims of future success based on short-lived small past experiments. Over a 30-year operating lifetime, the reactor demonstrated all aspects necessary for using a sodium cooled fast reactor for power production. Numerous technological advancements were made using EBR-II. Foremost among the advancements were 1) the demonstration of a pool type primary coolant arrangement with all primary piping and pumps located within the pool, 2) the ability to conduct fuel handling activities in opaque molten sodium, 3) the ability to transfer fuel into and out of the primary sodium pool while the reactor was operating at full power, 4) the ability to safely operate a system where heat is transferred from molten sodium to water, 5) the development of metallic fuel, 6) the demonstration of tremendous fuel burnup, and 7) the demonstration of compact on-site fuel reprocessing. The most significant accomplishment of EBR-II was the demonstration of the inherent safety associated with the overall reactor design and material properties that allowed the reactor to survive the most severe accident scenarios, loss of flow without SCRAM and loss of heat sink without SCRAM, with no fuel damage.
It is hoped that the success of EBR-II will not only influence the design of future sodium cooled fast reactors, but that it will be identified as an example of the true feasibility of such designs. This chapter is dedicated to the memory of Len Koch who was present for the startup of EBR-I and served as one of the principal EBR-II designers.
Intro
",metaTitle:"Statement Title Placeholder",metaDescription:"Intro",metaKeywords:null,canonicalURL:"/page/statement64605",contentRaw:'[{"type":"htmlEditorComponent","content":"Content
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13388},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33638}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11837",title:"Ecology and Geography of the Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:12},{group:"topic",caption:"Computer and Information Science",value:9,count:7},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:81},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:6},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:22}],offset:12,limit:12,total:233},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1197",title:"Pharmaceutical Drug",slug:"pharmaceutical-drug",parent:{id:"219",title:"Pharmacology",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology"},numberOfBooks:11,numberOfSeries:0,numberOfAuthorsAndEditors:260,numberOfWosCitations:401,numberOfCrossrefCitations:227,numberOfDimensionsCitations:578,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1197",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9829",title:"Biosimilars",subtitle:null,isOpenForSubmission:!1,hash:"c72171c1d1cf6df5aad989cb07cc8e4e",slug:"biosimilars",bookSignature:"Valderilio Feijó Azevedo and Robert Moots",coverURL:"https://cdn.intechopen.com/books/images_new/9829.jpg",editedByType:"Edited by",editors:[{id:"69875",title:"Dr.",name:"Valderilio",middleName:"Feijó",surname:"Feijó Azevedo",slug:"valderilio-feijo-azevedo",fullName:"Valderilio Feijó Azevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10735",title:"Metformin",subtitle:"Pharmacology and Drug Interactions",isOpenForSubmission:!1,hash:"fee7e27a0fa000d000c459ff6e4b749e",slug:"metformin-pharmacology-and-drug-interactions",bookSignature:"Juber Akhtar, Usama Ahmad, Badruddeen and Mohammad Irfan Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10735.jpg",editedByType:"Edited by",editors:[{id:"345595",title:"Prof.",name:"Juber",middleName:null,surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10716",title:"Corticosteroids",subtitle:"A Paradigmatic Drug Class",isOpenForSubmission:!1,hash:"d600ff66a3b0544bcbb713ea46287590",slug:"corticosteroids-a-paradigmatic-drug-class",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/10716.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9833",title:"New Insights into the Future of Pharmacoepidemiology and Drug Safety",subtitle:null,isOpenForSubmission:!1,hash:"33c717cdacfd3327b4c5d516f96010e9",slug:"new-insights-into-the-future-of-pharmacoepidemiology-and-drug-safety",bookSignature:"Maria Teresa Herdeiro, Fátima Roque, Adolfo Figueiras and Tânia Magalhães Silva",coverURL:"https://cdn.intechopen.com/books/images_new/9833.jpg",editedByType:"Edited by",editors:[{id:"227508",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Herdeiro",slug:"maria-teresa-herdeiro",fullName:"Maria Teresa Herdeiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9086",title:"Drug Repurposing",subtitle:"Hypothesis, Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"5b13e06123db7a16dcdae682eb47ac66",slug:"drug-repurposing-hypothesis-molecular-aspects-and-therapeutic-applications",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/9086.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7110",title:"Opioids",subtitle:"From Analgesic Use to Addiction",isOpenForSubmission:!1,hash:"8bd70b93e5c8ff9ea766159555eb63da",slug:"opioids-from-analgesic-use-to-addiction",bookSignature:"Pilar Almela Rojo",coverURL:"https://cdn.intechopen.com/books/images_new/7110.jpg",editedByType:"Edited by",editors:[{id:"98258",title:"Dr.",name:"Pilar",middleName:null,surname:"Almela Rojo",slug:"pilar-almela-rojo",fullName:"Pilar Almela Rojo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7994",title:"Metformin",subtitle:null,isOpenForSubmission:!1,hash:"4763270256096f776a58d75658fe1d9b",slug:"metformin",bookSignature:"Anca Mihaela Pantea Stoian and Manfredi Rizzo",coverURL:"https://cdn.intechopen.com/books/images_new/7994.jpg",editedByType:"Edited by",editors:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5525",title:"Pain Relief",subtitle:"From Analgesics to Alternative Therapies",isOpenForSubmission:!1,hash:"5ffdba8a1f402fe1b279cf05e2fa0aae",slug:"pain-relief-from-analgesics-to-alternative-therapies",bookSignature:"Cecilia Maldonado",coverURL:"https://cdn.intechopen.com/books/images_new/5525.jpg",editedByType:"Edited by",editors:[{id:"73432",title:"Dr.",name:"Cecilia",middleName:null,surname:"Maldonado",slug:"cecilia-maldonado",fullName:"Cecilia Maldonado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5173",title:"Anticoagulation Therapy",subtitle:null,isOpenForSubmission:!1,hash:"209b074c858a63f0b8c7533de6e6e8f8",slug:"anticoagulation-therapy",bookSignature:"Ozcan Basaran and Murat Biteker",coverURL:"https://cdn.intechopen.com/books/images_new/5173.jpg",editedByType:"Edited by",editors:[{id:"178766",title:"Dr.",name:"Ozcan",middleName:null,surname:"Basaran",slug:"ozcan-basaran",fullName:"Ozcan Basaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2509",title:"Recent Advances in Novel Drug Carrier Systems",subtitle:null,isOpenForSubmission:!1,hash:"57c10c8e0b4bb01a815f2c42db01956e",slug:"recent-advances-in-novel-drug-carrier-systems",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/2509.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"40253",doi:"10.5772/50486",title:"Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development",slug:"lipid-nanoparticulate-drug-delivery-systems-a-revolution-in-dosage-form-design-and-development",totalDownloads:11289,totalCrossrefCites:22,totalDimensionsCites:103,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Anthony A. Attama, Mumuni A. Momoh and Philip F. Builders",authors:[{id:"142947",title:"Prof.",name:"Anthony",middleName:null,surname:"Attama",slug:"anthony-attama",fullName:"Anthony Attama"}]},{id:"40262",doi:"10.5772/51384",title:"Nanotechnology in Drug Delivery",slug:"nanotechnology-in-drug-delivery",totalDownloads:15405,totalCrossrefCites:11,totalDimensionsCites:53,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Martins Ochubiojo Emeje, Ifeoma Chinwude Obidike, Ekaete Ibanga Akpabio and Sabinus Ifianyi Ofoefule",authors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}]},{id:"40281",doi:"10.5772/52115",title:"Magnetic Nanoparticles: Synthesis, Surface Modifications and Application in Drug Delivery",slug:"magnetic-nanoparticles-synthesis-surface-modifications-and-application-in-drug-delivery",totalDownloads:12642,totalCrossrefCites:19,totalDimensionsCites:44,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Seyda Bucak, Banu Yavuztürk and Ali Demir Sezer",authors:[{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"},{id:"129638",title:"Prof.",name:"Seyda",middleName:null,surname:"Bucak",slug:"seyda-bucak",fullName:"Seyda Bucak"}]},{id:"72744",doi:"10.5772/intechopen.93193",title:"Drug Repurposing (DR): An Emerging Approach in Drug Discovery",slug:"drug-repurposing-dr-an-emerging-approach-in-drug-discovery",totalDownloads:2901,totalCrossrefCites:23,totalDimensionsCites:39,abstract:"Drug repurposing (DR) (also known as drug repositioning) is a process of identifying new therapeutic use(s) for old/existing/available drugs. It is an effective strategy in discovering or developing drug molecules with new pharmacological/therapeutic indications. In recent years, many pharmaceutical companies are developing new drugs with the discovery of novel biological targets by applying the drug repositioning strategy in drug discovery and development program. This strategy is highly efficient, time saving, low-cost and minimum risk of failure. It maximizes the therapeutic value of a drug and consequently increases the success rate. Thus, drug repositioning is an effective alternative approach to traditional drug discovery process. Finding new molecular entities (NME) by traditional or de novo approach of drug discovery is a lengthy, time consuming and expensive venture. Drug repositioning utilizes the combined efforts of activity-based or experimental and in silico-based or computational approaches to develop/identify the new uses of drug molecules on a rational basis. It is, therefore, believed to be an emerging strategy where existing medicines, having already been tested safe in humans, are redirected based on a valid target molecule to combat particularly, rare, difficult-to-treat diseases and neglected diseases.",book:{id:"9086",slug:"drug-repurposing-hypothesis-molecular-aspects-and-therapeutic-applications",title:"Drug Repurposing",fullTitle:"Drug Repurposing - Hypothesis, Molecular Aspects and Therapeutic Applications"},signatures:"Mithun Rudrapal, Shubham J. Khairnar and Anil G. Jadhav",authors:[{id:"314279",title:"Dr.",name:"Mithun",middleName:null,surname:"Rudrapal",slug:"mithun-rudrapal",fullName:"Mithun Rudrapal"}]},{id:"40265",doi:"10.5772/53392",title:"Gene Delivery Systems: Recent Progress in Viral and Non-Viral Therapy",slug:"gene-delivery-systems-recent-progress-in-viral-and-non-viral-therapy",totalDownloads:9265,totalCrossrefCites:15,totalDimensionsCites:36,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Erdal Cevher, Ali Demir Sezer and Emre Şefik Çağlar",authors:[{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"},{id:"129634",title:"Prof.",name:"Erdal",middleName:null,surname:"Cevher",slug:"erdal-cevher",fullName:"Erdal Cevher"}]}],mostDownloadedChaptersLast30Days:[{id:"72744",title:"Drug Repurposing (DR): An Emerging Approach in Drug Discovery",slug:"drug-repurposing-dr-an-emerging-approach-in-drug-discovery",totalDownloads:2901,totalCrossrefCites:23,totalDimensionsCites:39,abstract:"Drug repurposing (DR) (also known as drug repositioning) is a process of identifying new therapeutic use(s) for old/existing/available drugs. It is an effective strategy in discovering or developing drug molecules with new pharmacological/therapeutic indications. In recent years, many pharmaceutical companies are developing new drugs with the discovery of novel biological targets by applying the drug repositioning strategy in drug discovery and development program. This strategy is highly efficient, time saving, low-cost and minimum risk of failure. It maximizes the therapeutic value of a drug and consequently increases the success rate. Thus, drug repositioning is an effective alternative approach to traditional drug discovery process. Finding new molecular entities (NME) by traditional or de novo approach of drug discovery is a lengthy, time consuming and expensive venture. Drug repositioning utilizes the combined efforts of activity-based or experimental and in silico-based or computational approaches to develop/identify the new uses of drug molecules on a rational basis. It is, therefore, believed to be an emerging strategy where existing medicines, having already been tested safe in humans, are redirected based on a valid target molecule to combat particularly, rare, difficult-to-treat diseases and neglected diseases.",book:{id:"9086",slug:"drug-repurposing-hypothesis-molecular-aspects-and-therapeutic-applications",title:"Drug Repurposing",fullTitle:"Drug Repurposing - Hypothesis, Molecular Aspects and Therapeutic Applications"},signatures:"Mithun Rudrapal, Shubham J. Khairnar and Anil G. Jadhav",authors:[{id:"314279",title:"Dr.",name:"Mithun",middleName:null,surname:"Rudrapal",slug:"mithun-rudrapal",fullName:"Mithun Rudrapal"}]},{id:"51569",title:"Prothrombin Complex Concentrate, a General Antidote for Oral Anticoagulation",slug:"prothrombin-complex-concentrate-a-general-antidote-for-oral-anticoagulation",totalDownloads:3063,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Prothrombin complex concentrate (PCC) is used for the rapid reversal of vitamin K antagonist (VKA) anticoagulation. PCC is also applicable in situations requiring rapid reversal of anticoagulation by non-vitamin K antagonist direct thrombin and factor Xa inhibitor oral anticoagulants (NOACs), thereby making PCC a general antidote for oral anticoagulation. In this chapter, the composition of different PCC brands is reviewed and a negative effect of heparin supplement in some products is recognized. Mode of action of anticoagulation reversal by PCC is explained. Dosage and clinical efficacy, two closely related issues, are discussed and based on reviewed data recommendations are given that may prohibit too low PCC dosing, especially in NOAC anticoagulation. Use of unsuitable laboratory assays has raised needless controversy as to the applicability of PCC to reverse anticoagulation by NOACs, in particular dabigatran. In this chapter, various laboratory assays are evaluated for their applicability in monitoring reversal of anticoagulation.",book:{id:"5173",slug:"anticoagulation-therapy",title:"Anticoagulation Therapy",fullTitle:"Anticoagulation Therapy"},signatures:"Herm Jan M. Brinkman",authors:[{id:"180438",title:"Dr.",name:"Herm Jan",middleName:null,surname:"Brinkman",slug:"herm-jan-brinkman",fullName:"Herm Jan Brinkman"}]},{id:"53881",title:"A Review of Intravenous Lidocaine Infusion Therapy for Paediatric Acute and Chronic Pain Management",slug:"a-review-of-intravenous-lidocaine-infusion-therapy-for-paediatric-acute-and-chronic-pain-management",totalDownloads:3037,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Pediatric acute and chronic pain experiences involve the interaction of physiological, psychological, behavioural, developmental, pharmacological and situational factors. In the acute perioperative pain setting preventative multimodal analgesia is required to provide comfort and minimise the potential for “wind-up” and central sensitisation. When pain is recurrent, ongoing or chronic some children embark on a downward spiral of decreased physical, psychological and social functioning. The multidisciplinary team management approach is a well-established standard of care for children with complex chronic pain. Intravenous lidocaine has peripheral and central mediated analgesic, anti-inflammatory and anti-hyperalgesic properties. Intravenous lidocaine infusion therapy (IVLT) has been shown to be effective in the management of acute and chronic pain in adults. This chapter will present the rational for IVLT in pediatric pain management with emphasis on preventative multimodal therapy in acute pain and the multidisciplinary treatment approach in chronic pain. Large multi-centre randomised controlled trials are required to provide the evidence-base to confirm that IVLT is indeed an effective and safe treatment option in acute preventative multimodal analgesia and as an adjunct in the multidisciplinary care of chronic pain in the pediatric population.",book:{id:"5525",slug:"pain-relief-from-analgesics-to-alternative-therapies",title:"Pain Relief",fullTitle:"Pain Relief - From Analgesics to Alternative Therapies"},signatures:"Gillian R. Lauder",authors:[{id:"76532",title:"Dr.",name:"Gillian",middleName:null,surname:"Lauder",slug:"gillian-lauder",fullName:"Gillian Lauder"}]},{id:"68829",title:"Metformin Indications, Dosage, Adverse Reactions, and Contraindications",slug:"metformin-indications-dosage-adverse-reactions-and-contraindications",totalDownloads:1344,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Metformin or dimethyl biguanide is the oral antidiabetic drug with the most extensive experience of prescribing in the clinical practice of type 2 diabetes mellitus. In this chapter, we reviewed the indications, contraindications, and adverse drug reactions (ADR) of metformin. The most significant adverse drug reactions of metformin are lactic acidosis, allergies, hypoglycemia, vitamin B12 deficiency, altered taste, and gastrointestinal intolerance. Metformin is contraindicated in severe chronic diseases (hepatic, renal, and cardiac failure) or acute complications of diabetes (ketoacidosis and hyperosmolar state). Metformin is considered by all international guidelines the first-line treatment in type 2 diabetes mellitus (T2DM) together with medical, nutritional therapy. It is one of the most prescribed molecules worldwide. Furthermore, metformin can also be prescribed for other diseases like polycystic ovary syndrome or prediabetes (impaired glucose tolerance/fasting hyperglycemia). Recent studies have shown positive results concerning the use of metformin for cardiovascular or neuroprotective effects; also, several scientific papers are suggesting an antitumor or antiaging effect of metformin. Having such an excellent efficiency in practice, thus predicting its sustainability on the pharmaceutical market, research is directed toward characterizing metformin action on bacteria genera in the gut. Modifying the microbiota composition by pre- and probiotics could improve metformin action.",book:{id:"7994",slug:"metformin",title:"Metformin",fullTitle:"Metformin"},signatures:"Roxana Adriana Stoica, Diana Simona Ștefan, Manfredi Rizzo, Andra Iulia Suceveanu, Adrian Paul Suceveanu, Cristian Serafinceanu and Anca Pantea-Stoian",authors:null},{id:"40254",title:"Novel Drug Delivery Systems for Modulation of Gastrointestinal Transit Time",slug:"novel-drug-delivery-systems-for-modulation-of-gastrointestinal-transit-time",totalDownloads:8218,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]}],onlineFirstChaptersFilter:{topicId:"1197",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,annualVolume:null,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,annualVolume:11974,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:47,paginationItems:[{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:22,group:"subseries"},{caption:"Oral Health",value:1,count:25,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\r\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\r\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Orthodontist, Assoc Prof in the Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"344229",title:"Dr.",name:"Sankeshan",middleName:null,surname:"Padayachee",slug:"sankeshan-padayachee",fullName:"Sankeshan Padayachee",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"315727",title:"Ms.",name:"Kelebogile A.",middleName:null,surname:"Mothupi",slug:"kelebogile-a.-mothupi",fullName:"Kelebogile A. Mothupi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"337613",title:"Mrs.",name:"Tshakane",middleName:null,surname:"R.M.D. Ralephenya",slug:"tshakane-r.m.d.-ralephenya",fullName:"Tshakane R.M.D. Ralephenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}}]}},subseries:{item:{id:"90",type:"subseries",title:"Human Development",keywords:"Neuroscientific Research, Brain Functions, Human Development, UN’s Human Development Index, Self-Awareness, Self-development",scope:"