Nutritional value and quality of food products are very important for a healthy life of human beings. Various modern thermal and nonthermal application technologies such as pulsed light, pulsed electric field, high and low hydrostatic pressure, microwave, and ohmic heating have been used to improve food products characteristics. In recent years, ultrasonic applications have been used for food processing. The ultrasonic is defined as sound waves with a frequency exceeding the human hearing limit. Based on the frequency range of ultrasonic waves, it can be used in many industrial applications including the processing of food. Applications of high-power ultrasonic with low frequency aim to improve the quality of food products. Low-power ultrasonic with high-frequency applications are used for nondestructive quality evaluation of physicochemical properties of food. The most important advantages of ultrasonic technologies are the low cost of food processing, low power consumption, simplicity compared to other technologies, suitability for the treatment of solid and liquid food, and environmental safeness and friendliness, thus becoming a promising technology for monitoring and improving quality of food products. The main objective of this chapter is to provide an overview of the principal and recent applications of ultrasonic waves to improve food product quality.
Part of the book: Food Processing
Red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), is one of the most invasive pest species that poses a serious threat to date palm and coconut palm cultivation as well as the ornamental Canary Island palm. RPW causes massive economic losses in the date palm production sector worldwide. The most important challenge of RPW detection in the early stages of an infestation is the presence of a few externally visible signs. Infested palm shows visible signs when the infestation is more advanced; in this case, the rescuing of infested palms is more complicated. Early detection is a useful tool to eradicate and control RPW successfully. Until now, the early detection techniques of RPW rely mainly on visual inspection and pheromone trapping. Several methods to detect RPW infestation have recently emerged. These include remote sensing, highly sensitive microphones, thermal sensors, drones, acoustic sensors, and sniffer dogs. The main objective of this chapter is to provide an overview of the modern methods for early detection of the RPW and discuss the most important RPW detection technologies that are field applicable.
Part of the book: Invasive Species