\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"8271",leadTitle:null,fullTitle:"Applications of Optical Fibers for Sensing",title:"Applications of Optical Fibers for Sensing",subtitle:null,reviewType:"peer-reviewed",abstract:"In this book the reader will find a collection of chapters written by different research teams, describing different applications of optical fibers for sensing. This work is mainly addressed to researchers already working in this area, but it is also accessible to anyone with a scientific background who desires to have an updated overview of the recent progress in this domain. It will also be valuable to scientists and engineers who have become newly involved in this field. Each chapter is self-contained and can be read independently of the others. This book intends to provide highlights of the current research in this area, showing the recent advances in the field of optical fiber sensing.",isbn:"978-1-78985-352-0",printIsbn:"978-1-78985-351-3",pdfIsbn:"978-1-83962-145-1",doi:"10.5772/intechopen.78283",price:119,priceEur:129,priceUsd:155,slug:"applications-of-optical-fibers-for-sensing",numberOfPages:168,isOpenForSubmission:!1,isInWos:1,hash:"9ee77f1939cbc876443b1f57acc998f4",bookSignature:"Christian Cuadrado-Laborde",publishedDate:"April 24th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",numberOfDownloads:4089,numberOfWosCitations:1,numberOfCrossrefCitations:3,numberOfDimensionsCitations:7,hasAltmetrics:1,numberOfTotalCitations:11,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 10th 2018",dateEndSecondStepPublish:"May 31st 2018",dateEndThirdStepPublish:"July 30th 2018",dateEndFourthStepPublish:"October 18th 2018",dateEndFifthStepPublish:"December 17th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde",profilePictureURL:"https://mts.intechopen.com/storage/users/220902/images/system/220902.jpeg",biography:"Christian Cuadrado-Laborde received his Ph.D. degree in physics from La Plata University (UNLP, Argentina, 2005), and his Electric and Electronic Engineer degree from the San Luis University (UNSL, Argentina, 1998). \nHe was awarded by the Spanish Ministry of Science with a research fellow position to join to the Optical Fiber Laboratory group headed by M. V. Andrés of the Valencia University (Spain) during 2008-2009. Since then, he has a fluid collaboration with this research group.\nActually, he leads the Optics and Photonics Group at the Institute of Physics Rosario (IFIR, CONICET, Argentina). He is currently also Full Professor of the Pontifical Catholic University (UCA, Rosario, Argentina). \nHe serves also as a reviewer for several well-known journals of the Optical Society of America, the IEEE, Elsevier, and SPIE. \nHe has published several papers in top-tier scientific journals such as Progress in Optics, Optics Letters, Laser & Photonics Reviews, Optics & Photonics News, Optics Express, etc. His current research interest includes fibre optics applications, photonic processing, and all-fibre lasers.",institutionString:"Institute of Physics Rosario (CONICET-UNR)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226",title:"Optoelectronics",slug:"optics-and-lasers-optoelectronics"}],chapters:[{id:"65293",title:"Introductory Chapter: Application of Optical Fiber for Sensing",doi:"10.5772/intechopen.83623",slug:"introductory-chapter-application-of-optical-fiber-for-sensing",totalDownloads:332,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Christian Cuadrado-Laborde",downloadPdfUrl:"/chapter/pdf-download/65293",previewPdfUrl:"/chapter/pdf-preview/65293",authors:[{id:"29543",title:"Dr.",name:"Christian",surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],corrections:null},{id:"63748",title:"Minimalist Approach for the Design of Microstructured Optical Fiber Sensors",doi:"10.5772/intechopen.81265",slug:"minimalist-approach-for-the-design-of-microstructured-optical-fiber-sensors",totalDownloads:330,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jonas H. Osório and Cristiano M. B. Cordeiro",downloadPdfUrl:"/chapter/pdf-download/63748",previewPdfUrl:"/chapter/pdf-preview/63748",authors:[{id:"258903",title:"Dr.",name:"Jonas",surname:"Osório",slug:"jonas-osorio",fullName:"Jonas Osório"},{id:"259554",title:"Prof.",name:"Cristiano",surname:"Cordeiro",slug:"cristiano-cordeiro",fullName:"Cristiano Cordeiro"}],corrections:null},{id:"64063",title:"Fiber Bragg Gratings as e-Health Enablers: An Overview for Gait Analysis Applications",doi:"10.5772/intechopen.81136",slug:"fiber-bragg-gratings-as-e-health-enablers-an-overview-for-gait-analysis-applications",totalDownloads:840,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Maria de Fátima Domingues, Cátia Tavares, Tiago Leite, Nélia Alberto,\nCátia Leitão, Carlos Marques, Ayman Radwan, Eduardo Rocon, Paulo Antunes\nand Paulo André",downloadPdfUrl:"/chapter/pdf-download/64063",previewPdfUrl:"/chapter/pdf-preview/64063",authors:[{id:"52661",title:"Dr.",name:"Maria",surname:"Domingues",slug:"maria-domingues",fullName:"Maria Domingues"},{id:"72988",title:"Dr.",name:"Paulo",surname:"Antunes",slug:"paulo-antunes",fullName:"Paulo Antunes"},{id:"201517",title:"Dr.",name:"Catia",surname:"Leitao",slug:"catia-leitao",fullName:"Catia Leitao"},{id:"206695",title:"Dr.",name:"Carlos",surname:"Marques",slug:"carlos-marques",fullName:"Carlos Marques"},{id:"269571",title:"MSc.",name:"Cátia",surname:"Tavares",slug:"catia-tavares",fullName:"Cátia Tavares"},{id:"269572",title:"MSc.",name:"Tiago",surname:"Leite",slug:"tiago-leite",fullName:"Tiago Leite"},{id:"269574",title:"Dr.",name:"Nélia",surname:"Alberto",slug:"nelia-alberto",fullName:"Nélia Alberto"},{id:"269575",title:"Dr.",name:"Ayman",surname:"Radwan",slug:"ayman-radwan",fullName:"Ayman Radwan"},{id:"269576",title:"Dr.",name:"Eduardo",surname:"Rocon",slug:"eduardo-rocon",fullName:"Eduardo Rocon"},{id:"269577",title:"Prof.",name:"Paulo",surname:"André",slug:"paulo-andre",fullName:"Paulo André"}],corrections:null},{id:"66169",title:"Distributed, Advanced Fiber Optic Sensors",doi:"10.5772/intechopen.83622",slug:"distributed-advanced-fiber-optic-sensors",totalDownloads:821,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Sanjay Kher and Manoj Kumar Saxena",downloadPdfUrl:"/chapter/pdf-download/66169",previewPdfUrl:"/chapter/pdf-preview/66169",authors:[{id:"258927",title:"Dr.",name:"Sanjay",surname:"Kher",slug:"sanjay-kher",fullName:"Sanjay Kher"},{id:"280374",title:"Dr.",name:"Manoj Kumar",surname:"Saxena",slug:"manoj-kumar-saxena",fullName:"Manoj Kumar Saxena"}],corrections:null},{id:"64234",title:"Real-Time Particle Radiography by Means of Scintillating Fibers Tracker and Residual Range Detectors",doi:"10.5772/intechopen.81784",slug:"real-time-particle-radiography-by-means-of-scintillating-fibers-tracker-and-residual-range-detectors",totalDownloads:419,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Domenico Lo Presti, Giuseppe Gallo, Danilo Luigi Bonanno,\nDaniele Giuseppe Bongiovanni, Fabio Longhitano and Santo Reito",downloadPdfUrl:"/chapter/pdf-download/64234",previewPdfUrl:"/chapter/pdf-preview/64234",authors:[{id:"243971",title:"Dr.",name:"Domenico",surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"},{id:"260882",title:"Dr.",name:"Giuseppe",surname:"Gallo",slug:"giuseppe-gallo",fullName:"Giuseppe Gallo"},{id:"260884",title:"Dr.",name:"Danilo",surname:"Bonanno",slug:"danilo-bonanno",fullName:"Danilo Bonanno"},{id:"260886",title:"Dr.",name:"Daniele",surname:"Bongiovanni",slug:"daniele-bongiovanni",fullName:"Daniele Bongiovanni"},{id:"260887",title:"Dr.",name:"Fabio",surname:"Longhitano",slug:"fabio-longhitano",fullName:"Fabio Longhitano"},{id:"260888",title:"Dr.",name:"Santo",surname:"Reito",slug:"santo-reito",fullName:"Santo Reito"}],corrections:null},{id:"63471",title:"Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:"10.5772/intechopen.80653",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",totalDownloads:382,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",downloadPdfUrl:"/chapter/pdf-download/63471",previewPdfUrl:"/chapter/pdf-preview/63471",authors:[{id:"27036",title:"Dr.",name:"Daniel",surname:"Toal",slug:"daniel-toal",fullName:"Daniel Toal"},{id:"85846",title:"Prof.",name:"Elfed",surname:"Lewis",slug:"elfed-lewis",fullName:"Elfed Lewis"},{id:"259703",title:"Dr.",name:"Dinesh Babu",surname:"Duraibabu",slug:"dinesh-babu-duraibabu",fullName:"Dinesh Babu Duraibabu"},{id:"269578",title:"Dr.",name:"Gabriel",surname:"Leen",slug:"gabriel-leen",fullName:"Gabriel Leen"},{id:"269579",title:"M.Sc.",name:"Fintan",surname:"McGuinness",slug:"fintan-mcguinness",fullName:"Fintan McGuinness"},{id:"269580",title:"Dr.",name:"Gerard",surname:"Dooly",slug:"gerard-dooly",fullName:"Gerard Dooly"}],corrections:[{id:"65367",title:"Corrigendum to Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:null,slug:"corrigendum-to-review-of-liquid-filled-optical-fibre-based-temperature-sensing",totalDownloads:null,totalCrossrefCites:null,correctionPdfUrl:null}]},{id:"63687",title:"Optical Fibre Long-Period Grating Sensors Operating at and around the Phase Matching Turning Point",doi:"10.5772/intechopen.81179",slug:"optical-fibre-long-period-grating-sensors-operating-at-and-around-the-phase-matching-turning-point",totalDownloads:520,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rebecca Yen-Ni Wong, Dora Hu Juan Juan, Morten Ibsen and Perry Ping Shum",downloadPdfUrl:"/chapter/pdf-download/63687",previewPdfUrl:"/chapter/pdf-preview/63687",authors:[{id:"37307",title:"Prof.",name:"Perry Ping",surname:"Shum",slug:"perry-ping-shum",fullName:"Perry Ping Shum"},{id:"207907",title:"Dr.",name:"Dora Juan Juan",surname:"Hu",slug:"dora-juan-juan-hu",fullName:"Dora Juan Juan Hu"},{id:"208428",title:"Dr.",name:"Rebecca Yen-Ni",surname:"Wong",slug:"rebecca-yen-ni-wong",fullName:"Rebecca Yen-Ni Wong"},{id:"271245",title:"Dr.",name:"Morten",surname:"Ibsen",slug:"morten-ibsen",fullName:"Morten Ibsen"}],corrections:null},{id:"63902",title:"Whispering Gallery Modes for Accurate Characterization of Optical Fibers’ Parameters",doi:"10.5772/intechopen.81259",slug:"whispering-gallery-modes-for-accurate-characterization-of-optical-fibers-parameters",totalDownloads:446,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Martina Delgado-Pinar, Xavier Roselló-Mechó, Emmanuel Rivera-Pérez,\nAntonio Díez, José Luis Cruz and Miguel V. Andrés",downloadPdfUrl:"/chapter/pdf-download/63902",previewPdfUrl:"/chapter/pdf-preview/63902",authors:[{id:"46578",title:"Dr.",name:"Miguel V.",surname:"Andrés",slug:"miguel-v.-andres",fullName:"Miguel V. Andrés"},{id:"46579",title:"Dr.",name:"Antonio",surname:"Diez",slug:"antonio-diez",fullName:"Antonio Diez"},{id:"260545",title:"Dr.",name:"Martina",surname:"Delgado-Pinar",slug:"martina-delgado-pinar",fullName:"Martina Delgado-Pinar"},{id:"260546",title:"Mr.",name:"Xavier",surname:"Roselló-Mechó",slug:"xavier-rosello-mecho",fullName:"Xavier Roselló-Mechó"},{id:"260547",title:"Prof.",name:"Jose Luis",surname:"Cruz",slug:"jose-luis-cruz",fullName:"Jose Luis Cruz"},{id:"269849",title:"Dr.",name:"Emmanuel",surname:"Rivera",slug:"emmanuel-rivera",fullName:"Emmanuel Rivera"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1505",title:"Scanning Electron Microscopy",subtitle:null,isOpenForSubmission:!1,hash:"3305b759b0efc22e8ed16e9048818817",slug:"scanning-electron-microscopy",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",editedByType:"Edited by",editors:[{id:"100815",title:"Dr.",name:"Viacheslav",surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2018",title:"Recent Progress in Optical Fiber Research",subtitle:null,isOpenForSubmission:!1,hash:"c9f4716122beee57c42cff13c357a2cb",slug:"recent-progress-in-optical-fiber-research",bookSignature:"Moh. Yasin, Sulaiman W. Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/2018.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3166",title:"Optoelectronics",subtitle:"Advanced Materials and Devices",isOpenForSubmission:!1,hash:"b7263978cf34e637a4b9592eb4975f3e",slug:"optoelectronics-advanced-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John M. Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/3166.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3710",title:"Advances in Solid State Lasers",subtitle:"Development and Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-lasers-development-and-applications",bookSignature:"Mikhail Grishin",coverURL:"https://cdn.intechopen.com/books/images_new/3710.jpg",editedByType:"Edited by",editors:[{id:"4862",title:"Mr.",name:"Mikhail",surname:"Grishin",slug:"mikhail-grishin",fullName:"Mikhail Grishin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"256",title:"Optoelectronics",subtitle:"Materials and Techniques",isOpenForSubmission:!1,hash:"2c0d6a2a51ac114edd58f2c667297503",slug:"optoelectronics-materials-and-techniques",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/256.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3581",title:"Recent Optical and Photonic Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent-optical-and-photonic-technologies",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/3581.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"525",title:"Optoelectronics",subtitle:"Devices and Applications",isOpenForSubmission:!1,hash:"f444b982565b0c4be6117a35f7810047",slug:"optoelectronics-devices-and-applications",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/525.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65668",slug:"corrigendum-to-clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",title:"Corrigendum to: Clinical Applications of Mesenchymal Stromal Cells (MSCs) in Orthopedic Diseases",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65668.pdf",downloadPdfUrl:"/chapter/pdf-download/65668",previewPdfUrl:"/chapter/pdf-preview/65668",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65668",risUrl:"/chapter/ris/65668",chapter:{id:"61187",slug:"clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",signatures:"Jiazhao Yang, Shiyuan Fang, Lei Xu, Li Li, Kai Xie, Jinsen Lu, Hao\nWang, Xujin Wang and Lixin Kan",dateSubmitted:"December 5th 2017",dateReviewed:"March 29th 2018",datePrePublished:"November 5th 2018",datePublished:"January 23rd 2019",book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"61187",slug:"clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",signatures:"Jiazhao Yang, Shiyuan Fang, Lei Xu, Li Li, Kai Xie, Jinsen Lu, Hao\nWang, Xujin Wang and Lixin Kan",dateSubmitted:"December 5th 2017",dateReviewed:"March 29th 2018",datePrePublished:"November 5th 2018",datePublished:"January 23rd 2019",book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6395",leadTitle:null,title:"Bridge Engineering",subtitle:null,reviewType:"peer-reviewed",abstract:"A bridge is a structure built to span the physical obstacles without closing the way underneath, such as a body of water, valley, or road, for the purpose of providing the passage over the obstacle. Bridge engineering is an engineering discipline branching from civil engineering that involves the planning, design, construction, operation, and maintenance of bridges to ensure safe and effective transportation of vehicles, people and goods. This book Bridge Engineering includes the main topics and the basic principles of bridge engineering and provides the full scope of current information necessary for effective and cost-conscious contemporary bridge. It reflects new engineering and building developments, the most current design methods, and the latest industry standards and policies. It provides a comprehensive overview of the significant characteristics for bridge engineering. It highlights the recent advancements, requirements, improvements, and details of the latest techniques in the global market. It contains a collection of the latest research developments on the bridge engineering. It comprehensively covers the basic theory and practice in sufficient depth to provide a solid grounding to bridge engineers. It helps readers to maximize effectiveness in all facets of bridge engineering. This professional book as a credible source and a valuable reference can be very applicable and useful for all professors, researchers, engineers, practicing professionals, trainee practitioners, students and others who are interested in the bridge projects.",isbn:"978-1-78923-105-2",printIsbn:"978-1-78923-104-5",pdfIsbn:"978-1-83881-451-9",doi:"10.5772/intechopen.70024",price:119,priceEur:129,priceUsd:155,slug:"bridge-engineering",numberOfPages:150,isOpenForSubmission:!1,hash:"1d5fcf0ef5708024ef95eb8b3d7310be",bookSignature:"Hamid Yaghoubi",publishedDate:"May 23rd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6395.jpg",keywords:null,numberOfDownloads:14036,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:2,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 8th 2017",dateEndSecondStepPublish:"June 29th 2017",dateEndThirdStepPublish:"September 25th 2017",dateEndFourthStepPublish:"December 24th 2017",dateEndFifthStepPublish:"February 22nd 2018",remainingDaysToSecondStep:"4 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"103965",title:"Dr.",name:"Hamid",middleName:null,surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi",profilePictureURL:"https://mts.intechopen.com/storage/users/103965/images/system/103965.jpeg",biography:"Dr. Hamid Yaghoubi is the director of Iran Maglev Technology (IMT). He became the Iran top researcher in 2010. In this regard, he was awarded by the Iranian president; the Iranian Minister of Science, Research and Technology; and the Iranian Minister of Information and Communication Technology. He became the 2011 and 2012 Outstanding Reviewer for the Journal of Transportation Engineering (JTE), American Society of Civil Engineers (ASCE), USA. One of his journal papers became the 2011 Top Download Paper for JTE. He received the ICCTP2011 Award for the 11th International Conference of Chinese Transportation Professionals (ICCTP2011), ASCE. He is an assistant chief editor and an editorial board member for some journals. He has been a reviewer for the majority of journals, books and conferences. He has also been an editor for some books. He has cooperated with hundreds of international conferences as a chairman, a keynote speaker, a chair of session, a publication chair, and a member of committees, including scientific, organizing, steering, advisory, technical program, and so on. He is also a member of several international committees.",institutionString:"Iran Maglev Technology (IMT)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Iran University of Science and Technology",institutionURL:null,country:{name:"Iran"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"705",title:"Construction Engineering",slug:"construction-engineering"}],chapters:[{id:"59387",title:"Introductory Chapter: Modern Bridges",slug:"introductory-chapter-modern-bridges",totalDownloads:569,totalCrossrefCites:0,authors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}]},{id:"60236",title:"The Feasibility of Constructing Super-Long-Span Bridges with New Materials in 2050",slug:"the-feasibility-of-constructing-super-long-span-bridges-with-new-materials-in-2050",totalDownloads:1008,totalCrossrefCites:1,authors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"},{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"}]},{id:"57609",title:"Developing a Bridge Condition Rating Model Based on Limited Number of Data Sets",slug:"developing-a-bridge-condition-rating-model-based-on-limited-number-of-data-sets",totalDownloads:530,totalCrossrefCites:1,authors:[{id:"180233",title:"Associate Prof.",name:"Roszilah",surname:"Hamid",slug:"roszilah-hamid",fullName:"Roszilah Hamid"},{id:"216888",title:"Dr.",name:"Khairullah",surname:"Yusof",slug:"khairullah-yusof",fullName:"Khairullah Yusof"}]},{id:"57516",title:"Structural Identification (St-Id) Concept for Performance Prediction of Long-Span Bridges",slug:"structural-identification-st-id-concept-for-performance-prediction-of-long-span-bridges",totalDownloads:660,totalCrossrefCites:0,authors:[{id:"213939",title:"Dr.",name:"Selcuk",surname:"Bas",slug:"selcuk-bas",fullName:"Selcuk Bas"}]},{id:"58008",title:"Recent Advances in the Serviceability Assessment of Footbridges Under Pedestrian-Induced Vibrations",slug:"recent-advances-in-the-serviceability-assessment-of-footbridges-under-pedestrian-induced-vibrations",totalDownloads:578,totalCrossrefCites:0,authors:[{id:"215797",title:"Ph.D.",name:"Javier Fernando",surname:"Jiménez-Alonso",slug:"javier-fernando-jimenez-alonso",fullName:"Javier Fernando Jiménez-Alonso"},{id:"215798",title:"Prof.",name:"Andres",surname:"Saez",slug:"andres-saez",fullName:"Andres Saez"}]},{id:"58853",title:"Wind Action Phenomena Associated with Large-Span Bridges",slug:"wind-action-phenomena-associated-with-large-span-bridges",totalDownloads:9452,totalCrossrefCites:0,authors:[{id:"60072",title:"Prof.",name:"Raquel",surname:"Almeida",slug:"raquel-almeida",fullName:"Raquel Almeida"},{id:"216824",title:"Prof.",name:"Daniel",surname:"Vaz",slug:"daniel-vaz",fullName:"Daniel Vaz"},{id:"216827",title:"Prof.",name:"A.R.",surname:"Janeiro Borges",slug:"a.r.-janeiro-borges",fullName:"A.R. Janeiro Borges"}]},{id:"59297",title:"Bridges Subjected to Dynamic Loading",slug:"bridges-subjected-to-dynamic-loading",totalDownloads:1239,totalCrossrefCites:0,authors:[{id:"216765",title:"Prof.",name:"Ján",surname:"Benčat",slug:"jan-bencat",fullName:"Ján Benčat"},{id:"235614",title:"Associate Prof.",name:"Robert",surname:"Kohar",slug:"robert-kohar",fullName:"Robert Kohar"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5423",title:"Urban Transport Systems",subtitle:null,isOpenForSubmission:!1,hash:"222b5d90a7014dbff7e33f3dcde6bc1d",slug:"urban-transport-systems",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/5423.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6103",title:"Highway Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9c66d18cec90a84fdfd9a64451dc421a",slug:"highway-engineering",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/6103.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7524",title:"High-Speed Rail",subtitle:null,isOpenForSubmission:!1,hash:"0e248745ed8a460687701d02462cb874",slug:"high-speed-rail",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/7524.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3631",title:"Smart Home Systems",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"smart-home-systems",bookSignature:"Mahmoud A. Al-Qutayri",coverURL:"https://cdn.intechopen.com/books/images_new/3631.jpg",editedByType:"Edited by",editors:[{id:"7571",title:"Dr.",name:"Mahmoud",surname:"Al-Qutayri",slug:"mahmoud-al-qutayri",fullName:"Mahmoud Al-Qutayri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2005",title:"Effective Thermal Insulation",subtitle:"The Operative Factor of a Passive Building Model",isOpenForSubmission:!1,hash:"c7c6c5a9dfad00a32efaa72b9f163e71",slug:"effective-thermal-insulation-the-operative-factor-of-a-passive-building-model",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/2005.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7205",title:"Housing",subtitle:null,isOpenForSubmission:!1,hash:"efb431be41bf8bf41facd7b4a183225e",slug:"housing",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/7205.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5422",title:"Risk Management Treatise for Engineering Practitioners",subtitle:null,isOpenForSubmission:!1,hash:"4d70d3197f1b4dea5285a83550a79ade",slug:"risk-management-treatise-for-engineering-practitioners",bookSignature:"Chike F Oduoza",coverURL:"https://cdn.intechopen.com/books/images_new/5422.jpg",editedByType:"Edited by",editors:[{id:"5932",title:"Dr.",name:"Chike",surname:"Oduoza",slug:"chike-oduoza",fullName:"Chike Oduoza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8808",title:"Risk Management in Construction Projects",subtitle:null,isOpenForSubmission:!1,hash:"f8f1673caa5c51349ef131c89d02f873",slug:"risk-management-in-construction-projects",bookSignature:"Nthatisi Khatleli",coverURL:"https://cdn.intechopen.com/books/images_new/8808.jpg",editedByType:"Edited by",editors:[{id:"247856",title:"Dr.",name:"Nthatisi",surname:"Khatleli",slug:"nthatisi-khatleli",fullName:"Nthatisi Khatleli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7473",title:"Indoor Environmental Quality",subtitle:null,isOpenForSubmission:!1,hash:"fb35168f3d84a1a6ee93cb3797ecda97",slug:"indoor-environmental-quality",bookSignature:"Muhammad Abdul Mujeebu",coverURL:"https://cdn.intechopen.com/books/images_new/7473.jpg",editedByType:"Edited by",editors:[{id:"289697",title:"Dr.",name:"Muhammad Abdul",surname:"Mujeebu",slug:"muhammad-abdul-mujeebu",fullName:"Muhammad Abdul Mujeebu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"66660",title:"Green Water Treatment for Pharmaceutical Pollution",doi:"10.5772/intechopen.85116",slug:"green-water-treatment-for-pharmaceutical-pollution",body:'\n
The environmental performances are estimated using the life cycle assessment and the effective removal of 1 μg of 17α-ethynylestradiol (ES) for 1 liter of wastewater. The choice of ES was due to being a worldwide common micropollutant and endocrine-disrupting chemicals (EDCs) in a functional unit [1]. The natural solar photolysis exhibited an environmental footprint about 23 times greater than solar/Fe systems. The solar/Fe/H2O2 minimized the environmental footprint with the energy-intensive simulated solar irradiation that had a much higher, about five times, environmental footprint than the natural solar light. The UV photolysis also shows a low environmental impact. The TiO2 addition to UV and H2O2 to UV reduced the environmental impact of about 97% and 88%, not considering the footprint of the TiO2 production [2].
\nThe total environmental footprint and the environmental sustainability of all the photodecomposition processes were directly proportional to water treatment efficiency and inversely proportional to treatment time (substantial energy input per time unit). The addition of TiO2, iron, and H2O2 improved the process efficiency and environmental sustainability considering only the electricity consumption; the introduction of renewable energy resources could reduce the environmental footprint of the oxidation processes by up to 87.5%.
\nA solar spectrum contains approximately 46% of infrared light, 4% of UV light, and 50% of visible light. Such natural radiation composition highlight the importance of the visible-light-responsive TiO2 development for natural and renewable solar photodecomposition applications. TiO2 displays photocatalytic role when irradiated by ultraviolet (UV) due to its large bandgap (3.0 eV for rutile and 3.2 eV for anatase). The development of visible light-responsive TiO2 includes chemical doping and photosensitization. The chemical doping is used to narrow the bandgap of TiO2; the doped ions in TiO2 act as recombination centers for photoexcited electrons and holes decreasing the photocatalytic activity.
\nThe organic dye photosensitization on TiO2 represents the major limitation for applications due to the poor dye stability, which can undergo desorption, photolysis and oxidative degradation, and fastback electron transfer, which results in low quantum yield for the photocatalytic reaction. An alternative for organic dye use in the metallic nanoparticles (NPs) is used successfully as photosensitizers for TiO2 due to their stability and strong photoabsorption under visible light based on surface plasmon resonance [3]. It is a coherent oscillation of electrons on the metallic NP surfaces during the incident light irradiation.
\nThe TiO2 photosensitizers were first described in 2005 using gold (Au) as nanoparticles with TiO2 (Au/TiO2) the resultant film oxidized the ethanol and methanol at the expense of oxygen reduction under visible light radiation. The use of Au/TiO2 for 2-propanol decomposition is induced by surface plasmon resonance photocatalytic process: (1) the Au NP adsorption of photons, (2) the Au NP electrons are injected into the conduction band of TiO2, and (3) the resultant electron-deficient Au NPs can oxidize 2-propanol to recover to the fundamental metallic Au NP state. The pharmaceutical waste in the environment cause adverse health effects in the reproductive, neurological, and immune systems of wildlife and humans. Commonly they are resultant of agricultural lands’ runoff, septic tanks’ leakage, and the discharge of sewage treatment plants’ effluents [4]. They can cause significant severe environmental damage even in trace concentrations. Worldwide EDCs are continuously released, and the efficiency of conventional water treatment technologies against such contaminants is minimal.
\nAdvanced oxidation processes (AOPs) are a promising technology for the removal of the persistent organic pollutants (POPs), such as pharmaceuticals and endocrine disrupters (EDCs) from polluted waters. The photocatalytic methods are likely the most promising, especially those involving visible light-responsive materials, i.e., heterogeneous solar photocatalysis.
\nThe photocatalytic hydroxide radicals are potent oxidants and react fast and unselectively with surrounding chemical species via radical addition, hydrogen abstraction, or e- transfer mechanisms. Many oxidant species can also degrade the pharmaceuticals and endocrine disrupter compounds in some cases the intermediate compounds present higher decomposition effectiveness and ends up in complete mineralization with the production of CO2, H2O, and inorganic salts.
\nThe mass transfer is the controlled slowest step of the photodecomposition reaction of adsorption/desorption. The reaction requires the reactant adsorption/desorption on the catalyst surface and the presence of any barrier to reduce the reaction efficiency. Some experiments are performed keeping the reactor under dark conditions until the adsorption process reaches the equilibrium with the adsorbed mass at the semiconductor surface. After that, the reactor is irradiated and produces the radicals acting in the adsorbent surface and also in the solution. The radiation and the semiconductor generate e− and h+ pairs and radicals.
\nThe heterogeneous photocatalysis shows a strong dependence on the operating temperature. The kinetics is usually dependent on the first step of the adsorption and the equilibrium modeled by Langmuir isotherms and Langmuir-Hinshelwood model. The first pseudo-order usually appears at the beginning of the reaction, just in the initial steps. As the reaction proceeds, the intermediate production could interfere with the radiation incidence. The observed decomposition rates as the pollutant start to decompose and begin the competition for the adsorption sites between the pollutants and the adsorbed species. The initial pollutant concentration starts to be the limiting reactant with mass transfer limitations with no kinetic control for lower concentrations.
\nThe increase of the catalyst mass promotes the photodegradation rate and the active catalyst sites. If the system is a slurry, the reaction rate reaches a maximum or optimal value and after that declines. The higher suspended particle concentration enhances the light scattering, the particle agglomeration, with light opacity enhancement, and after a certain point, the photodecomposition efficiency decreases. There is an equilibrium between the available surface site and the suspended particles control.
\nThe oxygen plays a vital role in the photodecomposition reactions; dissolved O2 reacts with the photogenerated electrons leading to O2− radicals and preventing the recombination of the generated e− and the h+pairs. The comparison between the kinetics of the air-saturated solutions and the pure oxygen solution often results in smaller rates for the first.
\nThe pH values influence the catalyst aggregations and its surface charges, with the valence band (VB) and conduction band (CB) position. At low pH values, the CB holes are more effective in comparison with VB. The change in the pH values allows the surface charge modification mostly when the amphoteric groups are present [5].
\nThe adsorption equilibrium after decomposition depends on the pollutant pH speciation and the reactive species. Considering the low pH values, the h+ can be the more oxidizing species, the amount of ˙OH increases under alkaline conditions when the OH− ions are available to react with h+, and the ˙OH become the primary oxidant (Eqs. (1) and (2)). This effect increases the ˙OH availability at higher pH values in spite of the negatively charged catalyst surface and also the pollutant repelling action at such pH values; the ˙OH radicals’ attack can explain the pH medium behavior.
\nThe presence of some anions like chloride, nitrate, and sulfate reduces the photocatalytic performance as a result of the competition for the adsorption sites to scavenge the ˙OH radicals. Natural organic matter and humic acids are scavengers of the reactive species and usually show negative photodegradation influence. Nevertheless, the presence of the carbonate and bicarbonate increases photodecomposition efficiency.
\nThe temperature has a limited effect in the photodecomposition efficiency until 80 Cº; after that there is the tendency to reduce the photocatalytic efficiency as a result of lower oxygen solubility in water. Different temperatures can also promote intermediaries and by-product formation.
\nSemiconductor photocatalytic process has shown great potential as a low cost, environment-friendly treatment technology in degrading a wide range of pollutants. The photocatalysis has the dependency of the reactive oxygen species formation by the semiconductor particle with light energy greater than the bandgap energy [4]. The TiO2 photocatalyst has an important drawback of photocatalysis and with gap energy which is the use of UV light, corresponding with 3–5% of natural solar light.
\nSome modification on TiO2 surface is one promising route to enable TiO2 sensitive to visible light for water purification. A variety of strategies improve the photocatalytic efficiency from dispersed solids to second-generation photocatalysts (chemically doped and physically modified by dispersed solids) achieving better spectral sensitivity and photoactivity.
\nPublished results indicate better results with inert materials as zeolite (TiO2-FeZ) or TiO2 (SnS2). Zeolite showed high surface area but lower bandgaps in comparison with TiO2 powder and decreases the efficiency following the FeZ and SnS2 content [5]. The H2O2 addition enhanced solar-driven degradation and solar/TiO2-FeZ with higher decomposition rates followed by solar/TiO2-SnS2 with 51%, TiO2 P25 with 41.3%, and finally 34.4% for TiO2-SnS2/H2O2. The pseudo-first-order kinetics was the driving for solar photodecomposition with the higher rates for solar/TiO2-FeZ/H2O2 with K1 = 15.39×10−3 min−1 with more than twice of the solar/TiO2-SnS2 rate and three times more than solar/TiO2, solar/TiO2/H2O2, and solar/TiO2-SnS2/H2O2.
\nA challenge to be overcome is the presence of suspended solid particles in the reaction environment; they reduce the solar irradiance and the photocatalysis efficiency. The solid deposition over an inert material with the high surface area can fix and stabilize the solid particles. The engineering materials with transitional metals in surface deposition are a solution, like carbon nanotubes, dye sensitizers, conductive polymers, graphene oxide, and other semiconducting materials. The semiconductor supporting material has to avoid the agglomeration formation.
\nThe commercial TiO2 (P25) is the most common catalyzer in spite of lower azo decomposition; Ag2O is another active photocatalyst with promising results for azo photodecomposition. Nevertheless, the use of Ag2O in azo mixture showed faster degradation with better decomposition results due to the synergetic oxidation effect.
\nThe scavengers’ presence reduces the photodecomposition effect in water suspension. The ions HCO3−/CO32−, SO42−, Cl−, and NO3− showed inhibitory effects toward the hydroxyl radicals generated by AOPs.
\nThe natural organic matter (NOM) presence showed a synergistic effect increasing the E2 degradation, such degradation produces other radicals. Published studies relate to the degradation of the NOM species of humic acid and fulvic acid applied in solar/photodegradation resulting in all organic compounds that were mineralized after 150 min of treatment. The formed E2 intermediaries during the treatment do not possess any estrogen effect.
\nThe addition of noble metals as Au and Ag increases the visible light ability with the manipulation of the optical properties and microstructure combined with inorganic and biotemplates as nanostructures of micelles, as spent tea leaf, trimethylammonium bromide, and metal nanoparticles improve the photodegradation efficiency. The use of Co3O4 spinel nanoparticles, NiO nano-sticks, the binary metal oxide nanocomposites of CeO2/Y2O3 and NiO/MnO is effective in dye degradation of RhB, MB, MO, and rose bengal dye.
\nBiOCl has superior efficiency as photocatalysts due to the interlayer-specific structure of [Bi2O2]2+ with double Cl− ions where the photogenerated e− and h+ pairs are separated. The BiOCl microspheres synthesized via ethylene glycol are mediated by a solvothermal method with the visible light drive. The crystallinity, surface area, and optical and electronic properties of BiOCl samples depend on the reactant concentration with the benefit from the exposed (110) face and oxygen vacancy; BiOCl allows a maximum CBZ degradation efficiency of 70% after 180 min under visible light illumination. The kinetic rate constant (k) of CBZ degradation in synthetic BiOCl (0.0935 min−1) was 52 times higher than the ordinary BiOCl (0.0018 min−1). The improved photocatalytic activities for BiOCl were attributed to the combination of enhanced carbamazepine adsorption, increased with visible light drive and efficient separation of photogenerated e− and h+ pairs. The trapping experiments of radicals and holes showed the ˙O2− and h+ as dominant active species in the process and the most important; the BiOCl performance was also efficient in natural water without any additive. The experimental findings indicate the BiOCl photocatalysis is an efficient and cost-effective technology for recalcitrant pharmaceutical contaminant removal.
\nThe higher development of the textile industry caused the emission of large quantities of dye wastewater with high chemical stability in surface water resources all over the world; the effect is the severe environmental damage and problems worldwide.
\nThe advanced oxidation process (AOP) is in situ treatment technology and is widely applied on persistent, toxic, and poorly biodegradable organic pollutants.
\nThe improvement of photodecomposition process reduces the by-products’ and final products’ toxicity. The biological methods are insufficient to decompose such stable organic compounds and chemical molecules. Industrial wastewater is a mixture of various components with high complexity and diversity. The interactions among the different components can occur, weakening and even blocking the photodecomposition effect. The heterogeneous photocatalysis is taking considerable attention to the textile wastewater treatment due to its low cost and low secondary by-product pollution. The disadvantages are the low quantum efficiency and slow reactant rate using the most common semiconductor, the TiO2. The use of Ag2O with a very narrow bandgap of 1.3 eV allows applying a wide range of the solar spectrum with an increase in the photodecomposition rate. The literature describes a photodecomposition process with last about 120 s to degrade the Methyl orange under UV and Visible light and 40 min with only Infrared light.
\nThe application of the visible light photodecomposition in a dye mixture of methylene blue (MB), methyl orange (MO), and rhodamine (RH) indicates the MO as the more stable azo compound than the other organic pollutants due to the aromatic groups attached at the end of the azo bond. Despite this fact when the light-driven photodecomposition uses Ag2O as a catalyzer, it was the fastest and easiest decomposed compound. Published results indicate the visible light photodecomposition with Ag2O with the elimination of 90.2% of MO, 96.5% of RH, and 99.5% of MB using 4, 50, and 20 min, respectively.
\nIn dye photodecomposition in acidic conditions, some peaks with higher absorbances change some wavelength numbers indicating the chemical structure transformation from hydrazone to azo form. Despite such change, the concentration still reduces with time, and the complete degradation of the dye mixture finished in 18 min at pH 3 and 15 min at pH 5. The observation of 90% of the total mineralization was after 50 min under acidic conditions and 40 min under neutral and alkaline conditions.
\nThe dye mixture showed better decomposition results than only a single one; a synergistic oxidation phenomenon occurring in the photodegradation of the dye mixtures with Ag2O indicates no apparent photoreduction of Ag2O, and the solid material still consisted of pure Ag2O and can be used consequently as a high-performance catalyst for dye wastewater treatment.
\nThe carbamazepine (CBZ) is widely used as antiepileptic and mood stabilizer, worldwide, and the consumption is about 1014 ton year−1. The CBZ shows high stability and low biodegradability, and the removal percentage for conventional water treatment process is less than 10%. Almost all consumed CBZ is discharged as sewage in the water environment causing adverse effects on the surface water quality, ecosystem, and human health [6].
\nThe CBZ photodegradation process catalyzed by TiO2 and ZnO nanoparticles generates three derivatives: carbamazepine epoxide, acridine, and acridone. TiO2 is effective in degrading CBZ and carbamazepine epoxide. Considering the acridine and acridone, no significant differences were found between those two catalysts. The CBZ and carbamazepine epoxide photodegradation was affected by pH (especially in the presence of TiO2 as NPs) and natural organic matter [7]. In contrast, the acridine and acridone photodegradation was not affected by pH and organic matter. The TiO2 and ZnO catalysts present contrasted efficiency on CBZ decomposition when compared with its derivatives and the effect of environmental parameters on the CBZ as photodegradation efficiency of the derivatives’ presence cannot be predicted based only on the parent molecule (CBZ) behavior. The indication of higher degradation efficiency was for higher initial concentrations with a degradation rate of 52 times greater than for lower initial concentrations, and the kinetics corresponds to pseudo-second-order.
\nThe negatively charged CBZ is due to the presence of the amide bond, and the exposed surface of the semiconductor positively charged enhances the surface adsorption processes. The proton adsorption also improves the effectiveness of the catalyzed reaction under visible light radiation, promoting long-term stability and the catalyst reusability. The visible-light-driven photocatalytic activity enhancements are the synergetic effects, including a large absorption capacity, the promotion of the light harvestability, and high separation efficiency of photogenerated e− and h+ pairs.
\nThe use of some scavengers as AgNO3− for e−, HCOONa for h+, and butanol for ˙OH (radical) and the N2 purging to detect the function of O2 elucidate the main active species involved in the photodegradation process. The addition of NaHCO2 reduces the decomposition in 18% as an indication of the importance of the h+ radical in the reaction. The addition of n-butanol or N2 purging showed no different reaction efficiency; this effect implied the addition of O2 produces the ˙O2 radicals and increases the CBZ degradation confirming the domination of the degradation process by oxidation step with the ˙O2− radical generation and partly by the direct h+ oxidation process.
\nThe CBZ (A) oxidation reaction results in four intermediaries B, C, and D. The compounds B, C, and D are intermediaries with high decomposition rate (Figure 1). The attack of the CBZ oleofinic bond in a central heterocyclic ring forms compound B. The generation of radicals and the oleofinic bond of CBZ decomposed in C and D. The compound C uses a ring contraction reaction followed by an intramolecular cyclization mechanism resulting in intermediate compound F. Finally the formation of compound G was by intramolecular cyclization mechanism of compound D.
\nThe Carbamazepine degradation by-products.
The primary concern about the pharmaceutical photodecomposition is the possible formation of the toxic intermediate and by-products. The literature cited as possible toxic intermediates for CBZ photodecomposition, the CBZ-10, 11-epoxide, and acridine. The photodecomposition optimization indicates BiOCl removed about 2–3 mg L −1 of CBZ after 150 min of solar irradiation, more than 78% of no toxic intermediaries. Always there will be the possibility to keep the photodecomposition reaction for a longer time of solar radiation. The recommendation is the use of adsorbent material, and after the absorption, removing the pharmaceuticals from the reaction media, and the photodecomposition reaction can keep continuing until mineralization and proper discharge.
\nThe 17β-estradiol (E2) is the most natural estrogenic hormone occurring in sewage-polluted waters and also an intermediate key in the industrial synthesis of other estrogens. It is frequent in natural water environment with the high potential to hormonal disruption pathways in wildlife even in low nanogram concentrations. Recently, it was added to the watch list of priority substances in the EU Water Framework Directive. Many research projects use E2 as representative of emerging pollutant (EP) for water tertiary treatment study and photodecomposition improvement [8].
\nThere are many studies of immobilized TiO2-based composites, TiO2- and iron-exchanged zeolite of ZSM5 type (TiO2-FeZ), or another semiconducting material (TiO2-SnS2) and active solar photocatalysts. The solar-driven photocatalytic parameters as pH values, H2O2 concentration, and composite formulation, on the effectiveness of E2 degradation, allow the calculation of the surface modeling. The solar/TiO2-FeZ/H2O2 process achieved E2 degradation by 78.1%; it was higher in comparison with the reference process of TiO2 P25 with 41.3% of remotions and the solar/TiO2-SnS2 and solar/TiO2-SnS2/H2O2 processes with 51.0 and 34.4%, respectively. The E2 degradation by solar/TiO2−FeZ/H2O2 enhances in the presence of NOM, as real water constituents. On the other hand, the nitrates and carbonates presence show an inhibitory effect.
\nThere are many studies using visible photodecomposition of the hormones such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17β-ethinylestradiol (EE2) with the concentration in the interval of 0.004–5.00 mg L−1 using TiO2 in porous sheets, microcrystalline glass plates, P25 suspension, UVC/H2O2, solar Fe II, and ozone 30 mg L−1. The process usually includes UV and visible light from 280 to 400 nm and full spectrum from 200 nm to 30 μm, and LED lamp with the lines at 382 nm, 254 nm, and 254 high intensity. The kinetics of such process was from 550×10−3 min−1 (pH 5) to 3.4 min−1 (20°C) with and without H2O2 with solar light 86% in 60 min and 63.9% in 12 min. The hormones enter in the water environment mainly from the sewage discharge and the effluent of sewage treatment plants. The EE2 is the main composition of the oral contraceptives, and E1, E2, and E3 occur naturally. The estrogenicity order is EE2 > E2 > > E1>>>> > E3. Most of the hormones show photodegradation over immobilized TiO2 sheets under UV-LED irradiation or solar radiation following the first-order kinetics, faster at pH 4.
\nThe most efficient hormone decomposition is the combination of the photodecomposition and ozonation using TiO2-coated glass with LED irradiation on λ = 382 nm. The application of such a dynamic process removes about 22 chemical priority substances and contaminants of emerging concern, including the resistant bacteria and genes after discharge in surface water resources. There was no compound with estrogen effect formed after the reaction; the process improves the removal efficiency of microbial loads.
\nThe improvement of the EE2 degradation, clofibric acid, nonylphenol, and carbamazepine was slightly by the use of ultrasound combined with ozonation and photodecomposition. The removal percentage increases with pH, but at higher pH also showed an adverse decomposition effect.
\nThe test in vitro can detect estrogen receptor agonists and antagonists. However, the estrogen-disrupting compounds do not only act on the estrogen receptor but also inhibit enzymatic catalysis reactions and the transport of hormones in the blood or the hormone production. Only in vivo analysis with a full spectrum of possible mechanisms can be identified in a whole organism.
\nThe photocatalytic degradation of 17α-ethynylestradiol (EE2) allows the identification of 12 intermediates. The decomposition efficiency of EE2 decreased at pH 3 and in the presence of methanol at pH 7. The study proposes three degradation pathways: (1) the transformation of the phenolic ring, (2) the photocatalytic degradation of the aliphatic carbon linked to the aromatic ring at pH 7, and (3) the isomerization of EE2 in the presence of methanol at pH 7. The EE2 photocatalytic degradation is pH-dependent and at pH of 3, 7, and 10 without methanol addition were 63, 72, and 99%, respectively. The pH increase facilitated the formation of hydroxyl or hydroperoxyl disubstituted intermediates. In aqueous solutions, aliphatic carboxylic acid decarboxylation is preferable to the corresponding reduced hydrocarbons; some published results indicate the favored pathway for dicarboxylic acid mineralization is the decarboxylation resulting from the photo-Kolbe reaction [Eq. (3)]. The responsible for the formation of intermediary compounds is the attack of the ˙OH and ˙OOH radicals:
\nFirst was the oxidation of the EE2 and then the reduction to EEO in the presence of h+ and electron, formed by the methanol radical as described in [Eqs. (4)and (5)]. Under acidic conditions, there is the inhibition of the radical methanol production. Alternatively, under alkaline condition, very little free h+ existed in the solution, and the formation of EEO only occurred under neutral pH conditions:
\nThe photodecomposition of methanol acts as an ˙OH scavenger and retards the photocatalytic degradation of EE2 reducing for only 8, 11, and 15% at pH of 3, 7, and 10, respectively, with methanol presence. Published researches indicate just the addition of a small amount of methanol or toluene inhibited the photocatalytic oxidation.
\nThe formation of the intermediate products was in low mineralization rate and low removal efficiencies, resulting in total organic carbon less than 20% with the occurrence only of the phenolic ring transformation during the reaction.
\nThe acetaminophen (ACE) is one of the most widely used analgesics and antipyretic drugs and is one of the top pharmaceuticals prescribed in the USA or England, being China the second ACE manufacturer. It is present in surface water bodies as a result of 60–70% of human excretion via urine after medicine consumption [9]. The ACE water detection in the USA and Europe on sewage treatment plant and their effluents was in concentrations of 10 to 65 μg L−1. In population, such water pollution may lead to hepatic necrosis caused by its transformation to N-acetyl-benzoquinone imine upon oxidation, which can hydrolyze to 1,4-benzoquinone; both by-products are toxic of significant concern.
\nThe antipyrine (ANT) detection is common in sewage and polluted surface water. Such anti-inflammatory compound is a nonsteroidal and antipyretic drug which enters in the aquatic environment after use. Environmental accumulation causes adverse human health effects and affects aquatic life. The concentrations of emerging contaminants in the influent and effluent from wastewater treatment plants showed the concentration of ANT was relatively low (about 0.04 mg L−1), and about 68.5% escaped from conventional activated sludge wastewater treatments, allowing to reach surface water resources.
\nTiO2 is still the widest semiconductor used for ACE and ANT photodegradation due to its low cost, nontoxicity, and chemical stability. Nevertheless, the difficulty of TiO2 recovery after the reaction and the relatively limited adsorption capacity with low surface area and porosity are some of the technological disadvantages.
\nThere is no acetaminophen degradation versus time under solar irradiation in the absence of photocatalyst after 6 h; the removal using different photocatalysts without light irradiation also can be considered negligible (lower than 6%). The sensitization of TiO2 by the carbon material titanium nanotubes and C-Ti showed a significantly higher activity than the non-modified Ti. However, the acetaminophen removal remained below 70% after 4 h of illumination. The lack of anatase crystal structure is responsible for the small photoactivity; the amorphous titanium is not active. The air calcination at above 300°C had a beneficial effect on C-Ti catalyst; the calcined samples at 400 and 500°C allowed the total acetaminophen conversion in only 1 h. The crystallization of TiO2 explains the effect into anatase (with a bandgap energy of 3.12 eV), which is the most active titanium phase for photocatalytic applications; at the lowest calcination temperature tested (300°C), there is no significant crystallization of anatase.
\nPublished results indicated the pseudo-first-order rates were 0.13, 0.19, and 0.38 h−1 for complete photodecomposition of antipyrine, acetaminophen, and ibuprofen, respectively. Regarding with the properties of the C-TiO2 semiconductor materials, the structured defects caused by the C incorporation (as substitutional anion or interstitial cation) are the responsible for the photocatalytic activity of these materials, acting as trap centers or the photogenerated charges.
\nThe investigation of the role of the reactive oxygen species used selected scavengers as isopropanol, the OH radical scavenger; the addition reduced the degradation rate. The OH radicals are very reactive, and the reduction by the scavenger inhibited the degradation rate, an indication of the involvement of the OH radical production in acetaminophen photodegradation. Some references mentioned the O2− radicals attack preferentially organic compounds with aromatic rings (as ACE aromatic ring).
\nBPA is present in polycarbonate plastics and epoxy resins such as plastic water bottles, many food containers, water pipes, medical equipment, dental sealants, thermal receipts, electronics, and toys [10, 11]. The compound is toxic for the reproductive system because it mimics the human hormone estrogen. BPA production in the world exceeds 3 million tons per year. The BPA presence in the environment results in adverse effects on organic metabolism such as reproduction, metabolic systems, organism development, neural networks, and cardiovascular irrigation. The use of BPA is mostly as a plastic monomer, the monomer for epoxy, polycarbonate plastics, and epoxy resins. About all studied environment compartments have in some degree any content of BPA including air, water, and soil [9]. Published works indicate a connection between the BPA exposition and high levels of anxiety, depression, hyperactivity, and inattention. The BPA detection in organic body demonstrated its presence in blood, urine, cardiovascular diseases, diabetes, and obesity, posing a risk for fetal development and reducing the basal testosterone secretion. There is also a combination of BPA presence and other similar compounds in environmental compartments, food and food containers, and also in humans’ milk, urine, and placental tissue; this is evidence of the possible global exposition.
\nThe use of spiked sodium hypochlorite removes BPA from real water samples at 50 mg L−1 for 10 min with a removal percentage of 99%. In spite of the formation of chlorinated by-products during the process with some toxic side effects. The advanced UV/H2O2 was able to remove 85% of the initial BPA at 240 min. However, a high level of the H2O2 is essential to execute such BPA removal process. The presence of carbonates and bicarbonates reduces the UV/H2O2 efficiency due to scavenging radical’s formation. The ozonation is an excellent option but is extremely costly and is suspected to form intermediates which carcinogenic nature [12].
\nThe concentration = 20 mg L−1, TiO2 dosage = 0.5 g L−1, initial pH = 7.0, and temperature = 25°C followed the first-order model. The possible mechanisms for BPA photodegradation are in the following sequence:
Initial photooxidation, proceeded by electrophilic hydroxyl radicals (˙OH), produced the photocleavage of electron-rich carbons in the phenyl groups of BPA or the excited BPA molecules attacked by hydroxyl radicals (˙OH) forming phenol radicals (˙C6H4OH) and isopropylphenol radicals (˙C(CH3)2C6H4OH) [Eq. (6)].
The hydroxyl radical (˙OH) converted to p-hydroquinone (HOC6H4OH) and isopropylphenol radical allow the formation of the 4-hydroxyphenyl intermediates such as p-hydroxybenzaldehyde, p-hydroxyacetophenone, and 4- hydroxyphenyl-2-propanol [Eq. (7)].
The oxidation reaction of the single-aromatic intermediates through ring-opening reactions results in aliphatic acids.
The pH values decrease in aqueous media gradually, and the intermediates were entirely mineralized of forming carbon dioxide (CO2); the oxidization of the aromatic intermediates occurs subsequently through ring-opening reactions into aliphatic acids [Eq. (8)].
\nThe UV-A radiation (λ = 365 nm) with TiO2 P25 result in complete removal after 180 min in first-order kinetics with Kap = 20.3 10−3 min−1, with 5 mgL−1 as initial concentration and 200 mg L−1 as the addition of the TiO2 P25 [3]. The complete mineralization of BPA was at pH 3 after 120 min; intermediates formed at higher pH values are most stable and therefore difficult to be decomposed and mineralized [13, 14]. The TiO2 sources as anatase, rutile, brookite, and their mixtures indicate the lower uptakes with less than 6% were over the raw TiO2. The anatase and rutile TiO2 mixtures obtain 94 and 80% of removal percentage, respectively, higher than the obtained for the anatase, rutile, and brookite single composition. The mixture anatase/TiO2 brookite reached the complete mineralization, and the mixture of anatase and rutile was fivefold slower than the commercial TiO2 P25 with 3 min of complete removal percentage. All products showed less toxicity and estrogenic activity than the initial BPA [15, 16].
\nThe nano-TiO2 facilitates the degradation under sunlight radiation with O2−2 as dominant oxidizing species. The better degradation efficiency was at pH 2.6, and correspondent with the pseudo-first-order without nanoparticles was one or two orders small with λ = 365 nm of radiation using pristine nanotubes [10].
\nThe higher results were with anatase particles enhanced by the presence of rutile and preferential oxidation of reaction intermediates on brookite. The toxicity removal was for TiO2 supported on a glass fiber with UV light radiation λ = 365 nm in batch and stirrer tank.
\nThe use of a wide range of metals as the lanthanum-doped TiO2 was able to degrade BPA completely under acidic conditions within 2 h; the result is far better than undoped TiO2.
\nThe oxidants’ addition enhances efficiency, as H2O2 and FeII. The H2O2 interacted with Fe-2þ ions to produce hydroxyl radicals. The Fe doped into the TiO2 decreased the bandgap, which also enhanced the BPA photodegradation. The addition of 5 mol% of Fe in TiO2 successfully removed 10 ppm of BPA in 2 h. The experiment with nitrogen doping on TiO2 indicated the N-doped TiO2 enhanced the photodegradation of BPA compared to conventional TiO2. Likewise, the iodine-doped TiO2, upon exposure to UV and visible irradiation, showed increased degradation efficiencies for BPA up to 93 and 100%, respectively.
\nThe 4-chlorophenol, phenol, methylene blue, rhodamine B, and acid orange presence reduces the surface area for the volume and enhances the oxygen vacancies in TiO2 surface matrix by N-doping and F-doping, and surface acidity is also improved by F-doping, and visible light adsorption by N-doping of nitrogen-fluorine-codoped TiO2 photocatalyst. The use of simulated sunlight lamps promotes the generation of the active species for BPA decomposition as O2−2.
\nThe production of TiO2 PEG started with the mixture of titanium ethoxide and ethanol solution followed by PEG addition; the suspension aged for 24 h and calcined for 2 h at 400°C. The optimization of the TiO2 production by sol–gel polyethylene glycol (PEG) includes the variation of the PEG molecular weight, the mass percentage, the pH, and the TiO2 dose. The visible light BPA degradation rates for TiO2 with PEG200 (10%), PEG600 (5%), and PEG3500 (0.5%) at pH 4 were 2.07, 3.01, and 2.90 h−1, respectively. After 12 h of reaction, the total organic carbon measurements indicated a small BPA degradation with the reduction of TiO2, with PEG200 (10%), PEG600 (5%), and PEG3500 (0.5%) of 38%, 56%, 65%, and 64%, respectively. The content of hydroxyl radicals in TiO2, with PEG200 (10%), PEG600 (5%), and PEG3500 (0.5%), was 50.1, 88.6, 78.8, and 75.1 μM, respectively. Allowing the conclusion about the PEG addition on the TiO2 preparation increases the photoactivity, and the optimal PEG addition percentage varied with PEG molecular weight and content.
\nThe antibiotic removal and other anthropogenic compounds by adsorption are the major chemical process of deactivation, and it is important to reduce the toxic properties and to restrict their transport into water systems. The adsorbent material in combination with titanium dioxide or titania (Ti) showed better results using adsorption combined with photocatalytic activity with low cost, nontoxicity, and high stability in aqueous solution. Nevertheless, the disadvantages of TiO2 powders are the low surface area (Degussa P25 = 35–45 m2 g−1, anatase < m2 g−1); the anatase bandgap of 3.20 eV uses only a small UV fraction of solar light, about 2–3%, with the high cost of the TiO2 powder separation and recovery from treated wastewater [17, 18].
\nThe removal of tetracycline (TC) by TiO2 and the mesoporous binary system TiO2-SiO2 was tested, and it is strongly dependent on pH, with increasing pH it decreases. The electrostatic forces and H-bond formations mainly between amide, carboxylic, and phenolic groups of the antibiotic and the functional groups of TiO2 are also important. The adsorption capacity increases in the following order TiO2 < TiO2-SiO2 (high surface area). The photodegradation rate is affected by pH 7 or lower; the related mechanism is to OH˙ radicals—the composed titania-silica act as an adsorbent and alternative photocatalyst for pollution control.
\nAll processes result in high degradation efficiency of the β-lactam antibiotic (oxacillin). The TiO2 photocatalysis, the sonochemistry, the photo-Fenton process, and electrochemistry (with a Ti/IrO2 anode in sodium chloride solution). The processes are successful ,but three of them involve the hydroxyl radical generation and the degradation pathways, by-products’ generation, and the mineralization degree. The electrochemical process performed the decomposition by chlorine production and its attack when the sonochemical and photo-Fenton systems have the production of the hydroxyl radical.
\nThe high oxidant species with low selectivities, such as hydroxyl radicals (E = 2.8 V), are formed in advanced oxidation processes (AOPs) and the active chlorine electrogenerated through dimensionally stable anodes (DSA). The irradiation of an aqueous suspension of TiO2-semiconductor with UV light produces hydroxyl radical.
\nThe TiO2 photocatalysis combines the holes’ generation with the attack of the hydroxyl radicals. The by-product analysis indicated the four oxidation processes exhibited the oxidation of the thioether radical followed by the amide breakdown and finally the β-lactam opening ring. However, the antibiotic decarboxylation was only a result of the TiO2 photocatalysis, explained by the holes’ production with direct oxacillin oxidation [Eqs. (9)–(15)]. The electrochemical process promotes the oxacillin isomerization pathway, while the photo-Fenton and TiO2 photocatalysis treatments showed hydroxylation at the aromatic ring. The different degradation routes generated different mineralization extent and efficiency [19].
\nThe total organic carbon measurements in TiO2 photocatalysis and the photo-Fenton system were 90 and 35%, respectively, and with just the sonochemical and electrochemical treatments, the pollutant was not mineralized.
\nThe presence of the ultrasonic waves in aqueous solutions is another way to form hydroxyl radicals [Eqs. (16)–(19)]. Singular conditions of temperature (5000 K) and pressure (1000 atm) induce the formation of ultrasonic microbubbles which violently collapse in water, and the dissolved oxygen is dissociated to produce hydroxyl radicals.
\nThe reaction of Fe (II) with hydrogen peroxide produces radicals. The reduction of Fe (III) in aqueous media results in Fe (II) by the action of UV–Vis light and extra hydroxyl radicals in a photo-Fenton process.
\nThe electrochemical oxidation which soluble chloride results in chloride anions on the Ti/IrO2 anode [Eq. (20)] which the generation of hypochlorous and hydrochloric acids [Eq. (21)]. The dissociation of the hypochlorous acid forms hypochlorite [Eq. (22)]. Chlorine, hypochlorous acid, and hypochlorite are active species, and they are very dependent on the pH values. The predominant species at pH lower than 3 is Cl2 (E = 1.36 V), in the range of pH 3 to 8 is HClO− (E = 1.49 V), and at pH higher than 8 is OCl− (E = 0.89 V).
\nThe knowledge of the oxidation routes in water treatment can optimize the process and establish a pollutant degradation mechanism and pathways: the experimental parameters and the matrix influence on oxacillin (OXA) on electrochemical oxidation and TiO2 photocatalysis. Here is no report about photo-Fenton and sonochemical processes’ removal of oxacillin from polluted water.
\nThe sonochemical process degraded the antibiotic and generates solutions without OXA entirely; the antimicrobial activity showed an excellent performance and adjustment to exponential kinetic-type decay, and the degradation rates were 1.4 μM min−1 for OXA, 1.3 μM min−1 for OXA with mannitol, and 1.4 μM min−1 for OXA with calcium carbonate. The possible OXA sonic degradation mechanism was proposed based on the evolution of the by-products and their chemical structure [Eqs. (16) and (17)] [20].
\nThe ultrasound application over 120 min removed OXA compounds and eliminated its antimicrobial activity. However, the mineralization was not reached even after (360 min). The mineralization of the oxacillin under previous water sonication reduce the microbial activity even with non-adapted microorganisms from a municipal wastewater treatment plant. The results showed the sonochemical transformation of the initial pollutant into biotreatable substances even using the typical aerobic biological system.
\nThe iron ions present in the matrix affect the antibiotic (OXA) decomposition, with improvement in degradation, and the inhibition was by the addition of pharmaceutical excipients of a commercial formulation or by inorganic ions of natural mineral water. The best performances were achieved at natural pH 6.0 using 2.0 g L−1 of TiO2 with 150 W of light intensity. The OXA photodegradation process showed a Langmuir-Hinshelwood kinetic model. The achievement of the total antibiotic removal was after 120 min, with 100% of mineralization. Finally, the identification of five by-products elucidates the degradation routes with a proposition of an antibiotic degradation (Figure 2).
\nOxacillin photodegradation pathway.
The addition of 2-propanol as a scavenger, 25 times higher than the antibiotic, produces a slight reduction (about 3%) in the antibiotic removal rate, and the concentration of 645 times higher than the OXA causes 30% of inhibition. The result indicates the hydroxyl radicals present at the solution may contribute to the degradation of the antibiotic molecules. The essays in the presence of KI concentration 25 times higher than the OXA concentration showed 75% of inhibition. The use of equimolar KI concentration resulted in a 13% reduction. The indication of the degradation rate is in association with adsorption reduction of the catalyst surface. Consequently, the degradation of OXA by heterogeneous photocatalysis seems to occur mostly at the catalyst surface and via two routes: by the radical attack and photo-Kolbe mechanism.
\nThe UV irradiation of antibiotic molecules generates excited states and the detection of such reactive species by an indication of their ability to oxidize luminal reagent. Such compound uses the electronically excited aminophthalate, which decays to the ground state releasing electromagnetic radiation in the visible zone of the spectrum—the application of the method to penicillin G, nafcillin, azlocillin, and neomycin dissolved in water. The intensity of the luminal chemiluminescence emission (CL) was proportional to the radical concentration and dependent on the molecular structure of the drugs. Under the optimized conditions, the penicillin and azlocillin were the most susceptible to photodegradation, while neomycin sulfate was less affected by the UV light. The addition of a hydroalcoholic extract of rose petals to antibiotic solutions reduced the CL intensity, indicating the alcohol act as a scavenger of free radicals of the irradiated drugs.
\nIn the application of the solar photodecomposition in the dye mixture of RH and MB, the result is similar with a single dye, and the adsorption balance remains unchanged with no interaction between RH and MB and their by-products. Nevertheless, the addition of MO in the mixture accelerated the photodecomposition significantly. The decomposition of RH/MO and the MB/MO reduced the decomposition time in 13 and 10 min, respectively [21]. Such an effect is positively dependent on the MO concentration; the application of Eq. (23) to the Langmuir-Hinshelwood model
\nwhere Co and C are the initial and t measured concentrations, t is the reaction time, and k are the first-order-kinetic reaction constant, calculated using log(C/Co) vs. t.
\nThe kinetics k rate indicates higher values for binary systems with MO component. When the MO concentration reaches a constant value, the reaction depends on the photocatalyst mass. The preparation of ternary mixtures with RH or MB and different azo species as orange G (OG), methyl red (MR), and Eriochrome Black T (EBT) clarifies the reaction mechanism dependency. The synergistic effect after azo compound addition is confirmed, and the time decreases about 23 and 13 min for RH and MB, respectively.
\nThe photodecomposition acceleration effect is positively proportional to the azo dye concentration and no longer changes after reaching a specific equilibrium value. The comparison with the k values indicates higher rates for EBT > OG > MO > MR; the sequence is in agreement with the polarity of the four azo dye compounds. The azo compounds in the experiments were acid orange 7 (AO7), Congo red (CR), and amido black 10B (AB10B). The results were the same obtained for the other azo compounds confirming the synergistic oxidation effect.
\nThe possible decomposition mechanism includes the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) as a type of molecular frontier orbitals. Roughly, the HOMO level is for organic semiconductors, the equivalent of the valence band for the inorganic semiconductors, and the LUMO is the equivalent of the semiconductors’ conduction band. The energy difference between them is called a HOMO-LUMO gap. The energy gap between the two frontier orbitals can be used to predict the strength and stability of the transition metal complexes and also their colors in solution.
\nThe simulated changes of the azo molecule methylene orange (MO) in molecular energy structure in the photocatalyst Ag2O surface indicate the LUMO composed by the atomic orbital contributions of benzene, nitrogen, and the nitrogen double bond, and the HOMO is a result of the paired electron orbits of negatively charged oxygen atoms in the sulfonic group.
\nAfter the MO adsorption in Ag2O surface, the electrons on the surface of the Ag2O can transfer to the molecules’ LUMO and participate in feedback coordination at the bond. The C▬N bond links the benzene ring to the azo group, and it becomes longer on adsorption. Such coordination effects weaken the π bonding conjugated over the whole molecular skeleton and start to be attacked by photogenerated electrons or radicals, with the presence of active fragmented intermediates. The resultant intermediates caused subsequent acceleration of azo bond cleavage also for non-azo organic cleavages due to their oxidative activity.
\nThe infrared results of the MO adsorbed in Ag2O indicate a shift for N〓N bond from 1392 to 1396 cm−1, for -SO3− was observed from 1314 and 1121 cm−1 to 1320 and 1120 cm−1, and for C▬N bonds from 817 and 749 cm−1 to 819 and 751 cm−1. Another shift for Ag2O was from 650 to 705 cm−1. They are the confirmation of the sulfonic group acting as an electron donor and Ag2O as an electron acceptor, weakening the conjugated π bonding and activating the N〓N and C▬N bonds confirming the adsorption of MO by Ag2O. The MO peaks disappear including the sulfonic group and the azo bond after 2 min of irradiation, suggesting to be the first degraded group. The suspension started to be colorless, and the peaks assigned to be C〓C bond start to appear after 5 min of exposition, an indication of the benzene rings broken. There is no observation of MO chemical structure after 10 min of light irradiation; it is an indication of the complete dye decomposition. The azo bond or C▬N bond connected with the benzene rings broken first and produces active intermediates which accelerate the degradation of non-azo organics followed by the benzene ring broken.
\nGenerally, the C▬N bond linked to the benzene ring and the azo group of the MO is the first target for the free radicals produced by the photocatalyst. The possible intermediates are aminobenzenesulfonates, aromatic amines, phenolic compounds, and organic acids. The final products, also called mineralization, are N2, CO2, H2O, SO4−, NH4−, and NO3−.
\nThe presence of photodecomposition intermediates to the photodegradation process of RH and Ag2O resulted in faster decomposition. The phenol addition reduces the decomposition time to 8 min, the sulfanilic acid in 10 min, and the benzoquinone in 30 min. However, the addition of acetic acid and hydroquinone slows the RH photodegradation. Finally, the MO molecule can be decomposed into holes or radicals generated over Ag2O and break the C▬N bonds releasing the benzene containing the intermediates such as benzene sulfonate and N-N dimethylaniline. The next intermediate products were hydroxybenzenesulfonate activated by excited Ag2O and diffused in solution accelerating the degradation of organic compounds in the Ag2O surface.
\nThe description of the acceleration of the photodegradation process with azo dyes’ presence in a mixed dye solution is a synergy between the azo structure and Ag2O with the generation of aniline, sulfanilic acid, and phenol compounds which also accelerates the degradation of the non-azo compounds. The synergetic effect is beneficial for the Ag2O photodecomposition applicability to treat the ordinary real wastewater with a complex dye mixture.
\nEnvironmental sustainability demands the advance in water treatment and the use of lighting natural resources. Brazil has one of the most stable and intense solar irradiation in the word. It has to be used not only for energy generation purposes but also and mostly for water treatment, water quality polishment, and furthermore water disinfection. The chapter performs a comparison of different green technologies for water treatment as natural solar irradiation. The photocatalytic hydroxide radicals are the photodecomposition potent oxidants and react fast and unselectively with surrounding chemical species via radical addition, hydrogen abstraction, or e− transfer mechanisms. The transformation by-products of pharmaceuticals and EDC compounds (TBPs) with higher photodecomposition effectiveness ends up in complete mineralization with the production of CO2, H2O, and inorganic salts. The heterogeneous photocatalysis shows a strong dependence of the operating temperature, and the kinetics is usually dependent on the first step of the adsorption and the equilibrium modeled by Langmuir isotherms and Langmuir-Hinshelwood model. The first pseudo-order usually appears at the beginning of the reaction, just in the initial steps, and as the reaction proceeds, the intermediates’ production could interfere with the radiation incidence. There is a competition of the adsorption sites of the catalyzer surface between the pollutant and others adsorbed species; the pollutants start concentration is a limiting reactant step with mass transfer limitations in lower concentrations. The semiconductor TiO2 photocatalytic process has shown great potential as a low cost, environment-friendly treatment technology in degrading a wide range of pollutants with the formation of reactive oxygen species upon excitation of a semiconductor particle with light energy greater than the respective bandgap energy of the photocatalyst. The photocatalyst TiO2 has superior characteristics over others with wide bandgap energy which requires the UV light which is 3–5% of natural solar light. The application of a variety of strategies improved the photocatalytic efficiencies from photocatalysts as dispersed solids to second-generation photocatalysts (chemically doped and physically modified dispersed solids) achieving better spectral sensitivity and photoactivity. Many studies indicate the scavengers’ presence reduces the photodecomposition effect in water suspension. The ions HCO3−/CO32−, SO42−, Cl− and NO3− showed inhibitory effects toward the hydroxyl radicals generated by AOPs; the natural organic matter (NOM) presence showed a synergistic effect increasing the E2 degradation, such degradation produces other radicals. The application of the visible light photodecomposition in a dye mixture of methylene blue (MB), methyl orange (MO), and rhodamine (RH) indicates the MO as the more stable azo compound than the other organic pollutants due to the aromatic groups attached at the end of the azo bond. Despite this fact when the light-driven photodecomposition uses the Ag2O as a catalyzer, it was the fastest and easiest decomposed compound. Published results indicate the visible light photodecomposition with Ag2O with the elimination of 90.2% of MO, 96.5% of RH, and 99.5% of MB using 4, 50, and 20 min, respectively. The photodecomposition acceleration synergistic effect is positively proportional to the azo dye concentration and no longer changes after reaching a specific equilibrium value. The comparison with the k values indicates higher rates for EBT > OG > MO > MR; the sequence is in agreement with the polarity of the four azo dye compounds. The azo compounds in the experiments were acid orange 7 (AO7), Congo red (CR), and amido black 10B (AB10B). The results were the same obtained for the other azo compounds confirming the synergistic oxidation effect. The possible decomposition mechanism includes the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) as a type of molecular frontier orbitals. The description of the acceleration of the photodegradation process with azo dyes’ presence in a mixed dye solution is a synergy between the azo structure and Ag2O with the generation of aniline, sulfanilic acid, and phenol compounds which also accelerates the degradation of the non-azo compounds. The synergetic effect is beneficial for the Ag2O photodecomposition applicability to treat the ordinary real wastewater with a complex dye mixture.
\nThe author knowledge the National Council for Scientific and Technological Development (CNPq) and the Sao Paulo Research Foundation (Fapesp).
\n‘There\'s a way to do it better - find it.’
\nThomas A. Edison
\nEdison’s words are as relevant to today’s start-up scene as they were at the turn of the twentieth century when a flurry of electro-mechanical invention was the touchstone of innovation. In this sense, the innovator’s talent is therefore a combination of illuminating a problem or opportunity with insight and identifying an improvement with imagination. The improvement might be incremental or revolutionary. Edison embodied an approach that was built on systematic experimentation. Design Thinking holds the promise of reducing the time taken for this kind of deductive effort through creative collaboration. This chapter provides an overview of how Design Thinking has evolved and how the stages of convergence and divergence can be harnessed to enable non-designers ideate effectively.
\nDesign Thinking (DT) has developed from its academic roots in the 1970s into a widely adopted business-critical capability today [1]. The value of DT continues to diffuse through ever-increasing numbers of innovation agencies and consultancies, aided by a number of do-it-yourself toolkits that have been devised by high-profile design organisations such as LUMA and IDEO. The popularity of DT, within many fields, has embedded the notion that design is a practical means to help drive innovation (at the level of new ideas and concepts) as a distinctive and human-centred approach that rivals traditional marketing-led and scientific/engineering strategies. The popularity of ‘design-led’ organisations, the visibility of high-profile advocates including Jonny Ives, a growing awareness in the media and prevalence of an agile, diverse, empowered and lean oriented workforce have all contributed to DTs notoriety.
\nDT is itself an innovation and one that ‘productises’ the problem-solving strategies creatives apply when envisioning new experiences, products and services in three ways. Firstly, through advocating a human-centred design methodology based on research and iterative solution development. Secondly, through a defined and distinctive (if not unique) mindset of creative thought cultivated in art and design schools. Lastly, it embodies a set of traditional applied practices and principles that span the diversity of design of new products and services from the archaic (drawing) to the modern (ethnography).
\nThe notion that designers are ‘futurologists’ in speculating about what could be is a strong current in the literature, as is the idea that design is about realising how things ought to be as utopian endeavour. Buchanan [2] argues that DT can be used to tackle ‘wicked problems’ that defy deductive thinking or logical progression from problem to solution. Rittel and Webber [3] coined this phrase ‘wicked problems’ to describe the kind of intractable issues where ‘the problem is not understood until after the formulation of a solution’ [4] that are amenable to creative strategies.
\nUnpicking the kinds of pithy problems (e.g. climate change) typified by fuzzy or wicked problems and creating good solutions to them is, so the rationale for DT suggests, best done by reframing (via provisional concepts and iteration) rather than applying sequential problem-solving techniques. Lawson cites Schön’s [5] use of such cognitive (re)framing where problem definition and solutioning are in a continual dialogical loop only resolved when problem and solution are harmonised into a viable future state. This influential construct (reframing) underlies a popular visualisation of effective creative thinking (the double-diamond model [6]) where creative thinking progresses through phases of convergent and divergent thinking:
Convergent thinking – thinking is reductive, narrowing and solution oriented
Divergent thinking – thinking is generative, open-ended and outward
DT is the product of at least three distinct and related traditions that span design but also connect to proximal practices as diverse as anthropology, business consulting, open innovation, agile-style product development and lean manufacturing techniques. Service design is also an influence in positioning designers as creative facilitators of collaboration rather than as creative specialists. In the broadest sense, DT encompasses holistic set of principles, techniques and methods that cover all aspects of innovation, specifically through the lens of creativity and also importantly underpinned by a broad humanistic approach that spans the methodological realisation of those principles through bottom up integration of human needs within supporting research and concept development (Ethnography) to practical ways of empowering people to innovate themselves (Participatory Design).
\nDT’s overarching approach aligns to a Human-Centred Design (HCD) perspective, where innovation is focused on ensuring new products and services capitalise on human capabilities as well as their limitations. Optimal innovation with new technology augments and enhances human physical and cognitive abilities in order to achieve goals that would otherwise be difficult (or impossible) to achieve by humans or machines alone. In most cases, user involvement is focused on refining pre-defined solutions through incremental ‘tweaks’. This means that the scope of innovation is generally limited to shaping the way a solution is manifested as a marketable product or service (e.g. screens for a shopping cart flow) rather than the broader solution itself (e.g. online purchasing).
\nThis strand in DT emerged from socio-technical design [7] in the 1970s and is explicitly aimed at addressing the introduction of new technology. Balancing human needs with the potential risks and benefits of technology was extended in Participatory Design (PD). The PD movement [8] originated in the Scandinavian and Nordic countries during the 1970s and was overtly political in promoting social democracy especially in designing interactive systems for the workplace. This focus was predicated on the realisation that new systems often failed because of conflicting interests among stakeholders and also that workers loss of control of their work had a detrimental effect of productivity and industrial relations. Lastly, Human-Computer Interaction (HCI) synthesised these two traditions into a multidisciplinary approach that unequivocally focuses on innovation through developing novel ways of interacting with technology and removing barriers to adoption through advocating usability. HCI research usually focuses on conducting primary research with representative users in order to understand their wants, needs and barriers to adoption, and using the resulting insights to ideate potential concepts that are then used to develop representations of the future solution through low-fidelity prototypes. These enable researchers to test and refine potential solutions before full development to make sure that they meet users’ needs and are likely to be adopted by broader audiences.
\nDT extends human-centricity beyond participation into a deeper level of innovating to meet latent human needs via ethnographic-based research. This extends the scope of innovation out, so that potential solutions emerge as insightful possibilities from the research activity itself rather than field work being used for validation. This ground-up approach increases the likelihood that solutions are grounded in human needs and in some cases meet latent needs that would otherwise be difficult to elicit let alone manifest through tangible product or service concepts.
\nEthnography research methods are integral to this strand as is the work of Suchman [9]. She contends that activity is conditional on any given situation in which it takes place and that behaviour is therefore of an improvised rather than planned nature. Allied methods including ethnomethodology [10] have been developed which also lend themselves to understanding complex work situations such as air traffic control, where possibilities to innovate are highly constrained. A more pragmatic set of methods have integrated this approach under the banner.
\nContextual Design [11] involves field research (usually in a workplace setting) but with less focus on the granularity of everyday life observed and with more a priori structuring of observational data through boundary type constructs such as personas and workflows that help innovators share knowledge and develop ideas around.
\nCultural Probes [12] extends the approach and reduces the role of the research to gather data on people’s non-instrumental latent needs. This is done by proxy so that participants produce their own representation and prototypes using a kit or materials including cards, diaries and throwaway cameras that are given to them.
\nIn conclusion, the various approaches to behaviour-centred innovation use field work not only to generate insights but also locate innovation within existing human practice rather than as a separate activity done by others.
\nThe Design Methods movement [13] is the earliest (and perhaps the most accessible) contributing tradition to DT. Predating the digital revolution of the new economy, the Design Methods movement focuses on defining easy to use, reusable tools and techniques for innovation that can be used by designers and non-designers alike. First among these is Synectics which predates ‘designerly’ cycles of convergent and divergent thinking and is a clear precursor of ideation.
\nThe Design Methods approach is underpinned by two principles. Firstly, that design can be distilled down into discrete techniques that anyone can apply to a given problem or opportunity. Secondly, that solutions are rarely uniquely novel and rather are invariably composed of common components, an approach that draws on the work of Christopher Alexander.
\nDT’s closest equivalent to synectics is ideation. Ideation is usually done in groups, on the rationale that cohort size correlates with quantity and quality of outputs. Idea generation is also most commonly positioned as the replicating creative cognitive processes employed by designers and is usually conducted as a structured activity that optimises the fuzzy challenge of developing novel ideas. Ideation teams usually consist of between 5 to 10 participants and facilitation aims to foster a ‘designerly’ working environment where the focus is on uncritically, producing many ideas. Similar techniques are found in engineering (e.g. TRIZ) [14].
\nPopular idea generation techniques include vernacular examples such as ‘round robin’ and ‘crazy 8 s’ as well as more solidly research-based techniques that often draw on the work of Edward de Bono [15]. de Bono published a number of works that introduced foundational terms and techniques such as ‘lateral thinking’ through best-selling books, such as ‘Serious Creativity’ (ibid). The various techniques described in these publications, not only have a natural affinity with DT, but are arguably the tangible foundations of this way of problem solving outside of the design methods school.
\nA number of studies have explored idea generation methods within the tightly defined context of early concept development. Past research by the authors into the effectiveness of random input [16] suggest that this method generated more numerous and of higher quality ideas than a control group who did not apply the method to an ideation challenge. The study was undertaken with a group of male and female graduates (n = 30). All participants were given a brief relating to a challenge to produce ‘ideas to improve the workplace’. The study involved randomly assigning subjects into four groups. Each group consisted of three to four ideators, who had recently graduated and were under the age of thirty. The cohort was then assigned to either morning or afternoon sessions (giving eight groups in total – ABCD x 2) who were given ideation challenges under differing conditions.
\nStress was also found to affect idea creation. Participants who were less physiologically stimulated produced less and poorer quality ideas than those who were moderately excited, although too much stress is known to negatively impact creativity. It maybe that some controlled physical and mental stimulation might enhance group creativity within a certain threshold. These findings helped inform the authors during the development of the Ideation Grids method described in the following section. These evolve traditional Synectic principles and idea development techniques into an easy to use, structured and optimised ideation tool.
\nIdeation Grids are a design thinking method that applies crowd-sourcing to develop ideas and is focused on pushing ideators past their first and likely least innovative idea, to generate a wide variety of novel solutions. These are elicited through short challenge rounds using predefined challenge cards as stimuli. Ideation grids are based on seven elements comprising:
\n\nIdeation topic – a succinct phrase that communicates the problem or opportunity for which ideas are sought.
\n\nIdeation session – a moderated, group workshop (physical or digital) where ideators’ generate solutions using ideation grids usually within a maximum duration of an hour.
\n\nIdeation grids – a paper or digital nine-square grid used to collect participant ideas during each challenge round.
\n\nChallenge round – an eight-minute moderated session where participants produce an idea each minute, this activity is usually repeated a number of types with different challenge cards.
\n\nChallenge cards – a short phrase that prompts participants to develop ideas for a specific challenge in each challenge round.
\n\nIdeators – workshop participants (n = <10) recruited to represent differing perspectives on an ideation topic.
\n\nModerators – ideation grid facilitators (n = <3) who prepare, run and write up the outputs of a session.
\nThe authors have successfully applied Ideation Grids to many situations and problems. Preparation for sessions typically includes logistical activities, such as identifying suitable participants and a conducive environment. This can be a physical space or a digital whiteboard. The ideal group size is between five to ten people and sessions should be a maximum of two hours and ideally under an hour. Running a sequence of shorter sessions is more effective than trying to fit many rounds into one long one. Giving participants time to reflect on an ideation challenge can garner more and better ideas. Breaks used judiciously, can improve quality and quantity of ideas.
\nParticipant numbers can be increased, but the authors have found that larger cohorts need to be split into smaller groups comprising of a maximum of ten participants each with their own moderator. This can be achieved through breakout rooms if conducting this exercise remotely. Participants’ profiles are important considerations too. Generally, a good mix of levels (junior to senior), background, experiences and roles (e.g. customer service to sales) works better than homogeneous groups. Over-representation of a single level or grouping tends to skew the ideas that are generated toward the dominant group’s perspective. If the majority is also senior, then this has the negative affect of also inhibiting others who are junior or extroverted. In some cases, it is better to split groups by level, group or when the topic to ideate requires extreme focus than a broader set of viewpoints.
\nPlanning then moves to identifying the right ideation topic and refining what often begins as an ambiguous (or overly specific) starting point. Ideally topics have been developed collaboratively and are also the product of some level of domain research. Ideal ideation topics are one sentence phrases that communicate the problem or opportunity to develop ideas around. Getting them right is an art. Too wordy or long and they can slow down creative thinking and lead to discussion. Too narrow or too ambiguous and they invite questions and clarification and the resulting outputs tend to lose relevance. It’s also good to have more than one topic, whether each one is a slight variation on a single theme that focuses attention on different aspects of a problem or opportunity or whether they direct thinking toward a particular type of solution. Having multiple topics ‘up your sleeve’ enables the moderator to quickly move forward if a topic stalls or is failing to inspire participants. Using the syntax ‘How might we…’ to preface pithy topic is also effective to spur creative thinking.
\nHaving dealt with the logistics and identifying strong ideation challenges, focus shifts to the defining the right structure for the session and identifying a set of ideation challenge cards that are most relevant to the topic at hand (See below). Structure can be loose, especially if participants have been involved in sessions before. Generally, too much structure and timeboxing of individual activities reduces group output, similarly, too loose and the sessions can lack direction, often resulting in a dominant participant taking the lead and implicitly or explicitly taking over.
\nNine square grids (either paper or digital) are printed out or originated digitally for each participant and for each round of challenges. Five participants and three rounds will need fifteen grids prepared, three sets of challenge cards for each participant and the agreed ideation topic.
\nThe sessions themselves ideally start with a recap of any supporting insights and domain research. This is a good framing activity to get participants thinking about the topic. Sometimes, an icebreaker activity is also used at the start of the session. Then the ideation topic is presented to the group. It’s good to present this in quite a factual almost official manner without prompting clarifications and allowing for the silence that follows while people cogitate on the problem.
\nThe first challenge round starts when each participant turns over (paper) or makes the text font visible (digital) to reveal the challenge. The moderator the asks the group to spend one-minute writing or sketching an idea in each square of the grid. Ideas can take any form, from an image that represents the concept, a short phrase on a sticky note or even a sketch or illustration. In all cases the ideas must be quickly identified and noted down, as to avoid overthinking the possible constraints of a given digital platform. Showing examples of good outputs in their rawest from is a good way to get participants in the right mindset where they are neither too precious about creating high-quality drawings, clever one-liners or overly long detailed, descriptions.
\nDuring the eight minutes that participants are producing ideas the moderator keeps time as well as keeping the group focused on the activity, sharing strong ideas with the group and generally keeping momentum. Sometimes, ideas are shared out among the group if time permits and, in some cases, voting can be done to quickly prioritise outputs. The process is then repeated until all the challenge cards have been used.
\nChallenge cards are pre-defined physical postcard sized boards or sticky notes (including digital variants) that are placed on the first square of the ideation grid. This is usually the top left square but position is not as important as ensuring participants understand the challenge. The cards instruct participants to ideate on the focus of the card. Running multiple rounds using different challenges produces large numbers of ideas and potential solutions that cover a broader range of options. Ideas from single rounds are often more obvious and are already known by participants. This can inhibit creative thinking as participants have invested in ideas before the session and are sometime reluctant to shift focus. Using the ‘What if..’ syntax to preface the challenge helps provide consistency and also helps spur thinking in the direction of the challenge.
\nChallenge cards help break the ‘primary generator’ effect [17] whereby participants lock onto one idea (usually the first one they think of) that blocks thinking of alternatives. Challenges also help to clear out the most obvious solutions from consideration, so that participants can shift focus to less obvious ones and novelty. As the challenges are predefined and used by all participants they also act as a leveller reducing scrutiny and encouraging people to produce many ideas rather than worrying if theirs are inferior to others. Predefined timeframes can also be used to catalyse thinking about a particular even horizon in the future and in some cases the past, to see if an existent idea could be reused. Other challenge strategies include laddering whereby each grid square is used to show incremental developments from each idea to another. This is effective in clearing out presumptions about what is possible and encourages more creativity. Similarly, linking uses the grid to show individual ideas developed by adding or removing elements from one to another. This is a very practical way of ideating on a practical situation where a problem or opportunity is deeply embedded in an organisation and its culture.
\nStarting by eliciting the most obvious ideas is a good opening framing activity and is also effective icebreaker. Asking for the most mundane, boring, unexciting ideas encourages participants to share ideas openly and usually garners some humour. It also level-sets what is acceptable as an idea and reduces judgement as everyone usually has an obvious idea they endorse but are usually reticent to share as it is so obvious. It also sets an implicit anchor point for subsequent stages. At a deeper level, top-of-mind ideas also offer valuable insights into participant’s understanding of the ideation topic and can be used through output analysis to map out the current situation and ‘as-is’ solutions as a starting point for more future oriented activities. Ideas are not just starting points for change but also embody a specific mindset and articulation of a problem or opportunity.
\nThis challenge often produces the most potent ideas in ideation sessions. The randomly generated nature of the resulting concepts are almost always novel and are usually readily built upon by participants in the sessions, creating even more ideas [13]. The random nature of their genesis helps reduced ownership as they are attributed to the method rather than the individuals who identified them. This challenge applies classic analogous thinking and can be done in one or multiple stages depending on participants readiness. At the same time, participants can sometimes baulk at being asked to engage in what often seems as a rather odd diversion activity. Moderators often have to make a call on whether to stick to the method or, if the group is already catalysed to ideate, to go with the flow.
\nThis challenge requires an additional step by the moderator. Firstly, before the session a number of random stimuli topics are identified that will be used to trigger analogous thinking. An arbitrary word, picture, or even sound is chosen as a catalyst to stimulate new and engender lateral ways of thinking about a problem or opportunity (e.g. how might we reduce packaging). The predefined stimuli, (e.g. Tiger), helps ideators’ anchor thinking outside conventional boundaries by forcing convergence on a single and unrelated topic. Participants write down characteristics pertaining to the stimulus (e.g. fierce, endangered, alert, fast etc.) in order to think divergently. Participants then apply these characteristics to the problem at hand. In this example, alert and fast characteristics could stimulate ideas around alerting consumers to the impact of packaging on wildlife or reduce the gap (fast) between food producers and consumers.
\nHaving up to six random stimuli helps if one fails. Diversity is important too, a good set might comprise widely disparate topics such as, ant, airport, light, Curie, satellite and eagle, for example. An alternative way of introducing randomness is to pick subjects arbitrarily from a book and also using oblique strategies [18] for reframing.
\nHaving harvested the most obvious ideas and applied lateral thinking through random input to elicit less obvious ones, it’s good to reign in thinking back to focus on the ideation topic with time as the variable. The time horizon can be very specific and focus on a particular date in the near or distant future or be more ambiguous. Too distant dates tend to elicit ideas you might find in science fiction that while entertaining tend to trivialise the activity and limits practical solution ideas. Similarly, too near timelines result in trivial outcomes often, Using multiple dates in rounds is affective too as does including a range. A very close by date that encourages quick fixes, a mid-point and near future is a good set to get ideas form. Lookback is a variation on this challenge based on Bill Buxton’s innovation model [19]. In this case ideas are based on reverse-engineering and looking for historical precedence to current or future problems or solutions that are the same or similar to the ideation topic.
\nThis challenge usually produces the strongest and most viable ideas in session and ideally should be applied at the later stages of a session after the obvious and ‘blue-sky’ ideas have already been elicited. It involves participants creating eight alternative solutions to the same ideation topic, with a prompt along the lines of ‘now give us your best ideas’. Sessions can exploit the competitive potential of this method, by voting and awarding the best ideas (not participants themselves) including the most mundane, most lateral, quickest win and best overall solution. Dot voting is an effective way of doing this and also minimised group dynamics that might bias outcomes [20].
\nIdeation Grids embody a design tradition built on aligning innovation to human values. They are also an effect and practical tool to support any organisation wishing to harness the power of crowdsourcing ideas. While there is an art to maximising the method’s effectiveness through skills and expertise in identifying the right ideation topic, selecting participants, defining challenges, moderating and analysing outcomes, they are simple enough for anyone to get started with and leverage the power of creative collaboration to ideate. This method was developed for face-to-face ideation sessions where close interactions between participant are enriched through natural by non-verbal communication. However, we have applied this method successfully during the Covid-19 pandemic with remote participants connected through digital platforms. We found that group dynamic effects were reduced, and that the affordances of digital mediums improved group working; making documentation of outputs easier and enabling the possibility of leveraging globally diverse participants across multiple sessions a practical reality.
\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"19"},books:[{type:"book",id:"10578",title:"Pharmacogenetics",subtitle:null,isOpenForSubmission:!0,hash:"ca2bc2ff6e15a7b735d662d9664086b1",slug:null,bookSignature:"Dr. Islam Khalil",coverURL:"https://cdn.intechopen.com/books/images_new/10578.jpg",editedByType:null,editors:[{id:"226598",title:"Dr.",name:"Islam",surname:"Khalil",slug:"islam-khalil",fullName:"Islam Khalil"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10531",title:"Advances in Nanoparticle Research for Biomedical Applications",subtitle:null,isOpenForSubmission:!0,hash:"1e9e08e7275f2b928af7911b523252f1",slug:null,bookSignature:"Dr. Maria Carmo Pereira, MSc. Maria João Ramalho and Dr. Joana A. Loureiro",coverURL:"https://cdn.intechopen.com/books/images_new/10531.jpg",editedByType:null,editors:[{id:"82791",title:"Dr.",name:"Maria Carmo",surname:"Pereira",slug:"maria-carmo-pereira",fullName:"Maria Carmo Pereira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Pharmacognosy - Medicinal Plants",subtitle:null,isOpenForSubmission:!0,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:null,bookSignature:"Prof. Hany El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:null,editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10357",title:"Drug Metabolism",subtitle:null,isOpenForSubmission:!0,hash:"3bd3ae5041cab45020555b49152b1ddc",slug:null,bookSignature:"Dr. Katherine Dunnington",coverURL:"https://cdn.intechopen.com/books/images_new/10357.jpg",editedByType:null,editors:[{id:"232694",title:"Dr.",name:"Katherine",surname:"Dunnington",slug:"katherine-dunnington",fullName:"Katherine Dunnington"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9829",title:"Biosimilars",subtitle:null,isOpenForSubmission:!0,hash:"c72171c1d1cf6df5aad989cb07cc8e4e",slug:null,bookSignature:"Dr. Valderilio Feijó Feijó Azevedo and Dr. Robert Moots",coverURL:"https://cdn.intechopen.com/books/images_new/9829.jpg",editedByType:null,editors:[{id:"69875",title:"Dr.",name:"Valderilio",surname:"Feijó Azevedo",slug:"valderilio-feijo-azevedo",fullName:"Valderilio Feijó Azevedo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10234",title:"High-Throughput Screening for Drug Discovery",subtitle:null,isOpenForSubmission:!0,hash:"37e6f5b6dd0567efb63dca4b2c73495f",slug:null,bookSignature:"Prof. Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10234.jpg",editedByType:null,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"160",title:"Surface Science",slug:"surface-science",parent:{title:"Materials Science",slug:"materials-science"},numberOfBooks:16,numberOfAuthorsAndEditors:329,numberOfWosCitations:227,numberOfCrossrefCitations:162,numberOfDimensionsCitations:405,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"surface-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10061",title:"21st Century Surface Science",subtitle:"a Handbook",isOpenForSubmission:!1,hash:"69253b3c7ba801a5fcd9c47827345f93",slug:"21st-century-surface-science-a-handbook",bookSignature:"Phuong Pham, Pratibha Goel, Samir Kumar and Kavita Yadav",coverURL:"https://cdn.intechopen.com/books/images_new/10061.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10050",title:"Corrosion",subtitle:null,isOpenForSubmission:!1,hash:"cf66006063d4d72349fb33cc056095c1",slug:"corrosion",bookSignature:"Ambrish Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10050.jpg",editedByType:"Edited by",editors:[{id:"215348",title:"Dr.",name:"Ambrish",middleName:null,surname:"Singh",slug:"ambrish-singh",fullName:"Ambrish Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7343",title:"Superhydrophobic Surfaces",subtitle:"Fabrications to Practical Applications",isOpenForSubmission:!1,hash:"017db4d856b5d454aead24128743ba3e",slug:"superhydrophobic-surfaces-fabrications-to-practical-applications",bookSignature:"Mehdi Khodaei, Xiuyong Chen and Hua Li",coverURL:"https://cdn.intechopen.com/books/images_new/7343.jpg",editedByType:"Edited by",editors:[{id:"19478",title:"Dr.",name:"Mehdi",middleName:null,surname:"Khodaei",slug:"mehdi-khodaei",fullName:"Mehdi Khodaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8242",title:"Applied Surface Science",subtitle:null,isOpenForSubmission:!1,hash:"b2515a9d613325af2ddf6d8ef2b53f4d",slug:"applied-surface-science",bookSignature:"Gurrappa Injeti",coverURL:"https://cdn.intechopen.com/books/images_new/8242.jpg",editedByType:"Edited by",editors:[{id:"12369",title:"Dr.",name:"Gurrappa",middleName:null,surname:"Injeti",slug:"gurrappa-injeti",fullName:"Gurrappa Injeti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7550",title:"Corrosion Inhibitors",subtitle:null,isOpenForSubmission:!1,hash:"4d09bcd91e393d15a578f1b632f118e7",slug:"corrosion-inhibitors",bookSignature:"Ambrish Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7550.jpg",editedByType:"Edited by",editors:[{id:"215348",title:"Dr.",name:"Ambrish",middleName:null,surname:"Singh",slug:"ambrish-singh",fullName:"Ambrish Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6671",title:"Paint and Coatings Industry",subtitle:null,isOpenForSubmission:!1,hash:"1dc37c2c972a253d544da9849049222f",slug:"paint-and-coatings-industry",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,isOpenForSubmission:!1,hash:"98b8dfac28575877f1846a661c9150bc",slug:"coatings-and-thin-film-technologies",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7385",title:"Cavitation",subtitle:"Selected Issues",isOpenForSubmission:!1,hash:"075ee4bb432760777ffcba092d0cffae",slug:"cavitation-selected-issues",bookSignature:"Wojciech Borek, Tomasz Tański and Mariusz Król",coverURL:"https://cdn.intechopen.com/books/images_new/7385.jpg",editedByType:"Edited by",editors:[{id:"186373",title:"Dr.",name:"Wojciech",middleName:null,surname:"Borek",slug:"wojciech-borek",fullName:"Wojciech Borek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7471",title:"Advanced Surface Engineering Research",subtitle:null,isOpenForSubmission:!1,hash:"4c1a23accacc46fd18b49f2e5c6d303e",slug:"advanced-surface-engineering-research",bookSignature:"Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/7471.jpg",editedByType:"Edited by",editors:[{id:"185329",title:"Prof.",name:"Mohammad Asaduzzaman",middleName:null,surname:"Chowdhury",slug:"mohammad-asaduzzaman-chowdhury",fullName:"Mohammad Asaduzzaman Chowdhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7352",title:"Granularity in Materials Science",subtitle:null,isOpenForSubmission:!1,hash:"a451ff13b9bc3b08989979518577594a",slug:"granularity-in-materials-science",bookSignature:"George Kyzas and Athanasios C. Mitropoulos",coverURL:"https://cdn.intechopen.com/books/images_new/7352.jpg",editedByType:"Edited by",editors:[{id:"152296",title:"Dr.",name:"George",middleName:"Z.",surname:"Kyzas",slug:"george-kyzas",fullName:"George Kyzas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6702",title:"Polymer Rheology",subtitle:null,isOpenForSubmission:!1,hash:"c24234818cd4b2ce3ed569c2b29f714c",slug:"polymer-rheology",bookSignature:"Jose Luis Rivera-Armenta and Beatriz Adriana Salazar Cruz",coverURL:"https://cdn.intechopen.com/books/images_new/6702.jpg",editedByType:"Edited by",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6512",title:"Superfluids and Superconductors",subtitle:null,isOpenForSubmission:!1,hash:"24385ec1d5de9c6597896900c80ee279",slug:"superfluids-and-superconductors",bookSignature:"Roberto Zivieri",coverURL:"https://cdn.intechopen.com/books/images_new/6512.jpg",editedByType:"Edited by",editors:[{id:"181334",title:"Prof.",name:"Roberto",middleName:null,surname:"Zivieri",slug:"roberto-zivieri",fullName:"Roberto Zivieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,mostCitedChapters:[{id:"30968",doi:"10.5772/36975",title:"Polymer Gel Rheology and Adhesion",slug:"rheology-and-adhesion-of-polymer-gels",totalDownloads:15106,totalCrossrefCites:8,totalDimensionsCites:56,book:{slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Anne M. Grillet, Nicholas B. Wyatt and Lindsey M. Gloe",authors:[{id:"110676",title:"Dr.",name:"Anne",middleName:null,surname:"Grillet",slug:"anne-grillet",fullName:"Anne Grillet"},{id:"138225",title:"Dr.",name:"Nicholas",middleName:null,surname:"Wyatt",slug:"nicholas-wyatt",fullName:"Nicholas Wyatt"},{id:"138226",title:"Ms.",name:"Lindsey",middleName:null,surname:"Gloe",slug:"lindsey-gloe",fullName:"Lindsey Gloe"}]},{id:"48822",doi:"10.5772/60808",title:"Wettability of Nanostructured Surfaces",slug:"wettability-of-nanostructured-surfaces",totalDownloads:2386,totalCrossrefCites:7,totalDimensionsCites:22,book:{slug:"wetting-and-wettability",title:"Wetting and Wettability",fullTitle:"Wetting and Wettability"},signatures:"L. Duta, A.C. Popescu, I. Zgura, N. Preda and I.N. Mihailescu",authors:[{id:"17636",title:"Dr.",name:"Ion",middleName:"N.",surname:"Mihailescu",slug:"ion-mihailescu",fullName:"Ion Mihailescu"},{id:"23532",title:"Dr.",name:"Andrei",middleName:null,surname:"Popescu",slug:"andrei-popescu",fullName:"Andrei Popescu"},{id:"174343",title:"Dr.",name:"Liviu",middleName:null,surname:"Duta",slug:"liviu-duta",fullName:"Liviu Duta"},{id:"174344",title:"Dr.",name:"Irina",middleName:null,surname:"Zgura",slug:"irina-zgura",fullName:"Irina Zgura"},{id:"174345",title:"Dr.",name:"Ligia",middleName:null,surname:"Frunza",slug:"ligia-frunza",fullName:"Ligia Frunza"}]},{id:"30975",doi:"10.5772/36619",title:"Solution Properties of κ-Carrageenan and Its Interaction with Other Polysaccharides in Aqueous Media",slug:"solution-properties-of-k-carrageenan-and-its-interaction-with-other-polysaccharides-in-aqueous-media",totalDownloads:7122,totalCrossrefCites:2,totalDimensionsCites:20,book:{slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Alberto Tecante and María del Carmen Núñez Santiago",authors:[{id:"109087",title:"Prof.",name:"Alberto",middleName:null,surname:"Tecante",slug:"alberto-tecante",fullName:"Alberto Tecante"},{id:"109098",title:"Dr.",name:"Maria Del Carmen",middleName:null,surname:"Nunez-Santiago",slug:"maria-del-carmen-nunez-santiago",fullName:"Maria Del Carmen Nunez-Santiago"}]}],mostDownloadedChaptersLast30Days:[{id:"67748",title:"Formation of Anticorrosive Structures and Thin Films on Metal Surfaces by Applying EDM",slug:"formation-of-anticorrosive-structures-and-thin-films-on-metal-surfaces-by-applying-edm",totalDownloads:618,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Pavel Topala, Alexandr Ojegov and Vitalie Besliu",authors:[{id:"254355",title:"Prof.",name:"Pavel",middleName:null,surname:"Topala",slug:"pavel-topala",fullName:"Pavel Topala"},{id:"254366",title:"Dr.",name:"Alexandr",middleName:null,surname:"Ojegov",slug:"alexandr-ojegov",fullName:"Alexandr Ojegov"},{id:"254368",title:"Dr.",name:"Besliu",middleName:null,surname:"Vitalie",slug:"besliu-vitalie",fullName:"Besliu Vitalie"}]},{id:"67077",title:"Electrochemical Techniques for Corrosion and Tribocorrosion Monitoring: Fundamentals of Electrolytic Corrosion",slug:"electrochemical-techniques-for-corrosion-and-tribocorrosion-monitoring-fundamentals-of-electrolytic-",totalDownloads:856,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Abdenacer Berradja",authors:[{id:"238628",title:"Ph.D.",name:"Abdenacer",middleName:null,surname:"Berradja",slug:"abdenacer-berradja",fullName:"Abdenacer Berradja"}]},{id:"64392",title:"Corrosion Inhibitors",slug:"corrosion-inhibitors",totalDownloads:1769,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Geethamani Palanisamy",authors:[{id:"253697",title:"Dr.",name:"Geethamani",middleName:null,surname:"P",slug:"geethamani-p",fullName:"Geethamani P"}]},{id:"48818",title:"Modification of Surface Energy and Wetting of Textile Fibers",slug:"modification-of-surface-energy-and-wetting-of-textile-fibers",totalDownloads:2345,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"wetting-and-wettability",title:"Wetting and Wettability",fullTitle:"Wetting and Wettability"},signatures:"Franco Ferrero and Monica Periolatto",authors:[{id:"173940",title:"Prof.",name:"Franco",middleName:null,surname:"Ferrero",slug:"franco-ferrero",fullName:"Franco Ferrero"},{id:"174224",title:"Ph.D.",name:"Monica",middleName:null,surname:"Periolatto",slug:"monica-periolatto",fullName:"Monica Periolatto"}]},{id:"72939",title:"Carbon Nanotubes: Synthesis, Properties and Applications",slug:"carbon-nanotubes-synthesis-properties-and-applications",totalDownloads:200,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"21st-century-surface-science-a-handbook",title:"21st Century Surface Science",fullTitle:"21st Century Surface Science - a Handbook"},signatures:"Aravind Kumar Jagadeesan, Krithiga Thangavelu and Venkatesan Dhananjeyan",authors:[{id:"319215",title:"Dr.",name:"Aravind",middleName:null,surname:"Kumar",slug:"aravind-kumar",fullName:"Aravind Kumar"},{id:"321759",title:"Dr.",name:"Krithiga",middleName:null,surname:"Thangavelu",slug:"krithiga-thangavelu",fullName:"Krithiga Thangavelu"},{id:"321760",title:"Mr.",name:"Venkatesan",middleName:null,surname:"Dhanancheyan",slug:"venkatesan-dhanancheyan",fullName:"Venkatesan Dhanancheyan"}]},{id:"62882",title:"Inside the Phenomenological Aspects of Wet Granulation: Role of Process Parameters",slug:"inside-the-phenomenological-aspects-of-wet-granulation-role-of-process-parameters",totalDownloads:659,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"granularity-in-materials-science",title:"Granularity in Materials Science",fullTitle:"Granularity in Materials Science"},signatures:"Veronica De Simone, Diego Caccavo, Annalisa Dalmoro, Gaetano\nLamberti, Matteo d’Amore and Anna Angela Barba",authors:[{id:"140173",title:"Prof.",name:"Anna Angela",middleName:null,surname:"Barba",slug:"anna-angela-barba",fullName:"Anna Angela Barba"},{id:"143947",title:"Prof.",name:"Matteo",middleName:null,surname:"D'Amore",slug:"matteo-d'amore",fullName:"Matteo D'Amore"},{id:"176104",title:"Prof.",name:"Gaetano",middleName:null,surname:"Lamberti",slug:"gaetano-lamberti",fullName:"Gaetano Lamberti"},{id:"176239",title:"MSc.",name:"Diego",middleName:null,surname:"Caccavo",slug:"diego-caccavo",fullName:"Diego Caccavo"},{id:"181500",title:"Dr.",name:"Annalisa",middleName:null,surname:"Dalmoro",slug:"annalisa-dalmoro",fullName:"Annalisa Dalmoro"},{id:"260822",title:"MSc.",name:"Veronica",middleName:null,surname:"De Simone",slug:"veronica-de-simone",fullName:"Veronica De Simone"}]},{id:"40738",title:"Viscoelastic Properties of Biological Materials",slug:"viscoelastic-properties-of-biological-materials",totalDownloads:4861,totalCrossrefCites:6,totalDimensionsCites:17,book:{slug:"viscoelasticity-from-theory-to-biological-applications",title:"Viscoelasticity",fullTitle:"Viscoelasticity - From Theory to Biological Applications"},signatures:"Naoki Sasaki",authors:[{id:"140935",title:"Prof.",name:"Naoki",middleName:null,surname:"Sasaki",slug:"naoki-sasaki",fullName:"Naoki Sasaki"}]},{id:"40740",title:"Viscoelasticity in Biological Systems: A Special Focus on Microbes",slug:"viscoelasticity-in-biological-systems-a-special-focus-on-microbes",totalDownloads:3578,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"viscoelasticity-from-theory-to-biological-applications",title:"Viscoelasticity",fullTitle:"Viscoelasticity - From Theory to Biological Applications"},signatures:"Supriya Bhat, Dong Jun, Biplab C. Paul and Tanya E. S Dahms",authors:[{id:"144710",title:"Dr",name:"Tanya",middleName:null,surname:"Dahms",slug:"tanya-dahms",fullName:"Tanya Dahms"},{id:"144719",title:"MSc.",name:"Biplab",middleName:null,surname:"Paul",slug:"biplab-paul",fullName:"Biplab Paul"},{id:"144721",title:"MSc.",name:"Dong",middleName:null,surname:"Jun",slug:"dong-jun",fullName:"Dong Jun"},{id:"167022",title:"M.Sc.",name:"Supriya",middleName:"Venkatesh",surname:"Bhat",slug:"supriya-bhat",fullName:"Supriya Bhat"}]},{id:"62670",title:"Organometal Halide Perovskites Thin Film and Their Impact on the Efficiency of Perovskite Solar Cells",slug:"organometal-halide-perovskites-thin-film-and-their-impact-on-the-efficiency-of-perovskite-solar-cell",totalDownloads:907,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"coatings-and-thin-film-technologies",title:"Coatings and Thin-Film Technologies",fullTitle:"Coatings and Thin-Film Technologies"},signatures:"Ahmed Mourtada Elseman",authors:[{id:"221890",title:"Dr.",name:"Ahmed Mourtada",middleName:null,surname:"Elseman",slug:"ahmed-mourtada-elseman",fullName:"Ahmed Mourtada Elseman"}]},{id:"30968",title:"Polymer Gel Rheology and Adhesion",slug:"rheology-and-adhesion-of-polymer-gels",totalDownloads:15106,totalCrossrefCites:8,totalDimensionsCites:56,book:{slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Anne M. Grillet, Nicholas B. Wyatt and Lindsey M. Gloe",authors:[{id:"110676",title:"Dr.",name:"Anne",middleName:null,surname:"Grillet",slug:"anne-grillet",fullName:"Anne Grillet"},{id:"138225",title:"Dr.",name:"Nicholas",middleName:null,surname:"Wyatt",slug:"nicholas-wyatt",fullName:"Nicholas Wyatt"},{id:"138226",title:"Ms.",name:"Lindsey",middleName:null,surname:"Gloe",slug:"lindsey-gloe",fullName:"Lindsey Gloe"}]}],onlineFirstChaptersFilter:{topicSlug:"surface-science",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/293842/mahmoud-zendehdel",hash:"",query:{},params:{id:"293842",slug:"mahmoud-zendehdel"},fullPath:"/profiles/293842/mahmoud-zendehdel",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()