Concentrations of contaminating substances recalculated to oxygen content in waste gases of 11% from the combustion of particleboards with lamination coating on the basis of melamine–urea–formaldehyde resin.
\r\n\t
",isbn:"978-1-83768-400-7",printIsbn:"978-1-83768-399-4",pdfIsbn:"978-1-83768-401-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"3e168136bc7435be0c6bbe1d7adec1f4",bookSignature:"Prof. Marwa Zakaria, Prof. Tamer Hassan and Prof. Laila Sherief",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12194.jpg",keywords:"Beta Thalassemia Major, Transfusion Dependent Beta-Thalassemia, Microcytic Hypochromic Anemia, Mutations, Beta Thalassemia Intermedia, Non-transfusion Dependent Thalassemia, Hb E Disease, Alpha Thalassemia, Genetic Counseling, Newborn Screening, Prenatal Diagnosis, Gene Therapy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 14th 2022",dateEndSecondStepPublish:"July 12th 2022",dateEndThirdStepPublish:"September 10th 2022",dateEndFourthStepPublish:"November 29th 2022",dateEndFifthStepPublish:"January 28th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Marwa Zakaria completed her post-graduate training in Pediatric Nutrition at Boston University School of Medicine, USA. She is an Associate Professor and senior consultant of Pediatrics in the Faculty of Medicine at Zagazig University and a member of the International Society of Pediatric Oncology (SIOP), the European Hematology Association (EHA), and the Egyptian Society of Hematology.",coeditorOneBiosketch:"Professor at Zagazig University and an active member at EHA, SIOP, HAA, and ESPHO. Dr. Hassan is a guest speaker at numerous pediatric oncology and hematology meetings and he had over 50 international research publications in Pediatrics and Pediatric Hematology and Oncology.",coeditorTwoBiosketch:"Professor at Zagazig University, president of Sharkia Thalassemia Association, and member of the Egyptian national guidelines committee (NEGC) for evidence-based clinical practice. Prof. Sherief has over 50 international publications and many national publications and is an editorial board member in 17 international journals and Peer Reviewer for more than 38 international journals.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187545",title:"Prof.",name:"Marwa",middleName:null,surname:"Zakaria",slug:"marwa-zakaria",fullName:"Marwa Zakaria",profilePictureURL:"https://mts.intechopen.com/storage/users/187545/images/system/187545.png",biography:"Prof. Marwa Zakaria is an Associate Professor of Pediatrics and Pediatric Hematology and Oncology, Pediatric Department, Zagazig University, Egypt. She is an active member of the International Society of Pediatric Oncology (SIOP), European Hematology Association (EHA), and Egyptian Society of Pediatric Hematology and Oncology (ESPHO). She has participated in several professional trainings and workshops, including ICH GCP online training, EHA Master Class and Bite-size Master Class, and training from the Society of Neuro-Oncology (SNO). She completed a postgraduate training program in Pediatric Nutrition at the School of Medicine, Boston University, USA, in 2017. She completed several international preceptorships, including a thalassemia preceptorship and a hemophilia preceptorship. Dr. Zakaria is the recipient of a 2018 award from SIOP, and scholarships from EHA-HOPE in 2017 and 2018. She has participated in many international and national pediatric and hematology conferences, where she has also been a guest speaker. She has more than forty international research publications in pediatrics and pediatric hematology and oncology to her credit. She has edited three books and five book chapters. She is also a reviewer for several journals, including Medicine, Frontiers in Pediatrics, Molecular Medicine Reports, International Journal of Infectious Diseases, and others. Dr. Zakaria served as co-investigator for four hematology clinical trials and sub-investigator for five others.",institutionString:"Zagazig University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Zagazig University",institutionURL:null,country:{name:"Egypt"}}}],coeditorOne:{id:"106463",title:"Prof.",name:"Tamer",middleName:null,surname:"Hassan",slug:"tamer-hassan",fullName:"Tamer Hassan",profilePictureURL:"https://mts.intechopen.com/storage/users/106463/images/system/106463.jpg",biography:"Tamer Hassen is a Professor of Pediatrics, Faculty of Medicine, Zagazig University, Egypt. He is an active member of the European Hematology Association (EHA), International Society of Pediatric Oncology (SIOP), and Egyptian Society of Pediatric Hematology and Oncology (ESPHO), and has attended numerous national and international pediatric and hematology conferences held by these organizations and others. He has been a guest speaker at numerous pediatric oncology and hematology meetings and has published more than fifty international research publications in pediatrics and pediatric hematology and oncology. Dr. Hassan has edited two books and authored four book chapters. He has participated in many professional trainings and workshops. He received international scholarships from EHA-HOPE Cairo in 2017 and 2018, and an award from SIOP in 2016. He has completed several international preceptorships, including a hemophilia preceptorship at Saint Luc Hospital, Brussels, Belgium, and an immune-thrombocytopenia (ITP) preceptorship at Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. Dr. Hassan is an editor and reviewer for many journals, including Hemophilia, Medicine, Oncology Letters, Child Neurology, and more. He was a primary investigator in four international clinical trials and a sub-investigator for ten others.",institutionString:"Zagazig University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Zagazig University",institutionURL:null,country:{name:"Egypt"}}},coeditorTwo:{id:"110940",title:"Prof.",name:"Laila",middleName:null,surname:"Sherief",slug:"laila-sherief",fullName:"Laila Sherief",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS1HqQAK/Profile_Picture_2022-05-19T09:40:38.jpg",biography:"Professor Laila Sherief has been a long-serving member of the Zagazig University community in Egypt. She first graduated with honours from the Zagazig University and then went on to do her internship and residency there before becoming a lecturer, an Associate Professor then a Professor in Paediatric in the Faculty of Medicine. Prof. Sherief has published extensively in national/international medical journals and at medical conferences. She has over 50 international publications and many national publications and acts as a Peer Reviewer for more than 38 international journals, including Pediatric Hematology and Oncology, Pediatrics International, Journal of Coagulation & fibrinolysis, Medicine, BMC Endocrinal Disorders, Transfusion Medicine and Cancer Chemotherapy & Pharmacology. She is editorial board member in 17 international journals as BMC Pediatric, Frontiers in Genetics, Hematology case reports, Archives of hematology case reports and reviews, and Annals of Medical case reports. She supervised 83 master and MD thesis in Pediatric, Pediatric Hematology & Oncology and Clinical pathology\r\nProf. Sherief frequently attends national and international conferences and maintains memberships in many professional societies as International Society of Paediatric Oncology (SIOP), International Society of Haemostatis and Thrombosis (ISTH)., Egyptian Society of Pediatric Haematology & Oncology (ESPHO) and Egyptian Societies of thalassemia. She is the president of Sharkia thalassemia Association, Egypt, and member of the Egyptian national guidelines committee (NEGC) for evidence- based clinical practice. She was a member of the scientific committee for promotion of professors of pediatrics in the Supreme Council of Universities in Egypt from 2013 to 2016.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Zagazig University",institutionURL:null,country:{name:"Egypt"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"8450",title:"Beta Thalassemia",subtitle:null,isOpenForSubmission:!1,hash:"976f72013cd8e78d8f65bfb1f51f0146",slug:"beta-thalassemia",bookSignature:"Marwa Zakaria and Tamer Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/8450.jpg",editedByType:"Edited by",editors:[{id:"187545",title:"Prof.",name:"Marwa",surname:"Zakaria",slug:"marwa-zakaria",fullName:"Marwa Zakaria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7084",title:"Contemporary Pediatric Hematology and Oncology",subtitle:null,isOpenForSubmission:!1,hash:"21ab490c2debd2992b2a0b45f778b785",slug:"contemporary-pediatric-hematology-and-oncology",bookSignature:"Marwa Zakaria and Tamer Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/7084.jpg",editedByType:"Edited by",editors:[{id:"187545",title:"Prof.",name:"Marwa",surname:"Zakaria",slug:"marwa-zakaria",fullName:"Marwa Zakaria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51159",title:"Combustion of Biomass Fuel and Residues: Emissions Production Perspective",doi:"10.5772/63793",slug:"combustion-of-biomass-fuel-and-residues-emissions-production-perspective",body:'\nThe combustion plants, especially for the wood fuel, wood residues and other biomass combustion, are often located near residential homes and therefore they are under a direct visual control of the inhabitants. The plants take an interest in reducing their negative impact or negative impression (of the black smoke) of the inhabitants without a more distinct investment.
\nWood represents one of the oldest materials used for heat and energy generation via direct or indirect burning. As fuel, wood can be evaluated similarly to any other solid fuel in accordance with the following criteria:\n
chemical composition
combustion heat and calorific value
volatile matter content
ash content
The chemistry of wood combustion is a complex process. In a flame, there are many thermo‐degradation and oxidation reactions accompanied by the formation and interactions of radicals. However, as a result of these reactions, in the flue gas created during the wood combustion not only carbon monoxide (CO) and NO
Other harmful substances, such as, for example, polycyclic aromatic hydrocarbons (PAU), are not represented in wood structure. Their presence in flue gases is clear evidence of synthetic reactions in a flame. The original loosely connected cyclic hydrocarbons of wood are loosened in a flame and they condense at higher temperatures. In different furnaces, these PAU can reach a significant ratio from the total hydrocarbon emissions in flue gas [1]. Combustion of wooden waste with chlorine is a particularly serious problem. Such waste comprises residues of chipwood boards on a urea–formaldehyde (UF) resin basis with a NH4Cl catalyser as well as surface materials (polyvinyl chloride, PVC). The aforementioned catalyser until recently was almost the only hardener of UF resins used. In 1 kg of particle board is there from 1 to 3.5 g of Cl. Theoretical calculation leads to chlorine concentration values (or HCl, resp. Cl−) in flue gas from 100 to 400 mg/m3 [2]. These concentrations significantly exceed present emission limits.
\nFuels with the compound ratio of phenol character and chlorine are the reason for a high probability of dioxin formation. Theoretically, a very low concentration of chlorine in fuel is sufficient for the formation of a trace concentration (in ng/m3) of these toxins. Possible ways of such formation are suggested by [3].
\nIn order to monitor the quality, optimisation and regulation of the wood combustion process, the most advantageous way is to use the measurement of CO and NO
The quality of wood and wood waste combustion in an enclosed combustion chamber depends on the water content and chemical composition of the wood itself and on combustion parameters. Combustion parameters of particular importance include:\n
temperature in the combustion chamber,
manner in which the individual phases of burning are separated,
the surplus of air and its distribution into primary, secondary and even tertiary combustion processes,
the thoroughness with which flammable gas mixes with air, and
time (retaining period) during which flammable gas components are mixed with oxygen at the required reaction temperature (homogeneous oxidation).
The impact of the above‐mentioned factors influencing the combustion quality and the harmful substances formation is detailed in Figure 1.
\nImpact of the factors influencing the combustion quality and the harmful substances formation (ratio of the equipment capacity in relation to the nominal capacity).
For energy generation from wood and wooden waste, different types of combustion equipment are used, which can be divided into:\n
single stage
two stage.
Single‐stage combustion equipment can be characterised by one common space for the thermal decomposition and combustion of formed gaseous flammable products. According to the construction and characteristics of the burned wood, they can be divided into the combustion equipment for:\n
combustion of dry wood with humidity of
combustion of wet wood with humidity of
Two‐stage combustion plants burning wood and wood waste comprise a preheating firebox (first stage) and secondary combustion chamber (second stage). The wood is partially broken down by pyrolysis and gasification in the preheating firebox through oxidation. In the second stage, the gaseous products from the first stage (primarily carbon monoxide and hydrocarbons) are burned with an appropriate surplus of air. The two‐stage combustion equipment is mostly suitable for combustion of dry (
Experimental combustion tests are highly important for boiler operation regulation optimisation and accomplishment of the lowest emissions possible from wood and waste [5, 6]. Practical boiler regulation is varied from manual to various levels of automation and sophisticated solutions [7]. The boiler regulation demands operation optimisation and also regulation from the viewpoint of emissions [8].
\nFrom the viewpoint of minimising emissions, the request for correct biomass and varied wood waste (postconsumer wood, medium fibreboard (MDF) bound by UF resin, particleboards bound by UF resin, particleboards bound by UF resin with lamination coating on the basis of melamine‐urea‐formaldehyde resin) in boiler operation is particularly characteristic. Values of contaminating substance concentrations in waste gases are influenced not only by combustion technique, fuel humidity and calorific value of fuel but also by the method of fuel feeding, its dimensions, composition, etc. [9, 10]. One problem in minimising emissions is also the high percentage of volatile combustibles in biomass. In fact, there is no universal wood combustion device that can be used for every kind of biomass. Wood‐based waste processing materials that have been processed with different types of adhesives, coatings and preservatives are extremely difficult to recycle as a raw material [11]. The authors of the work [12] spring harvested corn stover used for direct combustion in a 146‐kW dual chamber boiler designed for wood logs. Combustion trials were conducted with corn stover and wheat straw round bales in a 176‐kW boiler [13].
\nNew combustion plants generating electricity from biomass must comply with best available techniques (BAT) requirements. Detailed knowledge of the impact of combustion parameters on the formation of emissions is critical when developing such plants and in efforts to achieve additional reductions in emissions from existing plants. Emissions are minimised over the long term by using the lessons learned from monitoring emissions across a broad range of combustion plants fuelled by various types of biomass. This chapter is focused on resolving problems related to minimising emissions from the combustion of biomass.
\nThe aim of this chapter is to analyse the process of the biomass fuel and residues combustion and the emission production on the basis of emission measurements during the model combustion testing, and to propose solutions for minimising the emission of the investigated combustion plants.
\nAfter preliminary evaluation of the structural design of the combustion plant and analyses of the biomass fuel or residues, it was decided to analyse in detail the process of combustion on the observed combustion plants. On the basis of proper measurements and in the context of the theoretical and practical knowledge of the combustion, we will:\n
analyse the time behaviour for emissions from four types of wood boilers,
specify the causes of the negative influences of operating the combustion plant on polluting the atmosphere,
evaluate the possibilities for reducing emissions on the basis of time behaviour hereof and propose in what ways and means (the proposal of alternative solutions) it would be possible to co‐ordinate outputs of the sources of the air pollution with the requirements of the Air Quality Act and belonging regulations,
modify the usual mode of boiler operation, so that considerable reduction of ambient air burden by emissions is achieved,
define how as much as possible to reduce the impact of the plant on the neighbouring residential area with respect to the requirement of the reasonable expenses for the implementation.
The results of producing the pollutants were achieved in the different combustion plants of low and medium capacity when burning various kinds of biomass fuel or residues. The generalisation of the results will be realised on the basis of comparing the experimental results with the results of producing the pollutants in the standard wood combustion plants.
\nCuttings of dry native wood, other biomass and waste from fibreboards, particleboards and other wood materials were used as fuel. The kind of combusted biomass fuel and residues during the emission experiments in combustion plants:\n
residues of a Sorghum biocolor var saccharatum (L.) Mohlenber,
residues of dry native wood with lengths up to 0.75 m,
residues of beech and pine lumber, and cuttings after drying,
large‐surface residues of medium fibreboards (MDFs) bound by the UF resin,
large‐surface material (waste of particleboards bound by the UF resin) with lamination coating on the basis of melamine‐urea‐formaldehyde resin (two sorts),
large‐surface residues of particleboard bound by the UF resin with lamination coating on the basis of the melamine‐urea‐formaldehyde resin,
residues of plywood bound by the UF resin,
crushed briquettes produced from a mixture of waste from particleboards (90%) and natural wood (10%),
the two‐stage combustion equipment for wood and wood waste combustion comprise a pre‐furnace chamber, where the wood pyrolyses/gasifies by partial oxidation; subsequently, in the second phase the gaseous products and the carbon monoxide are burned with the respective air surplus for gaseous fuel. The two‐stage combustion equipment is mostly suitable for combustion of dry (W < 30%) pieces of wood and wooden waste or wood chips.
Boilers with discontinuous and continuous feeding were monitored. The broader characteristic of these boilers will be described in this chapter.
\nThere were eight types of boilers used as the subject of research interest:
\nBoiler 1: a boiler with a stationary horizontal grate with thermal input of approximately 200 kW for heat production for a small manufactory shop. The remains of a
Boiler 2: a gasifying boiler with a nominal output of 99 kW for combustion of piece rests of dry native wood residues with lengths up to 0.75 m from furniture production. Feeding of fuel to the boiler was performed manually. The normal operator\'s dosage period was 40–60 min.
\nBoiler 3: a two‐stage combustion boiler with manual regulation of primary air. The original nominal output of the grate boiler was 3.3 t/h of steam with a nominal temperature of 173°C and operational pressure of 0.75 MPa (2.5 MW). Firewood with a maximum consumption of 500 kg/h was the original nominal fuel capacity of boilers. The original boiler was adapted in such a way that a primary combustion chamber was added to it and the original combustion chamber served as a secondary combustion chamber. Types of firewood and waste wood were as follows:\n
Beech and pine waste lumber, and cuttings after drying;
Large‐surface waste of medium fibreboard bound by UF resin;
Large‐surface waste of particleboards bound by UF resin;
Large‐surface material (waste of particleboards bound by the UF resin) with lamination coating on the basis of melamine‐urea‐formaldehyde resin.
Boiler 4: an automated warm‐water boiler for waste wood combustion with a thermal input of 318.6 kW. Crushed briquettes produced from a mixture of waste from particle boards (90%) and natural wood (10%) production were combusted in the warm‐water boiler. Particle boards were produced on the basis of urea–formaldehyde resins or phenol–formaldehyde resins and were laminated with melamine resin and ABS foil. Edge‐forming bands of polyvinyl chloride (PVC) were not used.
\nBoiler 5: a two‐stage combustion boiler with capacity of 0.6 MW. In the pre‐furnace chamber, the dosed fuel comes to a slope grid where it is pre‐dried. Subsequently, the fuel falls to a horizontal grate where it is gasified by the substochiometric content of primary oxygen. The flammable gases formed burn out after mixing with the secondary air in the afterburning chamber under the boiler. Dosing of the fuel into the boiler can be automated or manual, therefore it is ideal for studying the operation modes.
\nBoiler 6: a two‐stage combustion boiler with capacity of 4.1 MW with partial recirculation of flue gas. In the primary combustion chamber, there is a slope grate under which the strictly regulated primary combustion air is driven. Secondary combustion air and recirculated flue gas are driven to the entrance to the secondary combustion chamber. The boiler power and the addition of the combustion air are automatically regulated by variators on the basis of measurement of actual thermal parameters in different points of the combustion chambers and pressure.
\nBoilers 7 (MA 23) and 8 (PU 25) for case study: The object of power, emission and safety operational testing was hot water boiler MA 23 for gasification of wood logs with nominal heat output of 23 kW (Figure 2(a)), and hot water boiler PU 25 with automatic feed fuel with nominal output of 23 kW (Figure 2(b)).
\n(a) Gasification boiler MA 23 and (b) automatic boiler PU 25.
The boilers are equipped with electronic temperature controller and a temperature safety fuse. Condition of the boiler and of its accessories was tested in accordance with the standardly supplied technical documentation. During testing, the influence of the conditions of fuel combustion on emissions was experimentally verified, as well as resistance to thermal overloading of the boiler and of equipment for removal of excess heat. Spruce wood with a moisture content of 10% and a calorific value of 15,266 MJ/kg was used as a test fuel, and for the boiler 25 PU we used pellets with a calorific value of 16.5 MJ/kg [14–17].
\nMeasurement of gas emissions was executed in line with standards (STN EN 15058:2007; STN EN 14789:2006; STN EN 12619:2013; STN ISO 7935:1992).
\nCO, NOx and O2 concentrations were quasicontinual measured with automatic analyser of furnace gases—ECOM SG‐Plus from the RBR COMPUTERTECHNIK (Germany) on electrochemical principle and continuously measured with a HORIBA Enda 600 and Pg analyser (Japan), acting on the physical principle of non‐dispersive infrared (NDIR) spectroscopy.
\nOrganic substance emissions expressed as total organic carbon (TOC) were continuously measured with a BERNATH ATOMIC analyser (Germany), acting on the principle of flame ionization detector (FID) and ThermoFid analyser.
\nCalibration gases were delivered came from the delivery of the Linde Gas k.s. Slovakia.
\nSolid pollutant emissions were measured using a gravimetric method after a representative isokinetic sample was taken in accordance with STN EN 13284‐1. Before the representative sampling process, at the measuring point, a speed profile of the air mass was measured in the piping using a Prandtl tube. The representative sample taking process at the measuring point was executed at several measuring points of the piping cross section. The measuring points were selected in order to ensure an objective sample taking from the whole piping cross section.
\nSmoke darkness measurements were conducted according to opacity in the Bacharach scale with a BRIGON company appliance (Germany).
\nModel combustion testing and measurements of emissions have analysed the process of production of pollutants in the process of biomass fuel and residues combustion. The particularities of various kinds of biomass manifest themselves also through various thermochemical characteristics, affecting the combustion and pyrolysis processes [18, 19]. Many combustion devices are manually regulated and/or do not have regulation of biomass combustion parameters in combination with emission values of contaminating substances (°C, concentrations of CO2, CCO, CTOC and CNOx). The knowledge of biomass—combustion technique—combustion conditions—emissions interactions is an essential prerequisite in these cases for minimising emissions from manually regulated combustion devices.
\nWhen combusting the remains of a
A reduction of burning velocity can be achieved through addition of native wood briquettes. Native wood briquettes have a high density (approximately 1.1 kg/dm3) that is incomparably higher than the density of the shrub (approximately 0.29 kg/dm3). When combusting native wood briquettes in this boiler, a marked reduction in black smoke and gaseous contaminating substances (Figure 3) was achieved. At smaller differences in the biomass density, such marked differences probably would not have become evident. Results from the combination of thermogravimetric and differential thermal analysis (TG/TGA) of six species of wood show that there is no connection between the wood density and the parameters characterising the burning process [20].
\nTrend in the emissions of CO, TOC and O2 during combustion of wood briquettes.
The time behaviour of contaminating substance emissions (in recalculation to reference oxygen, 11% O2) was monitored within the whole interval, starting with fuel feeding. Mean values of CO, NOx, TOC and O2 concentrations were recorded in 1‐min intervals. The time behaviour of smoke darkness was monitored in 5‐min intervals.
\nMeasuring points were located in a vertical duct system behind a waste gas fan.
\nIt can be seen that after briquette feeding, the CO concentration increases sharply. Then, a stable phase of briquette burning sets in at oxygen contents in waste gases of approximately 9–13%. An emission extreme at a burning time of 35–40 min can indicate unstable aerodynamic conditions in the furnace, for example, collapse of a uniform fuel layer in the furnace. Morissette et al. [13] measured average emissions of CO, NOx and SO2 for burning corn stover 2725, 9.8 and 2.1 mg/m3 and average emissions of CO, NOx and SO2 for burning round bales 2210, 40.4 and 3.7 mg/m3. It is interesting that changes in nitrogen oxides were correlated with changes in oxygen content (Figure 4) [13].
\nTrend in the emission of NOx and O2 during combustion of wood briquettes.
As emerged from these results, an acceptable solution could be more frequent feeding of a smaller fuel quantity at shorter intervals. This was confirmed by consequent analysis of the causes of dark smoke formation in the gasifying boiler with a nominal output of 99 kW. An experimental laboratory investigation was carried out to study the NOx formation and reduction by primary measures for five types of biomass (straw, peat, sewage sludge, forest residues/Grot and wood pellets) and their mixtures in the work [21]. They found that NOx emission levels were very sensitive to the primary excess air ratio and an optimum value for primary excess air ratio was seen at about 0.9. Conversion of fuel nitrogen to NOx showed great dependency on the initial fuel‐N content, where the blend with the highest nitrogen content had lowest conversion rate.
\nThe gasifying boiler 2 with a nominal output of 99 kW often produced dark smoke. A demand was made to elaborate a proposal of technical‐organisational measures for at least partial elimination of this negative aspect of power‐producing use of piece rests of dry native wood residues with lengths of up to 0.75 m from the furniture production. The boiler was expected to fulfil a single emission limit smoke darkness. The boiler operator was asked to periodically load fuel to the combustion chamber, to check temperature and pressure in the heat exchanger and to clean the device periodically. However, the regularity of feeding fuel from the viewpoint of emission minimisation was unknown. It was likewise unknown what the impact on concentrations of contaminating substances would have been for feeding dry, moist or even wet wood. The analysis of the time behaviour of emission creation on the basis of quite simple measurement of smoke darkness with proposed changes in feeding indicated possibilities for solving the problem of dark smoke creation (Figure 5).
\nTrends in time behaviour of smoke darkness (opacity in the Bacharach scale) development from time of feeding of dry native wood residues with lengths of up to 0.75 m in the gasifying boiler.
By virtue of monitoring burning velocity, it can be said that this process is extremely rapid and thus highly susceptible to the formation of emission maxima. However, only dry native wood residues with lengths of up to 0.75 m are formed in operation. The combustion without emission maxima is for this reason possible only upon precise, uniform feeding at short time intervals.
\nThe adaptation of an original one‐stage combustion device with an output of 3.3 t/h of steam to a two‐stage combustion device (boiler 3) did not bring an expected reduction in emissions when combusting dry fuel. In the first phase, after feeding beech and pine waste lumber and cuttings after drying into the boiler, black smoke originates even at sufficient oxygen concentration of 11.6%. During this phase, the CO concentration was approximately 30,000 mg/m3, TOC was approximately 1300 mg/m3 and NOx was approximately 92 mg/m3. Dry wood burns quite rapidly after feeding and after black smoke appeared for several minutes with extremely high CO and TOC concentrations. These are products of wood tar and non‐oxidised carbon.
\nWhen combusting boards bound by UF resin, a slower burning and a smaller emission extreme are visible in comparison with combustion of beech and pine waste lumber and cuttings after drying. After combustion of large‐surface waste of particleboards bound by UF resin, no production of dark smoke was observed. When combusting large‐surface material (waste of particleboards bound by UF resin) with lamination coating on the basis of melamine–urea–formaldehyde resin, the entire burning process took place in a steady phase; this is seen from the course of CO and TOC concentrations (Table 1).
\nTime from fueling (min) | \nOxygen content (%) | \nConcentration (mg/m3) | \n||
---|---|---|---|---|
CO | \nTOC | \nNOx | \n||
0–2 | \n10.9 | \n331 | \n7 | \n248 | \n
2–6 | \n11.1 | \n342 | \n<5 | \n234 | \n
6–10 | \n11.9 | \n292 | \n<5 | \n273 | \n
10–14 | \n13.7 | \n59 | \n<5 | \n316 | \n
14–18 | \n12.4 | \n263 | \n9 | \n271 | \n
18–20 | \n15.3 | \n28 | \n14 | \n312 | \n
Concentrations of contaminating substances recalculated to oxygen content in waste gases of 11% from the combustion of particleboards with lamination coating on the basis of melamine–urea–formaldehyde resin.
N.M. | \nTfuel gas (°C) | \nOutput (%) | \nOxygen content (%) | \nConcentration (mg/m3) | \n||
---|---|---|---|---|---|---|
CO | \nTOC | \nNOx | \n||||
1 | \n145 | \n60–63 | \n15.34 | \n2312 | \n524 | \n811 | \n
2 | \n120 | \n60–65 | \n17.98 | \n3626 | \n781 | \n925 | \n
3 | \n132 | \n65–70 | \n17.00 | \n2147 | \n608 | \n1017 | \n
4 | \n130 | \n70–75 | \n18.91 | \n4606 | \n354 | \n896 | \n
5 | \n131 | \n65–70 | \n18.52 | \n3301 | \n263 | \n985 | \n
6 | \n135 | \n70–75 | \n17.49 | \n2598 | \n162 | \n864 | \n
7 | \n134 | \n75–80 | \n18.96 | \n6744 | \n298 | \n821 | \n
8 | \n136 | \n8081 | \n18.72 | \n3852 | \n251 | \n923 | \n
Summary of measured average half‐hour emission values under conditions set as a standard with primary and secondary combustion air from boiler 4.
In small furniture shops, the interest in using their own waste, such as particleboards (PB), fibreboards (FB), or shaped pressed parts, for producing power has been increasing. However, securing conformity with the legal demands for air quality control is questionable. The study of the thermo‐degradation processes of adhesives and preservatives has led to useful results [22–24]. Information on thermodegradation of particleboards impregnated with various adhesives has been previously published in the works [25–27]. Our previous experiments under operational conditions showed that the impact of different binders in waste wood on CO emissions was slightly significant [4]. A similar result was obtained under laboratory conditions [26]. From a comprehensive analysis of results, it is clear that the thermal data and calorific value of biomass and biomass waste, in particular industrial wood waste, cannot be used as a basis for a regulation of the combustion process with the aim of minimising emissions.
\nThe above‐mentioned analysis results were also confirmed when examining the impacts of operational parameters of the automated warm‐water boiler 4 on the concentrations of contaminating substances in waste gases. The results of the measurement of emissions under conditions of boiler operation set as a standard are given in Table 2.
\nWe then optimised boiler operation precisely for the given kind of fuel. Results of emission measurements after the optimisation at the boiler output of 100% are given in Table 3.
\nN.M. | \nTfuel gas (°C) | \nOutput (%) | \nOxygen content (%) | \nConcentration (mg/m3) | \n||
---|---|---|---|---|---|---|
CO | \nTOC | \nNOx | \n||||
1 | \n152 | \n100 | \n9.22 | \n123 | \n13 | \n521 | \n
2 | \n156 | \n100 | \n10.40 | \n133 | \n13 | \n556 | \n
3 | \n158 | \n100 | \n10.16 | \n126 | \n12 | \n521 | \n
4‐8 | \n159 | \n100 | \n9.81 | \n97 | \n11 | \n508 | \n
Summary of measured average half‐hour emission values after optimisation of boiler 4\'s operation.
All of the results of emission measurement analyses under operational conditions show that waste combustion of particleboards in smaller wood boilers can also be optimised in such a way that the demands of emission limits are met. It arises hereafter from these results that modelling results for combustion emissions of industrial waste wood cannot be realised at the same level as they are for optimal combustion of natural, pure wood [28].
\nTables 4–7 show the results of different operation regimes and Tables 8–10 show different wood waste on two‐stage combustion equipment—boiler 5. In Tables 4–10, the humidity means relative humidity, and harmful substances concentrations represent values calculated at 11% oxygen content in flue gas. The measured values mean the averages of at least three half‐hour averages of measured concentrations.
\n\nThe emission characteristics of the two‐stage combustion equipment in an automated operation Table 4 shows that even the commonly available two‐stage combustion equipment is not able to keep the concentrations of harmful substances within the emission limits, which is proven by the exceeding of the emission limits CO = 850 mg/mn3.
\nParameter | \nUnit | \nMeasured value | \n
---|---|---|
Furnace type | \nTwo‐stage—pyrolysis pre‐furnace | \n|
Nominal power | \n0.6 MW | \n|
Operation regime | \nAutomated | \n|
Wood chips (spruce) | \n||
Humidity | \n% | \n40 | \n
Fuel consumption | \nkg/h | \n192 | \n
\n | ||
Temperature | \n°C | \n199 | \n
O2 | \n% | \n12.8 | \n
Flue gas volume | \nmn3/h | \n1432 | \n
TZL | \nmg/mn3 | \n* | \n
CO | \nmg/mn3 | \n1093 | \n
NOx | \nmg/mn3 | \n366 | \n
Emission characteristics of two‐stage combustion equipment in an automated operation regime: boiler 5.
Notes: *Up to 60 mg/mn3 also in experiments with another material, thus they are not stated in further tables.
In further experiments with wood and wood waste combustion, increased attention is paid to the operation of combustion equipment in a dynamic (not stable) regime. Dynamic states in operation of the combustion equipment are caused by a discontinuous dosing, or by continuous but not steady fuel dosing as well as by the regulation of incoming air. Emission characteristics measurements of the combustion equipment in a dynamic operation state were decided purposely due to the fluctuating heat take off from combustion equipment. The necessity to monitor the emission characteristics during dynamic operation of the combustion equipment is caused also by the fact that the majority of the fuel combustion processes is the power regulation. The fuel and air dosing is within the power regulation derived from the parameters of the heat transfer medium and its production.
\nEven the two‐stage combustion equipment is not able to eliminate the unsteadiness of fuel dosing. At the jump change of the dosing (loading of the furnace with the fuel), the oxidation conditions of organic gaseous substances and carbon monoxide become worse. After loading the fuel, CO concentration immediately grows rapidly (Table 5). At the same time, conditions for decreased conversion of fuel nitrogen into nitrogen oxides [29] and low concentrations of nitrogen oxides are created. Probably the second stage of the combustion in this type of equipment does not meet all the construction requirements in order to achieve a high level of oxidation of organic gaseous substances. According to our calculations, this fact is caused by low temperature in the combustion chamber at the second stage (cooled by the boiler) and because flue gas remains in the chamber for a short time period.
\nParameter | \nUnit | \nMeasured value | \n
---|---|---|
Furnace type | \nTwo‐stage—pyrolysis pre‐furnace | \n|
Nominal power | \n0.6 MW | \n|
Operation regime | \nManual dosing—once completely filled reservoir above the grate | \n|
Wood chips (spruce) | \n||
Humidity | \n% | \n49 | \n
Fuel consumption | \nkg/h | \n204 | \n
\n | ||
Temperature | \n°C | \n223 | \n
O2 | \n% | \n13.7 | \n
Flue gas volume | \nmn3/h | \n1486 | \n
CO | \nmg/mn3 | \n27,981 | \n
NOx | \nmg/mn3 | \n181 | \n
Emission characteristics of two‐stage combustion equipment when burning wood chips (spruce) and manual dosage in the initial phase of the fuel dosing: boiler 5.
Notes: *In initial phase after the fuel metering were measured max. values of CO.
Parameter | \nUnit | \nMeasured value | \n
---|---|---|
Furnace type | \nTwo‐stage—pyrolysis pre‐furnace | \n|
Nominal power | \n0.6 MW | \n|
Operation regime | \nManual dosing—once completely filled reservoir above the grate | \n|
Wood chips (spruce) | \n||
Humidity | \n% | \n49 | \n
Fuel consumption | \nkg/h | \n204 | \n
\n | ||
Temperature | \n°C | \n210 | \n
O2 | \n% | \n18.3 | \n
Flue gas volume | \nmn3/h | \n1486 | \n
CO | \nmg/mn3 | \n480 | \n
NOx | \nmg/mn3 | \n257 | \n
Emission characteristics of the two‐stage combustion equipment when burning wood chips (spruce) and manual dosing in the phase before fuel burning out: boiler 5.
Notes: *In the phase before the burn out were measured min. values of CO.
In manual fuel dosing, the last phase before the next dosing is the burn out phase. In this short phase, there is only the pyrolytic carbon and ashes in the primary combustion chamber. No gaseous organic substances are formed and CO concentrations are on the lowest level (Table 6).
\nIn Table 7, average values are listed for the operation parameters and emissions during the whole fuel burning process under manual dosing—from loading until the end of continuous burning (up to 18% oxygen content in flue gas), immediately before the next fuel dose. When comparing the results of carbon monoxide and nitrogen oxides emissions measurements during the automated regime (Table 4) and manual regime (Table 7), it is evident that CO concentrations are at a higher level with manual dosing, and on the other hand, NOx concentrations are higher with automated dosing. The automated dosing regime is stable without emission extremes of carbon monoxide concentrations. With manual fuel dosing, there are phases with high concentrations and low production of nitrogen oxides.
\nParameter | \nUnit | \nMeasured value | \n
---|---|---|
Furnace type | \nTwo‐stage—pyrolysis pre‐furnace | \n|
Nominal power | \n0.6 MW | \n|
Operation regime | \nManual dosing—once completely filled reservoir above the grate | \n|
Wood chips (spruce) | \n||
Humidity | \n% | \n49 | \n
Fuel consumption | \nkg/h | \n204 | \n
\n | ||
Temperature | \n°C | \n218 | \n
O2 | \n% | \n11.6 | \n
Flue gas volume | \nmn3/h | \n1486 | \n
CO | \nmg/mn3 | \n3537 | \n
NOx | \nmg/mn3 | \n248 | \n
Phenol | \nmg/mn3 | \n6.4* | \n
Formaldehyde | \nmg/mn3 | \n15* | \n
Emission characteristics of the two‐stage combustion equipment when burning wood chips (spruce) and manual dosing during the whole fuel burning phase: boiler 5.
Notes: *Average for the whole phase from dosage to the end of steady burning.
In this boiler, very good results of CO concentrations were reached when burning spruce bark with steady manual dosing (Table 8). Higher nitrogen content in spruce bark (
Parameter | \nUnit | \nMeasured value | \n
---|---|---|
Furnace type | \nTwo‐stage—pyrolysis pre‐furnace | \n|
Nominal power | \n0.6 MW | \n|
Operation regime | \nSteady manual dosing* | \n|
Spruce bark | \n||
Humidity | \n% | \n35 | \n
Fuel consumption | \nkg/h | \n100 | \n
\n | ||
Temperature | \n°C | \n211 | \n
O2 | \n% | \n12.0 | \n
Flue gas volume | \nmn3/h | \n1491 | \n
CO | \nmg/mn3 | \n202 | \n
NOx | \nmg/mn3 | \n397 | \n
Emission characteristics of the two‐stage combustion equipment when burning spruce bark and steady manual dosing: boiler 5.
Notes: *In amounts approx. 15 kg each 9 min.
Parameter | \nUnit | \nMeasured value | \n
---|---|---|
Furnace type | \nTwo‐stage—pyrolysis pre‐furnace | \n|
Nominal power | \n0.6 MW | \n|
Operation regime | \nSteady manual dosing* | \n|
Remains from PF plywood | \n||
Humidity | \n% | \n8 | \n
Fuel consumption | \nkg/h | \n180 | \n
\n | ||
Temperature | \n°C | \n224 | \n
O2 | \n% | \n10.4 | \n
Flue gas volume | \nmn3/h | \n1468 | \n
CO | \nmg/mn3 | \n11 | \n
NOx | \nmg/mn3 | \n382 | \n
Emission characteristics of the two‐stage combustion equipment when burning remains from PF plywood and steady manual dosing: boiler 5.
Notes: *In amounts approx. 36 kg each 13 min.
In Tables 9 and 10, CO and NOx concentrations are listed in flue gas from waste combustion—waste from the plywood on a phenol–formaldehyde resin basis and chipwood boards on a urea formaldehyde resin basis. In both cases, low CO concentrations in flue gas were measured, which is caused by high calorific value of dry remains. The UF resin significantly increases the nitrogen content in fuel, which results in high values for NOx concentrations.
\nParameter | \nUnit | \nMeasured value | \n
---|---|---|
Furnace type | \nTwo‐stage—pyrolysis pre‐furnace | \n|
Nominal power | \n0.6 MW | \n|
Operation regime | \nSteady manual dosing* | \n|
Remains from UF DTD | \n||
Humidity | \n% | \n7 | \n
Fuel consumption | \nkg/h | \n140 | \n
\n | ||
Temperature | \n°C | \n225 | \n
O2 | \n% | \n10.8 | \n
Flue gas volume | \nmn3/h | \n1426 | \n
CO | \nmg/mn3 | \n81 | \n
NOx | \nmg/mn3 | \n1260 | \n
Emission characteristics of the two‐stage combustion equipment when burning UF DTD remains and steady manual dosing: boiler 5.
Notes: *In amounts of approx. 23 kg each 10 min.
Boiler no. | \nBoiler 5 two‐stage 0,6 MW | \nBoiler 6 two‐stage 4,1 MW | \n
---|---|---|
Ratio of the waste from chipwood board (%) | \n35 | \n50 | \n
Content of O2 (%) | \n14.3 | \n13.3 | \n
CO (mg/mn3) | \n172 | \n88 | \n
NOx (mg/mn3) | \n588 | \n503 | \n
The results of measurements of pollutant emissions (as averages of three half‐hour values calculated for 11% O2) in flue gas from wood waste from furniture production.
Another goal of the emission limits measurements—when burning native wood and furniture residues from chipwood boards and MDF in boilers 5 and 6—was setting the highest possible ratio of this waste in order to keep to the emission limits. The results of our measurements (Table 11) show that the combustion process itself is highly efficient and there are no problems to keep to the CO emission limits. In boiler 5, it is possible to keep to the emission limit for NOx with a ratio of the chipwood board in fuel up to 35%. In boiler 6, the emission limit for NOx 650 mg/mn3 is maintained with a reserve with a ratio of chipwood board in fuel up to 50%.
\nIn the past, extensive research was conducted on emissions from various combustion plants for wood and wood waste [4]. The set of emission measurements is from 31 types of combustion plants (prevailing output range of 20 kW–10 MW and combustion plants of standard and lower technical level) and 23 types of wood fuel and industrial wood wastes.
\nIn order to evaluate a large number of emission measurement, we used the statistical method rotation in factor analysis. Varimax rotation is a useful statistical method used to simplify and better interpret the measuring results. We can identify and describe each variable with a single factor. The results of calculated varimax rotated factor matrix (Table 12) enable to identify the influence of combustion conditions on the production of CO, TOC and NOx.
\nFrom the results of cited emission measurements, the factor analysis (Table 12) confirms the importance of precise oxide dosing (O2) in the combustion space (variable/factor 1) for hydrocarbon emissions (CxHy) and carbon monoxide (CO). On the other hand, a type of wood fuel does not influence this factor of “good burning” (when respecting suitability for the given combustion plant). With important differences in oxygen content in industrial wood fuels, it is an influence of a kind of fuel (variable/factor 2) which is very important for producing nitrogen oxides (NOx). At the same time, in the wide spectrum of analysed data, the variable/factor 2 confirms different and mutually opposing mechanism of producing pollutants of CO, TOC and NOx.
\nVarimax rotated factor matrix | \n||
---|---|---|
Variable/factor | \n1 | \n2 | \n
CO | \n0.6744 | \n−0.5340 | \n
NOx | \n0.1577 | \n0.8720 | \n
TOC | \n0.8365 | \n0.1244 | \n
O2 | \n0.8395 | \n0.1660 | \n
Type of combustion plant | \n0.3858 | \n−0.3569 | \n
Fuel sort | \n0.0166 | \n0.8374 | \n
Factor matrix of the results of measurements on the emissions from burning wood and wood wastes in various combustion plants.
This research shows further ways and means towards the realisation of measures to minimise emissions from the combustion of wood and wood waste. From the viewpoint of emission production, the decisive prevailing influence of the technique of wood waste combustion was proven in comparison with the influence of the chemical composition of wood waste. The knowledge and respecting the mechanism of producing pollutants are usable for regulation of emissions from atypical combustion plants or generally for minimisation of emissions in combustion plants.
\nEmissions of individual pollutants at combustion of solid fossil fuels (black coal and lignite) and of biomass (wood pellets) in boilers can be found by the analyses of data obtained from different experiments or commercial measurements of emissions. Data for individual pollutants are described, for example, in the study [14] which summarises the most important findings concerning the production of pollutants at combustion of various fuels.
\nIt is possible to see from the measurement results that combustion of biomass does not always directly reduce the amount of harmful emissions generated. An important factor is particularly the manner of combustion control, which is given by the method of fuel supply, simply speaking by stoking. The next section shows the method of regulation and of other modifications of the boiler MA 23, which resulted in reduction of emissions.
\nStoichiometric analysis of fuel samples under normal conditions, and of reference oxygen content in the flue gas Or = 11% corresponded to the excess air in the flue gas of
Volumetric combustion | \n\n | Unit | \nMA23 | \nPU25 | \n
---|---|---|---|---|
Oxygen for combustion | \nOmin | \nmn3/kg | \n0.815 | \n0.906 | \n
Theor. air, dry | \nOSair | \nmn3/kg | \n3.881 | \n4.313 | \n
Excess air | \nn | \n– | \n4.464 | \n2.220 | \n
Water in flue gas | \nVSPH2O | \nmn3/kg | \n0.794 | \n0.744 | \n
Real flue gas, dry | \nVSPreal, S | \nmn3/kg | \n17.286 | \n9.537 | \n
Real flue gas, wet | \nVSPreal V | \nmn3/kg | \n18.08 | \n10.282 | \n
Nitrogen oxides | \nNOx | \n% V/V | \n75.756 | \n73.724 | \n
Carbon dioxide at | \nCO2max | \n% V/V | \n16.515 | \n16.97 | \n
Measured carbon dioxide | \nCO2 | \n% V/V | \n4.28 | \n8.271 | \n
Oxygen | \nO2 | \n% V/V | \n15.8 | \n10.765 | \n
Carbon monoxide | \nCO | \n% V/V | \n3.815 | \n10.219 | \n
Water vapour | \nH2O | \n% V/V | \n4.394 | \n7.239 | \n
Stoichiometric parameters.
It is evident from the results that increased oxygen content in the flue gas increases the CO content, that is, the component, from which it is still possible to extract some heat and to reduce thus the loss of the unused fuel. This observation leads us to the fact that gas did not get enough time to react with oxygen and to transform to CO2.
\nTable 13 gives the percentage composition of real wet flue gas, when it is apparent that the percentage composition of the flue gas is affected also by the amount of flue gas. Table 13 gives for comparison also the theoretical volume concentration of carbon dioxide at stoichiometric combustion, that is, with excess air
The boiler works on the principle of fuel gasification. It consists of two chambers situated one above the other. The upper chamber serves as a fuel reservoir with pre‐burning, while the lower chamber serves as a combustion chamber and an ash pan, which allows perfect gasification of coal and wood. The bottom of the combustion chamber contains an afterburner chamber in which the wood gas and solid residues are burned. Supply of combustion air is realised by radial fan.
\nHot water boiler MA 23—1. Stoking chamber, 2. Combustion chamber, 3. Fan, 4. Tube heat exchanger, 5. Chimney spout, 6. Electronic regulator, 7. Nozzle made of refractory concrete.
The boiler (Figure 6) provides a fuel pre‐drying with subsequent gasification at higher temperatures. The primary air and secondary air are pre‐heated and distributed in an ideal proportion to the centre of a fire and to the nozzle. The primary air is driven into the combustion chamber below the level of the upper door. Uniform distribution of pre‐heated primary air ensures that the fuel gasification takes place gradually in small amounts of fuel. The boiler is therefore economical and it has high combustion efficiency of 70–89% in the entire range of its power output. This arrangement allows better gasification of larger pieces of wood. The secondary air, which is fed to the gasification nozzle, is pre‐heated to a higher temperature. The flame thus does not cool down and combustibles burn up completely. The lower combustion chamber is lined with refractory concrete in which the final burning of all solid particles, which fall down, takes place.
\nFigure 7(a) shows the original shaped piece through which the combustion air for secondary combustion was supplied by two large holes. Figure 7(b) shows the proposed shaped piece, which was also tested, through which the air was supplied along the longer side of the shaped piece by several holes. This resulted in a better reaction with the generated wood gas, in better burnout of gas and thus in the already mentioned reduction of emissions.
\n(a) Original shaped piece and (b) newly designed shaped piece.
Modification of combustion leads to reduction in generation of the gases we measured. The components of the produced gas have the ability to react with the incoming air to produce heat. Recording of the measured production of CO during the first test measurement (Figure 7(a)) of the rated heat output of the gasification boiler showed unsatisfactory results. Average value of carbon monoxide during two fuel charges without modification of the distribution of the combustion air, that is, with the initial fitting, was 2350 mg/m3. The gasification boiler, therefore, had to undergo a modification of the combustion air and gas inlet into the space of the secondary combustion zone; this position is in Figure 6 indicated by number 2. This newly designed fitting does not have one hole of larger diameter but five holes along the longer side for the supply of secondary combustion air and gas from the gasification chamber (see Figure 7(b)). Modification of combustion leads to lower productions of the gases we measured. Modification of the fitting affected the measured values of carbon monoxide, which were on an average of 830.3 mg/m3. Such a result was expected and it was confirmed by measurements. The cause of this improvement consists in more even and planar supply of air. The air thus oxidises the active zone of the heating chamber in a wider area and greater volume. This brings a higher intensity of oxidisation and higher quality of combustion.
\nBasic measurements by both direct and indirect methods were performed in accordance with the relevant standards and regulations for Slovak Republic, the Czech Republic and the EU. In the entire range from ignition to extinction (due to the need to compare modifications of equipment), we selected evaluation within the limits of water heated to 60°C up to 90°C, that is, within the temperature interval of the most frequently used operation. Our interest was to determine during this measurement the amount of CO (non‐reacted fuel component) in dependence on the boiler output. We were also interested in the output water temperature in dependence on the flue gas temperature.
\nAverage scatter is low due to the leap type control of the combustion air supply, when large fluctuations from the mean value are caused by the opening and closing of the air valves. Table 14 presents the average values of the desired variables.
\n\n | \n | Original state | \nNew formed piece 1D | \nNew formed piece 2D | \n
---|---|---|---|---|
kW | \n19.2 | \n19.3 | \n18.5 | \n|
CO | \nmg/m3 | \n2072.0 | \n660.8 | \n696.3 | \n
O2 | \n% | \n16.6 | \n16.5 | \n18.2 | \n
NOx | \nmg/m3 | \n115.2 | \n120.4 | \n90.9 | \n
Output temperature | \n°C | \n79.6 | \n79.3 | \n79.4 | \n
Chimney temperature | \n°C | \n154.3 | \n156.6 | \n145.9 | \n
Temperature gradient | \n°C | \n17.2 | \n17.3 | \n16.6 | \n
Average values of the desired variables.
Measurement of performance parameters of the hot‐water boiler MA 23 was performed by erudite experts from the Department of Energy Technology, Zilina University (ZU) in Zilina, Slovak Republic. They made measurements of all the parameters cited in the paper. The records of the tests were prepared both in tabular form and in diagrams. The measurement was performed continuously beginning from the first ignition of the boiler. The total duration of measurement was 405 min with steps of 1 min. The records were evaluated by regression analysis of the measured values. The correlation coefficient for all dependencies varies from 0.9 to 0.95. On the basis of the derived regression relationship, it is possible to render flow diagrams of the main functions, such as an increase in boiler output in kilo Watt, as shown in Figure 8. Optimal values functions are represented on the line of optimal performance, that is, 23 kW. In Figure 8, the functions are extended up to the output of 90 kW for more efficient boilers. Evolution of functions can be equally well plotted in dependence on time in minutes. Figure 8 shows very clearly that combustion occurring during the first few minutes after ignition is rather problematic and unstable until an output of at least 10 kW is achieved. Evolutions of functions are interdependent, and we used them for the proposal of regulation of the combustion quality and oxygen balance by the ventilator. The sensor for continuous measurement of temperature is situated in the stack throat. The regulator controls in dependence on the flue gas temperatures and fluctuations of the draught in the revolutions of an auxiliary fan. The coefficient of progression is defined as a dimensionless ratio between an optimal oxygen balance and the real one in relation to the optimal boiler output and to the corresponding desired oxygen balance according to the fuel.
\nMA 23, fan revolutions in dependence on the power output.
A regression analysis was conducted on the basis of the data analysis in order to obtain description and prediction of the acquired dependencies and relationships between individual parameters. The analyses yielded in the following Eqs (1)–(12):
\nDependence of draft in the chimney
Dependence of the chimney temperature
Progression coefficient of the oxygen balance
Fan revolutions
Fan revolutions
Fan revolutions
Values of emissions at the optimal power output (maximum power output)
The maximum output occurs at
It follows from Eqs (7)–(12) that the values of emissions were obtained in this manner:
\nCOprep = 1.9633 10+003 (value standardised at the normal conditions), NOxprep = 207.0828 0828 (value standardised at the normal conditions), COppm = 1.7237·10+003, COcmg = 1.3070·10+003, NOxppm = 57.6966 and NOppm = 58.4455.
\nThese values can be read on the straight line
Eqs. (1)–(12), derived by analytical processing of the measured values, are used in solution for conversion of the basic combustion functions to complex mathematical model of the combustion process as it is graphically represented in Figure 8. This mathematical model is of interactive nature, and it helps in programming of the electronic controller.
\nThe results of emission measurement analyses indicated that the standard practice of boiler operation with a lower level on measurement and combustion process automation that governs the combustion mode on the basis of calorific value, humidity of wood fuel and demanded boiler output is insufficient for minimising emissions. For this reason, an original task for each type of boiler with wood as a fuel is to define optimum conditions of the combustion process under which the lowest emissions possible are reached.
\nNew lessons from our operating experiments concerning the production of pollutants during power generating using wood and wood waste are useful for reducing emissions:\n
from small combustion plants,
from unconventional combustion plants and in general to minimise emissions from other biomass combustion plants.
The results of analyses showed that the standard mode of operation for a particular wood boiler, as a result of large variability of wood fuel and waste wood properties, should be optimised by virtue of emission measurements.
\nThe analysis of time behaviour for wood boiler emissions is a good basis for a theoretical analysis examining the possibilities for adaptation of the usual mode of boiler operation with the aim of reducing emissions.
\nThe results of combustion mode adaptation in six types of boilers with smaller outputs show by virtue of emission measurements and according to the methodology worked out that when combusting wood of various dimensions (briquettes, cuttings) or waste wood cuttings (of fibreboards and particleboards bound by UF resin, and/or with lamination coating on the basis of melamine‐urea‐formaldehyde resin), it is possible to markedly reduce emissions and smoke darkness.
\nThe purpose of design of gasification boilers consists in the most effective and most perfect combustion of volatile substances (especially carbon monoxide) in the secondary combustion zone. Insufficient amount of combustion air in the combustion nozzle leads to high emissions of carbon monoxide.
\nAfter analysis of the results of emission measurements, we proposed a new component of the boiler, that is, the shaped piece between the gasification and post‐combustion chamber. This modification reduced the values of emissions, so combustion occurred with higher efficiency and the values of the generated flue gas CO, CO2 and other components of the flue gas got stabilised. We also proposed control of the combustion air supply.
\nThe next modification concerns the electronic control. The tested gasification hot water boiler is equipped with a reliable microprocessor controller of the type G‐403‐P02, which provides control of air supply via fan on the basis of the input temperatures, which ensures a relatively wide range of boiler regulation between 30 and 100% of the rated power output of the boiler, as well as its safe operation. Combustion is then closer to the ideal, stoichiometric combustion, which manifests itself by the smallest possible air excess. This condition ensures us low production of flue gas and thus also of the resulting pollutants.
\nThis research was supported by the Slovak Grant Agency VEGA under contract No. VEGA 1/0547/15 “Experimental measurement and modelling of fugitive emissions.” This work was also supported by the Slovak Research and Development Agency under the contract No. APVV‐0353‐11 “A proposal and realisation of a pilot retort with reduced emissions for charcoal production in marginal zone and verification its application” and project ITMS 26210120024, the project of the Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use, Reg. No. LO140 and the project RMTVC No. LO1203.
For thousands of years, Chinese medicinal herbs were collected from forested mountains, which faded away with the demands of human healthy [1]. People have to choose artificial cultivation in the field and adopted high-yield method for its planting. However, high-yield method betrayed the characteristic of medicinal herb, which caused medical effectiveness and quality to decrease deeply [2]. We explore a new road for medicinal herb cultivation under forest without chemical fertilizer and pesticide. It is based on the principle of biodiversity for pest control.
Chinese herbs are the important raw material for pharmaceutical production and the material basis for the inheritance and development of traditional Chinese medicine (TCM) for thousands of years. It is also a strategic resource related to the national economy and people’s livelihood. As an important support of economic development in many poor areas, it plays a positive role in increasing farmers’ income [3]. The clinical value of TCM has progressively been appreciated by the public at home and abroad, particularly the effect shown in the COVID-19 prevention and control, which has demonstrated its unique efficacy and role [4]. With the increasing global population and the complication of disease types, the demand for Chinese herbal medicine continues to rise. It shows a vigorous development trend in the Chinese herbal medicine industry. Historically, the supply of Chinese herbal medicine commodity mainly depends on wild plant resources [1]. Nevertheless, with the soaring demand for medicinal herbs, natural medicinal herbs have been mined out, and artificial farmland cultivation has gradually been adopted. Since the 1950s, China has vigorously developed the production of Chinese herbal medicine, from introduction and trial planting to commercial planting to base cultivation. The planting industry of Chinese herbs has experienced four periods: the germination period, the development period, the growth period, and the prosperity period [2]. However, some problems occurred with the gradual increase in the planting scale and yield of Chinese herbs that require urgent solutions.
First, the quality of Chinese herbs is unstable. At present, the circulation market of Chinese herbs is mixed with different varieties, including wild varieties, semi-wild varieties, wild cultivation, cultivated varieties, genuine land varieties, introduced varieties from different places, etc. [5]. The multichannel sources of TCM lead to its uneven internal quality, which not only increases quality security control difficulty of TCM, but also has a negative impact on the processing of TCM decoction pieces and TCM preparations [6]. The quality of Chinese herbs is affected by various objective elements.
Second, the problem of pesticide residues and excessive heavy metals is prominent. As the market demand for TCM continues to increase, wild medicinal materials have been hollowed out, and its yield has been unable to meet the demand, so most of the medicinal materials have to be cultivated artificially. In the process of cultivation, the high-yield mode of crops was copied for Chinese herbs, and a large number of chemical fertilizers, expansion, and other chemicals were applied, resulting in high yield but low medicinal effective component. The quality of medicinal herbs declined, and the efficacy of Chinese herbs was generally doubted [7]. Moreover, in the large-scale agricultural production of traditional Chinese medicine, pest became severe, and farmers have to apply chemical pesticides in order to guarantee the output, but the lack of scientific management of the field use of pesticides leads to the existence of different degrees of pesticide residue in medicinal herbs [8]. Exogenous harmful residues of medicinal herbs mainly include pesticide residues, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and others [9]. Unreasonable use of pesticides leads to uneven quality of TCM decoction pieces and cannot guarantee their safety [10]. The quality problems of pesticide residues and excessive heavy metals restrict the international development of traditional medicine [11]. The 2020 edition of the Chinese Pharmacopeia has more stringent restrictions on pesticide usage; besides, the European Union, Japan, and South Korea impose severe restrictions on pesticide residues and heavy metals. The Chinese herbal medicine industry will face more serious challenges.
Third, the continuous cultivation disorder of Chinese herbs is serious, and most areas producing genuine medicinal herbs face the risk of having no land to grow [12]. With the increasing demand for Chinese medicine materials, the types and scale of artificial cultivation of that are increasing, but the problem of continuous cropping in cultivation is becoming increasingly prominent, which seriously affects the normal growth and medicinal value and brings great trouble to the development of Chinese medicine [13]. Most of the TCM materials copy the agricultural high-yield mode; however, the reality is that crop varieties have adapted to the high-yield mode after thousands of years of genetic transformation, while the research and development of medicinal herbs are insufficient to support the high-yield mode. Therefore, the application of agricultural high-yield mode has caused major problems such as high yield but low quality, excessive pesticide residues, and continuous cropping obstacles in the production of Chinese herbs. About 70% of the root Chinese medicinal herbs are slow-growing perennial herbs that take many years to reach reproductive maturity; these plants usually experience different degrees of replant obstacles [12, 14]. In addition, most medicinal herbs are not fertilizer-resistant, and soil eutrophication leads to serious obstacles to continuous cultivation. A crop of cultivated land cannot be replanted for several decades, which leads to the serious phenomenon of deforestation for planting Chinese herbs, and most authentic producing areas face the embarrassing situation of having no land to plant, which seriously restricts the sustainable development of the Chinese herbal medicine industry [15, 16].
Around these problems, agricultural scientists in China took the research on large varieties of Chinese herbs such as
In the agroforestry system, agroforestry intercropping mode can not only significantly improve the microclimate conditions under forests by reducing soil erosion and wind speed, but also improve soil fertility and crop yield [24]. This pattern can make full use of natural resources and improve the efficiency of land use. Currently, the agroforestry intercropping mode has been successful in walnut/mung bean [25], poplar/soybean [26], jujube/cotton [27], etc. Therefore, the agroforestry intercropping model provides an effective and scientific way to alleviate the shortage of land resources and realize sustainable utilization.
A typical example for explaining planting technology is
Due to its high medicinal and economic value,
The key technologies for
When carrying out the under-forest organic planting for
In addition, the suitable soil for
Land preparation. Weeds and small shrubs under the forest should be moved and dead branches and leaves should be cleared. It is important that weeds and shrubs in non-planting areas should be retained as much as possible.
Plowing. The soil in the planting area was plowed 2 ~ 3 times with a depth of 20 cm ~ 30 cm by manual or small rotary tillers.
Ridging. The ridge direction should be determined according to the natural terrain or tree arrangement: flat land should be ridged according to the direction of forest tree planting. The slope land should be ridged along the contour line. The ridge surface is arranged in a circular arc, and the distance between the ridge and the tree root is greater than 20 cm. The ridge height is adjusted according to the slope. When the slope is greater than 20°, the ridge height is about 30 cm. When the slope is less than 20°, the ridge height is about 40 cm.
Setting up the drainage ditches. Drainage ditch is necessary in rainy season, and it is set up according to different slopes and terrain and leaves a drainage outlet every 15 m ~ 20 m length of the ridge. The drain outlet should be cleaned timely to prevent tree branches or soil accumulation from obstructing the drainage.
The seedling preparation of
Seedling. Seedling refers to sowing healthy
Seedling transplanting. Seedling transplanting refers to transplanting healthy
Water management. The water management of under-forest
Nutrient management. The organic matter under the forest is rich, and no chemical synthetic fertilizer is allowed to be applied throughout the production process of
Ecological prevention and control for diseases. There are several main diseases on
We conducted the protocol for diseases control: ① Elimination of disease residues. The diseased plants found under the forest should be cleared in time to prevent the spread of pathogens; ② physical prevention and control. Before the rainy season, timely cleaning of the drainage ditch in the plantation for drainage to avoid root rot. Moreover, by building a simple rain shelter on the ridge surface under the forest, it can regulate environmental humidity and play a role in physical prevention and control of diseases. ③ Biological control. Under-forest bases should adopt products such as bio-control bacteria, bio-derived fungicides, and plant elicitors specified in GB/T 19630 for disease prevention or treatment, and the use of chemical pesticides should be strictly prohibited.
Weed management. Weeds that affect the growth of
Prevention and control of rat harm. To use natural enemies such as weasel, snakes, etc., to control forest rats; according to the specific forest environment, rat traps, electronic mouse expeller, and other equipment are set up in the rat gathering area or channel to prevent rat harm.
Plantation clearance. During the growth of
Ecological balance principle. Traditional Chinese herbs are mostly grown in the natural ecological system, with high biodiversity, natural growth of medicinal materials, light pests and diseases, high efficacy, and sufficient medicinal power. However, in the high-yield cultivation mode of farmland, the variety of medicinal materials is single, the biodiversity of farmland is reduced, the ecosystem is unbalanced, and the harm of harmful organisms is intensified, resulting in the decrease in quality and safety of medicinal materials. It is an effective way to reduce the harm of diseases and insects and improve the quality of medicinal materials by using the natural law of interspecies mutual restraint. Based on the principle of under-forest biodiversity interaction and ecological balance, the planting of shade-growing Chinese herbs and forest system were effectively combined to construct an efficient, stable, and diverse agroforestry system. On this basis, according to the regularity of occurrence and development of Chinese herbal medicine diseases, the rain-shelter cultivation system of under-forest Chinese herbal medicine can also be constructed. Rain-shelter cultivation can create microclimate conditions that are not conducive to the development of pathogen to achieve physical prevention and control of the plant pathogen [18].
Habitat coupling principle. The cultivation of under-forest Chinese herbs makes full use of the coupling characteristics of forest habitats (light, temperature, water, fertilizer, etc.) and the growth characteristics of Chinese herbal medicines and realizes the genuine and high-quality production of Chinese herbal medicines. The main principles of habitat coupling include: ① light coupling principle. Chinese herbs suitable for under-forest cultivation are shade plants originating from the lower forest vegetation, which are sensitive to strong light [29, 30]. Inappropriate light will affect the growth and quality of Chinese herbs. Under the condition of conventional farmland planting, it is necessary to artificially build a shading shed to simulate its suitable light environment, but it is difficult to simulate to achieve its optimal growth conditions. Under-forest planting of Chinese herbs only uses the light microenvironment naturally formed under forest vegetation, which is more conducive to the growth and quality formation of Chinese herbs [31, 32]. Thermal coupling principle. Chinese herbal medicines are usually sensitive to heat. The artificial shading shed built in farmland has poor buffering capacity for heat, which often leads to heat injury or freezing damage [33, 34]. Due to the shade of trees, the lower layer of forest vegetation has strong buffering capacity for temperature, which can effectively alleviate the stress caused by the fierce change of temperature on the growth of medicinal herbs [35, 36]. ③ Water coupling principle. Forest-shade Chinese herbs growing under the forest have wet-like characteristics. The dry environment is not conducive to their growth. The forest environment can improve the microclimate, slow down the flow of air, and reduce water evaporation, thereby improving the distribution and utilization of water. ④ Nutrient coupling principle. The soil nutrient balance is the material basis for maintaining the primary and secondary metabolic balance of medicinal herbs. At present, the input of organic fertilizer is less and less in the farmland system, and the use of a large number of chemical fertilizers makes the problems of soil acidification and salinization increasingly prominent, resulting in the decline of efficacy, diseases and pests, and continuous cropping obstacles [37, 38]. In the agroforestry system, the roots and leaves of trees can provide a large amount of organic matter for the soil. The decomposition and accumulation of these organic matters can improve the fertility of the soil and provide sufficient nutrient supply for the healthy growth of Chinese herbs [39]. The soil rich in organic matter can also increase the diversity of microorganisms, promote the growth of beneficial microorganisms, and improve the stability of the soil ecosystem and antiviral ability [40]; in addition, understory soils rich in organic matter and microorganisms also produce some disease-resistant substances, which induce plant resistance and effectively reduce the occurrence of diseases [41].
The under-forest ecosystem has rich biodiversity, such as plant diversity, animal diversity, insect diversity, and microbial diversity. Plant–plant, plant-microorganism, plant–animal (insect), and other organisms in the under-forest system form a stable community through complex mutual generation and restriction relationship among the various organisms, which has strong ability to resist natural disasters.
Without chemical fertilizers and pesticides,
Cultivation of
Mechanisms involved in the cultivation of
Forest soils are generally rich in microorganisms, which reduces the root rot disease and promotes the plant growth by increasing the availability of nutrients. Our laboratory experiments showed that application of microbiome from the forest soil into sick soil improves the germination and growth of
The VOCs of pine tree terpenes (including α-pinene, β-pinene, camphene, etc.) stimulated the growth and reduced the pests and diseases of
Cao et al. [46] investigated the diversity of arthropods on
Diseases are more sever in Chinese medicinal herbs than in other crops because they grow for longer time and are easily threatened by diseases. However, diseases have not been prevalent in the forest, which contributes to the measures of cultivation under forest described above.
We had observed the disease from 2016 in the
Symptoms, incidence, and disease index of round spot disease. (A) Watery spots on
The incidence of round spot disease in Lancang County was investigated and monitored.
The pathogen causing round spot disease was isolated by single-spore isolation. In total, 30 pathogen strains were isolated from 30 diseased leaves. On PDA, colonies were round, villous, and varied in color from red to gray (Figure 4A and B). The strains did not produce conidia on PDA; they required water to induce conidia production. Conidiophores produced by thickened hyphae were colorless and bent (Figure 4F and G). Conidia were solitary, colorless, transparent, and long-arched, with multiple diaphragms (Figure 4C and D). The tail of the conidia gradually became thinner and the apical cells appeared to be truncated. A long, narrow, accessory filament with septa grew on the side of the apical cell. Notably, thin cilia were observed at the tail of the conidium and the top of the accessory filament (Figure 4E). The total length of conidia, including the accessory filament and two cilia, was 171.83–492.92 μm (average, 349.74 μm) (n = 200). Their width, measured at the widest part in the middle of the conidia, was 6.24–13.05 μm (average, 8.61 μm). Based on the morphology and conidial characteristics, the pathogen was identified as
Morphological characteristics of
The pathogenicity of 10 isolated strains was determined. Seven days post inoculation, all inoculated leaves showed similar lesions, and the symptoms were identical to those in the field (Figure 4I and J). The control plants remained healthy (Figure 4K). The diseased leaves in each treatment were selected for pathogen isolation, and the pathogen was reidentified as
Conidial germination was evaluated and observed at all 11 temperatures, except 32°C (Figure 5A). Conidia did not germinate within 2 h at all temperatures. At 4, 8, 14, 18, 20, 22, 24, and 28°C, germination started at 4 h. At 6 h, the germination rates at 14, 18, 20, 22, and 24°C all exceeded 30%. At 18 h, the germination rates at 14, 18, 20, 22, and 24°C all exceeded 90%. The highest germination rate was observed at 20°C (97.16%). At 24 h, all conidia at 18, 20, and 22°C had germinated. The germination rate exceeded 90% at 8, 14, and 24°C. Thus, temperatures above 28°C and below 4°C are not conducive to conidial germination, with the optimal temperature for germination between 14 and 22°C.
Effects of temperature and wetness duration on conidial germination in vitro. (A) Average germination rate of conidia at 11 different temperatures and different time points. (B) Average germination rate of conidia under seven different wetness durations.
Free water is a key factor for conidial germination. The effect of leaf wetness duration was first investigated
To evaluate the effect of leaf wetness duration on conidial infection, in the greenhouse experiment, round spot disease incidence was investigated 10 days after inoculation. When the leaf wetness duration was shorter than or equal to 8 h, no disease spots appeared on the
Effects of different leaf wetness durations on the occurrence of round spot disease. (A) Incidence and (B) disease index of round spot disease for different leaf wetness durations. *P < 0.05, **P < 0.01; n = 3, ns: no significant difference.
The different infection stages of
Development of
Development of
In 2020, the rainy season in Lancang County began in June. At the end of June, a rain shelter was built in the
Effect of rain-shelter cultivation on the incidence rate and disease index of round spot disease. (A) Incidence and (B) disease index of round spot disease in rain-shelter and open-field cultivation.
Effects of rain-shelter cultivation and open-field cultivation on the occurrence of round spot disease. (A)
Cultivation practice of Chinese herbs under forest is a promising technique in the future. It does not occupy arable land, no chemical fertilizer and pesticides, which leads a healthy route for medicinal herbs production.
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:41},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:16},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:66},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:489},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"209",title:"Cognitive Neuroscience",slug:"cognitive-neuroscience",parent:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience"},numberOfBooks:11,numberOfSeries:0,numberOfAuthorsAndEditors:313,numberOfWosCitations:261,numberOfCrossrefCitations:189,numberOfDimensionsCitations:447,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"209",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6819",title:"Prefrontal Cortex",subtitle:null,isOpenForSubmission:!1,hash:"903b3a38d3c8196f6a865526c124a6de",slug:"prefrontal-cortex",bookSignature:"Ana Starcevic and Branislav Filipovic",coverURL:"https://cdn.intechopen.com/books/images_new/6819.jpg",editedByType:"Edited by",editors:[{id:"182584",title:"Dr.",name:"Ana",middleName:null,surname:"Starcevic",slug:"ana-starcevic",fullName:"Ana Starcevic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6614",title:"Alzheimer's Disease",subtitle:"The 21st Century Challenge",isOpenForSubmission:!1,hash:"91df6c15517737c8fb91543f870d484d",slug:"alzheimer-s-disease-the-21st-century-challenge",bookSignature:"Jolanta Dorszewska and Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/6614.jpg",editedByType:"Edited by",editors:[{id:"31962",title:"Dr.",name:"Jolanta",middleName:null,surname:"Dorszewska",slug:"jolanta-dorszewska",fullName:"Jolanta Dorszewska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6167",title:"Cognitive and Computational Neuroscience",subtitle:"Principles, Algorithms and Applications",isOpenForSubmission:!1,hash:"828beb18d956dedaf19b5a87c8bfb828",slug:"cognitive-and-computational-neuroscience-principles-algorithms-and-applications",bookSignature:"Seyyed Abed Hosseini",coverURL:"https://cdn.intechopen.com/books/images_new/6167.jpg",editedByType:"Edited by",editors:[{id:"86475",title:"Dr.",name:"Seyyed Abed",middleName:null,surname:"Hosseini",slug:"seyyed-abed-hosseini",fullName:"Seyyed Abed Hosseini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6144",title:"High-Resolution Neuroimaging",subtitle:"Basic Physical Principles and Clinical Applications",isOpenForSubmission:!1,hash:"505b513060f90e61167b5e46e8cd9fea",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",bookSignature:"Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/6144.jpg",editedByType:"Edited by",editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",middleName:null,surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5947",title:"Mechanisms of Neuroinflammation",subtitle:null,isOpenForSubmission:!1,hash:"e4ade830cd06a3aebc5eae0dae96aff2",slug:"mechanisms-of-neuroinflammation",bookSignature:"Gonzalo Emiliano Aranda Abreu",coverURL:"https://cdn.intechopen.com/books/images_new/5947.jpg",editedByType:"Edited by",editors:[{id:"72314",title:"Dr.",name:"Gonzalo Emiliano",middleName:null,surname:"Aranda Abreu",slug:"gonzalo-emiliano-aranda-abreu",fullName:"Gonzalo Emiliano Aranda Abreu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5313",title:"Update on Dementia",subtitle:null,isOpenForSubmission:!1,hash:"6b264ef130a59fe71274c3811750e6c3",slug:"update-on-dementia",bookSignature:"Davide Vito Moretti",coverURL:"https://cdn.intechopen.com/books/images_new/5313.jpg",editedByType:"Edited by",editors:[{id:"147154",title:"Dr.",name:"Davide",middleName:"Vito",surname:"Moretti",slug:"davide-moretti",fullName:"Davide Moretti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2604",title:"Basal Ganglia",subtitle:"An Integrative View",isOpenForSubmission:!1,hash:"76d19f809182eea657ce36eb4817c5b8",slug:"basal-ganglia-an-integrative-view",bookSignature:"Fernando A. Barrios and Clemens Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/2604.jpg",editedByType:"Edited by",editors:[{id:"147924",title:"Dr.",name:"Fernando A.",middleName:null,surname:"Barrios",slug:"fernando-a.-barrios",fullName:"Fernando A. Barrios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2599",title:"The Amygdala",subtitle:"A Discrete Multitasking Manager",isOpenForSubmission:!1,hash:"429fa5522790c0837406fd1fed1280bd",slug:"the-amygdala-a-discrete-multitasking-manager",bookSignature:"Barbara Ferry",coverURL:"https://cdn.intechopen.com/books/images_new/2599.jpg",editedByType:"Edited by",editors:[{id:"139945",title:"Dr.",name:"Barbara",middleName:null,surname:"Ferry",slug:"barbara-ferry",fullName:"Barbara Ferry"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2646",title:"Visual Cortex",subtitle:"Current Status and Perspectives",isOpenForSubmission:!1,hash:"8a5632344dfe9b3f0153eeee84a6ea83",slug:"visual-cortex-current-status-and-perspectives",bookSignature:"Stephane Molotchnikoff and Jean Rouat",coverURL:"https://cdn.intechopen.com/books/images_new/2646.jpg",editedByType:"Edited by",editors:[{id:"145800",title:"Prof.",name:"Stephane",middleName:null,surname:"Molotchnikoff",slug:"stephane-molotchnikoff",fullName:"Stephane Molotchnikoff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"673",title:"Dyslexia",subtitle:"A Comprehensive and International Approach",isOpenForSubmission:!1,hash:"9a88d127d035ab53de96a00f9ed407ba",slug:"dyslexia-a-comprehensive-and-international-approach",bookSignature:"Taeko N. Wydell and Liory Fern-Pollak",coverURL:"https://cdn.intechopen.com/books/images_new/673.jpg",editedByType:"Edited by",editors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1069",title:"Paresthesia",subtitle:null,isOpenForSubmission:!1,hash:"c0225cd8274b4384cd1c91e586645958",slug:"paresthesia",bookSignature:"Luiz E. Imbelloni and Marildo A. Gouveia",coverURL:"https://cdn.intechopen.com/books/images_new/1069.jpg",editedByType:"Edited by",editors:[{id:"80284",title:"Dr.",name:"Luiz Eduardo",middleName:null,surname:"Imbelloni",slug:"luiz-eduardo-imbelloni",fullName:"Luiz Eduardo Imbelloni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2618,totalCrossrefCites:20,totalDimensionsCites:32,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9758,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"39300",doi:"10.5772/51914",title:"Visual Field Map Organization in Human Visual Cortex",slug:"visual-field-map-organization-in-human-visual-cortex",totalDownloads:4246,totalCrossrefCites:5,totalDimensionsCites:22,abstract:null,book:{id:"2646",slug:"visual-cortex-current-status-and-perspectives",title:"Visual Cortex",fullTitle:"Visual Cortex - Current Status and Perspectives"},signatures:"Alyssa A. Brewer and Brian Barton",authors:[{id:"115304",title:"Dr.",name:"Alyssa",middleName:"A",surname:"Brewer",slug:"alyssa-brewer",fullName:"Alyssa Brewer"},{id:"149246",title:"Dr.",name:"Brian",middleName:null,surname:"Barton",slug:"brian-barton",fullName:"Brian Barton"}]},{id:"35807",doi:"10.5772/39042",title:"Sequential Versus Simultaneous Processing Deficits in Developmental Dyslexia",slug:"sequential-versus-simultaneous-processing-deficits-in-developmental-dyslexia",totalDownloads:4445,totalCrossrefCites:9,totalDimensionsCites:21,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Marie Lallier and Sylviane Valdois",authors:[{id:"131402",title:"Dr.",name:"Marie",middleName:null,surname:"Lallier",slug:"marie-lallier",fullName:"Marie Lallier"},{id:"138756",title:"Dr.",name:"Sylviane",middleName:null,surname:"Valdois",slug:"sylviane-valdois",fullName:"Sylviane Valdois"}]},{id:"56407",doi:"10.5772/intechopen.70099",title:"Roles of Pro- and Anti-inflammatory Cytokines in Traumatic Brain Injury and Acute Ischemic Stroke",slug:"roles-of-pro-and-anti-inflammatory-cytokines-in-traumatic-brain-injury-and-acute-ischemic-stroke",totalDownloads:2342,totalCrossrefCites:9,totalDimensionsCites:19,abstract:"This chapter will introduce the reader to the pathophysiology of two devastating neurologic events, traumatic brain injury (TBI) and acute ischemic stroke (AIS). Here we focus on the role of key pro-inflammatory and anti-inflammatory cytokines. Several experimental interventions have been found to modulate cytokine production and brain injury after AIS or TBI. Here minocycline, biological response modifiers, hormonal therapies, omega-3 fatty acids, N-acetylcysteine, and cannabinoids will be discussed. In addition, the role of cytokine-induced inflammasomes in both TBI and AIS will be addressed and followed by discussion of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-18, and IFN-γ). Finally, the main anti-inflammatory cytokines, IL-33, IL-10, IL-6, and IL-4, will be discussed in the context of both TBI and AIS. It should be noted that the role of these cytokines is diverse and the dichotomization of classically pro-versus anti-inflammatory cytokines is being re-examined, as many of these cytokines have been found to play dual roles in TBI and AIS brain injury.",book:{id:"5947",slug:"mechanisms-of-neuroinflammation",title:"Mechanisms of Neuroinflammation",fullTitle:"Mechanisms of Neuroinflammation"},signatures:"Rachelle Dugue, Manan Nath, Andrew Dugue and Frank C. Barone",authors:[{id:"204548",title:"Ph.D.",name:"Rachelle",middleName:null,surname:"Dugue",slug:"rachelle-dugue",fullName:"Rachelle Dugue"},{id:"204658",title:"Prof.",name:"Frank",middleName:null,surname:"Barone",slug:"frank-barone",fullName:"Frank Barone"},{id:"204810",title:"Dr.",name:"Manan",middleName:null,surname:"Nath",slug:"manan-nath",fullName:"Manan Nath"},{id:"208689",title:"Mr.",name:"Andrew",middleName:null,surname:"Dugue",slug:"andrew-dugue",fullName:"Andrew Dugue"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:193349,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3622,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"63179",title:"Development Period of Prefrontal Cortex",slug:"development-period-of-prefrontal-cortex",totalDownloads:3728,totalCrossrefCites:6,totalDimensionsCites:13,abstract:"This chapter outlines the issues associated with the development of prefrontal cortex in children and adolescents, and describes the developmental profile of executive processes across childhood. The prefrontal cortex plays an essential role in various cognitive functions and little is known about how such neural mechanisms develop during childhood yet. To better understand this issue, we focus the literature on the development of the prefrontal cortex during early childhood, the changes in structural architecture, neural activity, and cognitive abilities. The prefrontal cortex undergoes maturation during childhood with a reduction of synaptic and neuronal density, a growth of dendrites, and an increase in white matter volume. With these neuroanatomical changes, neural networks construct appropriate for complex cognitive processing. The organization of prefrontal cortical circuitry may have been critical to the occurrence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric disorders; therefore, if we understand these developmental process well, we could better analyze the development of psychiatric disorders.",book:{id:"6819",slug:"prefrontal-cortex",title:"Prefrontal Cortex",fullTitle:"Prefrontal Cortex"},signatures:"Merve Cikili Uytun",authors:[{id:"163607",title:"Dr.",name:"Merve",middleName:null,surname:"Cikili",slug:"merve-cikili",fullName:"Merve Cikili"}]},{id:"41594",title:"Amygdala, Childhood Adversity and Psychiatric Disorders",slug:"amygdala-childhood-adversity-and-psychiatric-disorders",totalDownloads:6021,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Xiaodan Yan",authors:[{id:"144657",title:"Dr.",name:"X",middleName:null,surname:"Yan",slug:"x-yan",fullName:"X Yan"}]},{id:"58070",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2618,totalCrossrefCites:20,totalDimensionsCites:32,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]}],onlineFirstChaptersFilter:{topicId:"209",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:27,paginationItems:[{id:"83092",title:"Novel Composites for Bone Tissue Engineering",doi:"10.5772/intechopen.106255",signatures:"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel and Vijayakumar Chinnaswamy Thangavel",slug:"novel-composites-for-bone-tissue-engineering",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",subseries:{id:"8",title:"Bioinspired Technology and Biomechanics"}}},{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"83073",title:"Dental and Orofacial Trauma Impacts on Oral-Health-Related—Quality of Life in Children: Low- and Middle-Income Countries",doi:"10.5772/intechopen.105845",signatures:"Yolanda Malele-Kolisa, Nazia Khan, Mpho P. Molete, Maphefo D. Thekiso and Mzubanzi Mabongo",slug:"dental-and-orofacial-trauma-impacts-on-oral-health-related-quality-of-life-in-children-low-and-middl",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:23,group:"subseries"},{caption:"Oral Health",value:1,count:26,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ghana Health Service",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"7",type:"subseries",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11403,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"83092",title:"Novel Composites for Bone Tissue Engineering",doi:"10.5772/intechopen.106255",signatures:"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel and Vijayakumar Chinnaswamy Thangavel",slug:"novel-composites-for-bone-tissue-engineering",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",subseries:{id:"8",title:"Bioinspired Technology and Biomechanics"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,submissionDeadline:"July 12th 2022",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni",profilePictureURL:"https://mts.intechopen.com/storage/users/271093/images/system/271093.jpg",biography:"Dr. A.K. Soni, Ph.D., graduated with a degree in Mining Engineering from Ravishankar University, Raipur, Chhattisgarh, in 1983. He completed his post-graduate studies at the Birla Institute of Technology and Science (BITS), Rajasthan, India, and obtained a Ph.D. in Environmental Science and Engineering from the Centre of Mining Environment, Indian School of Mines (ISM), Dhanbad, India, in 1998. \n\n\n\nDr. Soni is currently working as Chief Scientist at CSIR-Central Institute of Mining and Fuel Research (CSIR-CIMFR) at Nagpur Research Centre and engaged in research work on 'mine environment and allied areas.” His area of research interest is 'geo-hydrological problems related to mines.” He has more than 33 years of experience working in the Indian mining industry. As part of his research work, he has visited the United States and the United Kingdom and traveled widely across India. As a research scientist and technical administrator, he has more than 115 technical publications on mining and environmental topics to his credit. Dr. Soni has authored one book, Mining in the Himalayas: An Integrated Strategy. He has also written technical papers in the Hindi language. \n\n\n\nDr. Soni has handled more than 100 R&D projects in the capacity of project coordinator and principal investigator. He is actively associated with professional societies in India, including the Mining Engineers Association of India (MEAI), Institution of Engineers (India), Indian Society for Rock Mechanics and Tunneling Technology (ISRMTT), and International Mine Water Association (IMWA). Dr. Soni has received many honors and awards for his contributions. He is presently a member of the international advisory board for the Journal of Mine Water and Environment. He is also a member and chairman of important committees, and a subject area expert, advisor, and evaluator responsible for several noted professional assignments at the national level. He has been invited by academic institutes and Indian universities to deliver lectures and conduct examinations for post-graduate students. Dr. Soni was associated with the Bureau of Indian Standards (BIS) in the capacity of member and has experience organizing several technical events.",institutionString:"Central Institute of Mining and Fuel Research",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Central Institute of Mining and Fuel Research",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"25",title:"Environmental Sciences"},selectedSubseries:{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"25",title:"Environmental Sciences"}}},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/285818",hash:"",query:{},params:{id:"285818"},fullPath:"/profiles/285818",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()