Currently available commercial coal gasifiers
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"5448",leadTitle:null,fullTitle:"Recent Advances in Carbon Capture and Storage",title:"Recent Advances in Carbon Capture and Storage",subtitle:null,reviewType:"peer-reviewed",abstract:"Carbon capture and storage (CCS) has been considered as a practical way in sequestering the huge anthropogenic CO2 amount with a reasonable cost until a more pragmatic solution appears. The CCS can work as a bridge before fulfilling the no-CO2 era of the future by applying to large-scale CO2 emitting facilities. But CCS appears to lose some passion by the lack of progress in technical developments and in commercial success stories other than EOR. This is the time to go back to basics, starting from finding a solution in small steps. The CCS technology desperately needs far newer ideas and breakthroughs that can overcome earlier attempts through improving, modifying, and switching the known principles. This book tries to give some insight into developing an urgently needed technical breakthrough through the recent advances in CCS research, in addition to the available small steps like soil carbon sequestration. This book provides the fundamental and practical information for researchers and graduate students who want to review the current technical status and to bring in new ideas to the conventional CCS technologies.",isbn:"978-953-51-3006-2",printIsbn:"978-953-51-3005-5",pdfIsbn:"978-953-51-6697-9",doi:"10.5772/62966",price:119,priceEur:129,priceUsd:155,slug:"recent-advances-in-carbon-capture-and-storage",numberOfPages:266,isOpenForSubmission:!1,isInWos:1,hash:"128901fc967a8eb538f277c98fd917e3",bookSignature:"Yongseung Yun",publishedDate:"March 8th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5448.jpg",numberOfDownloads:17949,numberOfWosCitations:11,numberOfCrossrefCitations:5,numberOfDimensionsCitations:17,hasAltmetrics:1,numberOfTotalCitations:33,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 12th 2016",dateEndSecondStepPublish:"May 3rd 2016",dateEndThirdStepPublish:"August 7th 2016",dateEndFourthStepPublish:"November 5th 2016",dateEndFifthStepPublish:"December 5th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"144925",title:"Dr.",name:"Yongseung",middleName:null,surname:"Yun",slug:"yongseung-yun",fullName:"Yongseung Yun",profilePictureURL:"https://mts.intechopen.com/storage/users/144925/images/system/144925.jpg",biography:"Dr. Yongseung Yun majored in chemical engineering and received his PhD degree at the University of Utah, USA, in 1990; MS from KAIST, Korea, in 1981; and BS at the Yonsei University, Korea, in 1979. He currently works as the director at the Institute for Advanced Engineering, in Korea.\r\nHe had participated as a Korean delegate at the preparation workshops on CCS from 2007 to 2008 to reach the G8 Hokkaido Toyako Summit Leaders Declaration. He has concentrated on CO2 capture technologies from 2005, mainly on the precombustion dry sorbent process development. He works as the president in KAWET from 2013 and vice president in Korea DME Association from 2008. Also, he had served as the editor for Korean Industrial Chemistry News of KSIEC from 2009 to 2016.",institutionString:"Institute for Advanced Engineering",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"788",title:"Hydropower Engineering",slug:"hydropower-engineering"}],chapters:[{id:"53646",title:"Development of a State-of-the-Art Dry Low NOx Gas Turbine Combustor for IGCC with CCS",doi:"10.5772/66742",slug:"development-of-a-state-of-the-art-dry-low-nox-gas-turbine-combustor-for-igcc-with-ccs",totalDownloads:1379,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"Tomohiro Asai, Yasuhiro Akiyama and Satoschi Dodo",downloadPdfUrl:"/chapter/pdf-download/53646",previewPdfUrl:"/chapter/pdf-preview/53646",authors:[{id:"189146",title:"Dr.",name:"Tomohiro",surname:"Asai",slug:"tomohiro-asai",fullName:"Tomohiro Asai"},{id:"194813",title:"MSc.",name:"Yasuhiro",surname:"Akiyama",slug:"yasuhiro-akiyama",fullName:"Yasuhiro Akiyama"},{id:"194814",title:"MSc.",name:"Satoschi",surname:"Dodo",slug:"satoschi-dodo",fullName:"Satoschi Dodo"}],corrections:null},{id:"54027",title:"Modeling and Evaluation of a Coal Power Plant with Biomass Cofiring and CO2 Capture",doi:"10.5772/67188",slug:"modeling-and-evaluation-of-a-coal-power-plant-with-biomass-cofiring-and-co2-capture",totalDownloads:1452,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Dumitru Cebrucean, Viorica Cebrucean and Ioana Ionel",downloadPdfUrl:"/chapter/pdf-download/54027",previewPdfUrl:"/chapter/pdf-preview/54027",authors:[{id:"172806",title:"Dr.",name:"Dumitru",surname:"Cebrucean",slug:"dumitru-cebrucean",fullName:"Dumitru Cebrucean"},{id:"172808",title:"Dr.",name:"Viorica",surname:"Cebrucean",slug:"viorica-cebrucean",fullName:"Viorica Cebrucean"},{id:"172884",title:"Prof.",name:"Ioana",surname:"Ionel",slug:"ioana-ionel",fullName:"Ioana Ionel"}],corrections:null},{id:"53169",title:"Membrane Separation Technology in Carbon Capture",doi:"10.5772/65723",slug:"membrane-separation-technology-in-carbon-capture",totalDownloads:2641,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Guozhao Ji and Ming Zhao",downloadPdfUrl:"/chapter/pdf-download/53169",previewPdfUrl:"/chapter/pdf-preview/53169",authors:[{id:"190003",title:"Associate Prof.",name:"Ming",surname:"Zhao",slug:"ming-zhao",fullName:"Ming Zhao"},{id:"190139",title:"Dr.",name:"Guozhao",surname:"Ji",slug:"guozhao-ji",fullName:"Guozhao Ji"}],corrections:null},{id:"52867",title:"Emerging New Types of Absorbents for Postcombustion Carbon Capture",doi:"10.5772/65739",slug:"emerging-new-types-of-absorbents-for-postcombustion-carbon-capture",totalDownloads:1785,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Quan Zhuang, Bruce Clements and Bingyun Li",downloadPdfUrl:"/chapter/pdf-download/52867",previewPdfUrl:"/chapter/pdf-preview/52867",authors:[{id:"189578",title:"Dr.",name:"Quan",surname:"Zhuang",slug:"quan-zhuang",fullName:"Quan Zhuang"},{id:"195678",title:"Dr.",name:"Bruce",surname:"Clements",slug:"bruce-clements",fullName:"Bruce Clements"},{id:"195679",title:"Dr.",name:"Bingyun",surname:"Li",slug:"bingyun-li",fullName:"Bingyun Li"}],corrections:null},{id:"52853",title:"Bio-inspired Systems for Carbon Dioxide Capture, Sequestration and Utilization",doi:"10.5772/65861",slug:"bio-inspired-systems-for-carbon-dioxide-capture-sequestration-and-utilization",totalDownloads:1518,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Gonçalo V. S. M. Carrera, Luís C. Branco and Manuel Nunes da\nPonte",downloadPdfUrl:"/chapter/pdf-download/52853",previewPdfUrl:"/chapter/pdf-preview/52853",authors:[{id:"18681",title:"Dr.",name:"Luis C.",surname:"Branco",slug:"luis-c.-branco",fullName:"Luis C. Branco"},{id:"190418",title:"Dr.",name:"Gonçalo",surname:"Carrera",slug:"goncalo-carrera",fullName:"Gonçalo Carrera"},{id:"190549",title:"Prof.",name:"Manuel",surname:"Nunes Da Ponte",slug:"manuel-nunes-da-ponte",fullName:"Manuel Nunes Da Ponte"}],corrections:null},{id:"52597",title:"Synergistic Effect on CO2 Capture by Binary Solvent System",doi:"10.5772/65763",slug:"synergistic-effect-on-co2-capture-by-binary-solvent-system",totalDownloads:1090,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Quan Zhuang and Bruce Clements",downloadPdfUrl:"/chapter/pdf-download/52597",previewPdfUrl:"/chapter/pdf-preview/52597",authors:[{id:"189578",title:"Dr.",name:"Quan",surname:"Zhuang",slug:"quan-zhuang",fullName:"Quan Zhuang"},{id:"195678",title:"Dr.",name:"Bruce",surname:"Clements",slug:"bruce-clements",fullName:"Bruce Clements"}],corrections:null},{id:"53670",title:"Maximizing Soil Carbon Sequestration: Assessing Procedural Barriers to Carbon Management in Cultivated Tropical Perennial Grass Systems",doi:"10.5772/66741",slug:"maximizing-soil-carbon-sequestration-assessing-procedural-barriers-to-carbon-management-in-cultivate",totalDownloads:1062,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Jon M. Wells, Susan E. Crow, Manyowa N. Meki, Carlos A. Sierra,\nKimberly M. Carlson, Adel Youkhana, Daniel Richardson and Lauren\nDeem",downloadPdfUrl:"/chapter/pdf-download/53670",previewPdfUrl:"/chapter/pdf-preview/53670",authors:[{id:"169383",title:"Dr.",name:"Norman",surname:"Meki",slug:"norman-meki",fullName:"Norman Meki"},{id:"190329",title:"Dr.",name:"Susan",surname:"Crow",slug:"susan-crow",fullName:"Susan Crow"},{id:"195113",title:"Mr.",name:"Jon",surname:"Wells",slug:"jon-wells",fullName:"Jon Wells"},{id:"195114",title:"Dr.",name:"Carlos A.",surname:"Sierra",slug:"carlos-a.-sierra",fullName:"Carlos A. Sierra"},{id:"195115",title:"Dr.",name:"Kimberly M.",surname:"Carlson",slug:"kimberly-m.-carlson",fullName:"Kimberly M. Carlson"},{id:"195116",title:"Dr.",name:"Adel",surname:"Youkhana",slug:"adel-youkhana",fullName:"Adel Youkhana"},{id:"195117",title:"Mr.",name:"Daniel T.",surname:"Richardson",slug:"daniel-t.-richardson",fullName:"Daniel T. Richardson"},{id:"195118",title:"Ms.",name:"Lauren",surname:"Deem",slug:"lauren-deem",fullName:"Lauren Deem"}],corrections:null},{id:"52999",title:"Relationship Between Mineral Soil Surface Area and Carbon Sequestration Rate for Biosolids Added to Soil",doi:"10.5772/65862",slug:"relationship-between-mineral-soil-surface-area-and-carbon-sequestration-rate-for-biosolids-added-to-",totalDownloads:1213,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Dongqi Wen, Wenjuan Zhai and Kenneth E. Noll",downloadPdfUrl:"/chapter/pdf-download/52999",previewPdfUrl:"/chapter/pdf-preview/52999",authors:[{id:"190612",title:"Prof.",name:"Kenneth",surname:"Noll",slug:"kenneth-noll",fullName:"Kenneth Noll"},{id:"194849",title:"Dr.",name:"Dongqi",surname:"Wen",slug:"dongqi-wen",fullName:"Dongqi Wen"},{id:"203320",title:"Dr.",name:"Wenjuan",surname:"Zhai",slug:"wenjuan-zhai",fullName:"Wenjuan Zhai"}],corrections:null},{id:"54238",title:"CO2 Conversion to Chemicals and Fuel for Carbon Utilization",doi:"10.5772/67316",slug:"co2-conversion-to-chemicals-and-fuel-for-carbon-utilization",totalDownloads:2638,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Wonjun Cho, Hyejin Yu and Yonggi Mo",downloadPdfUrl:"/chapter/pdf-download/54238",previewPdfUrl:"/chapter/pdf-preview/54238",authors:[{id:"189710",title:"Dr.",name:"Wonjun",surname:"Cho",slug:"wonjun-cho",fullName:"Wonjun Cho"},{id:"204311",title:"Dr.",name:"Heijin",surname:"Yu",slug:"heijin-yu",fullName:"Heijin Yu"},{id:"204312",title:"Dr.",name:"Yonggi",surname:"Mo",slug:"yonggi-mo",fullName:"Yonggi Mo"}],corrections:null},{id:"54199",title:"Challenges Associated with CO2 Sequestration and Hydrocarbon Recovery",doi:"10.5772/67226",slug:"challenges-associated-with-co2-sequestration-and-hydrocarbon-recovery",totalDownloads:1541,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rouzbeh Ghanbarnezhad Moghanloo, Xu Yan, Gregory Law, Soheil\nRoshani, Garrett Babb and Wesley Herron",downloadPdfUrl:"/chapter/pdf-download/54199",previewPdfUrl:"/chapter/pdf-preview/54199",authors:[{id:"190081",title:"Prof.",name:"Rouzbeh",surname:"G.Moghanloo",slug:"rouzbeh-g.moghanloo",fullName:"Rouzbeh G.Moghanloo"},{id:"203785",title:"Dr.",name:"Xu",surname:"Yan",slug:"xu-yan",fullName:"Xu Yan"},{id:"203786",title:"Dr.",name:"Gregory",surname:"Law",slug:"gregory-law",fullName:"Gregory Law"},{id:"203787",title:"Dr.",name:"Soheil",surname:"Roshani",slug:"soheil-roshani",fullName:"Soheil Roshani"},{id:"203788",title:"Dr.",name:"Garrett",surname:"Babb",slug:"garrett-babb",fullName:"Garrett Babb"},{id:"203789",title:"Dr.",name:"Wesley",surname:"Herron",slug:"wesley-herron",fullName:"Wesley Herron"}],corrections:null},{id:"53677",title:"Economics of Carbon Capture and Storage",doi:"10.5772/67000",slug:"economics-of-carbon-capture-and-storage",totalDownloads:1661,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"John C. Bergstrom and Dyna Ty",downloadPdfUrl:"/chapter/pdf-download/53677",previewPdfUrl:"/chapter/pdf-preview/53677",authors:[{id:"189877",title:"Dr.",name:"John",surname:"Bergstrom",slug:"john-bergstrom",fullName:"John Bergstrom"},{id:"190714",title:"Mr.",name:"Dyna",surname:"Ty",slug:"dyna-ty",fullName:"Dyna Ty"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"2763",title:"Gasification for Practical Applications",subtitle:null,isOpenForSubmission:!1,hash:"e576b2a136c1c20c784302344c65448e",slug:"gasification-for-practical-applications",bookSignature:"Yongseung Yun",coverURL:"https://cdn.intechopen.com/books/images_new/2763.jpg",editedByType:"Edited by",editors:[{id:"144925",title:"Dr.",name:"Yongseung",surname:"Yun",slug:"yongseung-yun",fullName:"Yongseung Yun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6349",title:"Gasification for Low-grade Feedstock",subtitle:null,isOpenForSubmission:!1,hash:"480f5fb4bb3c9b3af32c926e04d78233",slug:"gasification-for-low-grade-feedstock",bookSignature:"Yongseung Yun",coverURL:"https://cdn.intechopen.com/books/images_new/6349.jpg",editedByType:"Edited by",editors:[{id:"144925",title:"Dr.",name:"Yongseung",surname:"Yun",slug:"yongseung-yun",fullName:"Yongseung Yun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7828",title:"Alcohol Fuels",subtitle:"Current Technologies and Future Prospect",isOpenForSubmission:!1,hash:"c951982f9176ae38f87c0a978c8f7541",slug:"alcohol-fuels-current-technologies-and-future-prospect",bookSignature:"Yongseung Yun",coverURL:"https://cdn.intechopen.com/books/images_new/7828.jpg",editedByType:"Edited by",editors:[{id:"144925",title:"Dr.",name:"Yongseung",surname:"Yun",slug:"yongseung-yun",fullName:"Yongseung Yun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4542",title:"Biofuels",subtitle:"Status and Perspective",isOpenForSubmission:!1,hash:"cbcf6eb3ffef503058cdf579d9d7fc63",slug:"biofuels-status-and-perspective",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/4542.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5209",title:"River Basin Management",subtitle:null,isOpenForSubmission:!1,hash:"09b5a27ccab9d67afa66f2f0a14fb1a4",slug:"river-basin-management",bookSignature:"Daniel Bucur",coverURL:"https://cdn.intechopen.com/books/images_new/5209.jpg",editedByType:"Edited by",editors:[{id:"50794",title:"Prof.",name:"Daniel",surname:"Bucur",slug:"daniel-bucur",fullName:"Daniel Bucur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5602",title:"Renewable Hydropower Technologies",subtitle:null,isOpenForSubmission:!1,hash:"15ea891d96b6c9f2d3f28d5a21c09203",slug:"renewable-hydropower-technologies",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/5602.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64890",slug:"erratum-emergency-operations-of-sudden-water-pollution-accidents",title:"Erratum - Emergency Operations of Sudden Water Pollution Accidents",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64890.pdf",downloadPdfUrl:"/chapter/pdf-download/64890",previewPdfUrl:"/chapter/pdf-preview/64890",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64890",risUrl:"/chapter/ris/64890",chapter:{id:"64626",slug:"emergency-operations-of-sudden-water-pollution-accidents",signatures:"Jin Quan, Lingzhong Kong, Xiaohui Lei and Mingna Wang",dateSubmitted:null,dateReviewed:"October 15th 2018",datePrePublished:"December 1st 2018",datePublished:"December 19th 2018",book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"compact",authoredCaption:"Authored by"}},authors:[{id:"280923",title:"Dr.",name:"Lingzhong",middleName:null,surname:"Kong",fullName:"Lingzhong Kong",slug:"lingzhong-kong",email:"lzkong@126.com",position:null,institution:null}]}},chapter:{id:"64626",slug:"emergency-operations-of-sudden-water-pollution-accidents",signatures:"Jin Quan, Lingzhong Kong, Xiaohui Lei and Mingna Wang",dateSubmitted:null,dateReviewed:"October 15th 2018",datePrePublished:"December 1st 2018",datePublished:"December 19th 2018",book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"compact",authoredCaption:"Authored by"}},authors:[{id:"280923",title:"Dr.",name:"Lingzhong",middleName:null,surname:"Kong",fullName:"Lingzhong Kong",slug:"lingzhong-kong",email:"lzkong@126.com",position:null,institution:null}]},book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"compact",authoredCaption:"Authored by"}}},ofsBook:{item:{type:"book",id:"9538",leadTitle:null,title:"Demographic Analysis - Selected Concepts, Tools, and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe book Demographic Analysis - Selected Concepts, Tools, and Applications, aims to present basic definitions, practical techniques, and methods as well as examples of studies based on usage of demographic analysis in various institutions and economic entities. The authors are welcome to introduce the specifics of demographic information, data collection, demographic software as well as measures and analyses of fertility, mortality, life tables, migration, and demographic events.
\r\n\r\n\tThe volume aims to cover studies related to population distribution, urbanization, migration, population change and dynamics, aging, longevity, population theories, and population projections. The collection also aims to show relations of demographic analysis with areas such as demographic economics, political demography, population geography, epidemiology, and social gerontology.
",isbn:"978-1-83969-188-1",printIsbn:"978-1-83969-187-4",pdfIsbn:"978-1-83969-189-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"f335c5d0a39e8631d8627546e14ce61f",bookSignature:"Ph.D. Andrzej Klimczuk",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9538.jpg",keywords:"Statistical Studies, Quantitative Studies, Censuses, Sample Surveys, Registers, Gender, Education Differentiation, Nationality, Religion, Human Population Planning, Migration Policies, Demographic Economics",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 22nd 2020",dateEndSecondStepPublish:"December 1st 2020",dateEndThirdStepPublish:"January 30th 2021",dateEndFourthStepPublish:"April 20th 2021",dateEndFifthStepPublish:"June 19th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Andrzej Klimczuk is a sociologist and public policy expert, member of various scientific organizations such as the Polish Sociological Association, Polish Society of Gerontology, and European Sociological Association. He also works as an external expert of institutions such as the European Commission, URBACT III Programme, Interreg CENTRAL EUROPE Programme, and Fondazione Cariplo.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320017",title:"Ph.D.",name:"Andrzej",middleName:null,surname:"Klimczuk",slug:"andrzej-klimczuk",fullName:"Andrzej Klimczuk",profilePictureURL:"https://mts.intechopen.com/storage/users/320017/images/system/320017.jpg",biography:'Andrzej Klimczuk, Ph.D., a sociologist and public policy expert, assistant professor in the Department of Public Policy of the Collegium of Socio-Economics at the Warsaw School of Economics, Poland. He worked as the external expert of institutions such as the European Commission, URBACT III Programme, Interreg CENTRAL EUROPE Programme, and Fondazione Cariplo. Member of various scientific organizations such as the Polish Sociological Association, Polish Society of Gerontology, and European Sociological Association. Author of many scientific papers in the fields of gerontology, labor economics, public management, and social policy. His recent monographs include "Economic Foundations for Creative Ageing Policy" (the two-volume set, Palgrave Macmillan, 2015, 2017), "Generations, Intergenerational Relationships, Generational Policy" (17 languages; co-edited with K. Lüscher and M. Sanchez, Universität Konstanz, 2017), "Selected Contemporary Challenges of Ageing Policy" (co-edited with Ł. Tomczyk; Pedagogical University of Kraków, 2017), "Between Successful and Unsuccessful Ageing: Selected Aspects and Contexts" (co-edited with Ł. Tomczyk; Pedagogical University of Kraków, 2019), and "Perspectives and Theories of Social Innovation for Ageing Population" (co-edited with Ł. Tomczyk; Frontiers Media, 2020). He is an editor of sections "Aging and Public Policy" and "Aging and Financial Well-Being" in the "Encyclopedia of Gerontology and Population Aging" (Springer Nature, forthcoming).',institutionString:"Warsaw School of Economics",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Warsaw School of Economics",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40410",title:"Considerations for the Design and Operation of Pilot-Scale Coal Gasifiers",doi:"10.5772/49951",slug:"considerations-for-the-design-and-operation-of-pilot-scale-coal-gasifiers",body:'Although there are many successful commercial coal gasifiers, the basic form and concept have not been improved for the last 20 years or so. Details on the design and operation for the commercial coal gasifiers are closely guarded as proprietary information. Considering the recent technology jump in CFD and monitoring systems, at least some coal gasifiers should come out as a more revolutionary style. Especially it\'s important to test the novel gasifier types when the gasification has widened the application scope in environmental and biomass areas. Many research ideas should have a chance to design and test in the more realistic conditions of high pressure and high temperature with molten slags. This chapter wants to give an introduction and practical considerations to design and operate the bench scale to pilot scale gasifiers at the actual coal gasification conditions.
The chapter consists of following sections. Each part will give a practical view point to build and test the gasifier at the actual gasification conditions, which are toxic and explosion-prone when the syngas is not trapped inside the gasifier. The scope of the chapter will be focused on the pilot-scale size since the purpose is to focus on the wide distribution of information on the coal gasifiers as well as to stimulate the more active involvement of research groups on the future coal gasifier development.
Key items are, currently known types of coal gasifiers, selection guidelines of coal gasifiers, comparison of slurry type vs. dry type gasifiers, and the discussion regarding the operating pressures and manufacturing limits, etc. Another aspects are the difference in slagging gasifiers and partial/non-slagging gasifiers, coal selection guidelines for gasification, application of CFD for the gasifier design, coal feeding methods, and in-situ estimation of gasification status inside the gasifier.
Other points are the choice in gasifier wall (refractory, membrane wall), slagging/fouling related problems, and finally the future direction of coal gasifiers.
Institute for Advanced Engineering (IAE) has worked in the pilot scale coal gasifiers from 1994. Figures 1-3 demonstrate the coal gasifiers of 1-3 ton/day scale at the operation range of 3-28 bar, 1,300-1,600oC [1-3]. Figure 1 shows two slagging coal gasifiers of 3 ton/day capacity. Left side gasifier was built in 1994 and operated since at the maximum pressure of 28 bar and 1,400-1,550oC. Right-hand side gasifier was mainly applied to the waste oil gasification and used as a test bed for the top-feeding coal gasifier.
Pilot-scale coal gasifiers of slagging type (Left: side-feeding/max. 28 bar, Right: top-feeding/max. 5 bar)
Figure 2 shows the 2 ton/day pilot-scale coal gasifier which chose the top-feeding, partial/non-slagging entrained-bed type and normally operated at 20 bar, 1,300-1,450oC range. Another type of gasifier which chose the membrane wall, top-feeding, slagging type is shown in Figure 3. Idea of applying membrane wall with a layer of refractory was applied to make a gasifier as small as possible.
History of coal gasification starts from early 20th century, but the real commercial size of gasifiers can be supplied from limited vendors. Table 1 shows the commercially available coal gasifiers that can treat coal over 1,500 ton/day. To reach this size of gasifiers, 3-4 steps of development are necessary: bench scale, 10-30 ton/day, 200-500 ton/day, and finally the 1,500-3,000 ton/day commercial size. Pilot coal gasifiers typically include bench to 30 ton/day scale.
Pilot-scale coal gasifier of top-feeding, partial/non-slagging entrained-bed type (max. 21 bar)
Pilot-scale coal gasifier of membrane wall, top-feeding, slagging type (max. 21 bar)
Key factors in deciding the suitable gasifier type will be discussed in this section. As shown in Table 1, currently known coal gasifiers can be classified with choices on the reactor type which will decide the residence time in gasifier, coal feeding method and location, gasifier stages and number of burner nozzles to supply reactants, gasifier wall type in protecting the metal gasifier wall, whether coal ash will be converted to slag or just fly-ash, and the oxidant whether to use oxygen or air.
Item | Shell | Uhde | Conoco- Phillips | Siemens | GE Energy | MHI | OMB | Lurgi |
Country | Netherlands | Germany | USA | Germany | USA | Japan | China | Germany |
Reactor Type | Entrained | Entrained | Entrained | Entrained | Entrained | Entrained | Entrained | Fixed |
Feeding | Dry/Side | Dry/Side | Slurry/ Side | Dry/Top | Slurry/ Top | Dry/Side | Dry/Side | Dry/ Top |
Stages | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 |
Wall | Membrane | Membrane | Refractory | Membrane | Refractory | Membrane | Membrane | - |
Slagging | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No |
Oxidant | O2 | O2 | O2 | O2 | O2 | Air | O2 | Air/O2 |
Burners | 4 | 4 | 2+1 | 1 | 1 | 4+4 | 4 | - |
Currently available commercial coal gasifiers
First of all, most important remark will be that there is no universal coal gasifier to meet all the different technical requirements. Each gasifier has developed to meet the specific needs from the customers and should see where the preferred gasifier type has the most proven experience in the industry. One of the most frequently asked question is that a specific gasifier can be utilized interchangeably both for the power generation and for the chemical production. If the plant size is small, this option might be possible with limited option. But most commercial gasification plants usually cost 10-200 million US$. With this high capital cost, the gasifier which is the core part of the plant should be designed to maximize the wanted final product with highest efficiency, along with minimum maintenance and without any accident.
Item | Option |
Reactor type | Entrained, Fluidized, Fixed(Moving-bed) |
Coal feeding | Dry, Wet(Slurry) |
Feeding location | Top, Side |
Gasifier wall | Refractory, Membrane wall |
Ash treatment | Slagging, Non-slagging |
Gasifier pressure | High. Medium, Atmospheric |
Oxidizing agent | Oxygen, Enriched oxygen, Air |
Syngas cooling | Quench, Radiant/Convective cooling |
Gasifier stages | One, Two |
Burner number | One, Multi |
Selection Items and Option for Coal Gasifier
Currently available gasifiers can be classified basically as three reactor types. The processes that require a high throughput capacity in a single reactor generally employ entrained-bed type, as in IGCC, since the reactor size can be minimized by fast residence time (typically less than 5 sec) in the gasifier as well as by high pressure. Although large scale operation by entrained-bed type has successfully demonstrated and employed commercially, the experience is not long enough as fixed or fluidized-bed gasifiers. Also most prominent disadvantage of entrained-bed gasifier is in its high capital cost involved due to condensed configuration of parts.
Fluidized-bed has been developed basically for the application to low-grade fuels or feedstock, like a low-grade coal and wastes that contain various materials. After two oil shocks in the 1970\'s, many companies were interested in using low grade fuels which were not an interested material, mainly it was coal. Operating principle of fluidized bed involves even distribution of oxidizing agent through the distribution plate in bubbling type, or through the reactor in circulating type. Gas bubbles tend to flow via the less congested area, in turn result in dead zone inside the reactor. This causes the difficulty in scale-up design and operation. Most prominent fluidized-bed examples are FBC boiler and waste pyrolysis plants.
Fixed-bed has a long history of industrial experience as a so-called Lurgi type, which is still used in a large number in China. Due to its long industrial experience, it’s reliable. But it’s not suitable for the single large scale gasifier. Lurgi recently has achieved to make a gasifier of 1,600 ton/day capacity.
Item | Entrained-bed | Fluidized-bed | Fixed-bed |
Residence time in reactor | 3-5 sec | minutes | "/>30 min |
Single unit size | Medium-Very large | Medium | Medium |
Pressurized reactor | Easy | Not-easy | Not-easy |
Complexity | Complex | Complex | Simple |
Coal particle size | < 100 microns | 6-10 mm | 6-50 mm |
Coal range | All ranks | Limit in agglomerating coals | Limit in agglomerating coals |
Oxygen consumption (O2/coal ratio) | Large (0.9-1.0) | Medium | Low (0.7-0.8) |
Tar formation | None or Very little | Small | Many |
Industrial experience | From 1980’s | From 1970’s | From 1930’s |
Advantages | Large scale operation | Suitable for low grade fuels | Reliable |
Disadvantages | Expensive | Difficult in scale-up, Not suitable for fines | Limit in size |
Comparison of typical three gasifier types
Dry feeding gasifiers were developed mainly in Europe, while the gasifiers that had been developed in United States were slurry-feeding type. Table 4 summarized the key differences of dry and slurry feeding systems.
Maximum carbon conversion in the single-pass gasification without char-recycling could be obtained from the high-reactivity coals. The actual gasifier operation yielded nearly 100% carbon conversion for the high-reactivity coals. In general, dry-feeding entrained-bed gasifier can treat all ranks of coal while the slurry-feeding entrained-bed gasifier is suitable for bituminous coals of higher rank. However, unless the gasifier is designed to cover all different reactivity of coal in the reaction, even for the dry-feeding gasifier, low carbon conversion would result if the gasifier volume were not sufficient to sustain enough residence time of coal powder. In this case, the char-recycling process is required.
Item | Dry-feeding | Slurry-feeding |
Coal type | All ranks | Not suitable for high moisture-containing low-rank coals |
Efficiency | high | moderate |
Carbon conversion | "/>99% | "/>99% |
Capital cost | high | Moderate |
Typical gasifier wall type | Membrane wall | Refractory |
Cold gas efficiency | High | Moderate |
Typical max. gasifier pressure | 45 bar | 80 bar |
Key application area | Electricity generation | Chemical production |
Commercial gasifiers | Shell, Uhde, Siemens, MHI | GE energy, Conoco-Phillips |
Comparison of dry and wet (slurry) feeding type gasifiers
Maximum gasifier pressure is limited to about 45 bar in the dry-feeding gasifier and to about 80 bar for the slurry feeding system. The bottleneck of the maximum available gasifier pressure is in the coal powder feeding system for the dry feeding type and in the economically manufacturable pressure vessel of large size which is more than few meters diameter in commercial applications.
Most coal gasifiers employ a single stage which is simple in design and less expensive with respect to manufacturing pressure vessel. When the feed coal is relatively uniform in quality and in other properties, the residence time inside the gasifier will be constant in theory if the constant feeding is guaranteed. When the coal and oxygen feeding is uniform, all the times, the performance of the gasifier will be satisfactory, although there would be some mechanical or components related problems. This point will be crucial in designing and operating the pilot coal gasifier. The most important factor in operating coal gasifiers should be the constant feeding of coal powder. Feeding of oxygen and steam is relatively easy since there are in gas states.
Unfortunately, coal is becoming more and more heterogeneous and lower quality. In many plants, feed coals are mixed from widely different origins. In this case, particle residence time inside the gasifer might not sufficient to guarantee the full conversion of all the input coals. Low reactivity or larger size coal particles that are contained in the input feed coal would pass through the gasifier without fully reacting.
Two stage design is introduced to accommodate the heterogeneous coal particles in a single reactor. Feeding amount of coal and oxygen can be manipulated in two separate positions at the gasifier. By adjusting the feeding amounts, hot local temperature is possible in the gasifier that will gasify even the least reactive particles coming with the coal feed. If the slagging is required, the temperature zone that is enough to melt all the inorganics should exist inside the gasifier.
One thing should be noted here. If one single pass through the gasifier is not sufficient to convert all organic components to syngas, unreacted char can be collected and recycled to make a carbon conversion above 99%. But recycling usually incorporates expensive additional feeding systems. If possible, it is the best to make a gasifier to fulfill 100% carbon conversion in a single pass through the gasifier.
Gasification produces gas and solid products as syngas and slag/fly-ash. Gas naturally tends to move upward and solid moves downward by gravity. If the properties of gas and solid apply just as they are, side feeding would be most natural. But side feeding produces operational problems in the areas of slag tap as well as in the syngas outlet which is located at the top section of the gasifier. In addition, slag temperature should be monitored and maintained at high enough temperature to ensure the smooth flow of molten slag.
Top feeding is injecting coal and oxygen, steam from the top side of the gasifier at the velocity above 20 m/s. Typical commercial top feeding coal gasifiers have a L/D ratio of about 1.5, in that the gasification flame might reach the slag tap area and can maintain the smooth passage of molten slag or ash with the fast flowing hot syngas through the slag tap. If the L/D ratio is higher than 2, careful arrangement to maintain the slag tap temperature should be employed like a slag tap burner.
Item | Top-feeding | Side-feeding |
Advantages | Simple design (usually one feed nozzle) | Separate gas and solid flow direction |
Disadvantages | Entrainment of fines | Complex design (2-12 feed nozzles) |
Main problem area | Nozzle erosion (Short life span) | Slag-tap plugging, Syngas exit line plugging |
Design aspect | Simple | Complex |
Comparison of top-feeding and side-feeding methods
Entrained-bed gasifiers run at 1,300-1,600oC, which requires a certain way of protecting the metal wall in the gasifier vessel. There are two ways to protect the vessel metal wall: by refractory or by membrane wall. Sometimes water jacket is used, but still requires the refractory protection.
Simply put, refractory system is cheap but bulky and heavy while the membrane wall is expensive and requires a good manufacturing skill. For the small pilot coal gasifier, using refractory of high chromium content (20-60%) is the cheapest way. Large gasifiers are using the brick refractory, but the pilot scale gasifier employs the mixture of refractory powder and water to fill the mold of the gasifier.
Refractory system is heavy and requires a long time (more than one day) of pre-heating before the gasification run. Membrane wall system is like an engine that is quick to ignite and run.
Inorganics in coal should be treated to become a harmless material. Slagging gasifier converts inorganic parts to slag that is made by treating ash at the temperature above the ash fusion temperature. Non-slagging gasifier transforms the inorganics to ash form that is sometimes causing heavy metal leaching problem.
Ash that is made in the typical coal combustors like in coal fired boilers might leach heavy metals when stored outside. But, the intertwined structure in slag that is made during the melting in the gasifier prevents the heavy metals to come out at the normal environmental conditions unless the slag is meted again at high temperature above the melting temperature. In theory, slag should be the target to obtain, rather than ash that might cause a secondary environmental problem by heavy metal leaching.
But the problem is that utilization of slag is quite limited in current market although it is environmentally more benign, while fly-ash has many customers who want to buy. Slag can be used as a construction material or supplement for construction bricks, but the utilization record is not so bright. Fly-ash from the combustion processes has a well proven record in use during the last 5-8 years as cement fillers. When the fly-ash contains less than 5% carbon (preferably less than 3%), the ash is widely used as a supplement of cement filler.
Conventional non-slagging gasifiers adopt fluidized-bed type of reactor. Recent reports indicate that entrained-bed type of non-slagging gasifier might provide the advantages of fast reaction and the utilization of inorganics as a fly-ash form, or use the collected fly-ash as a low-grade fuel.
Item | Slagging | Non-slagging |
Gasifier temperature | 1,400-1,600oC | Less than 1,450oC (entrained-bed) 850-950oC (fluidized-bed) |
Final type of inorganics(ash) | Slag | Ash |
Utilization of slag/ash | Still not well accepted in industry | Well proven as cement filler |
Comparison of slagging and non-slagging types
Slag(left) from slagging gasifier and fly-ash(right) from non-slagging gasifier
In the case of IGCC, gasifier pressure is typically determined by the gas turbine compressing pressure requirement. Operating pressure of commercial coal gasifiers are in the range of 22-28 bar in the IGCC plant using 7FA gas turbine. The 1.5th generation IGCC where using 7FB gas turbine requires a gasifier pressure at 41 bar to fulfill the inlet gas pressure for the 7FB machine. Higher gasifier pressure can push the gas turbine blades more strongly and thus can produce more power.
When the final product is chemical intermediates that should be used in the ensuing high pressure conversion process, high pressure operation is all the times more economical than the atmospheric or low pressure operation and the following syngas compression. Gas compression is one of the expensive processes and requires a heavy maintenance.
If the pressure of the chemical conversion process that is using the syngas from the coal gasifier requires higher than 50 bar, practically slurry feeding system is preferred over the dry-feeding. Dry feeding of coal powder above 50 bar is not practical by the currently available technologies till now.
Some people argue that the gasification pressure gives a profound variation in syngas composition. Gasification reaction itself would be dependent upon the pressure by thermodynamic principles. But in reality commercial gasifiers convert all carbon and hydrogen in coal to CO and H2 at the optimal operating condition, and more H2 is produced when steam is more added or slurry feeding is employed. If one pass of coal through the gasifier cannot reach >99% carbon conversion, the char or fines will be recycled to achieve the necessary conversion. Therefore when the gasifier is operating at the optimal condition which means that proper amount of oxygen and steam are supplied for more than 99% carbon conversion at all times, the gasifier pressure would not significantly influence the final syngas composition that will be used as a raw gas for power generation or manufacturing chemicals.
In gasification, using oxygen is like driving a luxurious sports car whereas using air is like driving a small compact car. Pure oxygen pushes the gasification reaction with real fast response, while using air for the gasification responses rather slowly. Applying oxygen requires a heavy initial investment (notably ASU(air separation unit)) to gain fast response in controlling the gasifier temperature and not to worry about retaining high temperature to melt the ash components in coal. Using air will significantly simplify the gasification system and reduce the capital cost, but keeping the gasifier temperature above the ash fusion temperature is challenging. Especially small scale gasifiers could not maintain the gasifier temperature due to its inherent higher heat loss through the gasifier wall compared to large scale gasifiers.
If we consider the future gasifier plant that is to connect to CO2 capture equipment, oxygen is the general trend. When air is used as an oxidizing agent, nitrogen is diluting the flue gas stream and will cost more in the downstream of CO2 capture and separation.
Oxidizing agent | Oxygen | Air |
Capital cost | High (ASU: about 15% of IGCC plant cost) | Moderate |
Typical O2% | 95 | 21-24 |
CO2 capture aspect | Competitive | Unfavorable |
Heating Value of syngas | - | 1/3 of O2 case |
Commercial gasifiers | All other coal gasifiers | Mitsubishi Heavy Industries, Japan |
Comparison of using oxygen and air for coal gasification
The choice of coal gasifier could be different whether the final product is for electricity generation or for chemical product. Chemical product inherently requires more hydrogen in the molecular structure to be a higher value fuel like CH4. Stable chemicals need to stabilize the structure as the –CH2- form which requires also more hydrogen.
Purpose | Power generation | Chemical feedstock |
Target | Maximize total CO/H2 amount Minimize heat loss Maximize efficiency | Maximize total H2/CO ratio (Maximize H2 content) Allow some heat loss Maximize high profit end-product |
Gasifier material | High grade (expensive) | Not necessarily high grade |
Gasifier size | Big (2,000-3,000 ton/day) | Moderate-Big (few hundreds - 3,000 ton/day) |
Spare gasifier | Generally not in use | Usually use |
Syngas cooling | Radiant syngas cooler | Quick quenching - moderate heat recovery |
Typical gasifier type | Entrained-bed | Entrained, Fluidized, Fixed |
Pressure range | 22-28 bar (1st generation IGCC) 42 bar (1.5th generation IGCC) | Depend on the syngas conversion process pressure |
Choice of gasifier by the final product
Key question is whether one single gasifier can be utilized both as a power generating and also as a chemical feedstock producing gasifier. The answer is simply NO. Because plants that employ coal gasifier need 30-100 million US$ for the construction in general, the gasification plant should be designed and operated to optimize for the specific products unless the plant is designed as such from the very beginning.
Manufacturing limit in the coal gasifier should be evaluated in terms of pressure, gasifier diameter, and manufacturing equipments. Coal gasifier is basically a pressure vessel which has a practical manufacturing limit simply by available steel rolling machine and by economics of manufacturing cost. Manufacturing a pressure vessel above 100 bar would not be practical purely due to the manufacturing ability of 3,000 ton/day scale gasifier as a single vessel, and it is never be economical since the wall thickness of large coal gasifier might be too large.
Pilot scale coal gasifiers are treating the coal in 1-30 ton/day range, in that no practical problem exists in manufacturing unless the size is too compact so that space for nozzles and cooling pipes is simply not available.
The main content of this section had been published in the earlier paper in 2007[4]. Key parts are illustrated here. Table 9 illustrates what would be the most suitable coal for pilot-scale and commercial gasifiers. Pilot gasifier has a much smaller diameter in slag tap and gasifier exit line than the commercial size gasifier. If the ash content in feed coal exceeds 10%, simply small slag tap cannot pass through the molten slag even the slag viscosity is as low as liquid. Because slag flow viscosity in many cases stays at the few hundreds of centipoise range even above 1,400oC, smooth discharge of slag cannot happen, which results in plugging the slag discharge port.
Item | Pilot-scale gasifier | Commercial size gasifier |
Coal rank | subbituminous | subbituminous, bituminous |
Ash content | less than 5%, max. ~10% | 8-12%, max. 25% |
Volatile content | "/>30% (preferable) | No limit |
Coal reactivity | high (preferable) | moderate-high |
Ash viscosity | less than 250 poise at operating temperature | less than 250 poise at operating temperature |
Suitable coal for pilot and commercial scale gasifiers
The important indices for selecting the coal are ash melting temperature, slag viscosity, ash content, and the fuel ratio (or gasification reactivity). The suitable coal should contain the following properties. First, the approximate criteria for the ash melting temperature would be at the range of 1300-1400oC. If the ash melting temperature is below 1,260oC in particular, more precaution should be exercised to prevent the increased possibility of plugging by fly-slag. When the ash melting temperature is above 1,500oC, adding the fluxing agent would be required, or the gasifier temperature should be increased with the anticipated problems in the refractory life. Second, low-enough slag viscosity at the gasifier operating temperature must be guaranteed where slag would flow freely along the gasifier inner wall. Third, ash and sulfur contents should be at the lowest level if possible, and a certain amount of ash needs to be present in coal to protect the gasifier wall by thin-layer coating.
Coal reactivity is definitely an important parameter in coal selection for the gasification, probably next to the proper ash melting behavior. For the fixed gasifier volume, more reactive coal would complete the reaction within the available residence time. Before performing the actual gasification tests, coal reactivity should be studied by several ways. The most simple and intuitive way is to compare the fuel ratio of the proximate analysis data. Fuel ratio is defined as the weight ratio of fixed carbon to volatile matter contents in coal. A lower fuel ratio means more reactivity in general, such that lower rank coals are more reactive. The most simple and intuitive selection guideline that has been reported seems to be the plot between the fuel ratio that represents the coal reactivity versus the ash fusion temperature representing the slag viscosity. It can give the idea regarding the possibility in gasifier plugging [12,13].
Coals with the low fuel ratio would be a better choice if the gasifier would run without the char-recycling process. That means higher volatile content coals that normally exhibit a higher reactivity. To verify the suitable coal reactivity, TGA analysis under the inert gas environment would be sufficient to differentiate the relative reactivity of candidate coals in selecting the suitable coal. Figures 5-6 illustrate examples of applying TGA data to estimate the indirect reactivity by comparing with some reference coal that showed a good performance in gasification.
It has been reported that coal reactivity measured by TGA under an inert gas correlates with the inverse of the fuel ratio [7]. Although most accurate analysis data would be obtained under the identical gasification conditions, reactivity itself could be obtained from an analysis under inert environment. Here, reactivity was simply defined as the ratio of weight change over the specified reaction time.
In the dry-feeding gasifier, the surface moisture content of dried coal is more important than the total moisture data because of the pneumatic feeding requirement of the coal powder into the gasifier. Since the moisture content does not present any technical problems after coal is dried to less than 3 wt%, moisture content would not be a discerning factor in feeding ability. But the drying cost could reach too high to impact the total plant operating cost.
Slags obtained from the gasification at slagging temperature conditions leach heavy metal compounds far less than the environmental regulations, with no noticeable differences among the slag samples from different coal samples, and thus leaching test for slag would not be a precise criterion in determining the coal suitability for gasification.
Rough comparison of reactivity for tested coals (TGA at Heating rate 10K/min till 800oC, 800oC isothermal, N2 gas flow)
From the reactivity (indirect) point of view in Figure 6, Curragh and Denisovsky coals need a different gasifier design to account for longer reaction time.
Moisture content affects the operability of dry-feeding gasification system as well as the gasification efficiencies. Although moisture content of less than 2 wt% was used as a guideline in a dry-feeding commercial-scale coal gasifier [6], the moisture content of below 3 wt% demonstrated acceptable pneumatically conveying characteristics. In selecting the suitable coal for dry-feeding type gasifier, moisture content does not present any technical problems. It should rather be decided by economic consideration for drying and coal price.
Indirect estimation of coal reactivity by TGA at 25 psig [4]
In gasifiers that require long-term continuous operation, low ash containing coals might be a better candidate since they produce a minimal fly-slag and bottom-slag that can act as a possible plugging material in exit-gas pipes or in the slag-tap. Judging from the operation results, the low ash containing coals showed significantly lower plugging problems by fly-slag in heat exchanging equipment like gas cooler after the gasifier.
On the other hand, because a certain level of ash in coal demonstrates a protecting function of the refractory as well as a function of heat loss minimization by coating the inner gasifier wall [8,9], an optimal ash content of the candidate coal should be judged on the basis of several interrelated parameters of coal price and ash-melting temperature. Since one of the many reasons for shutdowns in the demonstration IGCC plants of U.S.A., Europe, and Japan was slag and ash accumulation that can eventually develop to plugging and accompanying erosion, minimizing the fly-slag amount transported to the gasifier outlet is an area that should be scrutinized from the viewpoint of selecting the suitable coal. Coals of high ash content would definitely enhance the possibility of slag and ash accumulation.
Thereby, a preferable IGCC coal would possess only a reasonable amount of ash enough to coat the gasifier inner wall. The suitable ash content appears to be 1-6 wt% when there is a choice to select coal for the gasification system. For reference, a similar type of large-scale dry-feeding gasification indicated that coals containing less than 8 wt% ash content were recommended to recycle fly ash to coat the gasifier inner wall for insulating purpose, and the operating costs would increase from some 15% ash in coal[9]. Another reference reported that at least 0.5% ash is required to protect the gasifier inner wall when the wall is made of cooling tubes [10]. In addition, if coal is being imported or moved a long distance from the mine, higher ash content would only increase the cost for transportation and enhance the possibility of operational problems in gasifiers.
When the candidate coal meets the condition of ash melting temperature, another condition such as slag viscosity has to be considered. Suggested minimum gasifier operating temperature applicable in the dry-feeding gasifier was reported to be 50oC above the crystalline temperature of molten slag or 50oC above the temperature that corresponds to the 1,000 poise of slag viscosity for glassy slags [11]. Crystalline temperature is defined as the point where slag viscosity commences to increase sharply with decreasing temperature. Typically for the best performance, the gasifier is operated while maintaining the slag viscosity at the below 250 poise level. However, for practical applications, it would be better to maintain the gasifier temperature at about 100oC above the measured ash fluid temperature. All in all, slag viscosities of coals showing the glassy slag behavior were higher than those of molten slags above the crystalline temperature, signifying that more operational plugging problems by slag might occur for the coals of glassy slag.
Gasification temperature has a range for the proper conversion efficiencies. Typically, it is between 1,300-1,600oC. Oil gasification temperature is in the range of 1,300oC while the solid gasification operates at the higher temperature range. If the operating temperature is too low, carbon conversion gets lower mainly by insufficient reaction.
Coal selection can be summarized as follows. Coal properties of ash melting temperature, slag viscosity, ash content, and fuel ratio can be used as guides for estimating the plugging probability and gasification reactivity. First of all, the ash melting temperature and corresponding slag viscosity were used as a guide data for suitable coals. Next, low-rank coals of high reactivity were selected as the best candidate coals for dry-feeding entrained-bed coal gasification operation. Then, low ash coal would be chosen for the possibility of reduced operational problems related to slag and ash. Although the drying process would increase the cost for the subbituminous coals, more reactive coals with appropriate ash melting temperature should be the choice for dry-feeding entrained-bed gasification.
Although there have been several successful coal gasifiers that were commercially proven, many different design configurations are still possible for simple and reliable gasifier operation. As can be expected, tests of coal gasifiers at the actual high pressure and temperature conditions cost a lot of time and fund. Powerful simulation tools have made a major progress in computer simulation for the detailed analysis in reactors. It became a normal procedure to check the details in reactor design by CFD (Computational Fluid Dynamics). There are many limitations in applying CFD method in gasifier design, particularly in estimating slag behavior and slag-tap design. However, the CFD analysis proved to be useful in comparing the widely different design concepts as a pre-selection tool.
First, cold-flow simulation is applied to pre-select the configuration concepts, and the hot-flow simulation including chemical reactions follows to compare the concepts at more similar actual gasifier operation situation.
In designing a gasifier, many design parameters should be compared to obtain the optimal performance. Among design parameters for the entrained-bed gasifier, syngas flow direction, expected temperatures exiting the gasifier, size of any dead volume, L/D ratio, residence time inside the gasifier, and number and location of burner nozzles are most important.
From the relative evaluation of this preliminary analysis, most promising type and shape of the gasifier can be selected, after which more detailed CFD analysis including chemical reactions follows in order to obtain profiles of temperature, gas compositions, and particle flow path, etc.
As an example of CFD illustration, four cases of gasifier configuration of dry-feeding were first selected with two up-flow designs and two down-flow designs, as illustrated in Figure 7. In all cases, the feeding nozzles were positions to form a cyclonic swirl inside the gasifier with the purpose of increasing residence time. Case 1 is a reference design that is similar to the 3 ton/day coal gasification pilot plant at IAE in Korea. Thus, actual coal gasification database with more than ten different coals is available to verify the results in Case 1.
Four coal gasifier configurations compared in the CFD analysis [5]
Hot-flow simulation result for up-flow Case 4 [5]
Table 10 summarized the hot-flow analysis results. Gas-phase residence time in Case 4 shows the highest value as 1.43 sec, while the down-flow Case 2 exhibited lowest as 1.03 sec. Residence time in reference Case 1 was 1.17 sec.
The pilot-plant gasification data in Case 1 configuration showed above 98% carbon conversion for the highly reactive Indonesian subbituminous coals [3]. For some un-reactive bituminous coals at the pilot gasifier of Case 1 configuration, residence time was not sufficient to guarantee the full carbon conversion in one pass through the gasifier. Recycling of un-reacted char particles to the gasifier, which means several passes through the gasifier, is one option to cope with this kind of low conversion efficiency in one pass, although more capital investment is required for additional equipments. In short, CFD analysis will be supplemented with actual pilot test results for the final design of the coal gasifier.
Case | 1 | 2 | 3 | 4 | |
Gas residence time (sec) | 1.17 | 1.03 | 1.26 | 1.43 | |
Gasifier exit gas temperature (oC) | 1,202 | 1,081 | 1,065 | 1,021 | |
Gasifier exit gas Comp. (vol %) | CO | 54.13 | 52.81 | 52.70 | 51.46 |
Gasifier exit gas Comp. (vol %) | H2 | 16.37 | 17.09 | 17.25 | 18.12 |
Hot-flow gasifier CFD simulation result [5]
Operating pilot coal gasifier produces profiles as in Figure 9. Gasifier temperature, pressure, and syngas composition are most basic data that are measured. In the pilot gasifier, inside temperature is measured directly by thermocouples in order to know the actual gasification condition. Syngas composition is readily measured by on-line GC or dedicated on-line gas analyzers.
Typical gasification profiles at pilot scale dry-feeding coal gasifier (8 bar, Indonesian KPC coal)
If the gasification temperature is higher than 1,400oC where the chemical reaction is so fast that mass transfer limitation prevails, syngas composition can be reliably approximated by the thermodynamic equilibrium calculation which is readily available in most commercial process simulation softwares like ASPEN.
Examples of estimating the syngas composition by thermodynamic equilibrium calculation are shown in Figures 10-11. Both figures illustrate estimated syngas composition is satisfactory in engineering sense. In pilot plant, a notebook computer is used to calculate the expected syngas composition at the certain carbon conversion and reaction temperature while the gasifier is operated. In opposite way, from the known information on syngas composition, temperature, and coal property during the gasifier test, carbon conversion at that time can be calculated to verify how the gasifier is being operated.
Comparison of syngas composition between simulated and actual commercial-scale plant data for Illinois No. 6 coal
Comparison of syngas composition between simulated and actual pilot plant data for Indonesian subbituminous coal
Because the coal gasifier is normally under the pressure, direct looking into the gasifier is impossible. While we operate the gasifier, there are important variables to know in-situ, if possible, such as reaction temperature (typically 1,400-1,600oC), pressure, gas composition, and slag flow.
Gasifier temperature measurement by R-type thermocouple is a normal method in pilot plants, but in commercial gasifiers where at least several months of continuous operation is required thermocouple proved to be unreliable due to frequent wire disconnection under hot corrosive environment. Most commercial plants acquire temperature information indirectly by measuring such as steam production amount from the gasifier wall or methane content. Methane content in syngas has exhibited a reliable indirect information on temperature high or low limit, which is a very important data to prevent significant gasifier damage. If the gasifier temperature is too high, gasifier wall might be damaged, and if the temperature is too low, then the slag tap would face a plugging by re-solidified slags.
Figure 12 show the increase of CH4 % from about 0 to 6,000 ppm by the drop of 100oC in gasifier temperature from 1,450oC to 1,350oC. Typical slagging coal gasifiers operate at temperatures where CH4 content is maintained below the certain guideline value.
Relationship between gasifier temperature and CH4 content (10 bar, Indonesian KPC coal)
There are key problematic areas that should pay attention in design and during operation. Main gasifier body would not explode unless a really bad manufacturer was chosen. There are weak points in gasifiers, which are slag tap, syngas exit line, and feed nozzles. Pilot plant requires frequent disassembling and reassembling to see the inside part and take samples for analysis after the test, which would increase the risk by many joint areas.
Gasifier problems basically reside in uncontrolled fluctuation of coal/oxygen, slag behavior, syngas leakage, and nozzle area. Smooth feeding is an essential part in all chemical reactions. In coal gasification, it is more important. A small sudden increase of oxygen while the coal feed is same can increase the gasifier temperature above 1,600oC in 10-30 seconds. Slag and molten fly-slag plug the slag tap and exit pipes or syngas cooling zone, if not properly monitored and operated. Many joint areas that are frequently reassembled inherently possess the possibility of loosening and eventually leakage with time. In the pressurized coal gasifier containing hot syngas whose components CO and H2 are all easy to ignite with atmospheric oxygen, loosening joints definitely lead to syngas leakage, and surely a noisy explosion of that area.
The biggest operational problem identified during the pilot-scale gasification tests were the plugging in the slag discharge port by the bottom slag and the plugging in the syngas outlet area of the gasifier by the fly-slag, with the possibility of backfire explosion in the area of feed-lance nozzles. From the aspect of plugging by slag, slag viscosity with the gasifier temperature is an important index as described in the previous section for selecting the suitable coal. From the viscosity point of view, all subbituminous and most bituminous coals have shown the low enough slag viscosity among the tested coals, and thus it seems that they would not cause any operational problems by slag flow at the proper operation temperature, whereas a Russian coal yielded the highest slag viscosity that had caused an operational problem in slag discharge even under the gasifier temperature above 1,500oC. Higher ash content in coal increased the possibility of slag-related operational problems.
The most troublesome coal with plugging by fly-slag at the syngas outlet was Alaskan Usibelli coal from USA that showed an ash fluid temperature of 1,257oC. Figure 13 shows Alsakan Usibelli coal case of exit line plugging by fly-slag. Contrary to the case of Russian coal where slag viscosity values were more representing the actual behavior of slag in the gasifier, Usibelli coal demonstrated that ash fluid temperature for the raw coal was more representing the actual behavior of slag viscosity in the gasifier than the viscosity measurement for the gasified slag. Viscosity in the fly-slag of Usibelli coal exhibited at least a similar melting behavior that could be represented by the ash fluid temperature. The result till now signifies the importance of actual testing under the gasification conditions to confirm the gasification characteristics including the slag behavior.
Deposited ash/slag at the exit port of pilot-scale coal gasifier (Alaskan Usibelli coal, 8 bar, 1,450oC)
Caution should be exercised when the candidate coal shows very low ash fusion temperature below 1,260oC with high ash content because the heat recovery system attached to the gasifier might show a higher plugging tendency.
In the feed nozzle area, coal powder or coal slurry, oxygen, steam, hot syngas all meet at the small space. Moreover many joints exist, and mechanically nozzle itself contains many layers of metal tubes that expose to hot corrosive syngas. Welding points must meet the stringent specification to guarantee the long operation, and thus most gasifier vendors still supply the feed nozzles under their quality control.
If the welding joint in the feed nozzle break, syngas can pass though the hole and make the metal weak to break in sequence, which eventually ends up in explosion of feed nozzle area. More detailed discussion follows in the next section.
Institute for Advance Engineering in Korea has operated the pilot coal gasifiers from 1994, and has experienced several safety issues. During the design of the coal gasifier and the preparation of the constructed gasifier operation, items that need most careful concentration are,
Maintain the enough higher pressure difference all the time at the coal feeding equipment over the gasifier
Make sure that connected lines would not leak
Welded area that would be exposed to hot syngas should be minimized
Weakest and most dangerous area is the coal/oxygen feeding nozzle lines
Toxicity of CO
Any slightest possibility of contacting CO and Ni-based catalysts to produce nickel tetracarbonyl (Ni(CO)4) which is one of the most fatal compound, more hazardous than CO
Coal gasifier deals with the syngas that consists of mainly CO and hydrogen at the high pressure and high temperature. Gasification also involves the pure oxygen with the coal powder or coal slurry. Under the normal operating situation in that reactive coal and oxygen are moving to the lower pressure region, coal and oxygen are reacting on the way through the gasifier and syngas are formed. Pressure at the coal feeding vessel remains at the higher pressure than the gasifier, so that hot syngas is not damaging the feeding lines. At any time, this pressure difference must be guaranteed, otherwise hot (1,300-1,600oC) syngas will flow backward through the coal powder and oxygen lines that will surely make an explosion.
Figure 14 shows the syngas flame along with the ignited coal particles that are flying around the flame at the leaked feed nozzle area. The accident occurred by the loosened ferrule at the coal feeding nozzle of the dry-feeding pilot coal gasifier that operated at 8 bar and around 1,450oC conditions. This flame looks similar to the flame of welding torch.
Picture showing the syngas flame caused by syngas leakage at the feed nozzle area
Damaged valve main body by the syngas explosion occurred during the 10 bar and around 1,500oC gasification pilot plant test
The force by the syngas explosion that occurs typically by the backward pressure to the feeding line amounts to tear out instantaneously the SUS metal of the value that should withstand 1,500 psi. Figure 15 demonstrates the damage to the valve main body by the syngas explosion occurred at the 10 bar and around 1,500oC conditions. The explosion should be avoided, but if it happens the damage area should be minimized. Best routine is to prevent any personnel who goes near the nozzle area during the hot gasification test. The explosion happens with a very short loud blast and will hiss out the syngas until the majority of syngas is vented out. Normal emergency routine involves the pushing the syngas out of the gasifier with nitrogen which is all the time maintained at the higher pressure than the gasifier and the oxygen line.
Figure 16 also exhibits the force of the syngas explosion. In the Figure, right-hand side is the gasifier (not shown in the figure) and the coal feeding vessel (not shown in the figure) is located at the left side of the Figure. There was a leak in the connecting tubes on the left side of the Figure. Then pressure of the feeding line suddenly drops to atmoshperic pressure and the hot syngas gushed to the feeding lines. Hot syngas reacts with coal powder and pure oxygen existing in the feeding line, resulting in the very explosive gas and push directly from the gasifier through the feeding line. Damaged shape in the Figure clearly illustrates the direction of the syngas explosion which is not following the curved SUS pipe, rather moves in direct line and tear the pipe in that direction.
Damaged SUS coal powder feeding pipe occurred during the 8 bar and around 1,500oC gasification pilot plant test
Figure 17 shows the importance of the welding quality in the feeding nozzle area. The accident occurred during the pilot coal gasifier operation with a subbituminous coal at 20 bar, 1,400oC. After the accident the nozzle parts were scrutinized and revealed that the vertical welding on the water cooling zone was an initial starting point and the hot syngas moved through the cooling water zone, after which the nozzle itself was damaged and finally the syngas with pure oxygen resulted in explosion. In the commercial system, water cooling system is operated with higher pressure than the gasifier pressure, but in the pilot system that might not use the high pressure water facility, the nozzle area should be monitored carefully and should make a way to prevent the possibility of syngas leakage through the cooling zone.
Carbon monoxide in syngas is typically 20-60% in the pilot coal gasifiers. Considering the allowable limit of CO concentration is 50 ppm and exposure to 0.1% CO can lead to fatality, the concentration of 20-60% which amounts to 20,000-60,000 ppm can lead to extreme safety hazards. Just one inhaling of syngas is enough to make a person to serious dizziness and vomiting.
Explosion accident at the coal feeding nozzle during the pilot gasifier operation at 20 bar, 1,400oC (Left: picture at normal operation, Right: picture at explosion time)
Syngas is widely in demand for manufacturing chemicals or synthetic fuels, which normally involves catalytic reactions. Extreme caution should be exercised when any nickel containing catalysts are employed with syngas. Although the chance is slim and little amount is used just as a test, any possibility inducing the formation of Nickel tetracarbonyl (Ni(CO)4) should be checked and even the slightest inhaling by personnel should be avoided. Nickel tetracarbonyl is one of the most fatal compound, more hazardous than CO.
If the commercially available coal gasifiers have reached already the best efficiency and satisfied all the industrial requirements, there would be no need to design and construct the pilot-scale gasifiers. Current coal gasifiers are still too expensive and too small in terms of coal-fired power plant. Coal price generally linkages with the oil price. Since the high oil price prompts to use more coal and pushes the coal price accordingly, low grade coal would be utilized more widely in the near future. Also there is a CO2 issue that will impact the gasifier technology more suited in the CO2 capture.
The future direction of R&D for coal gasifiers can be summarized as follows:
Bigger capacity in a single gasifier
Simplification of gasifier design
Compactness
Use of cheap low-grade coal
Reduction of construction cost
Increase in plant availability
Response to CO2 issue
Purpose of testing with the pilot-scale coal gasifier is to confirm the design concept before going to the commercial scale. In a sense, pilot gasifier is more dangerous than the big scale gasifier because the pilot gasifier requires frequent disassembling and contains more joint parts with smaller slag passage hole, which will increase the possibility in syngas backflow with eventual explosion. With knowing what is going on in the gasifier with the specific choice of design options, the best selection and design for the gasifier would possible.
Even with the long history of developing and commercial use of coal gasifiers, there is still a room in upgrading to a more efficient and cheaper version of coal gasifier and the pilot scale gasifier should follow to confirm the design logic and practical applicability. On the way to make a next generation coal gasifier, fundamental issues and experience from the past should be used as a cornerstone. Although it is not a vast experience compared to the almost century-old gasification system as in the fixed-bed type, the pilot-scale experience at IAE for the entrained-bed type gasifiers during the last 18 years or so might be useful for providing as guidelines which can act at least as a blocking block in preventing the worst case and act as a new starting point.
This work was supported by the Development of 300 MW class Korean IGCC demonstration plant technology of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2011951010001B).
Bioremediation and natural reduction are also seen as a solution for emerging contaminant problems; microbes are very helpful to remediate the contaminated environment. Number of microbes including aerobic, anaerobic bacteria and fungi are involved in bioremediation process. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms. The main principle is degrading and converting pollutants to less toxic forms. There are two types of factors these are biotic and abiotic conditions are determine rate of degradation. Currently, different methods and strategies are applied for bioremediation process.
Environmental pollution has been on the rise in the past few decades due to increased human activities such as population explosion, unsafe agricultural practices, unplanned urbanization, deforestation, rapid industrialization and non-judicious use of energy reservoirs and other anthropogenic activities. Among the pollutants that are of environmental and public health concerns due to their toxicities are: chemical fertilizer, heavy metals, nuclear wastes, pesticides, herbicides, insecticides greenhouse gases, and hydrocarbons. Thousands of hazardous waste sites have been identified and estimated is that more will be identified in the coming decades. Release of pollutants into the environment comes from illegal dumping by chemical companies and industries. Many of the techniques utilized for site clean-up in the past, such as digging up the contaminated soil and hauling it away to be land filled or incinerated have been prohibitively expensive and do not provide permanent solution. More recent techniques such as vapor extraction and soil venting are cost effective but incomplete solution.
Bioremediation is a process where biological organisms are used to remove or neutralize an environmental pollutant by metabolic process. The “biological” organisms include microscopic organisms, such as fungi, algae and bacteria, and the “remediation”—treating the situation.
In the Earth’s biosphere, microorganisms grow in the widest range of habitats. They grow in soil, water, plants, animals, deep sea, and freezing ice environment. Their absolute numbers and their appetite for a wide range of chemicals make microorganisms the perfect candidate for acting as our environmental caretakers.
“Bioremediation is a waste management technique that includes the use of living organisms to eradicate or neutralize pollutants from a contaminated site.”
“Bioremediation is a ‘treatment techniques’ that uses naturally occurring organisms to break down harmful materials into less toxic or non-toxic materials.”
Bioremediation technologies came into extensive usage and continue growing today at an exponential rate. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. In the past two decades, there have been recent developments in bioremediation techniques with the decisive goal being to successfully restore polluted environments in an economic, eco-friendly approach. Researchers have developed different bioremediation techniques that restore polluted environments. The micro-organisms used in bioremediation can be either indigenous or non-indigenous added to the contaminated site. Indigenous microorganisms present in polluted environments hold the key to solving most of the challenges associated with biodegradation and bioremediation of pollutant [1]. Environmentally friendly and cost effective are among the major advantages of bioremediation compared to both chemical and physical methods of remediation.
A mechanism of bioremediation is to reduce, detoxify, degrade, mineralize or transform more toxic pollutants to a less toxic. The pollutant removal process depends mainly on the pollutant nature, which includes pesticides, agrochemicals, chlorinated compounds, heavy metals, xenobiotic compounds, organic halogens, greenhouse gases, hydrocarbons, nuclear waste, dyes plastics and sludge. Cleaning technique apply to remove toxic waste from polluted environment. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms (Figure 1).
Bioremediation approaches for environmental clean-up.
Microorganisms play an important role on nutritional chains that are important part of the biological balance in life. Bioremediation involves the removal of the contaminated materials with the help of bacteria, fungi, algae and yeast. Microbes can grow at below zero temperature as well as extreme heat in the presence of hazardous compounds or any waste stream. The two characters of microbes are adaptability and biological system made them suitable for remediation process [2]. Carbon is the main requirement for microbial activity. Bioremediation process was carried out by microbial consortium in different environments. These microorganisms comprise Achromobacter, Arthrobacter, Alcaligenes, Bacillus, Corynebacterium, Pseudomonas, Flavobacterium, Mycobacterium, Nitrosomonas, Xanthobacter, etc. [3].
There are groups of microbes which are used in bioremediation such as:
Aerobic: aerobic bacteria have degradative capacities to degrade the complex compounds such as Pseudomonas, Acinetobacter, Sphingomonas, Nocardia, Flavobacterium, Rhodococcus, and Mycobacterium. These microbes have been reported to degrade pesticides, hydrocarbons, alkanes, and polyaromatic compounds. Many of these bacteria use the contaminants as carbon and energy source.
Anaerobic: anaerobic bacteria are not as regularly used as aerobic bacteria. There is an increasing interest in aerobic bacteria used for bioremediation of chlorinated aromatic compounds, polychlorinated biphenyls, and dechlorination of the solvent trichloroethylene and chloroform, degrading and converting pollutants to less toxic forms.
Bioremediation process is degrading, removing, changing, immobilizing, or detoxifying various chemicals and physical pollutants from the environment through the activity of bacteria, fungi, algae and plants. Enzymatic metabolic pathways of microorganisms facilitate the progress of biochemical reactions that help in degradation of the pollutant. Microorganisms are act on the pollutants only when they have contact to the compounds which help them to generate energy and nutrients to multiply cells. The effectiveness of bioremediation depends on many factors; including, the chemical nature and concentration of pollutants, the physicochemical characteristics of the environment, and their accessibility to existing microorganisms [4].
The factors are mainly microbial population for degrading the pollutants, the accessibility of contaminants to the microbial population and environment factors like type of soils, pH, temperature, oxygen and nutrients.
Biotic factors are helpful for the degradation of organic compounds by microorganisms with insufficient carbon sources, antagonistic interactions among microorganisms or the protozoa and bacteriophages. The rate of contaminant degradation is frequently dependent on the concentration of the contaminant and the amount of catalyst present in biochemical reaction. The major biological factors are included enzyme activity, interaction (competition, succession, and predation), mutation, horizontal gene transfer, its growth for biomass production, population size and its composition [5, 6].
The interaction of environmental contaminants with metabolic activity, physicochemical properties of the microorganisms targeted during the process. The successful interaction between the microbes and pollutant depends on the environmental situations. Microbial growth and activity are depended on temperature, pH, moisture, soil structure, water solubility, nutrients, site conditions, oxygen content and redox potential, deficiency of resources and physico-chemical bioavailability of pollutants, concentration, chemical structure, type, solubility and toxicity. This above factors are control degradation kinetics [5, 7].
Biodegradation of pollutant can occur under range of pH (6.5–8.5) is generally optimal for biodegradation in most aquatic and terrestrial environment. Moisture affects the metabolism of contaminant because it depends on the kind and amount of soluble constituents that are accessible as well as the pH and osmotic pressure of terrestrial and aquatic systems [8].
Superficially, bioremediation techniques can be carried out ex-situ and in-situ site of application (Figure 1). Pollutant nature, depth and amount of pollution, type of environment, location, cost, and environmental policies are the selection standards that are considered for selecting any bioremediation technique. Performance based on oxygen and nutrient concentrations, temperature, pH, and other abiotic factors that determine the success of bioremediation processes [9, 10].
Ex-situ bioremediation techniques involve digging pollutants from polluted sites and successively transporting them to another site for treatment. Ex-situ bioremediation techniques are regularly considered based on the depth of pollution, type of pollutant, degree of pollution, cost of treatment and geographical location of the polluted site. Performance standards also regulate the choice of ex-situ bioremediation techniques.
Solid-phase treatment
Solid-phase bioremediation is an ex-situ technology in which the contaminated soil is excavated and placed into piles. It is also includes organic waste like leaves, animal manures and agriculture wastes, domestic, industrial wastes and municipal wastes. Bacterial growth is moved through pipes that are distributed throughout the piles. Air pulling through the pipes is necessary for ventilation and microbial respiration. Solid-phase system required huge amount of space and cleanups require more time to complete as compared to slurry-phase processes. Solid-phase treatment processes include biopiles, windrows, land farming, composting, etc. [11].
Slurry-phase bioremediation
Slurry-phase bioremediation is a relative more rapid process compared to the other treatment processes. Contaminated soil is combined with water, nutrient and oxygen in the bioreactor to create the optimum environment for the microorganisms to degrade the contaminants which are present in soil. This processing involves the separation of stones and rubbles from the contaminated soil. The added water concentration depends on the concentration of pollutants, the biodegradation process rate and the physicochemical properties of the soil. After completion of this process the soil is removed and dried up by using vacuum filters, pressure filters and centrifuges. The subsequent procedure is soil disposition and advance treatment of the resultant fluids.
There are far more than nine types of bioremediation, but the following are the most common ways in which it is used.
Bioremediation includes above-ground piling of dug polluted soil, followed by aeration and nutrient amendment to improve bioremediation by microbial metabolic activities. This technique comprises aeration, irrigation, nutrients, leachate collection and treatment bed systems. This specific ex-situ technique is progressively being measured due to its useful features with cost effectiveness, which allows operative biodegradation conditions includes pH, nutrient, temperature and aeration are effectively controlled. The biopile use to treat volatile low molecular weight pollutants; it can also be used effectively to remediate polluted very cold extreme environments [12, 13, 14]. The flexibility of biopile allows remediation time to be shortened as heating system can be integrated into biopile design to increase microbial activities and contaminant availability thus increasing the rate of biodegradation [15]. Additionally, heated air can be injected into biopile design to deliver air and heat in tandem, in order to facilitate enhanced bioremediation. Bulking agents such as straw saw dust, bark or wood chips and other organic materials have been added to enhance remediation process in a biopile construct. Although biopile systems connected to additional field ex-situ bioremediation techniques, such as land farming, bioventing, biosparging, robust engineering, maintenance and operation cost, lack of power supply at remote sites, which would facilitate constant air circulation in contaminated piled soil through air pump. Additional, extreme heating of air can lead to soil drying undertaking bioremediation, which will inhibit microbial activities and which stimulate volatilization than biodegradation [16].
Windrows is bioremediation techniques depends on periodic rotating the piled polluted soil to improve bioremediation by increasing microbial degradation activities of native and transient hydrocarbonoclastic present in polluted soil. The periodic turning of polluted soil increase in aeration with addition of water, uniform distribution of nutrients, pollutants and microbial degradation activities, accordingly increase the rate of bioremediation, which can be proficient through acclimatization, biotransformation and mineralization. Windrow treatment as compared to biopile treatment, showed higher rate of hydrocarbon removal however, the effectiveness of the windrow for hydrocarbon removal from the soil [17]. However, periodic turning associated with windrow treatment not the best selection method to implement in bioremediation of soil polluted with toxic volatiles compounds. The use of windrow treatment has been associated in greenhouse gas (CH4) release due to formation of anaerobic zone inside piled polluted soil, which frequently reduced aeration [18].
Land farming is the simplest, outstanding bioremediation techniques due to its low cost and less equipment requirement for operation. It is mostly observed in ex-situ bioremediation, while in some cases of in-situ bioremediation technique. This consideration is due to the site of treatment. Pollutant depth is important in land farming which can be carried out ex-situ or in-situ. In land farming, polluted soils are regularly excavated and tilled and site of treatment speciously regulates the type of bioremediation. When excavated polluted soil is treated on-site, it is ex-situ as it has more in common than other ex-situ bioremediation techniques. Generally, excavated polluted soils are carefully applied on a fixed layer support above the ground surface to allow aerobic biodegradation of pollutant by autochthonous microorganisms [19]. Over all, land farming bioremediation technique is very simple to design and implement, requires low capital input and can be used to treat large volume of polluted soil with minimal environmental impact and energy requirement [20].
Bioreactor is a vessel in which raw materials are converted to specific product(s) following series of biological reactions. There are different operational modes of bioreactors, which include: batch, fed-batch, sequencing batch, continuous and multistage. Bioreactor provides optimal growth conditions for bioremediation. Bioreactor filled with polluted samples for remediation process. The bioreactor based treatment of polluted soil has several advantages as compared to ex-situ bioremediation procedures. Bioreactor-based bioremediation process having excellent control of pH, temperature, agitation and aeration, substrate and inoculum concentrations efficiently reduces bioremediation time. The ability to control and manipulate process parameters in a bioreactor implies that biological reactions. The flexible nature of bioreactor designs allows maximum biological degradation while minimizing abiotic losses [21].
Advantages of ex-situ bioremediation
Suitable for a wide range of contaminants
Suitability relatively simple to assess from site investigation data
Biodegradation are greater in a bioreactor system than or in solid-phase systems because the contaminated environment is more manageable and more controllable and predictable.
Disadvantages
Not applicable to heavy metal contamination or chlorinated hydrocarbons such as trichloroethylene.
Non-permeable soil requires additional processing.
The contaminant can be stripped from soil via soil washing or physical extraction before being placed in bioreactor.
These techniques comprise treating polluted substances at the pollution site. It does not need any excavation and by little or no disturbance in soil construction. Perfectly, these techniques should to be cost effective compared to ex-situ bioremediation techniques. Some in-situ bioremediation techniques like bioventing, biosparging and phytoremediation may be enhanced, while others may be progress without any form of improvement such as intrinsic bioremediation or natural attenuation. In-situ bioremediation techniques have been effectively used to treat chlorinated solvents, heavy metals, dyes, and hydrocarbons polluted sites [22, 23, 24].
In-situ bioremediation is two types; these are intrinsic and engineered bioremediation.
Intrinsic bioremediation
Intrinsic bioremediation also known as natural reduction is an in-situ bioremediation technique, which involves passive remediation of polluted sites, without any external force (human intervention). This process deals with stimulation of indigenous or naturally occurring microbial population. The process based on both microbial aerobic and anaerobic processes to biodegrade polluting constituents containing those that are recalcitrant. The absence of external force implies that the technique is less expensive compared to other in-situ techniques.
Engineered in-situ bioremediation
The second approach involves the introduction of certain microorganism to the site of contamination. Genetically Engineered microorganisms used in the in-situ bioremediation accelerate the degradation process by enhancing the physicochemical conditions to encourage the growth of microorganisms.
Bioventing techniques involve controlled stimulation of airflow by delivering oxygen to unsaturated (vadose) zone in order to increase activities of indigenous microbes for bioremediation. In bioventing, amendments are made by adding nutrients and moisture to increase bioremediation. That will achieve microbial transformation of pollutants to a harmless state. This technique has gained popularity among other in-situ bioremediation techniques [25].
This technique combines vacuum-enhanced pumping, soil vapor extraction and bioventing to achieve soil and ground water remediation by indirect providing of oxygen and stimulation of contaminant biodegradation [26]. This technique is planned for products recovery from remediating capillary, light non-aqueous phase liquids (LNAPLs), unsaturated and saturated zones. This technique used to remediate soils which are contaminated with volatile and semi-volatile organic compounds. The method uses a “slurp” that spreads into the free product layer, which pulls up liquids from this layer. The pumping machine transports LNAPLs to the surface by upward movement, where it becomes separated from air and water. In this technique, soil moisture bounds air permeability and declines oxygen transfer rate, which reducing microbial activities. Although this technique is not suitable for low permeable soil remediation, it is cost effective operation procedure due to less amount of ground water, minimizes storage, treatment and disposal costs.
This technique is similar to bioventing in this air is injected into soil subsurface to improve microbial activities which stimulate pollutant removal from polluted sites. However, in bioventing, air is injected in saturated zone, which can help in upward movement of volatile organic compounds to the unsaturated zone to stimulate biodegradation process. The efficiency of biosparging depends on two major factors specifically soil permeability and pollutant biodegradability. In bioventing and soil vapor extraction (SVE), biosparing operation is closely correlated technique known as in-situ air sparging (IAS), which depend on high air-flow rates for volatilization of pollutant, whereas biosparging stimulates biodegradation. Biosparging has been generally used in treating aquifers contaminated with diesel and kerosene.
Phytoremediation is depolluting the contaminated soils. This technique based on plant interactions like physical, chemical, biological, microbiological and biochemical in contaminated sites to diminish the toxic properties of pollutants. Which is depending on pollutant amount and nature, there are several mechanisms such as extraction, degradation, filtration, accumulation, stabilization and volatilization involved in phytoremediation. Pollutants like heavy metals and radionuclides are commonly removed by extraction, transformation and sequestration. Organic pollutants hydrocarbons and chlorinated compounds are mostly removed by degradation, rhizoremediation, stabilization and volatilization, with mineralization being possible when some plants such as willow and alfalfa are used [27, 28].
Some important factors of plant as a phytoremediator include: root system, which may be fibrous or tap depending on the depth of pollutant, above ground biomass, toxicity of pollutant to plant, plant existence and its adaptability to predominant environmental conditions, plant growth rate, site monitoring and above all, time mandatory to achieve the preferred level of cleanliness. In addition, the plant must be resistant to diseases and pests [29]. In phytoremediation removal of pollutant includes uptake, translocation from roots to shoots. Further, translocation and accumulation depends on transpiration and partitioning [30]. However, the process is possible to change, depending on other factors such as nature of contaminant and plant. The mostly plants growing in any polluted site are good phytoremediators. Therefore, the success of any phytoremediation method mainly depends on improving the remediation potentials of native plants growing in polluted sites either by bioaugmentation with endogenous or exogenous plant. One of the major advantages of using plants to remediate polluted site is that some precious metals can bioaccumulate in some plants and recovered after remediation, a process known as phytomining.
This technique is commonly observed as a physical method for remediating contaminated groundwater. However, biological mechanisms are precipitation degradation and sorption of pollutant removal used in PRB method. The substitute terms such as biological PRB, bio-enhanced PRB, passive bioreactive barrier, have been suggested to accommodate the biotechnology and bioremediation aspect of the technique. In general, PRB is an in-situ technique used for remediating heavy metals and chlorinated compounds in groundwater pollution [31, 32].
In-situ bioremediation methods do not required excavation of the contaminated soil.
This method provides volumetric treatment, treating both dissolved and solid contaminants.
The time required to treat sub-surface pollution using accelerated in-situ bioremediation can often be faster than pump and treat processes.
It may be possible to completely transform organic contaminants to innocuous substances like carbon dioxide, water and ethane.
It is a cost effective method because there is minimal site disruption.
Depending on specific site, some contaminants may not be absolutely transformed to harmless products.
If transformation stops at an intermediate compound, the intermediate may be more toxic and/or mobile than parent compound some are recalcitrant contaminants cannot be biodegradable.
When incorrectly applied, injection wells may become blocked by profuse microbial growth due to addition of nutrients, electron donor and electron acceptor.
Heavy metals and organic compounds concentration inhibit activity of indigenous microorganisms.
In-situ bioremediation usually required microorganism’s acclimatization, which may not develop for spills and recalcitrant compounds.
Bioremediation techniques are varied and have demonstrated effective in restoring polluted sites. Microorganisms play fundamental role in bioremediation; consequently, their diversity, abundance and community structure in polluted environments offer insight into the chance of any bioremediation technique providing other environmental factors, which can inhibit microbial activities. Advanced Molecular techniques such as ‘Omics’ includes genomics, proteomics, metabolomics and transcriptomics have contributed towards microbial identification, functions, metabolic and catabolic pathways, with microbial based methods. Nutrient availability, low population or absence of microbes with degradative capabilities, and pollutant bioavailability may delay the achievement of bioremediation. Since bioremediation depends on microbial process, biostimulation and bioaugmentation approaches speed up microbial activities in polluted sites. Biostimulation increase microbial activities by the addition of nutrients to a polluted sample. Microorganisms are abundantly present in different type of environmental condition, it is noticeable that pollutant degrading microbes are naturally present in polluted contaminated sites, their growth and metabolic activities may depends on pollutant type and concentration; later, we can use of agro-industrial wastes, which contains nitrogen, phosphorus and potassium as a nutrient source most polluted sites. Microbial consortium has been reported to degrade pollutants more efficiently than pure isolates [33].
This activity due to metabolic diversities of individual isolates, which potency create from their isolation source, adaptation process, pollutant composition, and synergistic effects, which may lead to complete and rapid degradation of pollutants when such isolates are mixed together [34]. Additional so, both bioaugmentation and biostimulation were effective in removing pollutant such as polyaromatic hydrocarbons (PAHs) from heavily polluted sample compared to non-amended setup (control) [35].
Although bioaugmentation has recognized effective method, it has been shown to increase the degradation of many compounds. If proper biodegrading microorganisms are not present in soil or if microbial populations decreased because of contaminant toxicity, specific microorganisms can be added as “introduced organisms” to improve the current populations and the possibility that the inoculated microorganisms may not survive in the new environment make bioaugmentation a very uncertain method. This process is known as bioaugmentation. Bioremediation technique in which natural or genetically engineered bacteria with unique metabolic profiles are used to treat sewage or contaminated water or soil. The use of alginate, agar, agarose, gelatin, gellan gum and polyurethane as carrier materials solve some of the challenges associated with bioaugmentation [36].
Biosurfactants are chemical equivalents having ecofriendly and biodegradable properties. However, high construction cost and low scalability application of biosurfactants to polluted site are uneconomical. Agro-industrial wastes combination are nutrient sources for development of biosurfactant producers during fermentation process. Application of several bioremediation techniques will help increase remediation efficiency [37].
Enhancing bioremediation ability with organized use of genetically engineered microorganisms (GEM) is a favorable approach. This is due to possibility of engineering a designer biocatalyst target pollutant including recalcitrant compounds by combining a novel and efficient metabolic pathways, widening the substrate range of existing pathways and increasing stability of catabolic activity [38].
However, parallel gene transfer and multiplication of GEM in an environmental application are encouraging approach. Bacterial containment systems, in which any GEM escaping an environment to reconstruct polluted environment.
Further, derivative pathway of genetically engineering microorganisms with a target polluted compound using biological approach could increase bioremediation efficiency. Nanomaterials decline the toxicity of pollutant to microorganisms because nanomaterials having increase surface area and lower activation energy, which reduce time and cost of bioremediation [39].
Bioremediation must be considered as appropriate methods that can applied to all states of matter in the environment
Solids (soils, sediment and sludge)
Liquids (ground water, surface water and industrial waste water
Gases (industrial air emissions)
Sub-surface environments (saturated and vadose zones).
The general approaches to bioremediation are the (i) intrinsic (natural) bioremediation, (ii) biosimulation (environmental modifications, through nutrient application and aeration, and (iii) bioaugmentation (addition of microbes).
The biological community exploited for bioremediation generally consists of the native soil microflora. However, higher plants can also be manipulated to enhance toxicant removal (phytoremediation), especially for remediation of metal contaminated soils.
All bioremediation techniques have its own advantage and disadvantage because it has its own specific applications.
It is a natural process; it takes a little time, as an adequate waste treatment process for contaminated material such as soil. Microbes able to degrade the contaminant, the biodegradative populations become reduced. The treatment products are commonly harmless including cell biomass, water and carbon dioxide.
It needs a very less effort and can commonly carry out on site, regularly without disturbing normal microbial activities. This also eradicates the transport amount of waste off site and the possible threats to human health and the environment.
It is functional in a cost effective process as comparison to other conventional methods that are used for clean-up of toxic hazardous waste regularly for the treatment of oil contaminated sites. It also supports in complete degradation of the pollutants; many of the toxic hazardous compounds can be transformed to less harmful products and disposal of contaminated material.
It does not use any dangerous chemicals. Nutrients especially fertilizers added to make active and fast microbial growth. Because of bioremediation change harmful chemicals into water and harmless gases, the harmful chemicals are completely destroyed.
Simple, less labor intensive and cheap due to their natural role in the environment.
Contaminants are destroyed, not simply transferred to different environmental.
Nonintrusive, possibly allowing for continued site use.
Current way of remediating environment from large contaminates and acts as ecofriendly sustainable opportunities.
It is restricted for biodegradable compounds. Not all compounds are disposed to quick and complete degradation process.
There are particular new products of biodegradation may be more toxic than the initial compounds and persist in environment.
Biological processes are highly specific, ecofriendly which includes the presence of metabolically active microbial populations, suitable environmental growth conditions and availability of nutrients and contaminants.
It is demanding to encourage the process from bench and pilot-scale to large-scale field operations. Contaminants may be present as solids, liquids and gases. It often takes longer than other treatment preferences, such as excavation and removal of soil or incineration.
Research is needed to develop and engineer bioremediation technologies that are appropriate for sites with complex mixtures of contaminants that are not evenly dispersed in the environment.
Bioremediation is limited to those compounds that are biodegradable. This method is susceptible to rapid and complete degradation. Products of biodegradation may be more persistent or toxic than the parent compound in the environment.
Specificity
Biological processes are highly specific. Important site factors mandatory for success include the presence of metabolically capable microbial populations, suitable environmental growth conditions, and appropriate levels of nutrients and contaminants.
Scale up limitation
It is difficult to scale up bioremediation process from batch and pilot scale studies applicable to large scale field operations.
Technological advancement
More research is required to develop modern engineer bioremediation technologies that are suitable for sites with composite combinations of contaminants that are not equally distributed in the environment. It may be present as solids, liquids and gases forms.
Time taking process
Bioremediation takes longer time compare to other treatment options, such as excavation and removal of soil from contaminated site.
Regulatory uncertainty
We are not certain to say that remediation is 100% completed, as there is no accepted definition of clean. Due to that performance evaluation of bioremediation is difficult, and there is no acceptable endpoint for bioremediation treatments.
Biodegradation is very fruitful and attractive option to remediating, cleaning, managing and recovering technique for solving polluted environment through microbial activity. The speed of undesirable waste substances degradation is determined in competition with in biological agents like fungi, bacterial, algae inadequate supply with essential nutrient, uncomfortable external abiotic conditions (aeration, moisture, pH, temperature), and low bioavailability. Bioremediation depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. The leading step to a successful bioremediation is site description, which helps create the most suitable and promising bioremediation technique (ex-situ or in-situ). Ex-situ bioremediation techniques tend to be more costly due to excavation and transportation from archeological site. However, they can be used to treat wider range of pollutants. In contrast, in-situ techniques have no extra cost for excavation; however, on-site installation cost of equipment, attached with effectively and control the subsurface of polluted site can reduce some ineffective in-situ bioremediation methods. Geological characteristics of polluted sites comprising soil, pollutant type and depth, human habitation site and performance of every bioremediation technique should be integrated in determining the most appropriate and operative bioremediation technique to successfully treatment of polluted sites.
As this section deals with legal issues pertaining to the rights of individual Authors and IntechOpen, for the avoidance of doubt, each category of publication is dealt with separately. Consequently, much of the information, for example definition of terms used, is repeated to ensure that there can be no misunderstanding of the policies that apply to each category.
",metaTitle:"Copyright Policy",metaDescription:"Copyright is the term used to describe the rights related to the publication and distribution of original works. Most importantly from a publisher's perspective, copyright governs how authors, publishers and the general public can use, publish and distribute publications.",metaKeywords:null,canonicalURL:"/page/copyright-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\\n\\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\\n\\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\\n\\nAgreement samples are listed here for the convenience of prospective Authors:
\\n\\n\\n\\nDEFINITIONS
\\n\\nThe following definitions apply in this Copyright Policy:
\\n\\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\\n\\nWork - a Chapter, including Conference Papers, and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\\n\\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\\n\\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\\n\\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\\n\\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings and Videos.
\\n\\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\\n\\nTERMS
\\n\\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported License, a license which allows for the broadest possible reuse of published material.
\\n\\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\\n\\nAnd for any purpose, provided the following conditions are met:
\\n\\nAll Works are published under the CC BY 3.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\\n\\n\\n\\n
LICENSE | \\n\\t\\t\\tUSED FROM - | \\n\\t\\t\\tUP TO - | \\n\\t\\t
\\n\\t\\t\\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \\n\\t\\t\\t | \\n\\t\\t\\t\\n\\t\\t\\t 1 July 2005 (2005-07-01) \\n\\t\\t\\t | \\n\\t\\t\\t\\n\\t\\t\\t 3 October 2011 (2011-10-03) \\n\\t\\t\\t | \\n\\t\\t
Creative Commons Attribution 3.0 Unported (CC BY 3.0) | \\n\\t\\t\\t\\n\\t\\t\\t 5 October 2011 (2011-10-05) \\n\\t\\t\\t | \\n\\t\\t\\tCurrently | \\n\\t\\t
The CC BY 3.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nRepublishing – More about Attribution Policy can be found here.
\\n\\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\\n\\nDISCLAIMER: Neither the CC BY 3.0 license, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\\n\\nAll rights to Books and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\\n\\nThe copyright to Books and other compilations is subject to separate copyright from those that exist in the included Works.
\\n\\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\\n\\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\\n\\nUnder the following terms:
\\n\\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\\n\\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\\n\\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\\n\\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\\n\\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\\n\\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\\n\\nShare — copy and redistribute the material in any medium or format
\\n\\nUnder the following terms:
\\n\\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\\n\\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\\n\\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\\n\\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\\n\\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\\n\\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\\n\\nPolicy last updated: 2016-06-08
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\n\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\n\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\n\nAgreement samples are listed here for the convenience of prospective Authors:
\n\n\n\nDEFINITIONS
\n\nThe following definitions apply in this Copyright Policy:
\n\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\n\nWork - a Chapter, including Conference Papers, and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\n\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\n\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\n\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\n\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings and Videos.
\n\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\n\nTERMS
\n\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported License, a license which allows for the broadest possible reuse of published material.
\n\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\n\nAnd for any purpose, provided the following conditions are met:
\n\nAll Works are published under the CC BY 3.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\n\n\n\n
LICENSE | \n\t\t\tUSED FROM - | \n\t\t\tUP TO - | \n\t\t
\n\t\t\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \n\t\t\t | \n\t\t\t\n\t\t\t 1 July 2005 (2005-07-01) \n\t\t\t | \n\t\t\t\n\t\t\t 3 October 2011 (2011-10-03) \n\t\t\t | \n\t\t
Creative Commons Attribution 3.0 Unported (CC BY 3.0) | \n\t\t\t\n\t\t\t 5 October 2011 (2011-10-05) \n\t\t\t | \n\t\t\tCurrently | \n\t\t
The CC BY 3.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nRepublishing – More about Attribution Policy can be found here.
\n\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\n\nDISCLAIMER: Neither the CC BY 3.0 license, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\n\nAll rights to Books and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\n\nThe copyright to Books and other compilations is subject to separate copyright from those that exist in the included Works.
\n\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\n\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\n\nUnder the following terms:
\n\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\n\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\n\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\n\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\n\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\n\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\n\nShare — copy and redistribute the material in any medium or format
\n\nUnder the following terms:
\n\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\n\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\n\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\n\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\n\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\n\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\n\nPolicy last updated: 2016-06-08
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"9496",title:"Dyslipidemia",subtitle:null,isOpenForSubmission:!0,hash:"1d1174ff4ed8ad553c944e99add28154",slug:null,bookSignature:"Dr. Wilbert S. Aronow",coverURL:"https://cdn.intechopen.com/books/images_new/9496.jpg",editedByType:null,editors:[{id:"164597",title:"Dr.",name:"Wilbert S.",surname:"Aronow",slug:"wilbert-s.-aronow",fullName:"Wilbert S. Aronow"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukin",subtitle:null,isOpenForSubmission:!0,hash:"6d4ebb087fdb199287bc765704246b60",slug:null,bookSignature:"Ph.D. Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:null,editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10300",title:"Breast Cancer",subtitle:null,isOpenForSubmission:!0,hash:"bcf3738b16b0a4de6066853ab38b801c",slug:null,bookSignature:"Dr. Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",editedByType:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9589",title:"Depigmentation as a Disease or Therapeutic Goal",subtitle:null,isOpenForSubmission:!0,hash:"3e1efdb1fc8c403c402da09b242496c6",slug:null,bookSignature:"Dr. Tae-Heung Kim",coverURL:"https://cdn.intechopen.com/books/images_new/9589.jpg",editedByType:null,editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9608",title:"Myasthenia Gravis",subtitle:null,isOpenForSubmission:!0,hash:"db6c84e3aa58f3873e1298add7042c44",slug:null,bookSignature:"Dr. Nizar Souayah",coverURL:"https://cdn.intechopen.com/books/images_new/9608.jpg",editedByType:null,editors:[{id:"162634",title:"Dr.",name:"Nizar",surname:"Souayah",slug:"nizar-souayah",fullName:"Nizar Souayah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10542",title:"Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex",subtitle:null,isOpenForSubmission:!0,hash:"29279e34f971687dc28de62534335ac4",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10542.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!0,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10304",title:"Giant-Cell Arteritis",subtitle:null,isOpenForSubmission:!0,hash:"b144271ebc5d331aab73de18a7f9f4f5",slug:null,bookSignature:"Dr. Imtiaz A. Chaudhry",coverURL:"https://cdn.intechopen.com/books/images_new/10304.jpg",editedByType:null,editors:[{id:"66603",title:"Dr.",name:"Imtiaz",surname:"Chaudhry",slug:"imtiaz-chaudhry",fullName:"Imtiaz Chaudhry"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10539",title:"Ginseng in Medicine",subtitle:null,isOpenForSubmission:!0,hash:"5f388543a066b617d2c52bd4c027c272",slug:null,bookSignature:"Prof. Christophe Hano and Dr. Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editedByType:null,editors:[{id:"313856",title:"Prof.",name:"Christophe",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10482",title:"Human Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects",subtitle:null,isOpenForSubmission:!0,hash:"82a91346a98d34805e30511d6504bd4c",slug:null,bookSignature:"Dr. Ana Gil De Bona and Dr. Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:null,editors:[{id:"203919",title:"Dr.",name:"Ana",surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:164},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"700",title:"Inorganic Chemistry",slug:"engineering-chemical-engineering-inorganic-chemistry",parent:{title:"Chemical Engineering",slug:"engineering-chemical-engineering"},numberOfBooks:2,numberOfAuthorsAndEditors:52,numberOfWosCitations:46,numberOfCrossrefCitations:25,numberOfDimensionsCitations:59,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-chemical-engineering-inorganic-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6186",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",subtitle:null,isOpenForSubmission:!1,hash:"720a601cd2b5476cbeb817906a4ab2dd",slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",bookSignature:"Iyad Karamé, Janah Shaya and Hassan Srour",coverURL:"https://cdn.intechopen.com/books/images_new/6186.jpg",editedByType:"Edited by",editors:[{id:"145512",title:"Prof.",name:"Iyad",middleName:null,surname:"Karamé",slug:"iyad-karame",fullName:"Iyad Karamé"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2334",title:"Recent Advances in Crystallography",subtitle:null,isOpenForSubmission:!1,hash:"f6da5efb05552ebb2e13efaa566012a3",slug:"recent-advances-in-crystallography",bookSignature:"Jason B. Benedict",coverURL:"https://cdn.intechopen.com/books/images_new/2334.jpg",editedByType:"Edited by",editors:[{id:"137214",title:"Dr.",name:"Jason B.",middleName:null,surname:"Benedict",slug:"jason-b.-benedict",fullName:"Jason B. Benedict"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"39150",doi:"10.5772/48592",title:"Halogen Bonding in Crystal Engineering",slug:"halogen-bonding-in-crystal-engineering",totalDownloads:3805,totalCrossrefCites:9,totalDimensionsCites:20,book:{slug:"recent-advances-in-crystallography",title:"Recent Advances in Crystallography",fullTitle:"Recent Advances in Crystallography"},signatures:"Xin Ding, Matti Tuikka and Matti Haukka",authors:[{id:"146358",title:"Prof.",name:"Matti",middleName:null,surname:"Haukka",slug:"matti-haukka",fullName:"Matti Haukka"}]},{id:"57510",doi:"10.5772/intechopen.71443",title:"Solvents for Carbon Dioxide Capture",slug:"solvents-for-carbon-dioxide-capture",totalDownloads:2173,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Fernando Vega, Mercedes Cano, Sara Camino, Luz M. Gallego\nFernández, Esmeralda Portillo and Benito Navarrete",authors:[{id:"10704",title:"Prof.",name:"Benito",middleName:null,surname:"Navarrete",slug:"benito-navarrete",fullName:"Benito Navarrete"},{id:"209759",title:"Dr.",name:"Fernando",middleName:null,surname:"Vega",slug:"fernando-vega",fullName:"Fernando Vega"},{id:"218843",title:"Dr.",name:"Mercedes",middleName:null,surname:"Cano",slug:"mercedes-cano",fullName:"Mercedes Cano"},{id:"218844",title:"Mrs.",name:"Sara",middleName:null,surname:"Camino",slug:"sara-camino",fullName:"Sara Camino"},{id:"218845",title:"Mrs.",name:"Luz. M.",middleName:null,surname:"Gallego Fernández",slug:"luz.-m.-gallego-fernandez",fullName:"Luz. M. Gallego Fernández"},{id:"218846",title:"Mrs.",name:"Esmeralda",middleName:null,surname:"Portillo",slug:"esmeralda-portillo",fullName:"Esmeralda Portillo"}]},{id:"59836",doi:"10.5772/intechopen.74779",title:"Carbon Dioxide Conversion to Methanol: Opportunities and Fundamental Challenges",slug:"carbon-dioxide-conversion-to-methanol-opportunities-and-fundamental-challenges",totalDownloads:3896,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Sajeda A. Al-Saydeh and Syed Javaid Zaidi",authors:[{id:"193992",title:"Prof.",name:"Syed",middleName:null,surname:"Zaidi",slug:"syed-zaidi",fullName:"Syed Zaidi"},{id:"233125",title:"MSc.",name:"Sajeda",middleName:null,surname:"Alsaydeh",slug:"sajeda-alsaydeh",fullName:"Sajeda Alsaydeh"}]}],mostDownloadedChaptersLast30Days:[{id:"59836",title:"Carbon Dioxide Conversion to Methanol: Opportunities and Fundamental Challenges",slug:"carbon-dioxide-conversion-to-methanol-opportunities-and-fundamental-challenges",totalDownloads:3896,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Sajeda A. Al-Saydeh and Syed Javaid Zaidi",authors:[{id:"193992",title:"Prof.",name:"Syed",middleName:null,surname:"Zaidi",slug:"syed-zaidi",fullName:"Syed Zaidi"},{id:"233125",title:"MSc.",name:"Sajeda",middleName:null,surname:"Alsaydeh",slug:"sajeda-alsaydeh",fullName:"Sajeda Alsaydeh"}]},{id:"57510",title:"Solvents for Carbon Dioxide Capture",slug:"solvents-for-carbon-dioxide-capture",totalDownloads:2173,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Fernando Vega, Mercedes Cano, Sara Camino, Luz M. Gallego\nFernández, Esmeralda Portillo and Benito Navarrete",authors:[{id:"10704",title:"Prof.",name:"Benito",middleName:null,surname:"Navarrete",slug:"benito-navarrete",fullName:"Benito Navarrete"},{id:"209759",title:"Dr.",name:"Fernando",middleName:null,surname:"Vega",slug:"fernando-vega",fullName:"Fernando Vega"},{id:"218843",title:"Dr.",name:"Mercedes",middleName:null,surname:"Cano",slug:"mercedes-cano",fullName:"Mercedes Cano"},{id:"218844",title:"Mrs.",name:"Sara",middleName:null,surname:"Camino",slug:"sara-camino",fullName:"Sara Camino"},{id:"218845",title:"Mrs.",name:"Luz. M.",middleName:null,surname:"Gallego Fernández",slug:"luz.-m.-gallego-fernandez",fullName:"Luz. M. Gallego Fernández"},{id:"218846",title:"Mrs.",name:"Esmeralda",middleName:null,surname:"Portillo",slug:"esmeralda-portillo",fullName:"Esmeralda Portillo"}]},{id:"39150",title:"Halogen Bonding in Crystal Engineering",slug:"halogen-bonding-in-crystal-engineering",totalDownloads:3805,totalCrossrefCites:9,totalDimensionsCites:20,book:{slug:"recent-advances-in-crystallography",title:"Recent Advances in Crystallography",fullTitle:"Recent Advances in Crystallography"},signatures:"Xin Ding, Matti Tuikka and Matti Haukka",authors:[{id:"146358",title:"Prof.",name:"Matti",middleName:null,surname:"Haukka",slug:"matti-haukka",fullName:"Matti Haukka"}]},{id:"58065",title:"[11C]Carbon Dioxide: Starting Point for Labeling PET Radiopharmaceuticals",slug:"-11c-carbon-dioxide-starting-point-for-labeling-pet-radiopharmaceuticals",totalDownloads:854,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Lingyun Yang, Peter J. H. Scott and Xia Shao",authors:[{id:"62856",title:"Dr.",name:"Peter",middleName:null,surname:"Scott",slug:"peter-scott",fullName:"Peter Scott"},{id:"210271",title:"Dr.",name:"Xia",middleName:null,surname:"Shao",slug:"xia-shao",fullName:"Xia Shao"},{id:"220632",title:"Dr.",name:"Lingyun",middleName:null,surname:"Yang",slug:"lingyun-yang",fullName:"Lingyun Yang"}]},{id:"56776",title:"Effect of Overlapping Fe/TiO2 Coated on Netlike Glass Disc and Cu Disc on CO2 Reduction",slug:"effect-of-overlapping-fe-tio2-coated-on-netlike-glass-disc-and-cu-disc-on-co2-reduction",totalDownloads:475,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Akira Nishimura",authors:[{id:"52804",title:"Associate Prof.",name:"Akira",middleName:null,surname:"Nishimura",slug:"akira-nishimura",fullName:"Akira Nishimura"}]},{id:"59241",title:"CO2 Reforming with CH4 via Plasma Catalysis System",slug:"co2-reforming-with-ch4-via-plasma-catalysis-system",totalDownloads:769,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Wei Chieh Chung and Moo Been Chang",authors:[{id:"42014",title:"Prof.",name:"Moo-Been",middleName:null,surname:"Chang",slug:"moo-been-chang",fullName:"Moo-Been Chang"},{id:"210223",title:"Ph.D. Student",name:"Wei Chieh",middleName:null,surname:"Chung",slug:"wei-chieh-chung",fullName:"Wei Chieh Chung"}]},{id:"39127",title:"Epitaxial Electrodeposition of Chiral Films Using Chiral Precursors",slug:"epitaxial-electrodeposition-of-chiral-films-using-chiral-precursors",totalDownloads:2257,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"recent-advances-in-crystallography",title:"Recent Advances in Crystallography",fullTitle:"Recent Advances in Crystallography"},signatures:"Rakesh Gudavarthy and Elizabeth A. Kulp",authors:[{id:"143302",title:"Dr.",name:"Rakesh",middleName:"Vathsal",surname:"Gudavarthy",slug:"rakesh-gudavarthy",fullName:"Rakesh Gudavarthy"},{id:"146171",title:"Dr.",name:"Elizabeth",middleName:null,surname:"Kulp",slug:"elizabeth-kulp",fullName:"Elizabeth Kulp"}]},{id:"39152",title:"X-Ray N-Beam Takagi-Taupin Dynamical Theory and N-Beam Pinhole Topographs Experimentally Obtained and Computer-Simulated",slug:"x-ray-n-beam-takagi-taupin-dynamical-theory-and-n-beam-pinhole-topographs-experimentally-obtained-an",totalDownloads:1556,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"recent-advances-in-crystallography",title:"Recent Advances in Crystallography",fullTitle:"Recent Advances in Crystallography"},signatures:"Kouhei Okitsu, Yasuhiko Imai and Yoshitaka Yoda",authors:[{id:"144279",title:"Dr",name:null,middleName:null,surname:"Okitsu",slug:"okitsu",fullName:"Okitsu"}]},{id:"58923",title:"Carbon Dioxide Use in High-Pressure Extraction Processes",slug:"carbon-dioxide-use-in-high-pressure-extraction-processes",totalDownloads:990,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Vânia Maria Borges Cunha, Marcilene Paiva da Silva, Wanessa\nAlmeida da Costa, Mozaniel Santana de Oliveira, Fernanda Wariss\nFigueiredo Bezerra, Anselmo Castro de Melo, Rafael Henrique\nHolanda Pinto, Nelio Teixeira Machado, Marilena Emmi Araujo and\nRaul Nunes de Carvalho Junior",authors:[{id:"189087",title:"Prof.",name:"Nelio",middleName:null,surname:"Teixeira Machado",slug:"nelio-teixeira-machado",fullName:"Nelio Teixeira Machado"},{id:"192844",title:"Dr.",name:"Raul",middleName:null,surname:"Nunes de Carvalho Jr",slug:"raul-nunes-de-carvalho-jr",fullName:"Raul Nunes de Carvalho Jr"},{id:"195289",title:"MSc.",name:"Wanessa",middleName:null,surname:"Almeida Da Costa",slug:"wanessa-almeida-da-costa",fullName:"Wanessa Almeida Da Costa"},{id:"195290",title:"Dr.",name:"Mozaniel",middleName:null,surname:"Santana de Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana de Oliveira"},{id:"195291",title:"MSc.",name:"Marcilene",middleName:null,surname:"Paiva Da Silva",slug:"marcilene-paiva-da-silva",fullName:"Marcilene Paiva Da Silva"},{id:"195292",title:"MSc.",name:"Vânia Maria",middleName:null,surname:"Borges Cunha",slug:"vania-maria-borges-cunha",fullName:"Vânia Maria Borges Cunha"},{id:"195294",title:"Mr.",name:"Rafael Henrique",middleName:null,surname:"Holanda Pinto",slug:"rafael-henrique-holanda-pinto",fullName:"Rafael Henrique Holanda Pinto"},{id:"195295",title:"Dr.",name:"Fernanda",middleName:null,surname:"Wariss Figueiredo Bezerra",slug:"fernanda-wariss-figueiredo-bezerra",fullName:"Fernanda Wariss Figueiredo Bezerra"},{id:"222143",title:"Mr.",name:"Anselmo",middleName:null,surname:"Castro De Melo",slug:"anselmo-castro-de-melo",fullName:"Anselmo Castro De Melo"},{id:"222144",title:"Prof.",name:"Marilena",middleName:null,surname:"Emmi Araújo",slug:"marilena-emmi-araujo",fullName:"Marilena Emmi Araújo"}]},{id:"39160",title:"Mineralization of Lipid A-Phosphates in Three- and Two-Dimensional Colloidal Dispersions",slug:"mineralization-of-lipid-a-phosphates-in-three-and-two-dimensional-colloidal-dispersions",totalDownloads:1417,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"recent-advances-in-crystallography",title:"Recent Advances in Crystallography",fullTitle:"Recent Advances in Crystallography"},signatures:"Henrich H. Paradies, Peter Quitschau, Hendrik Reichelt, Chester A. Faunce and Kurt Zimmermann",authors:[{id:"144906",title:"Prof.",name:"Henrich",middleName:"Hasko",surname:"Paradies",slug:"henrich-paradies",fullName:"Henrich Paradies"}]}],onlineFirstChaptersFilter:{topicSlug:"engineering-chemical-engineering-inorganic-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/275861/onome-ejeromedoghene",hash:"",query:{},params:{id:"275861",slug:"onome-ejeromedoghene"},fullPath:"/profiles/275861/onome-ejeromedoghene",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()