The implementation of a dual-fuel combustion strategy has recently been explored as a means to improve the thermal efficiencies of internal combustion engines while simultaneously reducing their emissions. Dual-fuel combustion is utilized in compression ignition (CI) engines to promote the use of more readily available gaseous fuels or more efficient, advanced combustion modes. Implementing dual-fuel injection technologies on these engines also allows (1) for improved control of the combustion timing by varying the proportion of two simultaneously injected fuels, and (2) for the use of more advanced combustion modes at high load since the two injected fuels ignite in succession reducing the high peak pressures that generally act as a limiting factor. In spark-ignited (SI) engines, the implementation of a dual-fuel combustion strategy serves as an alternative approach to avoid engine knock. The dual-fuel SI engine relies on the simultaneous injection of a low knock resistance and high knock resistance fuel to dynamically adjust the fuel mixture’s resistance to knock as required. The dual-fuel SI engine thereby successfully suppresses knock without compromising the engine efficiency. This chapter discusses the technological advancements associated to dual-fuel combustion and the respective gains in fuel efficiency and emissions reductions that have been achieved.
Part of the book: The Future of Internal Combustion Engines