\r\n\tFinally, I want to emphasize that, in this book, I expect to have excellent contributons on the subjects other than muscle systems, so that the book will be widely read by people interested in non-muscle motile systems as well as by muscle researchers.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"862ba53997da17b644b918fe44e97d4a",bookSignature:"Emeritus Prof. Haruo Sugi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7021.jpg",keywords:"Musculo-skeletal system, Cardio-vascular system, Porter myosins, Cellular transport, Motile systems, cell division, Contractile ring formation, Mitotic apparatus, Ciliary Movement, Flagellar Movement, Amoeboid movement, Novel motile systems",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 13th 2018",dateEndSecondStepPublish:"September 3rd 2018",dateEndThirdStepPublish:"November 2nd 2018",dateEndFourthStepPublish:"January 21st 2019",dateEndFifthStepPublish:"March 22nd 2019",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"140827",title:"Emeritus Prof.",name:"Haruo",middleName:null,surname:"Sugi",slug:"haruo-sugi",fullName:"Haruo Sugi",profilePictureURL:"https://mts.intechopen.com/storage/users/140827/images/system/140827.jpg",biography:"Haruo Sugi was appointed instructor in the Depertment of Physiology of the University of Tokyoin 1962, and worked at Columbia University and the National Instututes of Health, USA, from 1965 to 1967. He was a professor and chairman of the Department of Physiology, Teikyo University Medical School from 1973 to 2004, when he became emeritus professor. Professor Sugi organized international symposia on muscle contraction seven times, each followed by publication of proceedings. He also edited 4 books. From 1995 to 2005, Sugi was Cairman of the Muscle Commission in the International Union of Physiological Sciences (IUPS).",institutionString:"Teikyo University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Tokyo",institutionURL:null,country:{name:"Japan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"220812",firstName:"Lada",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/220812/images/6021_n.jpg",email:"lada@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2631",title:"Current Basic and Pathological Approaches to the Function of Muscle Cells and Tissues",subtitle:"From Molecules to Humans",isOpenForSubmission:!1,hash:"34fa138dc948d7121e2915ac84ea30cf",slug:"current-basic-and-pathological-approaches-to-the-function-of-muscle-cells-and-tissues-from-molecules-to-humans",bookSignature:"Haruo Sugi",coverURL:"https://cdn.intechopen.com/books/images_new/2631.jpg",editedByType:"Edited by",editors:[{id:"140827",title:"Emeritus Prof.",name:"Haruo",surname:"Sugi",slug:"haruo-sugi",fullName:"Haruo Sugi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46202",title:"Marine Ecosystem Diversity in the Arabian Gulf: Threats and Conservation",doi:"10.5772/57425",slug:"marine-ecosystem-diversity-in-the-arabian-gulf-threats-and-conservation",body:'The Arabian Gulf is a marginal and semi-enclosed sea situated in the subtropical region of the Middle East between latitudes 24o and 30o N and longitudes 48o and 57o E (Figure 1). The Arabian Gulf constitutes part of the Arabian Sea Ecoregion, and represents a realm of the tropical Indo-Pacific Ocean (Spalding et al., 2007). It is a shallow sedimentary basin with an average depth of 35 m and a total area of approximately 240,000 km2 (Barth and Khan, 2008).
Due to the high-latitude geographical position, the relative shallowness and the high evaporation rates, the Arabian Gulf is characterized by extreme environmental conditions. Sea temperatures are markedly fluctuated between winter and summer seasons (15 - 36°C). Salinity can exceed 43 psu and may reach 70-80 psu in tidal pools and lagoons. Therefore, marine organisms in the Arabian Gulf are living close to the limits of their environmental tolerance (Price et al., 1993).
Despite these harsh environmental conditions, the Arabian Gulf supports a range of coastal and marine ecosystems such as mangrove swamps, seagrass beds, coral reefs, and mud and sand flats (Naser, 2011a). These ecosystems contribute to the maintenance of genetic and biological diversity in the marine environment and provide valuable ecological and economic functions as they form feeding and nursery grounds for a variety of commercially important marine organisms.
However, these ecosystems are under ever-increasing pressure from anthropogenic activities that are associated with the rapid economic, social and industrial developments in the Arabian Gulf countries. The Arabian Gulf is considered among the highest anthropogenically impacted regions in the world (Halpern et al., 2008). The coasts of the Arabian Gulf are witnessing rapid industrialization and urbanization that contribute to the degradation of naturally stressed marine ecosystems. Coastal and marine environments are affected by intensive dredging and reclamation activities, and several sources of pollution, including industrial waste, brine waste waters, ports and refiners, oil spills, and domestic sewage (Sheppard et al., 2010). These threats warrant the designation of the Arabian Sea Ecoregion, including the Arabian Gulf as ‘critically endangered’ by the International Union for the Conservation of Nature (IUCN) and the World Wildlife Fund (WWF) (http://wwf.panda.org).
Due to its unique environmental setting, the Arabian Gulf is increasingly receiving international scientific interest to study the effects of environmental extremes on marine organisms, and to investigate the potential impacts of future climate change on the ecological integrity of marine ecosystems (Riegl and Purkis, 2012; Feary et al., 2013). This chapter identifies valued ecosystem components in the Arabian Gulf, characterizes natural and anthropogenic impacts on these ecosystems, and suggests measures for conservation that might contribute to the protection of the fragile marine ecosystems in the Arabian Gulf.
Map of the Arabian Gulf.
People of the Arabian Gulf are related economically, culturally and socially to the sea. Several ecosystems, including seagrass beds, coral reefs, mangroves, and mudflats contribute significantly to the productivity of marine resources in the Arabian Gulf (Khan et al., 2002). These ecosystems are considered Valued Ecosystem Components (VECs) because they provide important ecological goods and services (Treweek 1999). Most of these habitats are rich in varieties of fish, which are a major source of food for people in the Arabian Gulf. Ecosystem benefits in the Arabian Gulf are not limited to the direct consumptive value of seafood, but extend to other services ranging from primary production and nutrient cycling to erosion and sedimentation control.
Seagrass beds are highly productive ecosystems that provide important ecological functions and economic services (Sheppard et al., 1992). Ecologically, seagrass ecosystems provide food sources and feeding grounds for several threatened species in the Arabian Gulf such as turtles and dugongs (Abdulqader and Miller, 2012; Preen et al., 2012). They can also improve water quality by stabilizing loose sediment and by filtering some pollutants out of the water (Duffy, 2006). Economically, they serve as important nursery grounds for penaeid shrimps, pearl oysters and other organisms of importance to the Arabian Gulf’s commercial fisheries (Erftemeijer and Shuail, 2012).
Three species of seagrass occur in the Arabian Gulf; namely,
Seagrass beds are distributed along most of the shores of the Arabian Gulf. According to Erftemeijer and Shuail (2012), around 7000 km2 of seagrass habitat have been mapped in the Arabian Gulf to date. Extensive growth of seagrass is typically associated with sandy and muddy substrates in nearshores and shallow waters (less than 10 m). The largest areas of seagrass beds occur off the coasts of United Arab Emirates and between Bahrain and Qatar with estimated areas of 5500 and 1000 km2, respectively (Erftemeijer and Shuail, 2012). These seagrass habitats are of critical importance as they support the largest population of dugongs known outside Australia (Preen, 2004).
Coral reefs ecosystems provide a variety of ecological services such as renewable sources of seafood, maintenance of genetic, biological and habitat diversity, recreational values, and economic benefits such as utilizing reefs for creating land. Numerous nearshore reefs have been reclaimed along the coastline of the Arabian Gulf. Coral reefs are featured by both biological diversity and high levels of productivity. The high diversity of coral reefs provides a wide range of habitats for other reef species and fish. Coral reefs in the Arabian Gulf have traditionally been important habitats for fisheries.
Coral growth occurs in most of the Arabian Gulf with best development on offshore shoals. Additionally, fringing corals occur along the coastlines of United Arab Emirates, Qatar, Saudi Arabia and Bahrain (Riegl and Purkis, 2012). Extremes in temperature, salinity and other physical factors in the Arabian Gulf restrict the growth and development of corals to patchy forms (Sheppard et al., 2010). However, despite these harsh environmental conditions, corals in the Arabian Gulf exhibit remarkable resilience and vitality.
Recently, corals in the Arabian Gulf have been exposed to severe temperature anomalies at a recurrence faster than in any other coral regions in the world. Therefore, it is argued that corals in the Arabian Gulf already exist in a thermal environment that is equal to the 2099 projections of the Intergovernmental Panel on Climate Change (IPPC) in tropical oceans (Riegl and Purkis, 2012). This embarked regional and international interest in using the Arabian Gulf as a model ecosystem to understand the potential impact for future climate change (Burt, 2013). One aspect of that interest is the establishment the Mideast Coral Reef Society (MCRS) in 2013, with the aim of generating a deep understanding of these unique ecosystems and promoting their conservation and sustainable use.
Unfortunately, coral reefs in the Arabian Gulf have been severely affected by recent bleaching events as well as human impacts such as sediment runoff from dredging and reclamation activities and pollution from different land-based sources. Large-scale decline in coral reef has been observed. It is estimated that almost 70% of original reef cover in the Arabian Gulf may be considered lost and a further 27% threatened or at critical stages of degradation (Wilkinson, 2008).
Mangrove habitats are ecologically important coastal ecosystems that provide food, shelter and nursery areas for a variety of terrestrial and marine fauna. Mangrove habitats of the Arabian Gulf support a variety of important species of fish, shrimps, turtles, and birds, and significantly contribute to the coastal productivity (Al-Maslamani et al., 2013). The Arabian Gulf coastlines are dominated by only one species of mangroves,
Mangroves are largely distributed along the southern shores of the Arabian Gulf. Dense growth of mangroves is particularly confined to low-energy and sheltered coastal areas along the coastlines of United Arab Emirates, Saudi Arabia and Qatar. While mangroves are relatively widespread throughout the Arabian Gulf countries, there are variations in their distributions from one country to another. For instance, the total extent of mangroves in United Arab Emirates is estimated to be 38 km2 (Dodd et al., 1999) compared with only 0.31 km2 in Bahrain (Abido et al., 2011).
According to the IUCN Red List of threatened species, mangroves in the Arabian Gulf are classified as ‘Least Concern’. The Red List assessment concluded that although there are overall range declines in many areas, they are not enough to reach any of the threatened category thresholds. However, it can be argued that this classification might not be applicable to certain countries in the Arabian Gulf, particularly Bahrain. It is recognized that the IUCN Red List categories and criteria provide objective framework for the classification of studied species. However, these categories and criteria are primarily designed for global taxon assessments (IUCN, 2012).
Bahrain is a good example to demonstrate the effect of rough resolution assessment (i.e. globally or regionally rather than locally). Based on the Red List, mangroves in Bahrain are classified as ‘Least Concern’. However, mangrove stands in Bahrain are severely subjected to human impacts that might affect the existence of this important ecosystem. The marine area of Tubli Bay, which hosts the last remaining mangroves in Bahrain, has been reduced from to 25 to 12 km2 in 2008 due to intensive reclamation activities. These activities significantly destroyed mangrove stands and reduced their spatial distribution in Bahrain. Due to the severe reduction in mangroves distribution accompanied by continuous anthropogenic threats, mangroves in Bahrain should arguably be classified within the threatened categories (i.e. Critically Endangered, Endangered or Vulnerable). Consequently, urgent conservation measures, including rehabilitation and restoration should be carried out to sustain the remaining of mangrove ecosystem in Bahrain.
Due to the sedimentary nature of the Arabian Gulf, sand and mud substrata are the most widespread habitats. They extend from intertidal salt marshes to the maximum depth and account for more than 97% of the bottom substrate of the Arabian Gulf (Al-Ghadban, 2002). Tidal mudflats are generally restricted to low energy environment associated with low water movement mainly along the coastlines of Kuwait, Saudi Arabia and United Arab Emirates. These habitats are favorable areas for the colonization by mangroves, algal and cyanobacterial mats, which play important roles in primary productions and food chains. Subtidal and tidal muddy habitats are extremely rich in macrobenthic assemblages, which form the largest and most diverse marine ecosystem in the Arabian Gulf.
Generally, biodiversity and distribution of macrobenthos in the Arabian Gulf are primarily governed by sediment type, temperature, salinity, primary productivity, depth and physical disturbance (Coles and MacCain, 1990). Macrobenthic assemblages through their high secondary productivity contribute significantly to the overall fisheries and marine productivity. Additionally, mudflat habitats provide feeding and roosting grounds for important shorebird populations. Some of these important bird areas are declared as wetlands of international importance (Ramsar Convention of Wetlands). Tubli Bay in Bahrain is an example of a Ramsar site that supports large numbers of wintering and migratory shorebirds (Al-Sayed et al., 2008).
The Arabian Gulf is facing multiple natural and anthropogenic environmental stressors. The unique physical and chemical settings represented by extremes in temperature and salinity accompanied by anthropogenic impacts may pose threats to marine species diversity and ecosystems integrity. The naturally stressed marine ecosystems are subjected directly or indirectly to human actions ranging from habitat destruction by coastal reclamation to pollution from a variety of land-based activities.
Environmental impacts on marine ecosystems could be generally attributed to natural or anthropogenic stressors. However, distinguishing between natural and anthropogenic stressors might be difficult due to the complexity of ecosystems responses to the variety of disturbances. For instance, anthropogenic impacts on ecosystems may not be detected until they are interacted with natural environmental stressors. Additionally, some environmental changes in ecosystems that appear to be natural may have been influenced by anthropogenic actions.
Natural stressors in marine environment have a large number of forms and sources. Environmental extremes represent stressors that interfere with normal functioning of marine ecosystems (Breitburg and Riedel, 2005). The arid physical setting of the Arabian Gulf represented by extreme levels of salinity and temperature has pronounced effects on physiological aspects of marine organisms as well as their diversity, abundance and spatial distribution.
Physiological stresses are reflected in the dwarfism phenomena in fauna and flora inhabiting areas with high levels of salinity. For example, Price (2002) attributed the occurrence of dwarfism in echinoderms to the high salinity waters of the Arabian Gulf. Similarly, Naser and Hoad (2011) investigated morphological characteristics of mangroves in two distinctive coastal areas in Bahrain. The first area of mangroves receives input of low-salinity water from nearby farms, and underground seepage with salinity ranging between 5 psu in winter and 29 psu in summer. Salinity of the coastal water in the second area of mangroves can exceed 44 psu. This study reported differences in tree heights of mangroves ranging from 1.5 to 2.5 m in the coastal area compared with 4 to 5 m in the first area that receives low-salinity water.
Generally, extreme environmental conditions in the Arabian Gulf are reflected in reduced levels of species richness (Price, 2002). However, it is recognized that the Arabian Gulf has distinctive marine assemblages as well as habitats (Sheppard et al., 1992). Therefore, it can be argued that while species richness is relatively low, change in species composition along a spatial gradient is high (Price, 2002).
Stressors of biological sources such as invasive species and algal blooms could play important roles in ecosystems degradation in the Arabian Gulf. With more than 25 000 oil tankers navigating through the Strait of Hormuz each year (Literathy et al., 2002), the introduction of aquatic invasive species via ballast water is considered one of the major threats facing the marine environment in the Arabian Gulf. Hamza (2006) reported several exotic phytoplankton and zooplankton species in water samples collected from ballast water tanks of a gas tanker stopped along the United Arab Emirates coastal area. Some of these exotic species, particularly dinoflagellate organisms, are linked to the red tide and fish kill that frequently reported in recent years in Kuwait, Oman, Saudi Arabia and United Arab Emirates (Hamza and Munawar, 2009).
Extensive blooms (i.e. red tides) have been causing severe ecological and economical impacts in the Arabian Gulf. For instance, the massive blooms affected the Arabian Gulf from August 2008 to May 2009 caused widespread fish kills, damaged coral reefs, restricted fishing activities, impacted tourism industry, and interrupted desalination operations. The 2008-2009 harmful algal blooms were associated with the dinoflagellate species
Effects of climate change and global warming on natural ecosystems and human well-being are major global concerns (Sheppard, 2006). Although climate change is directly or indirectly attributed to anthropogenic sources, it generally results from large-scale interactions for several variables over a very long time. There are three main features of the global climatic changes; namely, extreme sea-surface temperatures, marine acidification, and sea-level rise that may pose potential risks to marine ecosystems in the Arabian Gulf.
Although ecosystems in the Arabian Gulf are adapted to extreme environmental conditions, anomalous sea-surface temperatures due to climatic changes may result in severe impacts on the integrity of theses vulnerable ecosystems. The massive bleaching and subsequent mortality of corals in the Arabian Gulf occurred in 1996 and 1998 with maximum sea-surface temperatures reaching 37.3 oC and 38.0 oC, respectively (Sheppard and Loughland, 2002; Burt et al., 2011). Although most of the Arabian Gulf countries were affected by these beaching events, Bahrain was the worst affected with an estimated overall loss of 97% of live corals. Recovery of Bahrain reefs was limited in the subsequent years due to continuing coastal developments that are associated with intensive dredging and reclamation (Burt et al., 2013). Additionally, warmer waters can also lead to oxygen depletion and suffocation of marine organisms. Higher temperatures where attributed to the massive fish mortalities along the coasts of Qatar (Al-Ansi et al., 2002).
The harmful effects of increasing atmospheric levels of carbon dioxide (CO2) and other greenhouse gases are reflected on the environment and human health. The Arabian Gulf is a major sink for atmospheric CO2, which may lead to acidification of the marine environment. Measurements of pH concentration in surface waters of the Arabian Gulf over a four year period (2007-2010) indicated that waters are becoming increasingly acidic with time (Uddin et al., 2012). Increasing acidity in the marine environment is critical for several organisms, including corals, molluscs and calcareous phytoplankton.
Sea-level rise is another effect of global climatic change that poses threats on coastlines of the Arabian Gulf. Bahrain as a group of low land islands is particularly threatened by any sea-level rise due to global climatic change. Al-Jeneid et al. (2008) have predicted that 77 km2 of Bahrain’s land could be inundated with seawater in the case of a rise of the sea level by 0.5 m. These areas are harboring sensitive ecosystems such as mangroves, and intertidal mudflats.
Coastal and marine environments in the Arabian Gulf are the prime target for most of the major housing, recreational, and economic developments (Naser et al., 2008). Coastal developments along the Arabian Gulf have accelerated at an unprecedented rate in the past decade to accommodate large-scale projects, including artificial islands, waterfront cities, ports and marinas (Khan, 2007).
Habitat destruction due to intensive reclamation and dredging activities is the prime threat for biodiversity loss and ecosystem degradation in the Arabian Gulf. It is estimated that more than 40% of the coasts of the Arabian Gulf have been developed (Hamza and Munawar, 2009). Examples of large-scale coastal developments in the Arabian Gulf include ‘Palm Islands’ and ‘The World’ in Dubai, United Arab Emirates, ‘The Pearl’ in Qatar, \'Al Khaleej\' and \'Half Moon Bay\' in Saudi Arabia ‘Pearl City’ in Kuwait, and ‘Durrat Al Bahrain’, ‘Amwaj’, and ‘Dyar Al Muharraq’ in Bahrain.
It is likely that reclamation will accelerate in the coming decades in order to secure land for large-scale projects as populations in the Arabian Gulf countries continue to grow. This is reflected in the long-term land use strategies and master plans in the Arabian Gulf. For instance, Bahrain National Land Use Strategy 2030 recognizes reclamation as the major option for securing the future needs for land, indicating that coastal environment will continue to be the major focus for developmental projects in the coming future (Naser, 2011b).
Given its limited land area (762 km2), Bahrain has markedly been affected by coastal developments. Presently, reclamation activities in Bahrain resulted in the addition of around 95 km2 representing an increase of 12% of the total land area (Naser, 2011b). Additionally, more than 80 % of Bahrain’s coastline has extensively been modified due reclamation activities (Fuller, 2005).
Typically, reclamation in the Arabian Gulf is conducted by extracting sand and mud from designated marine borrow areas then dumping them into the coastal and shallow subtidal areas (Figure 2). Alternatively, reclamation could be carried out by infilling the coastline by rocks and sands extracted from quarries (Figure 3).
Dredging and reclamation processes are associated with short and long term biological, physical and chemical impacts. These activities involve the direct removal of macrobenthos and permanent modification of the physical environment. Deposition of dredged material during reclamation process may result in physically smothering the coastal and subtidal habitats and deoxygenating the underlining sediments (Allan et al., 2008). Reclaimed lands could also interfere with water circulation and subsequently alter the salinity (Al-Jamali et al., 2005). These physical and chemical alternations may reduce biodiversity, richness, abundance and biomass of marine organisms (Tu Do et al., 2012).
Additionally, dredging activities may contribute directly or indirectly to the loss of seagrass beds in the Arabian Gulf due to direct physical removal and burial, and the increase in turbidity levels (Al-Wedaei et al, 2011). Dredging and reclamation activities have resulted in the loss of many prime mudflats that support shorebird populations (Figure 4), and the degradation of coral reefs due to sediment runoff and the increase levels of turbidity (Al-Sayed et al., 2008).
Sand and mud materials are pumped from a marine burrow area into the reclamation site. ‘Dyar Al Muharraq’ development in Bahrain (2013).
Rocks and sands extracted from nearby quarries are used to reclaim a coastal area along the eastern coastline of Bahrain (2012).
A mudflat along the northern coastline of Bahrain that supports wader birds is proposed to be reclaimed, which my result in a loss of important feeding grounds for bird populations (2012).
The Arabian Gulf countries have witnessed a rapid industrial growth, mainly in the sectors of oil refining and petrochemical industries. These major industries are discharging wastewater containing a variety of chemicals, including heavy metals, hydrocarbon compounds, and nutrients (Sale et al., 2010). Petroleum refinery wastewaters are composed of different chemicals, which include oil and greases, phenols, sulphides, ammonia, suspended solids, and heavy metals like chromium, iron, nickel, copper, molybdenum, selenium, vanadium and zinc (Wake, 2005). Coastal and marine environments receiving intensive industrial effluents along the coastline of the Arabian Gulf are recognized as hotspots for high concentrations of hydrocarbons (De Mora et al., 2004; 2010) and heavy metals (Naser, 2012a; 2013a).
Naser (2013b) investigated the effects of industrial wastewater discharges that characterized by high inputs of heavy metals and hydrocarbons on crustacean assemblages along the eastern coastline of Bahrain. This coastline is heavily occupied by industrial facilities including the oil refinery, aluminum smelters and desalination plants. This study indicated that the analyzed heavy metals exhibited higher levels of concentrations in sediments influenced by industrial discharges. The study also argued that the synergistic effects of industrial effluents that contain high levels pollutants, brine discharges, and sedimentation due to intensive dredging and reclamation activities were reflected on the reduced levels of crustacean diversity and abundance in the sampling stations.
The flushing time of seawater in the Arabian Gulf is ranging between 3 and 5 years. Therefore, pollutants, including heavy metals and hydrocarbons are likely to reside in the Arabian Gulf for a considerable time. Continuous inputs of industrial effluents from different anthropogenic sources in the Arabian Gulf could be critical for both marine ecosystems and humans who rely on marine resources for food, recreation and industry.
The Arabian Gulf countries are witnessing rapid industrial development and population growth, which increase the need for fresh water (Smith et al., 2007). Due to the low precipitation and high aridity in the Arabian Gulf countries, most of the fresh water needs are being obtained from seawater through the various processes of desalination, including multi-stage flash (MSF), and seawater/brackish reverse osmosis (RO) (Hashim and Hajjaj, 2005). It is estimated that the amount of desalinated water in the Arabian Gulf countries accounts for more than 60% of the world’s total production (Lattemann and Hopner, 2008).
Large quantities of reject water from desalination plants are being discharged on a daily basis to coastal and subtidal areas in the Arabian Gulf. Therefore, Hypersaline water discharges from desalination plants are increasingly becoming a serious threat to marine ecosystems in the Arabian Gulf (Areiqat and Mohamed, 2005).
Coastal and marine environments receiving these discharges are typically subject to chemical and physical alterations. Desalination effluents are commonly associated with harmful chemical components, including heavy metals, antiscaling, antifouling, antifoaming, and anticorrosion additive substances (Lattemann and Hopner, 2008). Additionally, discharges from desalination processes may alter physically and chemically the characteristics of receiving seawater, including water temperature and salinity. These alterations in seawater quality, temperature, dissolved oxygen and salt concentration may severely affect several marine organisms and assemblages.
Naser (2013c) investigated the effects of tow major desalination plants that use MSF and RO technologies on macrobenthic assemblages. The study found reduced levels of biodiversity and abundance in areas adjacent to the outlet of MSF reflecting severe impacts on macrobenthic assemblages caused by brine effluents that are associated with high temperatures, salinities, and a range of chemical and heavy metal pollutants (Figure 5).
The demand for desalinated water in the Arabian Gulf will increase in the coming future (Dawoud and Al-Mulla, 2012). This may result in cumulative impacts from the brine discharges leading to substantial fluctuations in salinity levels. It is forecasted that brine discharge will increase the salinity of the Arabian Gulf (Smith et al., 2007). Bashititalshaaer et al. (2011) predicted that brine discharge will increase the salinity of the Arabian Gulf by 2.24 g l -1 in 2050. This marked increase in seawater salinity could arguably be critical to the naturally stressed marine ecosystems in the Arabian Gulf.
Marine organisms at the proximities of desalination plants are influenced by chemical, physical and thermal pollution. Reduced levels of diversity and abundance of macrobenthos were recorded adjacent the outlet of this MSF desalination plant along the eastern coastline of Bahrain (2012).
Sewage effluents are considered one of the most common anthropogenic disturbances of marine ecosystems in the Arabian Gulf. Despite high standards of sewage treatment (i.e. secondary or tertiary) (Sheppard et al. 2010), large quantities of domestic effluents are discharged to coastal and marine environments in the Arabian Gulf. These effluents are characterized by high-suspended solids and high loads of nutrients such as ammonia, nitrates and phosphates (Naser, 2011a). Sewage effluents are generally accompanied by biological and chemical pollutants, including pathogen microorganisms and heavy metals (Shatti and Abdullah, 1999). Bioaccumulation and biomagnification of pathogenic organisms and chemical contaminants due to sewage discharges affect the quality of human food and subsequently pose threat to human health.
Shallow subtidal areas and semi-enclosed embayments are the receiving environments for most of the sewage discharges in the Arabian Gulf, which can cause localized eutrophication, nutrient enrichment and oxygen depletion. Kuwait Bay in Kuwait and Tubli Bay in Bahrain have witnessed several eutrophication conditions and fish mortality phenomena due to excessive sewage discharges (Al-Ansi et al., 2002; Glibert et al., 2002). Naser (2013b) studied crustacean assemblages influenced by sewage discharges from a major treatment station in Bahrain. The study reported a reduction in biodiversity, richness and evenness of crustaceans reflecting severe habitat degradation in the nearby marine environment. Additionally, influenced areas were characterized by marked increase in organic enrichment, mainly ammonia and phosphate.
The Arabian Gulf is considered the largest reserve of oil in the world (Literathy et al., 2002). Consequently, coastal and marine environments in the Arabian Gulf are under permanent threat from oil related pollution. Oil exploration, production, and transport have been major contributors to pollution in the Arabian Gulf. Sources of oil spills in the Arabian Gulf include offshore oil wells, underwater pipelines, oil tanker incidents, oil terminals, loading and handling operations, weathered oil and tar balls, illegal dumping of ballast water, and military activities (Sale et al., 2010).
The Arabian Gulf has been a scene for major oil spill incidents in the world. Bahrain experienced one of the earliest major oil spills in the Arabian Gulf in 1980. A large oil slick (20,000 barrels) invaded the north and west coasts of Bahrain causing severe ecological and economical damages (Brown and James, 1985). This major incident was a precursor for establishing the first governmental authority concerned with the protection of environment in Bahrain in 1980; namely, the Environmental Protection Committee (EPC). The most notorious oil spill reported in the Arabian Gulf occurred during the 1991 Gulf War. An estimated 10.8 million barrels of oil were spilled in the Arabian Gulf waters (Massoud et al., 1998).
Oil pollution adversely affects marine ecosystems by reducing photosynthetic rates in phytoplankton and marine algae, accumulating toxic chemicals in several benthic organisms, and contaminating human food chains with carcinogenic substances. Seabirds and intertidal waders are predominantly vulnerable to oil pollution. For instance, several seabirds suffered severe mortality (22−50%) during the 1991 oil spill in the Arabian Gulf (Evans et al., 1993). Environmental consequences of long-term chronic oil pollution include degradation of sensitive ecosystems such as seagrass bed, coral reefs and mangroves, which may subsequently lead to decline in fish stocks and other renewable marine resources.
Conservation biology is an integrated, multidisciplinary scientific field that has developed in response to the challenge of preserving species and ecosystems. Valued ecosystem components in the Arabian Gulf are facing several challenges due to habitat destruction, fragmentation, degradation and pollution. These are reflected in the decline in regional coral reefs due to natural and anthropogenic stressors, the loss of prime mudflats and mangroves swamps and seagrass beds due to intensive dredging and reclamation activities and anthropogenic effluents. Therefore, effective conservation and management of marine ecosystems in the Arabian Gulf is becoming an urgent need in order to protect and sustain these vulnerable ecosystems. Additionally, effectively managed ecosystems provide a range of essential environmental services that contribute to economic, social and cultural aspirations in the Arabian Gulf (Al-Cibahy et al., 2012). This section therefore suggests conservation approaches and management strategies that might contribute to the protection of the fragile marine ecosystems in the Arabian Gulf, including marine protected areas, Environmental Impact Assessment (EIA), environmental regulations, ecological restoration, and environmental monitoring and scientific research.
A marine protected area (MPA) is defined by the International Union for Conservation of Nature (IUCN) as “any area of intertidal or subtidal terrain, together with its overlying water and associated flora, fauna, historical and cultural features, which has been reserved by law or other effective means to protect part or all of the enclosed environment” (Dudley, 2008).
Marine protected areas (MPAs) are globally recognized as the most important tool for in situ conservation (Chape et al., 2005). MPAs contribute significantly to both preservation and conservation of genetic characteristics, species, habitats and cultural diversity in coastal and marine environments. They can help in preventing or reducing the ongoing declines in marine biodiversity, habitats and fisheries productivity. MPAs can also improve ecosystem functions and services through maintaining ecological structure and processes that support economic and social uses of marine resources (Agardy, 1994). Additionally, MPAs can contribute towards climate change adaptation by protecting ecosystem resilience and protecting essential ecosystem services (McLeod et al., 2009).
Various relevant international conventions including Convention on Biological Diversity, Convention on Wetlands of International Importance (Ramsar Convention), and World Heritage Convention serve to advance the number and coverage of MPAs worldwide (Green et al., 2011). Similarly, regional conventions may promote the conservation benefits of marine protected areas in the Arabian Gulf. For instance, the Convention on the Conservation of Wildlife and their Natural Habitats in the Gulf Cooperation Council Countries (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates) provides the basis for integrating protected areas into national and regional environmental strategies and polices (GCC, 2010). This convention aims to effectively conserve ecosystems and wildlife habitats. It is also concerned with the protection of threatened species on a regional levels, especially when the distribution of these species exceed the international borders of two or more neighboring countries or when these species migrate across the boundaries of the member states.
The coastal and marine areas extended from Gulf of Bahrain to the United Arab Emirates have been identified as a potential transboundary marine protected area (Knight et al., 2011). These areas are shared by four countries (Saudi Arabia, Bahrain, Qatar, and United Arab Emirates) and characterized by high levels of species and habitat diversity.
Higher priority of conservation is typically given for areas that characterized by distinctiveness, endangerment, and utility features (Primack, 2010). These characteristics are reflected on the proposed transboundary marine protected area. This area supports distinctive species, population and habitats, including vulnerable mega-fauna such as dugongs, turtles and dolphins, and ecological complex of seagrass beds, coral reefs and fisheries. However, it is susceptible to anthropogenic threats due to coastal developments and pollution from a variety of land-based sources. Further, this area provides economic, touristic, cultural and educational benefits to the local people in the Arabian Gulf.
The archipelago of Hawar Islands, which is located in the Gulf of Bahrain, is characterized by varied coastal habitats, including muddy, sandy, and rocky shores as well as saline wetlands known locally as ‘sabkha’. These islands are surrounded by shallow waters, which promote the growth of extensive seagrass beds and algal mats. These habitats support large populations of dugongs, green turtles and dolphins (Preen, 2004). Additionally, Hawar Islands provide undisturbed habitats for a variety of avian fauna. These islands host the largest breeding colonies of the endemic Socotra Cormorant (
Designation and implementation of MPAs are arguably critical for the protection of naturally stressed coastal and marine ecosystems in the Arabian Gulf. Toward this, about 38 officially designated MPAs covering around 18,180 km2 have been established in the Arabian Gulf (Van Lavieren et al., 2011). However, number and coverage of MPAs may not provide an indication of the effectiveness of these MPAs in achieving their conservation goals (Chape et al., 2005).
Van Lavieren and Klaus, (2013) evaluated the management effectiveness of MPAs in the Arabian Gulf and revealed variable levels of performance. Several weaknesses in the MPAs in the Arabian Gulf were identified, notably the limitation in regulation enforcement, the lack of management plans, and the weak communication with local stakeholders, traditional communities, and local marine resource users (Van Lavieren and Klaus, 2013).
Local communities are recognized as the key focus for the success of conservation initiatives (Kideghesho et al., 2007). Public understanding, support and participation are important for the success of marine protected areas as a conservation management tool (Jameson et al., 2002). This could be promoted through reviving the concept of ‘Hima’ in the Arabian Gulf. Hima is considered a community based environmental resource management system that could help in building understanding and acceptance of protected areas and promoting the need to conserve and use marine resources wisely (Knight et al., 2011; Van Lavieren et al., 2011).
Environmental Impact Assessment (EIA) is a systematic process of identifying, predicting, evaluating and mitigating the environmental consequences of a proposed project on the biological and physical environments. EIA aims at integrating environmental considerations in the decision-making system, minimizing or avoiding adverse impacts, protecting natural systems and their ecological processes, and implementing principles of sustainable development (Glasson et al., 2005).
EIA is considered a standard tool for decision-making in most countries throughout the world. It ensures that authorities are provided with necessary knowledge relating to any likely significant effects of a proposed project on the environment prior to the decision-making process. The integration of environmental considerations may result in a rational and structured decision-making process that maintains a balance of interest between the development action and the environment (Glasson et al., 2005). EIA minimizes or avoids the adverse effects of a proposed development on the environment by addressing effective designs, alternatives, mitigations, cumulative impacts, and monitoring (Cooper and Sheate, 2002).
Since the early stages of incorporating EIA in The National Environmental Policy Act in 1969, in the USA, considerations to protect ecosystems and biodiversity of natural resources and habitats have been an integrated part of the EIA process (Gontier et al., 2006).
EIA is one of the frequently used approaches in coastal planning and management (Kay and Alder, 2005). It is considered as an effective tool to minimize anthropogenic impacts and to induce the implementation of protection measures of coastal environment. The importance of EIA in protecting biodiversity and promoting the sustainable use of coastal and marine resources is represented in its fundamental role as a process for predicting the environmental effects of projects or programmes in coastal and marine areas. Therefore, EIA can be used to ensure that necessary measures needed to protect biodiversity and its sustainable use are addressed in the process of development planning (Khera & Kumar, 2010).
Additionally, EIA involves in facilitating consultation between various stakeholders as well as the public, considering alternatives for projects and locations, ensuring early identification of potential effects on coastal and marine environments, and implementing mitigation and compensation measures (Badr et al, 2004). Consequently, an effective EIA can contribute to the protection of biodiversity and to the sustainable use of coastal and marine environments in the Arabian Gulf.
Recognizing the role of EIA in protecting environment from degradation and pollution associated with rapid economic developments, Arabian Gulf countries have adopted EIA in their environmental policies (El-Fadl and El-Fadel, 2004). Coastal development projects, including reclamation and dredging activities, are required to be subjected to EIA in the Arabian Gulf. However, effectiveness of EIA in coastal and marine environments is constrained by many factors that are also common in many other regions in the world. These include lack of adequate legal and regulatory frameworks, limited public participation, inadequate guidelines on procedural EIA, and lack of provisions related to cumulative impacts and strategic environmental assessment (Van Lavieren et al., 2011; Naser, 2012b).
Multiple anthropogenic stressors can lead to cumulative impacts on marine ecosystems (Crain et al., 2008). Coastlines of the Arabian Gulf are witnessing a rapid increase in the number and scale of coastal developments. The negative effects of these several separate developments may synergistically combine, additively or multiplicatively, to destroy biodiversity and marine ecosystems in the Arabian Gulf.
Planning of dredging and reclamation activities is typically carried out in the Arabian Gulf at a project-by-project basis, without assessing environmental impacts strategically. This approach may ignore the cumulative impacts of coastal reclamation on the valued ecosystem components in the Arabian Gulf. For instance, several reviewed EIA reports indicated that the allocated sites of their projects were already impacted or degraded due to surrounding existing and ongoing projects (Naser, 2012b). Therefore, maintaining sustainable use of coastal and marine natural resources in the Arabian Gulf requires measures to holistically address the interactions among the several reclamation and dredging activities and their additive and cumulative impacts on valued ecosystem components.
Strategic Environmental Assessment (SEA), a tool to integrate environmental considerations into decision-making, may contribute toward achieving environmentally sound and sustainable development. SEA is defined as the process of evaluating the environmental consequences of proposed policies, plans and programmes, and addressing them into higher-level decision-making systems (Lamorgese and Geneletti, 2013). SEA has emerged as an important element in environmental decision-making process in developed countries, including Europe and North America. However, SEA is still relatively new or need to be introduced in the Arabian Gulf countries (Rachid and El-Fadel, 2013).
The need for a more strategic approach to environmental assessment in the Arabian Gulf can be illustrated by reference to coastal developments that associated with dredging and reclamation. The project-level EIA has been criticized for failing to ensure adequate considerations for potentially severe indirect, cumulative and synergistic environmental impacts on coastal and marine ecosystems (Naser et al., 2008).
Several reclamation and dredging activities are increasingly taking place within a relatively small geographical range on coastlines of the Arabian Gulf countries, which could have several cumulative consequences on the coastal and marine environments. SEA has the potential to promote sustainable development in coastal and marine environments through identifying cumulative impacts of exiting or planned projects, investigating feasible alternatives to coastal developments, and implementing effectively mitigation and compensation measures (Duisk et al., 2006).
SEA also has the advantages of integrating the coastal concerns into planning policies, facilitating consultation between various organizations as well as the public. Additionally, SEA can identify social, economic, and environmental issues associated with coastal development in the Arabian Gulf, and subsequently assist in the implementation of an important principle of sustainability (Barker, 2006).
Nonetheless, similar to many countries in the world (Liou and Yu, 2004), there are difficulties and challenges associated with the implementation of SEA in the Arabian Gulf. These include introducing and enforcing SEA law provisions, producing SEA related guidelines, clarifying administrative and procedural responsibilities of concerned bodies in SEA, institutionalizing networks, and encouraging public participation.
Environmental legislations related to pollution prevention and biodiversity protection in the Arabian Gulf are based on a range of national laws and regulations as well as regional and international agreements. Nationally, there are several framework laws with respect to protecting the wildlife and their environment and combating environmental pollution in each country. These general environmental laws facilitate the implementation of related regional and international regulations and agreements (Khan and Price, 2002).
Several laws and regulations dealing with protection of environment and biodiversity have been developed in the countries of the Arabian Gulf. These national instruments include laws with respect to environment, exploitation and protection of living marine resources, protection of wildlife and natural environment, environmental quality standards, environmental assessment, prevention of oil pollution, banning of catching endangered species, and establishment of marine protected areas. Although these national laws can, directly or indirectly, contribute to the protection of marine ecosystems in the Arabian Gulf, their effectiveness might be restricted by the lack of enforcement (Al-Awadhi, 2002).
Regionally, the Kuwait Regional Convention for Cooperation on the Protection of the Marine Environment from Pollution (Kuwait Convention), which was established in 1978, provides the basis for an integrated regional response to protecting biodiversity and combating pollution (Khan, 2008). The Regional Organization for the Protection of the Marine Environment (ROPME) was established under the Kuwait Convention to act as a focal point for regional cooperation (Khan and Price, 2002).
Currently, there are four Protocols under the Kuwait Convention; namely, protocol concerning regional cooperation in combating pollution by oil and other harmful substances in cases of emergency, protocol concerning marine pollution resulting from exploration and exploitation of continental shelf, protocol for the protection of the marine environment against pollution from land-based sources, and protocol on the control of marine transboundary movements and disposal of hazardous wastes. These protocols collectively address the pollution of marine environment and propose criteria for protection and management of ecosystems and marine resources (Khan and Price, 2002; Khan, 2008).
Internationally, the Convention on Biological Diversity (CBD) provides a legal, scientific and practical mechanism for biodiversity conservation. The CBD requires member states to develop national strategies and action plans for the conservation and sustainable use of biodiversity, integrate biodiversity into the relevant plans, programs and policies, identify activities likely to have significantly adverse impacts on biodiversity, develop a system of protected areas to conserve biodiversity, integrate consideration of conservation into national decision-making systems, and introduce environmental impact assessment to avoid or minimize adverse impacts of proposed projects on biodiversity.
Additionally, the Arabian Gulf countries have accepted or ratified several international agreements that can contribute to the protection of the coastal and marine environments. These include, among others, Convention on Wetlands of International Importance (Ramsar Convention), World Heritage Convention, United Nations Convention on the Law of the Sea, United Nations Framework Convention on Climate Change, International Maritime Organization (IMO) conventions, CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora). These international agreements provide mechanisms for dealing with many aspects and concerns relating to the marine environment, and consequently contributing to the protection and conservation of marine ecosystems in the Arabian Gulf.
The Arabian Gulf is experiencing a substantial loss of productive habitat and ecosystem services (Price et al., 2012). Dredging and reclamation have transformed extensive coastal areas into artificial environments. Additionally, several types of pollution are contributing to ecosystem degradation. Ecological restoration is an approach that could help in minimizing or reversing the decline in ecosystem integrity in the Arabian Gulf.
Ecological restoration is described as an assisted recovery of degraded, damaged or destroyed ecosystems (Clewell and Aronson, 2006). Ecological restoration is increasingly playing an important role in conservation biology (Young, 2000). Ecological restoration provides the opportunity to conduct experiments to understand the structures and functions of ecosystems. Insight from such research can be invaluable for the conservation and the management of natural resources.
Although marine restoration lags behind terrestrial and freshwater counterparts (Elliott et al., 2007), restoration activities are increasingly conducted in coastal and marine environments worldwide. Similarly, several restoration projects have been conducted in the Arabian Gulf (Weishar, 2008). Planting projects to restore mangrove ecosystems have been conducted in most of the Arabian Gulf countries. The success of planting mangroves depends critically on the topographical and hydrological conditions of the selected site, including low energy shorelines with stable and non-eroding soil, gentle slop, sufficient depth, quantity and quality of water entering the site, and the requirement of low-salinity water (Field 1998).
Successful establishments and growth of mangrove plants have been reported in Qatar (Abdel-Razik, 1990; Al-Khayat and Jones, 1999) and Kuwait (Bhat et al., 2004; Bhat and Suleiman, 2005; Al-Nafisi et al., 2009; Almulla, 2013). However, only limited success of mangrove plantation has been reported in a sheltered bay in Bahrain (Al-Sayed et al., 2008). Therefore, there is an urgent need to investigate alternatives to restore the critically threatened mangrove ecosystems in Bahrain.
Planting mangroves in suitable intertidal areas in the Arabian Gulf is considered a sound approach for increasing coastal and marine productivity and supporting a wide range of biodiversity. For instance, coastal areas associated with planted and natural mangroves along the Qatari coastline support similar levels macrobenthos diversity (Al-Khayat and Jones, 1999). Likewise, Al-Nafisi et al. (2009) reported positive impacts for planted mangroves on coastal environment in Kuwait. Therefore, ecological and environmental benefits provided by planted mangroves may contribute positively to enhancing the overall productively of coastal and marine environments in the Arabian Gulf (Almulla et al., 2013).
Coral restoration could be carried out by creation of artificial reefs or translocation of healthy coral fragments to damaged reefs (Edwards and Gomez, 2007). Artificial reefs are frequently deployed in marine environment of the Arabian Gulf in an attempt to restore or enhance biodiversity and productivity of marine ecosystems. Generally, abundant and diverse communities of reef fish, coral and benthos organisms can develop on artificial structures (Feary et al., 2011). However, these communities may differ structurally and functionally from those in natural reefs (Burt et al., 2009).
Translocations of healthy corals have been conducted in some cases in the Arabian Gulf to avoid their distraction by large-scale marine projects. For instance, around 4,500 coral colonies from pipeline corridors which would have been affected by proposed expansion projects were relocated to another suitable location in Qatar (O’Donovan and McDonald, 2008). However, the success of such environmental initiatives in protecting affected corals remains to be investigated. Coral culture and transplantation within the Arabian Gulf is proposed as a feasible approach to maintain coral populations and preserve their adaptive capacities to future thermal stress events due to climate change (Coles and Riegl, 2013).
Monitoring can be described as systemic observations and measurements of physical, chemical and biological variables to detect environmental changes over time (Lovett et al., 2007). Monitoring can provide decision makers with information on the state of biodiversity, and consequently, assist in identifying management goals and assessing priorities for conservation (Collen et al., 2013).
The key to protecting and managing biodiversity and marine resources is to characterize the structures of coastal and marine ecosystems (i.e. species and populations involved) and functions (i.e. flow of energy, growth and productivity). This could be achieved by adopting a holistic environmental monitoring approach that investigates, spatially and temporally, the physical, chemical and biological aspects of the valued ecosystem components in the Arabian Gulf (Naser, 2011a).
Several logistical and technical limitations may restrict the effectiveness of environmental monitoring in the Arabian Gulf. Van Lavieren and Klaus (2013) indicated that ecological monitoring and surveys in the Arabian Gulf are poorly designed and do not provide adequate information for decision-making systems.
Developing necessary plans and mechanisms for population and habitat conservation requires adequate knowledge and description of species. Therefore, there is a need to promote taxonomic research in the Arabian Gulf. Environmental impacts can be detected in a coarser level of taxonomic identification such as genus and family levels of biotic assemblages (Naser, 2010). However, effective conservation can only be achieved if the state of the environment is fully documented and understood, including species diversity. Therefore, it could be argued that while coarser taxonomic levels can be logistically useful in routine environmental monitoring, species-level is critically important to assess the biodiversity and to understand the structure and function of marine ecosystems in the Arabian Gulf.
Transboundary monitoring in the Arabian Gulf is needed to ensure that representatives of marine communities and habitats are included in the conservation measures. This could be addressed by increasing the cooperation between local and regional institutions and organizations concerned with ecological research and monitoring in the Arabian Gulf. The Regional Organization for the Protection of the Marine Environment (ROPME) may play an important role in strengthening the coordination of environmental monitoring and ecological surveys in the Arabian Gulf.
A key research need for marine conservation is to understand the individual and cumulative impacts of human disturbances on marine ecosystems. Therefore, monitoring should also be extended to processes and activities that are likely to have significant adverse impacts on the valued ecosystem components in the Arabian Gulf.
Feary et al. (2013) identified research topics that are considered to be the highest priority areas for future coral reef research in the Arabian Gulf, which could be extend to the other valued ecosystem components. These research areas include marine protected areas development, biological and ecological processes structuring marine ecosystems, climate change impacts on ecology and biology of ecosystems, effects of anthropogenic activities on marine ecosystems, connectivity of coral reef communities, disease biology, economic evaluation of ecosystems functions and services, monitoring and ecological surveys of species and communities, coral reef restoration and management, and mechanisms governing ecosystems’ resistance and adaptation to environmental extremes. Strengthening cooperation between national, regional and international universities and scientific institutions in field of environment and conservation could facilitate the development and implementation of long-term research pogroms in the Arabian Gulf.
Building capacity toward scientific research in the field of environment and conservation biology is important in order to effectively conserve and mange marine ecosystems in the Arabian Gulf. Therefore, there is a need for significant improvement in the number and quality of programs related to marine sciences in the Arabian Gulf universities (Burt, 2013).
The Arabian Gulf is one of the world’s most enclosed, small-scale marine environments. It is characterized by shallow depth and restricted water exchange with the wider Indian Ocean. The Arabian Gulf represents one of the harshest marine environments in the world due to marked fluctuations in seawater temperatures and high levels of salinities. These environmental extremes may interfere with normal functioning of marine ecosystems and affect physiological aspects of marine organisms and their diversity, abundance and spatial distribution.
The Arabian Gulf hosts some of the world’s most critically endangered species such as dugongs, green and hawksbill turtles, and supports a variety of marine ecosystems, including seagrass bed, mangroves, coral reefs and mudflats that are uniquely adapted to environmental extremes. These ecosystems are under ever-increasing pressure from anthropogenic activities that are associated with the rapid economic, social and industrial developments in the Arabian Gulf countries.
Marine environment of the Arabian Gulf is severely impacted. The coasts of the Arabian Gulf are witnessing rapid industrialization and urbanization that contribute to degradation of naturally stressed marine ecosystems. Coastal development associated with dredging and reclamation is particularly damaging to coastal and marine ecosystems. This is combined with several anthropogenic factors, including industrial and domestic effluents, brine wastewater discharges and oil pollution.
Conserving species and communities and maintaining healthy ecosystems are important priorities in the marine environment of the Arabian Gulf. These could be achieved by adopting conservation approaches and management strategies that might contribute to the protection of the fragile marine ecosystems in the Arabian Gulf, including marine protected areas, environmental impact assessment, environmental regulations, ecological restoration, and environmental monitoring and scientific research.
Designation and implementation of marine protected areas are arguably critical for the protection of coastal and marine ecosystems in the Arabian Gulf. Although several marine protected areas have been established, lack of comprehensive management plans may hinder their effectiveness.
Environmental impact assessment can play an important role in the protection of biodiversity and in the sustainable use of coastal and marine environments in the Arabian Gulf. However, its effectiveness is constrained by the lack of adequate legal and regulatory frameworks, limited public participation, inadequate guidelines on procedural EIA, and lack of provisions related to cumulative impacts. Therefore, there is a need for a more strategic approach to environmental assessment that identifies environmental consequences of proposed policies, plans and programmes, and integrates environmental considerations into higher-level decision-making systems in the Arabian Gulf.
The Arabian Gulf countries have extensive national regional and international environmental legislations in place. Strengthening the implantation and the enforcement of the current regulations and agreements can substantially contribute to the protection of marine environment in the Arabian Gulf.
Ecological restoration principles could be adopted to minimize or reverse the decline in ecosystem integrity in the Arabian Gulf. Several restoration projects have been conducted in the coastal and marine environments of the Arabian Gulf. Planted mangroves provide several ecological and environmental benefits that may contribute to the productivity of coastal and marine habitats. However, the true impact of some restoration projects such as coral restoration remains to be investigated.
A holistic environmental monitoring and scientific research in the fields of marine sciences and conservation biology are integral part of any effort to conserve and manage biodiversity and marine resources in the Arabian Gulf. Improvement in both number and quality of academic programs related to marine sciences in the Arabian Gulf universities can contribute to building the long-term research capacity in the region.
Support provided by the Department of Biology and the Library and Information Services at University of Bahrain is greatly appreciated.
The rapid development of capitalism due to industrialization has improved socioeconomic levels around the world as well as increased the nation’s interest in the level of people’s health. The concept of health inequality that emerged from this process has served as an opportunity to establish and implement healthcare policies based on it, along with increasing global interest in the relationship between health and socioeconomic inequalities since the 1980s.
\nAlthough the concept of health inequality varies from scholar to scholar, the concepts of Whitehead [1] and the International Society for Equity in Health (2002) are generally used. According to Whitehead [1], “Inequality in health is a term commonly used in some countries to indicate systematic, avoidable and important differences” [1]. On the other hand, according to the definition by the International Society for Equity in Health, health inequality is “The absence of systematic and potentially remediable differences in one or more aspects of health across populations of population subgroups defined socially, economically, demographically, or geographically” [2]. In other words, health differences or gaps among individuals or groups can be caused by various socioeconomic factors, such as income, occupation, education, gender, and residential areas, in addition to the biological characteristics of individuals.
\nThis view of health gradually spread to European countries in the 1990s, and in 2008, the World Health Organization published “Closing the Gap in a Generation: Health Equity Through Action on the Social Determinants of Health,” which emphasized that the issue of health inequality should be addressed as a worldwide issue, and developed a strategic interest in healthcare policies and policies based on the current state of health inequality around the world [3, 4, 5]. Through these efforts, some countries have achieved partial reductions in health inequality problems, such as maternal-infant mortality [6], child and family health [7], and non-inflammatory diseases [8]. However, despite various efforts and attempts by the healthcare sectors of the world, the problem of health inequality seems to persist [9, 10, 11].
\nOn the other hand, considering that the issue of health inequality is mainly a social problem experienced by the socially vulnerable, understanding social work that targets them is believed to provide insight into alleviating health inequalities. In modern society, social vulnerability generally means a group of individuals or such individuals who are excluded, marginalized, or left behind in a capitalist economic system [12]. Therefore, social work strategies for them are focused on socioeconomic support to address or alleviate their current difficulties by direct and continuous interaction with individuals or groups or various training and support programs for re-entry into a capitalist economy. In other words, in addition to direct and indirect support through various policies, support is needed in other community-based ways through direct and continuous relations with the socially vulnerable.
\nTherefore, in this study, we would like to consider the role of social work to complement the limitations healthcare approaches in order to mitigate the problem of health inequality among the socially vulnerable.
\nIn this study, we would like to explore the limitations of the existing healthcare approach to health inequality of socially vulnerable group through a literature review and present the role of social work to complement it. To that end, we will first look at the WHO’s view of health and its transformation process. This is because it has a huge impact on health-related policies of individual countries by forming healthcare paradigms.
\nOn the other hand, the key to healthcare policies is to encourage an individual to practice health behaviors to maintain or enhance their current health [13]. In the case of South Korea, various efforts have been made to reduce disparity in the 3rd Health Plan 2011–2020 that includes smoking, high-risk drinking, physical activity, and prevalence of obesity and hypertension as indicators to address health inequality based on income levels [14]. The results showed that the gap between the smoking rate and the high-risk drinking rate has somewhat eased, but the gap has widened for the physical activity rate and obesity rate [14]. Based on this, a healthcare approach alone is difficult to induce individuals to practice their health behaviors. Therefore, we would like to explore the theories involved in order to understand the health behaviors of individuals.
\nIn 1978, the WHO set all human health goals as the attainment by “all the people of the world by the year 2000 of a level of health that will permit them to lead a socially and economically productive life” [15] and began to discuss in earnest the need for the Alma-Ata Declaration, which centers on the activation of primary healthcare as well as intersectoral collaboration at various levels of society to address health inequalities [16]. The concept of health promotion, which began to be emphasized during this process, started to be perceived as a new strategy to realize people’s social responsibility for a healthy future by arbitrating or mediating between individuals and the environment surrounding them [16].
\nAs health promotion was being highlighted as a new approach to healthcare, the traditional approach to healthcare that centered on the treatment of diseases in the past began to change to prevention of diseases [13, 16]. Based on this paradigm shift, the WHO and its members held the first International Conference on Health Promotion in Ottawa, Canada, in November 1986 to establish and publish the Ottawa Charter for Health Promotion [17]. In the Ottawa Charter, health promotion is defined as a process that allows people to control and manage their health and health determinants, thereby improving their health. It presents three approach strategies to realize health promotion: “Advocate,” “Enable,” and “Mediate” as well as the five main areas of activity: “Build healthy public policy,” “Create supportive environments,” “Strengthen community actions,” “Develop personal skills,” and “Reorient health services” [17]. The Ottawa charter lays the groundwork for efforts to promote health in all the countries around the world, even today, more than 30 years later [16]. The WHO has since held a world conference on health promotion to reconfirm the basic principles and methodologies of health promotion, and through continuous discussion, it seeks effective and sustainable health promotion approaches to address health issues that are newly encountered with global environments, such as lifestyle and environment changes due to the development of globalization and information and communication technology [16, 18].
\nConversely, this shift in the healthcare paradigm, centered on health promotion, also represents a shift from the past paradigm centered on the treatment of acute diseases to a paradigm centered on the prevention and management of chronic diseases [13]. This means that the problems of health inequalities experienced by the socially vulnerable today persist in a paradigm centered on the prevention and management of chronic diseases. So, despite these efforts by the healthcare sector, why does the phenomenon of health inequality persist? To this end, the following section looks at the health belief model, a theoretical framework that describes an individual’s health behavior.
\nAs national interest in health increased from the 1970s, various models and theories were proposed to predict and explain individual health behaviors. The health belief model describes health behaviors based on individuals’ belief in perceived susceptibility, severity, benefits, and barriers to disease [19, 20]. The theory of rational behavior and the theory of planned behavior described health behaviors under the assumption that individuals use relevant information reasonably and systematically before doing anything [21, 22]. The precaution adoption process model explains that individuals go through seven stages of unaware of issue, unengaged by issue, deciding about acting, decided to act, acting, and maintenance until they act to protect their health [23]. On the other hand, the health belief model emphasizes aspects of subjective judgments for individuals to practice health behaviors. However, in contrast, other theories highlight the systematic collection and interpretation of health-related information for subjective judgments of individuals, opinions of others, and the process of decision-making based on it [21, 22, 23]. However, considering that the characteristic of the socially vulnerable group can have a negative impact on the process itself of establishing a basis for subjective judgment, it is considered to be somewhat difficult to explain their health behaviors. Therefore, this study focuses on the health belief model.
\nThe health belief model is a theoretical model developed in the early 1950s by social psychologists from the United States Public Health Service to explain the poorly examined phenomenon of disease prevention or early detection of diseases with no symptoms [19, 20]. Health belief models were subsequently studied by various scholars [20, 24, 25, 26], of which Janz and Becker [20] presented the following components of health behavior practice for individuals to prevent and manage diseases.
\nPerceived susceptibility refers to subjective judgments about how much one is exposed to health-threatening factors [20]. For example, the women who think they are less likely to have breast cancer [24, 26].
\nPerceived severity refers to subjective judgments about how dangerous and serious the factors that threaten one’s health or the consequences resulting from a disease are [20]. For example, women who believe that mortality increases without breast cancer screening are more likely to perform breast cancer screening [24, 26]. On the other hand, a combination of perceived susceptibility and perceived severity creates perceived threat, which is an influencing factor for predicting health behavior [25].
\nPerceived benefits refer to subjective judgments on the benefits of the following recommended actions [20]. The more positively a person evaluates the benefits of a health action, the less likely the threat is perceived. For example, a person who thinks that breast cancer screening is more accurate is more likely to go for a checkup than someone who thinks it is less accurate [24, 26].
\nPerceived barriers mean subjective judgments on the cost, time, and emotions in performing recommended actions [20]. Some people who do not undergo breast cancer screening acknowledge the benefits of the examination but do not act out of fear of the cost and time-consuming examination process [24, 26]. On the other hand, perceived benefits and perceived barriers have a direct effect on health behavior, unlike the two factors discussed earlier [20].
\nCue to action refers to an internal or external stimulus that motivates an individual to perform their own health actions. In this case, internal cues refer to the self-awareness of the symptoms of one’s health condition, and external cues refer to the messages sent through the media or by health experts [20]. These behavioral cues increase perceived susceptibility and perceived severity, thus, increasing the intention of action [20].
\nIn addition to the five factors discussed earlier, the health belief model includes perceived threat or demographic/social psychological variables that can affect a person’s health behavior, which provide a direct or indirect incentive to practice health behavior, either individually or by a combination of each factor.
\nAs we saw earlier, the approach to health from a healthcare perspective can be seen as an emphasis on the prevention paradigm, namely the formation of conditions that enable control and management of individuals’ health and health determinants through the concept of health promotion centered on disease prevention and management. However, based on the view of the health belief model that describes an individual’s practice of health behavior, the approach from a healthcare perspective emphasizes prevention of future illnesses and their healthcare management. The limitation of this approach, however, is that while it may increase the likelihood of screening an individual for disease prevention or healthcare, it does not enforce the practice of actual health behaviors. This means that based on perceived health risk factors, the final decision of whether an individual will practice healthy behavior or not is entirely their own [27, 28]. Moreover, given that the problem of health inequality is mainly a social problem experienced by the socially vulnerable, their diverse characteristics [12], such as low socioeconomic status and educational levels, are such that even if they have recognized factors that can negatively affect their health, they are not limited to leading to various tests for disease prevention or implementation of health behaviors for health management.
\nTherefore, if we look at the phenomenon of health inequality among the socially vulnerable today based on the health belief model, we can think of the healthcare approach that emphasizes the prevention of health inequalities as an approach that reveals its limitations at the point where, despite various efforts and attempts to resolve issues, it leads to health management practices for the prevention of diseases among individuals belonging to socially vulnerable groups. The above is illustrated in Figure 1.
\nBasic elements of the health belief model (Janz and Becker [
Of course, in order to cope with these problems, the government provides various healthcare services for the socially vulnerable, such as medical examinations, visiting care, and home visits, but the related resources are insufficient to cover all aspects of social vulnerability. This is also why communities emphasize on health promotion policies. Thus, the phenomenon of a prevention-oriented healthcare paradigm that emphasizes individual spontaneity for health promotion and a lack of healthcare resources to directly intervene in the practice of individual health behaviors can form a blind spot for the target population (Figure 2). Furthermore, such a blind spot regarding healthcare policy can be considered as a major factor for sustaining the phenomenon of health inequality among the socially vulnerable, despite various attempts and efforts to address this issue.
\nBlind spot of recommended preventive health action.
The Ottawa Charter, which produced a global consensus on basic strategies and areas of activity for the promotion of health, places specific emphasis on the role of communities in the process of prioritizing, deciding, planning, and carrying out health promotion activities to improve people’s health level [17]. Further, the key functions and roles of the community for the promotion of health are to establish a system of related services for improving the health of local residents as well as to encourage active participation by the general public and local residents in local health-related issues and to enhance their ability to address them [16, 17]. On the other hand, the emphasis on communities here is that individuals and families are part of the community [29], that the healthcare paradigm from a past therapeutic perspective has not done much to address the adverse health phenomenon [30], and that health promotion requires collaborative approaches to various areas besides the healthcare sector [31]. Then, what does a community mean? There are many different views of the community, including:
\nFirst, to view the community as a unit of political collective action. From this point of view, local communities exist everywhere and proximity to various activities in daily life is seen as a place where the majority of the members can have political will [32].
\nSecond, to view communities as functional units of production and exchange. The community is an activity space with a concentration of various social functions, including the production and use of social and commercial goods and services, socialization processes, social control mechanisms, opportunities for social participation and civic engagement, and access to mutual assistance [33].
\nThird, to view the community as a network of relationships or a structure of interaction between individuals. This view highlights two aspects. First, the intimate relationships, the degree to which you let people you know to know you [34, 35]. The other concerns the extent of the relationship, that is, the possibility of being connected to the network of relationships held by others beyond the scope of the community at the administrative district and the possibility of accessing various information, resources, and opportunities beyond the adjacent networks [36, 37, 38]. Based on the above, communities and its various possibilities could be considered as an elixir in modern society [39].
\nOn the other hand, the variety of possibilities that communities have means that in order to function as an elixir for the health promotion or address health inequality of local residents, they must be perceived as a concrete object, like a social problem, that can be addressed more specifically. In general, social problems mean that it becomes visible as a social phenomenon [40] or the social condition in which people perceive it as a serious problem and want to improve it [41]. However, as mentioned earlier, the prevention-oriented approach mainly addresses health-related issues that have not yet occurred or are expected to occur in the future, so it can be seen as exposing the limitations of using various resources in the community to enhance the participation and capacity of local residents and to encourage active implementation of individuals’ health behaviors. Additionally, such a limit can be considered as another factor that escalates the phenomenon of health inequality, especially among the socially vulnerable.
\nTraditionally, social work is primarily targeted at socially vulnerable groups, individuals experiencing exclusion, alienation, or rejection due to lack of productive forces in the capitalist economy. Then, what kind of educational content does the social work that targets them highlight?
\nThe International Association of Schools of Social Work (ISSW) and the International Federation of Social Workers (IFSW) adopted global standards for education and training of the social work profession through a general meeting held at Adelaide, Australia, in October 2004. The content of the standards to core curricula presented here suggests that students majoring in social work experience four core curriculums [42]:
\nThe first area is the “Domain of the Social Work Profession,” which includes the effects of socio-structural inadequacies; discrimination; oppression; social, economic, and political injustices on human functioning and development; knowledge of human behavior and development and of the social environment; critical understanding of the origins and purpose of social work; and the effects of social stability, harmony, interdependence, and collective solidarity on human development [42]. The second area is the “Domain of the Social Work Professional” that includes the development of self-reflective practitioner, the recognition of personal value systems, the recognition of ethical provisions, and sensitivity based on diversity and their ability to address them [42]. The third area focusses on the “Methods of Social Work Practice,” which include assessment, formation of relationships and aid processes, value, ethical principles, application of knowledge and skills, social work research and skills, and field training [42]. The last area is the “Paradigm of the Social Work Profession,” which includes human dignity and values, advocacy, empowerment, respect for the rights of service users, tasks and crises along the life cycle, recognition of strengths and potential, respect and recognition of diversity [42].
\nConsidering the above, the general social work education strategy can be thought of as a strategy that focuses on various areas, such as basic development process and socioeconomic support that can affect them through direct and indirect intervention and psychological support for re-entry into the capitalist economy, based on an in-depth understanding of individuals and families or specific groups. One point to be noted here is that the healthcare sector was not included, although social work has specified access to and involvement in various areas that affect their vulnerability as a core curriculum. Based on this, the academic boundaries [43] can be expected to exist, emphasizing healthcare centered on disease prevention and treatment and social work centered on social and psychological support for re-entry into the capitalist economic system. Furthermore, such academic boundaries also mean that healthcare issues, including various social factors, such as health promotion or health inequalities, simply approach health and medical issues in the same way as a team approaches, that does not help much in solving problems [44].
\nAs we saw earlier, the limitations of the healthcare approach to reduce health inequalities have been found in the prevention-oriented policy keynote and lack of understanding of the function and role of the community, which presupposes the willingness of individuals to practice health behaviors. Further, the limitations of this approach to the phenomenon of health inequality can be considered as a factor that continues to this day, despite the various efforts and attempts in the past four decades to resolve it. Therefore, to overcome these limitations, it is deemed necessary to add healthcare-related subjects, such as public health or social epidemiology and etiology to the existing curriculum of social work, which are based on a deep understanding of the social environment and the human nature. Moreover, given that the issue of health inequality is a social problem experienced by the socially vulnerable, the main target of social work, the motivation and monitoring of these people to implement and maintain health behaviors and the possibility of improving the environment of the community and organizing related community resources through social problems can be found in the aforementioned academic and practical features of social work. This, in turn, can be expected to compensate for the limitations of the healthcare approach to reduce the health inequalities that the socially vulnerable experience.
\nThe first author wishes to express his deepest gratitude to Eun Jin Lee, Ji Young Park, and Soo Hyun Sung for their support and guidance, who contributed tremendously to this article.
\nThe authors declare no conflict of interest.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10789",title:"Cervical Cancer - A Global Public Health Treatise",subtitle:null,isOpenForSubmission:!0,hash:"3f7a79875d0d0ae71479de8c60276913",slug:null,bookSignature:"Dr. Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10789.jpg",editedByType:null,editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10648",title:"Vibrios",subtitle:null,isOpenForSubmission:!0,hash:"863c86c37b8a066ed95397fd9a114a71",slug:null,bookSignature:"Dr. Lixing Huang and Dr. Jie Li",coverURL:"https://cdn.intechopen.com/books/images_new/10648.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:182},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5327},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"836",title:"Geology",slug:"geology",parent:{title:"Earth Science",slug:"earth-science"},numberOfBooks:4,numberOfAuthorsAndEditors:132,numberOfWosCitations:101,numberOfCrossrefCitations:53,numberOfDimensionsCitations:146,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"geology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9879",title:"Geochemistry",subtitle:null,isOpenForSubmission:!1,hash:"aebccc07f8ffdf8a0043efc454024292",slug:"geochemistry",bookSignature:"Miloš René, Gemma Aiello and Gaafar El Bahariya",coverURL:"https://cdn.intechopen.com/books/images_new/9879.jpg",editedByType:"Edited by",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8476",title:"Earth Crust",subtitle:null,isOpenForSubmission:!1,hash:"ebef9911d87b6db8cb55dad47250a6be",slug:"earth-crust",bookSignature:"Muhammad Nawaz, Farha Sattar and Sandeep Narayan Kundu",coverURL:"https://cdn.intechopen.com/books/images_new/8476.jpg",editedByType:"Edited by",editors:[{id:"269790",title:"Dr.",name:"Muhammad",middleName:null,surname:"Nawaz",slug:"muhammad-nawaz",fullName:"Muhammad Nawaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6130",title:"Tectonics",subtitle:"Problems of Regional Settings",isOpenForSubmission:!1,hash:"01aa9cf9d09a2b939bf67a90466f9a84",slug:"tectonics-problems-of-regional-settings",bookSignature:"Evgenii V. Sharkov",coverURL:"https://cdn.intechopen.com/books/images_new/6130.jpg",editedByType:"Edited by",editors:[{id:"32743",title:"Prof.",name:"Evgenii",middleName:null,surname:"Sharkov",slug:"evgenii-sharkov",fullName:"Evgenii Sharkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1882",title:"Earth and Environmental Sciences",subtitle:null,isOpenForSubmission:!1,hash:"f08e8b418978309cbc096cae436e41c6",slug:"earth-and-environmental-sciences",bookSignature:"Imran Ahmad Dar and Mithas Ahmad Dar",coverURL:"https://cdn.intechopen.com/books/images_new/1882.jpg",editedByType:"Edited by",editors:[{id:"64247",title:"Dr.",name:"Imran Ahmad",middleName:null,surname:"Dar",slug:"imran-ahmad-dar",fullName:"Imran Ahmad Dar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"24572",doi:"10.5772/27233",title:"The Permo-Triassic Tetrapod Faunal Diversity in the Italian Southern Alps",slug:"the-permo-triassic-tetrapod-faunal-diversity-in-the-italian-southern-alps",totalDownloads:2484,totalCrossrefCites:5,totalDimensionsCites:25,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Marco Avanzini, Massimo Bernardi and Umberto Nicosia",authors:[{id:"69352",title:"Dr.",name:"Marco",middleName:null,surname:"Avanzini",slug:"marco-avanzini",fullName:"Marco Avanzini"},{id:"69369",title:"Dr.",name:"Massimo",middleName:null,surname:"Bernardi",slug:"massimo-bernardi",fullName:"Massimo Bernardi"},{id:"122682",title:"Prof.",name:"Umberto",middleName:null,surname:"Nicosia",slug:"umberto-nicosia",fullName:"Umberto Nicosia"}]},{id:"24566",doi:"10.5772/25448",title:"Soil Contamination by Trace Metals: Geochemical Behaviour as an Element of Risk Assessment",slug:"soil-contamination-by-trace-metals-geochemical-behaviour-as-an-element-of-risk-assessment",totalDownloads:8158,totalCrossrefCites:11,totalDimensionsCites:19,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Monika Zovko and Marija Romic",authors:[{id:"63363",title:"Dr.",name:"Marija",middleName:null,surname:"Romic",slug:"marija-romic",fullName:"Marija Romic"},{id:"70993",title:"Ph.D.",name:"Monika",middleName:null,surname:"Zovko",slug:"monika-zovko",fullName:"Monika Zovko"}]},{id:"24552",doi:"10.5772/26990",title:"Geology and Geotectonic Setting of the Basement Complex Rocks in South Western Nigeria: Implications on Provenance and Evolution",slug:"geology-and-geotectonic-setting-of-the-basement-complex-rocks-in-south-western-nigeria-implications-",totalDownloads:20028,totalCrossrefCites:1,totalDimensionsCites:19,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Akindele O. Oyinloye",authors:[{id:"68497",title:"Prof.",name:"Akindele",middleName:null,surname:"Oyinloye",slug:"akindele-oyinloye",fullName:"Akindele Oyinloye"}]}],mostDownloadedChaptersLast30Days:[{id:"68134",title:"Introductory Chapter: Earth Crust - Origin, Structure, Composition and Evolution",slug:"introductory-chapter-earth-crust-origin-structure-composition-and-evolution",totalDownloads:967,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"earth-crust",title:"Earth Crust",fullTitle:"Earth Crust"},signatures:"Muhammad Nawaz",authors:[{id:"269790",title:"Dr.",name:"Muhammad",middleName:null,surname:"Nawaz",slug:"muhammad-nawaz",fullName:"Muhammad Nawaz"}]},{id:"75063",title:"An Overview on the Classification and Tectonic Setting of Neoproterozoic Granites of the Nubian Shield, Eastern Desert, Egypt",slug:"an-overview-on-the-classification-and-tectonic-setting-of-neoproterozoic-granites-of-the-nubian-shie",totalDownloads:243,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"geochemistry",title:"Geochemistry",fullTitle:"Geochemistry"},signatures:"Gaafar A. El Bahariya",authors:[{id:"267666",title:"Dr.",name:"Gaafar",middleName:null,surname:"El Bahariya",slug:"gaafar-el-bahariya",fullName:"Gaafar El Bahariya"}]},{id:"72197",title:"Middle Miocene Evaporites from Northern Iraq: Petrography, Geochemistry, and Cap Rock Efficiency",slug:"middle-miocene-evaporites-from-northern-iraq-petrography-geochemistry-and-cap-rock-efficiency",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"geochemistry",title:"Geochemistry",fullTitle:"Geochemistry"},signatures:"Ali I. Al-Juboury, Rana A. Mahmood and Abulaziz M. Al-Hamdani",authors:[{id:"58570",title:"Prof.",name:"Ali",middleName:"Ismail",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"},{id:"313036",title:"Ms.",name:"Rana",middleName:null,surname:"Mahmood",slug:"rana-mahmood",fullName:"Rana Mahmood"},{id:"320900",title:null,name:"Abulaziz M.",middleName:null,surname:"Al-Hamdani",slug:"abulaziz-m.-al-hamdani",fullName:"Abulaziz M. Al-Hamdani"}]},{id:"24564",title:"Carbonate-Hosted Base Metal Deposits",slug:"carbonate-hosted-base-metal-deposits",totalDownloads:7511,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Fred Kamona",authors:[{id:"64861",title:"Dr.",name:"Fred",middleName:null,surname:"Kamona",slug:"fred-kamona",fullName:"Fred Kamona"}]},{id:"58849",title:"Soft Sediment Deformation Structures Triggered by the Earthquakes: Response to the High Frequent Tectonic Events during the Main Tectonic Movements",slug:"soft-sediment-deformation-structures-triggered-by-the-earthquakes-response-to-the-high-frequent-tect",totalDownloads:977,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"tectonics-problems-of-regional-settings",title:"Tectonics",fullTitle:"Tectonics - Problems of Regional Settings"},signatures:"Bizhu He, Xiufu Qiao, Haibing Li and Dechen Su",authors:[{id:"67245",title:"Dr.",name:"Bizhu",middleName:null,surname:"He",slug:"bizhu-he",fullName:"Bizhu He"},{id:"214032",title:"Prof.",name:"Xiufu",middleName:null,surname:"Qiao",slug:"xiufu-qiao",fullName:"Xiufu Qiao"},{id:"236871",title:"Prof.",name:"Haibin",middleName:null,surname:"Li",slug:"haibin-li",fullName:"Haibin Li"},{id:"236872",title:"Prof.",name:"Dechen",middleName:null,surname:"Su",slug:"dechen-su",fullName:"Dechen Su"}]},{id:"72717",title:"Microstructure Features in Paleo and Neoproterozoic Granitic Rocks, Southeastern Region of Brazil",slug:"microstructure-features-in-paleo-and-neoproterozoic-granitic-rocks-southeastern-region-of-brazil",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"geochemistry",title:"Geochemistry",fullTitle:"Geochemistry"},signatures:"Leonardo Gonçalves and Cristiane Castro Gonçalves",authors:[{id:"279207",title:"Dr.",name:"Leonardo",middleName:null,surname:"Gonçalves",slug:"leonardo-goncalves",fullName:"Leonardo Gonçalves"},{id:"317986",title:"Prof.",name:"Cristiane",middleName:null,surname:"Gonçalves",slug:"cristiane-goncalves",fullName:"Cristiane Gonçalves"}]},{id:"24569",title:"Climate History and Early Peopling of Siberia",slug:"climate-history-and-early-peopling-of-siberia",totalDownloads:2981,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Jiří Chlachula",authors:[{id:"58290",title:"Dr.",name:"Jiri",middleName:null,surname:"Chlachula",slug:"jiri-chlachula",fullName:"Jiri Chlachula"}]},{id:"59029",title:"Tectonic Insight in the Southwest Gondwana Boundary Based on Anisotropy of Magnetic Susceptibility",slug:"tectonic-insight-in-the-southwest-gondwana-boundary-based-on-anisotropy-of-magnetic-susceptibility",totalDownloads:523,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tectonics-problems-of-regional-settings",title:"Tectonics",fullTitle:"Tectonics - Problems of Regional Settings"},signatures:"Arzadún Guadalupe, Tomezzoli Renata Nela, Tickyj Hugo, Cristallini\nErnesto Osvaldo and Gallo Leandro Cesar",authors:[{id:"228870",title:"Ph.D.",name:"Guadalupe",middleName:null,surname:"Arzadun",slug:"guadalupe-arzadun",fullName:"Guadalupe Arzadun"},{id:"237217",title:"Dr.",name:"Renata",middleName:null,surname:"Tomezzoli",slug:"renata-tomezzoli",fullName:"Renata Tomezzoli"},{id:"237218",title:"Dr.",name:"Hugo",middleName:null,surname:"Tickyj",slug:"hugo-tickyj",fullName:"Hugo Tickyj"},{id:"237219",title:"Dr.",name:"Ernesto",middleName:null,surname:"Cristallini",slug:"ernesto-cristallini",fullName:"Ernesto Cristallini"},{id:"237220",title:"BSc.",name:"Leandro",middleName:null,surname:"Gallo",slug:"leandro-gallo",fullName:"Leandro Gallo"}]},{id:"24566",title:"Soil Contamination by Trace Metals: Geochemical Behaviour as an Element of Risk Assessment",slug:"soil-contamination-by-trace-metals-geochemical-behaviour-as-an-element-of-risk-assessment",totalDownloads:8158,totalCrossrefCites:11,totalDimensionsCites:19,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Monika Zovko and Marija Romic",authors:[{id:"63363",title:"Dr.",name:"Marija",middleName:null,surname:"Romic",slug:"marija-romic",fullName:"Marija Romic"},{id:"70993",title:"Ph.D.",name:"Monika",middleName:null,surname:"Zovko",slug:"monika-zovko",fullName:"Monika Zovko"}]},{id:"59828",title:"Evolution of Drainage in Response to Brittle - Ductile Dynamics and Surface Processes in Kachchh Rift Basin, Western India",slug:"evolution-of-drainage-in-response-to-brittle-ductile-dynamics-and-surface-processes-in-kachchh-rift-",totalDownloads:1027,totalCrossrefCites:4,totalDimensionsCites:14,book:{slug:"tectonics-problems-of-regional-settings",title:"Tectonics",fullTitle:"Tectonics - Problems of Regional Settings"},signatures:"Girish Ch Kothyari, Ajay P. Singh, Sneha Mishra, Raj Sunil\nKandregula, Indu Chaudhary and Gaurav Chauhan",authors:[{id:"55774",title:"Dr.",name:"Ap",middleName:null,surname:"Singh",slug:"ap-singh",fullName:"Ap Singh"},{id:"212374",title:"Dr.",name:"Girish",middleName:"Chandra",surname:"Kothyari",slug:"girish-kothyari",fullName:"Girish Kothyari"},{id:"239935",title:"Ms.",name:"Sneha",middleName:null,surname:"Mishra",slug:"sneha-mishra",fullName:"Sneha Mishra"},{id:"239936",title:"Mr.",name:"Raj Sunil",middleName:null,surname:"Kandregula",slug:"raj-sunil-kandregula",fullName:"Raj Sunil Kandregula"},{id:"239937",title:"Ms.",name:"Indu",middleName:null,surname:"Chaudhary",slug:"indu-chaudhary",fullName:"Indu Chaudhary"},{id:"239938",title:"Dr.",name:"Gaurav",middleName:"D",surname:"Chauhan",slug:"gaurav-chauhan",fullName:"Gaurav Chauhan"}]}],onlineFirstChaptersFilter:{topicSlug:"geology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/240691/silvia-ferraris",hash:"",query:{},params:{id:"240691",slug:"silvia-ferraris"},fullPath:"/profiles/240691/silvia-ferraris",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()