In this chapter, three-dimensional Casson nanoliquid flow in two lateral directions past a porous space by Darcy-Forchheimer articulation is examined. The study includes the impact of uniform heat source/sink and convective boundary condition. The administering partial differential equations are shaped to utilizing comparability changes into a set of nonlinear normal differential conditions which are fathomed numerically. The self-comparative arrangements are gotten and contrasted and accessible information for uncommon cases. The conduct of parameters is displayed graphically and examined for velocity, temperature, and nanoparticle volume part. It is discovered that temperature and nanoparticle volume fraction rise for enhancement of Forchheimer and porosity parameters.
Part of the book: Heat and Mass Transfer