Some countries where vetiver is known to exist.
\r\n\t
",isbn:"978-1-83968-460-9",printIsbn:"978-1-83968-459-3",pdfIsbn:"978-1-83969-232-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"babca2dea1c80719111734cc57a21a4c",bookSignature:"Dr. Amin Talei",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10404.jpg",keywords:"Water Budget, Ground Measurement, Satellite Data, Empirical Models, Physical Models, Data-Driven Models, Artificial Neural Network, Neuro-Fuzzy Systems, Genetic Programming, Irrigation Management, Drought, Aquifer Management",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 29th 2020",dateEndSecondStepPublish:"November 26th 2020",dateEndThirdStepPublish:"January 25th 2021",dateEndFourthStepPublish:"April 15th 2021",dateEndFifthStepPublish:"June 14th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in developing hydrological models using adaptive neuro-fuzzy systems, a pioneering researcher in tropical biofiltration systems, appointed head of the Civil Engineering Discipline in Monash University Malaysia.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"335732",title:"Dr.",name:"Amin",middleName:null,surname:"Talei",slug:"amin-talei",fullName:"Amin Talei",profilePictureURL:"https://mts.intechopen.com/storage/users/335732/images/system/335732.jpg",biography:"Associate Professor Amin Talei joined Monash University Malaysia in January 2013 and currently is the head of Civil Engineering discipline. His previous appointment was as researcher in School of Civil & Environmental Engineering of Nanyang Technological University of Singapore where he studied for his PhD during 2008-2011. His research is predominantly focused on hydrological modeling and flood forecasting using artificial intelligence techniques. Most recently, he has been also involved in research projects dealing with sustainable urban water management. To date, he has published over 50 articles in reputable journals and international conference proceedings. He has supervised several PhD and Master students and won the Supervisor of the Year Award in Monash University Malaysia in 2017. He has absorbed over AUD370,000 research funding from industry and international/national funding agencies since 2014 and is a chartered professional engineer of the Engineers Australia.",institutionString:"Monash University Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Monash University Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55730",title:"Vetiver Grass: A Tool for Sustainable Agriculture",doi:"10.5772/intechopen.69303",slug:"vetiver-grass-a-tool-for-sustainable-agriculture",body:'Soil is an integral part of the environment that is involved in many ecosystem services. However, decline in the actual and/or potential productivity of soils due to poor land management practices has become a major challenge to sustainable agriculture and environmental quality [1], thus threatening the food security of many countries of the world. According to Truong [2], some of these poor land management practices often lead to soil erosion and agro-chemical contamination from agricultural practices, urban wastes and industrial operations, which adversely reduces soil’s potential for sustainable food production, consequently affecting plants, animals and human lives.
In Truong [2], soil conservation methods such as contour banks, earthen bunds and concrete structures employed to rehabilitate lands with low soil quality are expensive, short-lived and sometimes impossible to execute. He finally reported that vegetative methods, such as the use of grasses, are an effective erosion and sediment control technology which are practicable and economical for the rehabilitation of lands for agricultural production. Vetiver grass (Vetiveria zizanioides L.) has been reported to be effective in erosion control [3] and remediation of contaminated soils [4]. According to Rao [5], due to their efficiency and low-cost, vetiver systems are more profitable than both engineering structures and other vegetative barriers. In Ref. [6], vetiver was reported to be highly tolerant to extreme soil conditions including heavy metal contaminations. In comparison with other grasses for rehabilitation of lands with adverse soil conditions, vetiver grass was reported to be superior to Bermuda grass (Cynodon dactylon) which has been recommended as a suitable species for acid mine rehabilitation [7]. Also, in an attempt to revegetate a highly saline land, Truong [8] reported superior performance of vetiver grass over Rhodes (Chloris guyana) and saltwater couch (Paspalum vaginatum), as it was able to survive and resume growth under very high saline conditions. This is due to its unique morphological and physiological characteristics which enables it to survive where other plants cannot [9].
Vetiver grass (V. zizanioides L.) is a perennial tufted plant that is native to India (Figure 1). It is described as a coarse Asian plant [10]. Although V. zizanioides is also commonly found in West Africa, an African counterpart, V. nigritana, has been reported to be far more common [10]. Table 1 shows some countries where vetiver grass is known to exist. According to Truong [11], vetiver grass possesses a root system that is abundant, complex, extensive and vertical in nature. According to National Research Council [10], the root grows almost straight down with few lateral surface roots, thus not interfering with the growth of other crops which could result in loss of yield. In Hengchaovanich [12], it was explained that the root system of vetiver grass can reach 3–4 m in the first year of planting, while [13] reported that it attains a total length of 7 m after 36 months. The roots are very strong with a mean tensile strength of between 75 and 85 MPa [14]. The leaves are thin and have sharp edges [10], while the shoots can grow up to 2 m. The mature foliage is tough and coarse, which enables it to stay in place for years [10]. They further reported that this attribute is important as an erosion control crop provided it is to work effectively. Its growth occurs from the crown, which rises relative to soil build-up [9]. The crown of the plant occurs slightly below the soil surface and as such no lasting damage can be done on it by grazing or trampling animals [10].
Vetiver (Vetiveria zizanioides L.) grass strips at the University of Ibadan, Nigeria.
Vetiver grass has been reported to be very effective in trapping both fine and coarse sediments in runoff water [10]. These sediments constitute bulk of the fertile layer (topsoils) of most agricultural lands, which is critical for crop cultivation. In addition, vetiver grass has been reported to have high tolerance for extreme adverse conditions, including heavy metal toxicity [15], hence making it suitable for the remediation of heavy metal-contaminated soils. This could be due to some of its special attributes which makes it an ideal species for environmental protection and sustainable agriculture. Some of these characteristics include massive, fine-structured root system [16]; high resistance to pests, diseases and fire [17]; high efficiency in absorbing dissolved N, P, Hg, Cd and Pb in polluted water [18]; and good and fast recovery rate after being affected by the previously listed adverse conditions [19].
The application of vetiver grass as a technology for soil and water conservation was first developed in India by the World Bank in the 1980s [2]. Some of the applications of vetiver grass technology, which could sum up to the enhancement of sustainable agricultural development, include its use for soil erosion and sediment control on sloping farmlands and floodplains [20–24]; rehabilitation of saline and acid sulphate soils [6]; bioremediation of agro-chemicals [25, 26]; biological pest control [24]; and on- and off-site heavy metal pollution control [6, 26] amongst others.
Erosion, which is simply the washing away of soils by ‘agents’ such as water and wind, is a phenomenon that has ravaged so many lands, resulting in soil degradation and consequently low crop yield. According to National Research Council [10], it is among the most devastating environmental disaster for many developing countries and it results in loss of huge amounts of valuable soils which are key to agricultural production. Management methods could be expensive and sometimes less effective. However, Truong [27] reported that both research and field results in Australia, Asia, Africa and South America show that in comparison with conventional cultivation practices, surface runoff and soil loss from fields treated with vetiver grass were significantly lower and crop yield was much improved. Figure 2 illustrates the processes of erosion and sediment control under conventional cultivation practice and vetiver grass system. V. zizanioides has been reported to reduce soil loss from 11 to 3 t ha−1 [10]. They explained that vetiver is suitable for erosion and sediment control because it slows runoff and gives the rainfall a better chance of soaking into the soil instead of rushing off the slope. According to Truong and Loch [9], when vetiver grass is planted in single or multiple rows on the contour, it forms a protective barrier across the slope, which slows the runoff water, thereby causing sediment to be deposited. They further explained that since the barriers only filter the runoff and do not convey it, water seeps through the hedge, reaching the bottom of the slope at lower velocity without causing any erosion or without being concentrated in any particular area.
Comparison between conventional terrace/contour system and Vetiver system in soil and water conservation (adapted from Ref. [9]).
According to Refs. [21–23, 26, 28–30], results over the last 10 years have showed vetiver grass to be very successful in reducing flood velocity and limiting soil movement, with very little erosion in fallow strips. In Rao et al. [31], relative to control plots, average reductions of 69% in runoff and 76% in soil loss were recorded from vetiver plots. In Nigeria, Babalola et al. [3] demonstrated the usefulness of vetiver grass as a soil and water conservation measure in the Nigerian environment. They established vetiver strips on 6% slopes for three growing seasons. The results of the study showed that vetiver grass ameliorated soil physical and chemical conditions, reduced soil and nutrient losses, and increased soil moisture storage by a range of 1.9–50.1% at various soil depths for a distance of 20 m. Other research studies that have been conducted on the use of vetiver grass for soil and water conservation in Nigeria include Refs. [21–23, 26, 32, 33]. Table 2 shows a summary of the effects of vetiver grass and conventional systems in soil loss and runoff control.
Africa | America | Asia | Caribbean | Pacific | Others |
---|---|---|---|---|---|
Algeria | Argentina | Bangladesh | Antigua | American Samoa | France |
Angola | Brazil | Burma | Barbados | Cook Islands | Italy |
Burundi | Colombia | China | Cuba | Fiji | Spain |
Comoro | Costa Rica | India | DR | New Caledonia | USA |
CAR | FG | Indonesia | Haiti | New Guinea | USSR |
Ethiopia | Guatemala | Japan | Jamaica | Tonga | |
Gabon | Guyana | Malaysia | Martinique | Western Samoa | |
Ghana | Honduras | Nepal | Puerto Rico | ||
Kenya | Paraguay | Pakistan | St. Lucia | ||
Madagascar | Suriname | Philippines | St. Vincent | ||
Malawi | Singapore | Trinidad | |||
Mauritius | Sri Lanka | Virgin Islands | |||
Nigeria | Thailand | ||||
Rwanda | |||||
Reunion | |||||
Seychelles | |||||
Somalia | |||||
South Africa | |||||
Tanzania | |||||
Tunisia | |||||
Uganda | |||||
Zaire | |||||
Zambia | |||||
Zimbabwe |
Some countries where vetiver is known to exist.
Note: CAR, Central African Republic; FG, French Guiana; DR, Dominican Republic (source: Ref. [10]).
Country | Soil loss | Runoff | ||||
---|---|---|---|---|---|---|
Control | Conventional | Vetiver system | Control | Conventional | Vetiver system | |
Thailand | 3.9 | 7.3 | 2.5 | 1.2 | 1.4 | 0.8 |
Venezuela | 95.0 | 88.7 | 20.2 | 64.1 | 50.0 | 21.9 |
Venezuela (15%)* | 16.8 | 12.0 | 1.1 | 88 | 76 | 72 |
Venezuela (26%)* | 35.5 | 16.1 | 4.9 | NA | NA | NA |
Vietnam | 27.1 | 5.7 | 0.8 | NA | NA | NA |
Bangladesh | NA | 42 | 6–11 | NA | NA | NA |
India | NA | 25 | 2 | NA | NA | NA |
14.4 | 3.9 | 23.3 | 15.5 | |||
Nigeria (Flat) | NA | NA | 1.25–10.3 | 5.3–15.7 | NA | 1.15–4.07 |
Nigeria (Mound) | NA | NA | 0.68–5.00 | 15.7–26.5 | NA | 0.72–4.85 |
Comparison of soil loss and runoff control under conventional and Vetiver grass systems.
*Land slope.
Note: NA, not available (source: Ref. [34]).
Salinity, which is the amount of dissolved salt content of a soil or water body, is a major challenge confronting agricultural production especially in semi-arid regions of the world with respect to crop. According to Truong and Baker [35], vetiver grass that could cope with saline soils has been successfully employed in the rehabilitation of salt-affected lands. This may be due to its high tolerance to salt-affected soils. In Truong [36], it was reported that with a salinity threshold level at ECse = 8 d Sm−1, vetiver grass compares favourably with some of the most salt-tolerant crops and pasture species (such as Bermuda grass (C. dactylon) with threshold at 6.9 d Sm−1; Rhodes grass (C. guyana) at 7.0 d Sm−1; Wheat grass (Thynopyron elongatum) at 7.5 d Sm−1; and barley (Hordeum vulgare) at 7.7 d Sm−1) grown in Australia.
On the other hand, acid soils which constitute a major part of arable lands in Africa and Asia are highly erodible and difficult to stabilize and rehabilitate [27]. However, vetiver has been successfully used to stabilize and rehabilitate a highly erodible acid sulphate soil, where the actual soil pH was about 3.5 and oxidized pH was as low as 2.8 [4, 37]. When planted on saline and/or acid sulphate soils, vetiver grass can effectively absorb plant available sodium and metals that contribute to soil salinity or acidity, thereby rehabilitating these soils [35]. Also, the tensile strength of its root system can also contribute to increasing soil strength against runoff and erosion, thus stabilizing the soil slope.
Agro-chemicals (pesticides, herbicides, and even fertilizers) have been reported to adversely affect soil properties and water quality. This adverse effect is finally expressed in the quality of crop produced. According to Truong [27], vetiver has played an important role in the decontamination of agro-chemicals due to its ability to retain them within its system, thereby preventing them from contaminating and accumulating in soils and crops. Table 3 shows the threshold levels of heavy metals to vetiver grass. According to Refs. [18, 25], research conducted in cabbage crops grown on steep slope (60%) in Thailand indicated that vetiver hedges had an important role in the process of captivity and decontamination of agro-chemicals, especially pesticides such as carbofuran, monocrotophos and anachlor. According to Truong et al. [15], planting vetiver grass across drainage lines could serve as a living filter for capturing unwanted foreign chemicals or contaminants before they reach non-polluted soil and downstream areas.
Heavy metals | Threshold levels in soil (mg kg−1) | Threshold levels in plant (mg kg−1) | ||
---|---|---|---|---|
Vetiver | Other plants | Vetiver | Other plants | |
Arsenic | 100–250 | 2.0 | 21–72 | 1–10 |
Cadmium | 20–60 | 1.5 | 45–48 | 5–20 |
Copper | 50–100 | NA | 13–15 | 15 |
Chromium | 200–600 | NA | 5–18 | 0.02–0.20 |
Lead | >1500 | NA | >78 | NA |
Mercury | >6 | NA | >0.12 | NA |
Nickel | 100 | 7–10 | 347 | 10–30 |
Selenium | >74 | 2–14 | >11 | NA |
Zinc | >750 | NA | 880 | NA |
Tolerance levels of vetiver grass and other plants to heavy metals.
Note: NA, not available (source: Ref. [9]).
Insects and pests are two of the most destructive biological pests known to cause damage to agricultural crops and consequently leading to reduction in crop yield. The use of agro-chemicals in controlling most of these pests results in adverse effects on both soils and crops. Results of the research carried out in Guangxi University, China, after subjecting vetiver grass to insect attack, showed that of the 79 species of insect found on vetiver rows, only four attacked young vetiver leaves [24]. He explained that due to few insects that could attack vetiver grass, the damage was minimal. Also, the potential of vetiver extract as a natural pre-emergent weed killer was obtained when methanol extracts of its ground stem and root were found to be very effective in preventing the germination of a number of both monocotyledonous and dicotyledonous weed species [38].
Large volume of waste or contaminated water emanating from industrial or domestic discharges could be difficult or expensive to control, especially when released into the environment. In Truong [36], wastewaters can be managed either by disposal (i.e. total elimination or reduction in volume) or treatment (i.e. improving its quality).
According to Truong [36], vegetative methods are the only feasible and practicable method available for the disposal of wastewater. Vetiver grass has been reported to be more effective than trees and pasture species in the disposal of domestic and industrial effluent. This is because vetiver grass possesses some unique characteristics suitable for environmental protection purposes [39]. Apart from absorbing toxic elements in wastewater, vetiver grass can also absorb large quantities of water, thus reducing the volume of these waters from the environment. Thus, according to Truong [20], the problem of wastewater disposal can be solved by using such water as irrigation water for growing vetiver grass, where it can be absorbed. Effluent discharge was reduced by sub-surface irrigating vetiver grass rows [15]. This could also reduce potential ponding situations which are not usually favourable for most arable crops. It was reported in Truong and Smeal [40] that in producing a massive growth of biomass (>100 t ha−1), vetiver grass consumes a large volume of water.
According to Truong [36], in quantifying the water use rate of vetiver, a good correlation between water use and dry matter yield of vetiver was obtained. He explained that from this correlation, it was estimated that for a kilogram of dry shoot biomass, vetiver grass would use 6.8 L day−1. Also, Truong and Smeal [40] explained that if the biomass of 12-week-old vetiver, at the peak of its growth cycle, was 40.7 t ha−1, a hectare of vetiver grass would potentially use 279 kL ha−1 day−1. According to Truong [36], data from a landfill leachate site showed that vetiver grass can dispose up to 3.8 L m−2 day−1. It was reported in Truong and Hart [41] that where other plants such as fast growing tropical grasses and trees, and other crops such as sugar cane and banana have failed, vetiver grass survived. Vetiver grass of about 100 vetiver stands in an area less than 50 m2 completely dried up the effluent discharge from a toilet block. In addition, Percy et al. [42] reported that 4 and 2 mL of highly contaminated landfill leachate were effectively disposed in a month in summer and in winter by 3.5 ha planting of vetiver, respectively, while Smeal et al. [43] reported that most industries in Queensland are upgrading their treatment process of wastewater by adopting vetiver grass system as a sustainable means of disposing wastewater.
Vegetative method is generally the most efficient and common method for water quality improvement [36]. He reported that the attributes of vetiver grass indicate that it is highly suitable for treating polluted wastewater from industries as well as domestic discharges. Some of these attributes include its tolerance to elevated and sometimes toxic levels of salinity, acidity, sodicity, and heavy metals. Vetiver can be used to improve wastewater quality either by absorbing pollutants and heavy metals or by trapping debris, sediment and agro-chemicals in agricultural lands. In Truong [20], it was reported that growing vetiver grass on effluent is one of the effective low-cost technologies of treating wastewater. According to Truong and Hart [41], planting 100 vetiver grass in an area less than 50 m2 completely dried up effluent discharge from a septic tank. An earlier research by Wagner et al. [44] showed the exceptional ability of vetiver grass in absorbing and to tolerate extreme levels of nutrients, Truong et al. [15] stated that nutrients (N, P, Ca, etc.), herbicides (diuron, trifluralin, fluometuron, etc.) and pesticides (α, β and sulphate endosulfan and chlorpyrifos, parathion and profenofos) could be restrained on site if vetiver grass hedges were established across drainage lines (Figure 3).
Herbicide concentration in soil-deposited upstream and downstream of vetiver filter strips (source: Ref. [32]).
In China, research showed that vetiver grass can reduce soluble P up to 99% after 3 weeks and 74% of soluble N after 5 weeks [27]. Vetiver grass has also been used to control algal growth. For example, Refs. [45, 46] reported that vetiver grass could remove dissolved nutrients and reduce algal growth within 2 days under experimental condition. In addition, Truong [27] explained that vetiver grass can be used very effectively to control algal growth in water infested with blue-green algae by planting vetiver grass strips at the edges of the streams or in the shallow parts of the lakes where usually high concentrations of soluble N and P occur. The thick culms of vetiver that is just above the soil surface also collected debris and soil particles carried along watercourse [47], while Liao et al. [48] reported that with proper planning, vetiver grass technology has the potential of removing up to 102 t of N and 54 t of P yr−1 ha−1 of vetiver planting.
Furthermore, in the purification of wastewater from a pig farm which contained very high N, P, Cu and Zn, vetiver grass showed a very strong purifying ability, with its ratio of uptake and purification of Cu and Zn (>90%), As and N (>75%), Pb (between 30 and 71%), and P (between 15 and 58%) [48]. Concentrations of some toxic elements (Al, Fe, and SO4) in vetiver grass planted on an acid sulphate soil was found to increase as the plant matures, thus reducing contamination of canal water [49]. Thus, the efficiency of wastewater treatment increases with an increase in the age of vetiver plant [47]. Table 4 presents effluent water quality prior to and after vetiver treatment. This could be highly beneficial to agriculture especially in the area of irrigation where available water for crop cultivation is fast diminishing as a result of climate change impact and competition from other users.
Parameter | Fresh effluent | Results | |
---|---|---|---|
2002/2003 | 2004 | ||
pH (6.5–8.5)* | 7.3–8.0 | 9.0–10.0 | 7.6–9.2 |
Dissolved oxygen (2.0 minimum)* | 0–2 mg L−1 | 12.5–20.0 mg L−1 | 8.1–9.2 mg L−1 |
5 day BOD (20–40 mg L−1 maximum)* | 130–300 mg L−1 | 29–70 mg L−1 | 7–11 mg L−1 |
Suspended solids (30–60 mg L−1 maximum)* | 200–500 mg L−1 | 45–140 mg L−1 | 11–16 mg L−1 |
Total nitrogen (6.0 mg L−1 maximum)* | 30–80 mg L−1 | 13–20 mg L−1 | 4.1–5.7 mg L−1 |
Total phosphorus (3.0 mg L−1 maximum)* | 10–20 mg L−1 | 4.6–8.8 mg L−1 | 1.4–3.3 mg L−1 |
Effect of vetiver grass treatment on effluent quality levels.
*Licence requirements.
Note: BOD, biological oxygen demand (source: Ref. [32]).
The improvement of agricultural crop yield is one of the resultant benefits of the effects of vetiver grass technology on soil and water conservation. This could be beneficial to farmers, especially those farming on sloppy lands that are usually prone to erosion. It was reported by National Research Council [10] that vetiver grass improves crop harvest by reducing crop failure against the dry spell. They also reported that vetiver grass enhances soil moisture for plant use. In Nigeria, Babalola et al. [3] reported an increase in crop yields by a range of 11–26% for cowpea and by about 50% for maize following the application of vetiver grass strips at 20-m intervals against non-vetiver plots on a 6% slope. They attributed the higher grain yield to higher nutrient use efficiency under vetiver grass strips relative to no vetiver strip.
Also, Oshunsanya et al. [32] reported an increase in maize grain yield (13.5–26.6%), and cassava tuber weight (7.9–11.2%) in a maize/cassava intercrop under vetiver grass strips spaced at 5-, 10- and 20-m surface intervals. Another report by Babalola et al. [50] showed that grain yields on plots treated with 4 and 6 t ha−1 vetiver grass mulch were 4 and 47.4% higher than plots treated with vetiver grass strips, respectively. In addition, Laing [51] finally reported that the full potentials of vetiver grass could be harnessed by combining vetiver grass mulch with vetiver grass strips such that vetiver grass strips would reduce soil water erosion, while mulch materials would decompose to improve the nutrient status of the farmland.
Apart from its unique physiological characteristics, which give it an edge over other grasses as a plant with diverse environmental applications, vetiver grass has also been found useful in a number of ways. Apart from being a soil and water conservation technology, this grass of great utility has been reported to be legally accepted for use as property lines in certain parts of India. Also, in Nigeria the surveyor general has in past permitted vetiver grass hedges as a legal boundary marker. This is because its bases expand so little [10]. It grows so densely that it can block the spread of weeds. For instance, in Zimbabwe and Mauritius, farmers plant vetiver grass around their fields to keep Kikuyu grass and Bermuda grass from invading their fields, respectively [10].
Furthermore, National Research Council [10] reported that for several centuries, vetiver grass has been commercially cultivated for its scented oil that can be distilled from its roots. They also reported that it is a treasured ingredient in some of the world’s best-known perfumes and soaps, and largely because of its potential as an export commodity. However, only a handful of countries produce vetiver oil commercially. Although reliable statistics are unavailable, the world production of vetiver oil is estimated to be about 250 tons a year [10]. The annual consumption is estimated in Table 5. Other products that could be derived from the vetiver grass include mats, baskets, fans, sachets, window coverings, wall hangings, thatch roofs, lampshades and ornaments which are usually weaved from its roots or stems [10].
Country | Quantity (tons) |
---|---|
United States | 100 |
France | 50 |
Switzerland | 30 |
United Kingdom | 20–25 |
Japan | 10 |
Germany | 6 |
Netherlands | 5 |
Other | 30–40 |
Vetiver grass technology has been applied globally for controlling soil erosion, stabilizing land and water resources and remediating contaminated lands in order to improve crop growth and yields. It is used as fodder for animal feed, mulch for improving soil moisture and fertility, and fibrous root system for holding soils in place could guarantee food production on a sustainable basis owing to the fact that this grass can withstand adverse environmental and climatic conditions, coupled with quick regeneration after pruning. Thus, when vetiver grass is applied appropriately, it could be a low-cost, simple and easily applicable multi-purpose soil and water conservation tool for sustainable agriculture. It is also a grass of great utility that could provide other means of revenue for local farmers.
The modern metal forming industry has taken complete advantage and benefit offered by the advanced techniques in order to remain in today’s competitive market. The solidification modeling is a phase-change phenomena which is amazingly complicated as well as critical in many areas of science and engineering and also very vital in the field of automotive and aerospace applications. In the field of foundry engineering, when the molten metal is poured into the mold cavity, the metal solidifies and discharges heat into the mold, the metal shrinks due to which an air gap is formed in between the cast and the mold. This air gap acts as an obstruction for the heat flow from the cast to the mold and is to be found as one of the moving boundary conditions to be given as input for the casting simulation software. In the simulation of a solidification of the casting process, many parameters play a significant role responsible for the quality of the cast.
\nThe data base for the properties of commonly used materials such as density, thermal conductivity, specific heat, solidus temperature, liquidus temperature, latent heat release etc., for the simulation of casting parameters need to be maintained by the industries.
\nTo comprehend the heat transfer mechanism we need to know the behavior of solidification. The heat transfer from the liquid hot temperature cast to the mold is a very complex phenomenon and different modes of heat transfer can be observed while solidification in the cast. While heat transfer is predominant the resistance to the heat flow also has different dimensions to this solidification. This resistance mainly depends on liquid cast metal, latent heat release, interface, solidified cast, the type of mold and the ambient conditions. General solidification of an alloy is discussed in the Figure 1 and specific cooling curve for Al6061 is shown in Figure 2.
\nSolidification curve for alloy.
Aluminum alloy (Al6061) solidification curve.
Initially on pouring the liquid metal cast into the mold cavity the whole metal fluid flows and occupies the mold cavity, the liquid metal flowing with the velocity, mixes thoroughly and releases heat to the mold due to the very high temperature difference. Complete thermal contact is observed between the cast and the mold which causes the heat transfer to be purely conduction, where the resistance offered by this liquid metal is negligible since the entire fluid flow is the superheated cast metal. Once the cast metal reaches the liquidus point on cooling, the cast shrinks and releases latent heat and also a number of metal oxides are released which causes an air gap between the cast and the mold. Due to this air gap the heat transfer phenomenon now changes to a complex one where all modes of heat transfer can be observed simultaneously. This air gap is characterized with an Interfacial Heat transfer Coefficient (IHTC) “h” across the metal-mold interface. The rate of heat at the interface is found using the surface heat flux as q (W/m2) and given by the Eq. 1.
\nTc and Tm are the cast and mold surface temperatures at the interface in K or deg. C.
\nThe dynamics of solidification of cast metal, mold temperature and the cast temperature can be clearly understood from the cooling curves shown in Figure 2. Once the molten metal fills the cavity the alloy cast reaches the maximum temperature. Generally the heat transfer analysis starts from this point onwards as the temperature drops from the liquid cast metal to the liquidus temperature (TL), the point at which the solidification begins and this freezing is called liquid cooling. The loss of superheat temperature of the cast metal after pouring is found due to the turbulence in the liquid metal. This rate of cooling is linear and a minimum amount of heat is transferred from the cast to the mold as it is having a complete contact with the mold surface.
\nAs the solidification progresses with time it reaches the liquidus point at the same time where the mold temperature increases significantly to a maximum temperature. Further the solid skin forms on the outer cast surface, the metal shrinks and an air gap starts forming between the metal and the mold. When the cast solidifies further the air gap separates the two surfaces. This is a common phenomenon in most of the alloys. The rate of heat transfer from the cast to the mold is very high as it releases larger quantity of latent heat to the mold and the cast temperature gradually reaches a solidus (TS) temperature of the alloy. The air gap plays a significant role in varying IHTC with various factors influencing solidification.
\nFurther solidification reduces the cast surface temperature, however the inner cast metal shrinks and it further releases the heat to the mold and there is rise in the mold temperature as shown in Figure 2. Thereafter further reduction in the cast temperature after the solidus point (Ts) was found as the third stage of solidification. The air gap size is further increased as the solidification time increase and its effects are felt till the end of solidification. However there is still a temperature difference between the cast and mold for the further heat transfer to continue.
\nOnce the complete air gap is formed between the cast and the mold, the gap will contain almost all kinds of gaseous except air that contradicts the air gap term. The sand mold which is used for the casting application, generates the mold gases which are often high in hydrogen, containing typically 50 percent which fills the air gap. The hydrogen gas thermal conductivity increases the heat transfer by 7 times more as the mold temperature rises to a high temperature of 500°C due to radiation. Therefore it is very essential to know or analyze the interface during the solidification process as it is further discussed in the next section.
\nOn comparing the green sand mold with dry sand mold the green sand mold expand homogeneously and release heat to the surrounding which leads to a lesser resistance for the heat flow whereas dry sand mold offers more resistance than the green sand mold. The high thermal conductivity die mold material has uniform temperature variation and assumes homogeneous expansion.
\nWhile melting the metal in the furnace has a higher specific volume hence it occupies more space by the metal and on pouring it results in the solidification in the mold which increases the complexity of the solidification [1]. After pouring the temperature of the cast reduces and the specific volume also reduces which causes shrinkage in the poured volume as shown in Figure 3. To understand the complex behavior of solidification we need to understand three different stages of shrinkage of metal during the solidification process; it includes liquid shrinkage, liquid- solid shrinkage and solid shrinkage.
\nSpecific volume changes against cast surface temperature.
The superheated metal which is poured in the liquid state has more specific volume than the liquid metal in the cavity [2]. This liquid metal occupies the mold cavity and is in superheated state and comes in complete contact with the mold surface. Here the mode of heat transfer is purely conduction shown in Figure 3. On solidification there is a liquid contraction due to reduction in specific volume, the metal cools further and reaches to a liquidus temperature. This contraction of liquid metal separates cast and mold surface and imitates the air gap formation which is assigned as liquid shrinkage.
\nActually the liquid contraction leads to a solidification which is a complex problem in the casting industry. This requires a proper feeding mechanism to fill the cavity by maintaining high liquid cast temperature while pouring and if not then the partial liquid - solid contraction leads to shrinkage porosity. The specific volume of the solid metal is lesser than the liquid metal. All the solidifications are planned for the directional solidification which refers to the faster cooling rate at which solidification progresses from the cavity metal to the feeder mechanism. The faster cooling rate and the movement of liquid in the solidification is due to the area of the surface which enables the liquid metal to drop its high temperature to solidus temperature. The runner, riser and the gating system is designed in the mold pattern enhances the directional solidification by transferring proper heat flow from the cast to the mold.
\nThe alloys of eutectic type allow lesser solidification shrinkage volume and also have a lower sensitivity to the solidification problems caused by sudden geometry changes. While they involve smaller risers, these can be omitted completely in certain cases by gates placed strategically and because the metal feed avenues stay open longer, it ensures a uniform solidifying process. While eutectic type of solidification is the most simplest, it requires the least reciprocity and can withstand a range of geometries. Directional solidification is more complex; however, when it has an ideally designed geometry, it is highly capable of extremely higher interior unity. Heat transfer is in fact the main process behind the bilaterally symmetrical and mutual state of connectedness in the process of solidification shrinkage and geometrical patterns. The heat transfer during solidification of castings involves three modes of heat transfer, namely radiation, conduction and convection, the rate of heat transfer is still dependent on the geometry of the casting as discussed later in the interfacial heat transfer coefficient section.
\nThe final stages of shrinkage in the solid state which can cause a separate series of problems. As cooling progresses, and the casting attempts to reduce its size in consequence, it is rarely free to contract as it wishes. This stage of solidification is usually complex either by the types of mold, or by the other casting parts like the runner and riser that have already solidified and cooled as the air gap formed. The air gap formed is mainly due to the various factors like metal oxide formation, coefficient of thermal expansion, latent heat released, evaporation moisture in the case of sand mold, interfacial gap, mode of heat transfer etc. this type of solidification shrinkage is also called as pattern shrinkage.
\nThese factors are the major causes for the heat to flow from the cast to the mold and it is found that it majorly affects the solidification and in turn affects the quality of the cast product. The amount of solid metal stretches like plastic casting, makes the solidification again into a complex problem. This shrinkage behavior leads to difficulty in predicting the size of the pattern since the degree to which the pattern is made oversize (the ‘contraction allowance’ or ‘patternmaker’s allowance’) is not easy to quantify. This shrinkage also causes hot tearing or cracking of the casting which lead to more localized problems.
\nIn general, liquids contract on freezing because of the rearrangement of atoms from a rather open ‘random close-packed’ arrangement to a regular crystalline array of significantly denser packing. The densest solids are those that have cubic close packed (face-centred-cubic, fcc, and hexagonal close-packed, hcp) symmetry. Thus the greatest values for contraction on solidification are seen for these metals.
\nThe heat transfer characteristics during casting are governed by IHTC. The molten metal is poured into the cavity it first enters the mold due to the fluidity of the metal, it occupies the cavity and ensures complete contact between the metal and the mold. In the early stage of solidification, the fluidity of the molten metal conformance and contact between the cast and mold surfaces is good. At this early stage of solidification due to the nucleation of the metal, higher initial surface heat flux is reached. Further the solid skin forms and then spreads to cover the entire casting surface. As the solidified layer forms with sufficient strength, simultaneously air gap forms and as a consequence the contact between the casting and the mold are reduced. This leads to the sudden drop in the heat flux and the solid skin forms on the outer cast surface [3]. The cast liquid - solid shrinks/contracts away from the mold surface. This further releases heat and it is absorbed by the mold surface and in turn increases the temperature of the mold as it expands. The mode of heat transfer is not only due to conduction at this stage because the heat from the metal to the mold takes place across the interface region but also due to other modes of heat transfer convection and radiation. The air gap varies for the different cast metals and depends on their factors of the release of metal oxides, hydrogen gases and material properties of the cast and mold, geometry etc.
\nFurther the third stage of solidification is identified between the liquidus to solidus temperature of the cast as the fall in the casting surface temperature is suddenly halted, due to the release of latent heat. After the complete solid skin formation on the cast the heat transfer further diminishes and gap size increases and the mode for heat transfer is assumed to be conduction of heat through the gaseous phase in the interface using the air gap method. This air gap size is measured as x by assuming the expansion to be homogeneous, and the interfacial heat transfer coefficient is estimated as h = k/x: where k is thermal conductivity of the air (W/mK) as shown in Figure 4. This concept of conduction as a mode of heat transfer in IHTC is reported by Kai- Ho and Robert D Pelhke, [4]. There are many factors that influence the IHTC and practically the IHTC becomes highly unpredictable if all the factors are not taken into account while designing. The various factors listed by the authors Lewis and Ransing, [5] and Guo Zhi-Peng et al. [6], that affect the interfacial heat during solidification is listed below.
\nSchematic representation of IHTC during solidification of casting.
\n
Die coating thickness: The initial high peak value of IHTC is reduced with an increase of die coating thickness. While pouring the metal at the liquid stage the effect of die coating behaves as a weaker influence at the interface as the air gap formed.
Insulating pads, chills, etc.: The IHTC has different behaviors with insulating pads and chills. It is obvious that always the insulating material reduces the IHTC and the chills increases the IHTC.
Geometry of Casting: The area of contact with the mold and the directional solidification will have higher IHTC.
Pouring temperature: Higher values of superheat will increase the initial value of IHTC.
Surface roughness: Higher initial value of IHTC for the better contact when the surfaces are smooth.
Alloy composition: Higher initial value established for an alloy with a larger freezing range.
Latent heat: Cast from superheat temperature to liquidus temperature ensures sharp slope in IHTC due to the evolution of latent heat.
Metallostatic pressure: During the pouring of molten metal into the cavity rises the metallostatic pressure, this is also responsible for higher IHTC at the initial stage.
Mold temperature: During initial stage higher IHTC due to the higher mold temperature and smaller temperature difference for higher peak heat flux.
Die Coating thickness: Increase of die coating thickness decreases the IHTC. While pouring the metal at the liquid stage the effect of die coating behaves as a weaker influence at the interface as the air gap formed.
Mold materials
Type of castings
As it is pointed out by many researchers the gap size mainly depends on the gas that is formed in the interface. The rate of solidification of castings made in a sand mold is generally controlled by the rate at which heat can be absorbed by the mold. In fact, compared to many other casting processes, the sand mold acts as an excellent insulator, keeping the casting warm. However, of course, ceramic investment and plaster molds are even more insulating, avoiding premature cooling of the metal, and aiding fluidity to give the excellent ability to fill thin sections for which these casting processes are renowned. It is regrettable that the extremely slow cooling can contribute to rather poorer mechanical properties.
\nExtensive literature reviews have been made, in order to determine the interfacial heat transfer behavior during the solidification of casting at the metal-mold interfaces, since the 1970’s. The boundary conditions as a surface heat flux and mold surface temperature established at the metal mold interface were used to determine the precise interfacial heat transfer coefficient value by using many mathematical methods described in the literature. The most common approaches can be distinguished here as follows for the determination of IHTC at the metal-mold interface including surface heat flux and mold surface temperature:
Air gap measurement technique
Pure Analytical approach
Semi-analytical method
Numerical Methods
The following section explains the detailed procedure of these methods listed above.
\nThis method calculates the IHTC based on entrapped gas properties present at the interface. The thermal conductivity of the air between the cast mold interface and the distance of air gap measured as x with the LVDT [7]. The formula used for IHTC calculation is, h = k/x, W/m2K. The mode of heat transfer assumed in this method is conduction at the interface, but the other modes of heat transfer are also practically possible as we have discussed in the above section. Hence this method is not widely accepted by the researchers.
\nIn this approach, experimental cooling curves were obtained at certain locations of the cast surface and on the mold to estimate the IHTC. The IHTC is calculated based on measured cast temperature, estimated mold surface temperature and estimated mold surface heat flux. Generally solidification heat transfer problems as shown in Figure 5 were categorized as
Direct Heat Conduction Problem (DHCP)
Indirect Heat Conduction Problem (IHCP)
Schematic diagram for DHCP and IHCP conditions.
In the DHCP the boundary conditions were known at the metal mold interface (which is a moving boundary problem and is difficult to acquire the parameters at the interface) and the effects were determined, mathematically it is known as a well posed problem. But in solidification of casting, knowing the boundary condition is very difficult because of its high transient nature, moving boundary problem, high temperature region, combination of all modes of heat transfer, etc., at the interface. So the inverse heat conduction problem is used to approach the problem. In order to calculate the boundary condition at the interface as a surface heat flux and surface temperature of the mold, experiments were carried out to determine temperatures in the mold to get the input data. This leads to a method of adoption of an ill-posed problem or the inverse heat conduction problem (IHCP) [8]. This ill-posed nature makes IHCP conduct experimentation to determine the boundary conditions at the interface before it has to be solved from the available data rather than using a DHCP approach.
\nThe interfacial heat transfer coefficient at the cast mold interface can be calculated based on Eq. (1), requiring the transient surface heat flux. Cast and mold surface temperatures are measured using thermocouples during solidification regardless of its uncertainty in the physical measurements. The pure analytical or other methods mentioned above are unable to determine the surface heat flux at the interface. This leads to the numerical approaches and their formulation of inverse heat conduction problem (IHCP) at the interface to determine the boundary conditions. The boundary conditions at the interface are explored or determined by the IHCP. This has been studied by various techniques like FDM, FEM, FVM and CV methods. One of the common and mostly used method is mainly based on the function minimization technique based on the numerically calculated and measured data [6].
\nWhere, F(h) is the minimization function, Ti, Yi are calculated and measured transient temperatures at the same locations, i= 0 to N, nodal point. The errors in the temperature measurement may also lead the IHCP into ill-posed. This problem leads the researchers to propose many techniques to solve for IHCP to determine boundary conditions at the interface with the measured temperature histories.
Polynomial extrapolation method: The temperature at the interface was deduced by extrapolating any one of the polynomial curve fitting techniques. This method needed many measurements inside the cast and mold surfaces. This mathematical tool failed to minimize measurement errors.
Regularization method: In order to minimize the error from the measurement obtained a sensitivity analysis can be carried out using the Tikhonov regularization theory. This was used to regularize some function to relate the measured data and this was improving the accuracy and stability of the results obtained. This method could achieve an excellent solution and could be applied to any complex geometry, but the computation takes a very long time.
Boundary element method and Laplace transform: the unknown temperature were transformed into equations as well as written as matrix format. This could be easily solved and written into a computer program. But it has some restrictions. It was an effective method to solve a simple linear problem. But the measured temperature data always has more noise (disturbances) in the data, this could fluctuate the result obtained as heat flux.
Beck’s function specification with finite difference method (implicit & explicit): It was another minimizing error technique used based on heat flux, where sum of squares of assumed and calculated data are used into the function. This method could be used for linear or nonlinear problems. Also, it has long computation time and also could achieve an accurate solution with efficient computation.
Control volume method: This method works, based on energy balance applied over a control volume drawn on each nodal point. The next one is the governing equation for the transient heat conduction written as a partial transient heat conduction equation changed into an ordinary differential transient equation. This involves both energy and mass conservation on each node, leads to a complex formulation equation containing up to 4th order, which may be difficult to program using computer languages, and can only be applied to simple geometrical shapes and one dimension.
A sample of a rectangular geometry with an aluminum (Al6061) cast volume of 45 cm3 was solidified and the IHTC was calculated as shown below in Figure 6. Here the IHTC curve was calculated using the control volume method and it shows a gradual increase. Various characteristics of the IHTC and the heat transfer can be discussed [9].
\nIHTC variation for the rectangular aluminum casting with sand mold.
The behavior of the sample rectangular cast was considered as it summarizes most of the heat transfer modes in solidification of the cast. On pouring the IHTC was found to be 370 W/m2 K at 90 s, the higher initial surface heat flux was due to a perfect thermal contact. As further solidification starts, vaporization takes place in the sand mold because of the moisture content, presence of hydrogen release along with metal oxides across the interface and the reduction of specific volume of metal creates an air gap and decreases the value of IHTC rapidly to a minimum value of 163 W/m2 K at 130 s. The shrinkage of metal causes release of latent heat and rise in the IHTC, then heat transfer reduces once the solid skin is formed [10]. Again the inner metal leaks and flows out from the solid skin to outside and gets cooled which again releases latent heat and so IHTC increases and decreases. Continuous rise and fall of the IHTC shows peak formation, which is shown till the end of solidification. The fourth peak value of 1718 W/m2 K at 600 s and further again at 720 s the IHTC reached the highest peak value of 1918 W/m2 K. The vapor pressure developed in the sand mold is due to the escape of moisture content to the ambient, which is sufficient to allow the heat to flow from the solidifying metal to sand mold hence the sharp rise in IHTC is observed in the final stage of solidification. Not only vapor pressure but also huge temperature differences causes high heat flows. Due to the thermal resistance induced, as the metal solidifies and contracts, a fall in the IHTC is vividly observed.
\nThe materials that change phase during solidification to room temperature can be much more complicated. The heat transfer in the solidification is a complicated phenomenon as shown in the above sections. Understanding the heat transfer characteristics while solidification will help to link the various developments in the micro structure of the materials and the dislocations present. When solidification is complete the strength of the material can be assessed and the formation of the grains in the material can be directed by control of the temperature and heat flow on solidification.
\nThe IHTC of a sample of Al6061 is thoroughly explained to comprehend the various modes of heat transfer while solidification is taking place. Proper cooling helps to govern the solidification and as the temperature is sufficiently low the strains of dislocations will not be sufficiently mobile to migrate into low energy positions, forming low-angle boundaries. Thus the alloy will become sufficiently strong to retain any further strain as elastic strain. Once the metal solidifies properly the structure of the alloy will no longer be affected during further cooling. Hence a complete idea of IHTC at all the times of solidification is the best option to minimize the errors and maximize the strength.
\nIntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. We uphold a flexible Copyright Policy, guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Monograph",metaDescription:"IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.",metaKeywords:null,canonicalURL:"/page/publication-agreement-monograph",contentRaw:'[{"type":"htmlEditorComponent","content":"When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\\n\\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\\n\\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\\n\\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\\n\\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\\n\\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\\n\\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\\n\\nAUTHOR'S DUTIES
\\n\\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\\n\\nThe Author agrees to:
\\n\\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\\n\\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\\n\\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\\n\\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\\n\\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\nAUTHOR'S WARRANTY
\\n\\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\\n\\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\\n\\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\\n\\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\nTERMINATION
\\n\\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\\n\\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\\n\\nIntechOpen’s DUTIES AND RIGHTS
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\\n\\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\\n\\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\nMISCELLANEOUS
\\n\\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\\n\\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\\n\\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\\n\\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\\n\\nPolicy last updated: 2018-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\n\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\n\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\n\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\n\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\n\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\n\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\n\nAUTHOR'S DUTIES
\n\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\n\nThe Author agrees to:
\n\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\n\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\n\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\n\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\n\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\nAUTHOR'S WARRANTY
\n\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\n\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\n\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\n\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\nTERMINATION
\n\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\n\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\n\nIntechOpen’s DUTIES AND RIGHTS
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\n\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\n\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\n\nMISCELLANEOUS
\n\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\n\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\n\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\n\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\n\nPolicy last updated: 2018-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"7"},books:[{type:"book",id:"9553",title:"Cryptocurrency Economy",subtitle:null,isOpenForSubmission:!0,hash:"2548b2dab88b36797382292832f86563",slug:null,bookSignature:"Dr. Sebahattin Demirkan",coverURL:"https://cdn.intechopen.com/books/images_new/9553.jpg",editedByType:null,editors:[{id:"336397",title:"Dr.",name:"Sebahattin",surname:"Demirkan",slug:"sebahattin-demirkan",fullName:"Sebahattin Demirkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10551",title:"Beyond Human Resources - Research Paths Towards a New Understanding of Workforce Management Within Organizations",subtitle:null,isOpenForSubmission:!0,hash:"4a34551c1324fb084e902ad7f56e584d",slug:null,bookSignature:"Dr. Gonzalo Sánchez-Gardey, Dr. Fernando Martín-Alcázar and Dr. Natalia García-Carbonell",coverURL:"https://cdn.intechopen.com/books/images_new/10551.jpg",editedByType:null,editors:[{id:"332101",title:"Prof.",name:"Gonzalo",surname:"Sánchez",slug:"gonzalo-sanchez",fullName:"Gonzalo Sánchez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10753",title:"Taxes",subtitle:null,isOpenForSubmission:!0,hash:"9dc0293dca676c8e873312737c84b60c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10753.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:null,isOpenForSubmission:!0,hash:"33697a6f655fc4d7f4a21a0a083a9096",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10757",title:"Agricultural Value Chain",subtitle:null,isOpenForSubmission:!0,hash:"732ee82bf579a4bc4c5c929ceba2db26",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10757.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:null,isOpenForSubmission:!0,hash:"f8f21ec8134eff175fa49450269811d8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10916",title:"Firm Value",subtitle:null,isOpenForSubmission:!0,hash:"0de75a8efe6a5f4c8d42858ca3016f08",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10916.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10917",title:"Entrepreneurship",subtitle:null,isOpenForSubmission:!0,hash:"904717638ed1e5538792e4d431fe59a5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10917.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10918",title:"Digital Economy",subtitle:null,isOpenForSubmission:!0,hash:"dbdfd9caf5c4b0038ff4446c7bc6a681",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10918.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10919",title:"Consumer Behavior",subtitle:null,isOpenForSubmission:!0,hash:"51700695578f48743b0514ba6d8735b2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10919.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics",parent:{title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:99,numberOfAuthorsAndEditors:1355,numberOfWosCitations:3495,numberOfCrossrefCitations:3030,numberOfDimensionsCitations:5998,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"physical-sciences-engineering-and-technology-robotics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9902",title:"Service Robotics",subtitle:null,isOpenForSubmission:!1,hash:"9b42f533ea14906bcd1e07df74b33ac2",slug:"service-robotics",bookSignature:"Volkan Sezer, Sinan Öncü and Pınar Boyraz Baykas",coverURL:"https://cdn.intechopen.com/books/images_new/9902.jpg",editedByType:"Edited by",editors:[{id:"268170",title:"Dr.",name:"Volkan",middleName:null,surname:"Sezer",slug:"volkan-sezer",fullName:"Volkan Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6864",title:"Autonomous Vehicles",subtitle:null,isOpenForSubmission:!1,hash:"c320902fc1cfc252c1db006b944996fb",slug:"autonomous-vehicles",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/6864.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8883",title:"Autonomous Vehicle and Smart Traffic",subtitle:null,isOpenForSubmission:!1,hash:"841c82c0bf27716a7c800bc1180ad5de",slug:"autonomous-vehicle-and-smart-traffic",bookSignature:"Sezgin Ersoy and Tayyab Waqar",coverURL:"https://cdn.intechopen.com/books/images_new/8883.jpg",editedByType:"Edited by",editors:[{id:"156004",title:"Associate Prof.",name:"Sezgin",middleName:null,surname:"Ersoy",slug:"sezgin-ersoy",fullName:"Sezgin Ersoy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8872",title:"Multi Agent Systems",subtitle:"Strategies and Applications",isOpenForSubmission:!1,hash:"6b0454f8f575d5d65603f329af59c80b",slug:"multi-agent-systems-strategies-and-applications",bookSignature:"Ricardo López - Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/8872.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Lopez-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo Lopez-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7792",title:"Unmanned Robotic Systems and Applications",subtitle:null,isOpenForSubmission:!1,hash:"53805f091c3107536edd2579c9987649",slug:"unmanned-robotic-systems-and-applications",bookSignature:"Mahmut Reyhanoglu and Geert De Cubber",coverURL:"https://cdn.intechopen.com/books/images_new/7792.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6865",title:"Becoming Human with Humanoid",subtitle:"From Physical Interaction to Social Intelligence",isOpenForSubmission:!1,hash:"e208316a62e4ab5b042486aea682ee18",slug:"becoming-human-with-humanoid-from-physical-interaction-to-social-intelligence",bookSignature:"Ahmad Hoirul Basori, Ali Leylavi Shoushtari and Andon Venelinov Topalov",coverURL:"https://cdn.intechopen.com/books/images_new/6865.jpg",editedByType:"Edited by",editors:[{id:"13394",title:"Prof.",name:"Ahmad Hoirul",middleName:null,surname:"Basori",slug:"ahmad-hoirul-basori",fullName:"Ahmad Hoirul Basori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7779",title:"Path Planning for Autonomous Vehicle",subtitle:"Ensuring Reliable Driverless Navigation and Control Maneuver",isOpenForSubmission:!1,hash:"91196f0aadb70bd5cecac290401d614f",slug:"path-planning-for-autonomous-vehicles-ensuring-reliable-driverless-navigation-and-control-maneuver",bookSignature:"Umar Zakir Abdul Hamid, Volkan Sezer, Bin Li, Yanjun Huang and Muhammad Aizzat Zakaria",coverURL:"https://cdn.intechopen.com/books/images_new/7779.jpg",editedByType:"Edited by",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7386",title:"Advances in Human and Machine Navigation Systems",subtitle:null,isOpenForSubmission:!1,hash:"a60a4da048a8bee2e12c3fe40236afe9",slug:"advances-in-human-and-machine-navigation-systems",bookSignature:"Rastislav Róka",coverURL:"https://cdn.intechopen.com/books/images_new/7386.jpg",editedByType:"Edited by",editors:[{id:"112777",title:"Dr.",name:"Rastislav",middleName:null,surname:"Róka",slug:"rastislav-roka",fullName:"Rastislav Róka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7227",title:"Applications of Mobile Robots",subtitle:null,isOpenForSubmission:!1,hash:"b4993517c29aed9abd474e362370e28a",slug:"applications-of-mobile-robots",bookSignature:"Efren Gorrostieta Hurtado",coverURL:"https://cdn.intechopen.com/books/images_new/7227.jpg",editedByType:"Edited by",editors:[{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7400",title:"Multi-Agent Systems",subtitle:"Control Spectrum",isOpenForSubmission:!1,hash:"ba8de13ac5162187fbc7f932a7fb0b34",slug:"multi-agent-systems-control-spectrum",bookSignature:"Vladimir Shikhin",coverURL:"https://cdn.intechopen.com/books/images_new/7400.jpg",editedByType:"Edited by",editors:[{id:"237011",title:"Dr.",name:"Vladimir",middleName:null,surname:"Shikhin",slug:"vladimir-shikhin",fullName:"Vladimir Shikhin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7270",title:"Agricultural Robots",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"404b9128ab371832f2b7f0b6f32b2951",slug:"agricultural-robots-fundamentals-and-applications",bookSignature:"Jun Zhou and Baohua Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/7270.jpg",editedByType:"Edited by",editors:[{id:"242047",title:"Dr.",name:"Jun",middleName:null,surname:"Zhou",slug:"jun-zhou",fullName:"Jun Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6322",title:"Advanced Path Planning for Mobile Entities",subtitle:null,isOpenForSubmission:!1,hash:"438f519ccb7ac4196660ada6b648e15f",slug:"advanced-path-planning-for-mobile-entities",bookSignature:"Rastislav Róka",coverURL:"https://cdn.intechopen.com/books/images_new/6322.jpg",editedByType:"Edited by",editors:[{id:"112777",title:"Dr.",name:"Rastislav",middleName:null,surname:"Róka",slug:"rastislav-roka",fullName:"Rastislav Róka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:99,mostCitedChapters:[{id:"10088",doi:"10.5772/8835",title:"Intention-Based Walking Support for Paraplegia Patients with Robot Suit HAL",slug:"intention-based-walking-support-for-paraplegia-patients-with-robot-suit-hal",totalDownloads:4593,totalCrossrefCites:15,totalDimensionsCites:166,book:{slug:"climbing-and-walking-robots",title:"Climbing and Walking Robots",fullTitle:"Climbing and Walking Robots"},signatures:"Kenta Suzuki, Gouji Mito, Hiroaki Kawamoto, Yasuhisa Hasegawa and Yoshiyuki Sankai",authors:null},{id:"240",doi:"10.5772/4876",title:"Geminoid: Teleoperated Android of an Existing Person",slug:"geminoid__teleoperated_android_of_an_existing_person",totalDownloads:3800,totalCrossrefCites:61,totalDimensionsCites:108,book:{slug:"humanoid_robots_new_developments",title:"Humanoid Robots",fullTitle:"Humanoid Robots: New Developments"},signatures:"Shuichi Nishio, Hiroshi Ishiguro and Norihiro Hagita",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"}]},{id:"172",doi:"10.5772/4808",title:"Limit Cycle Walking",slug:"limit_cycle_walking",totalDownloads:4521,totalCrossrefCites:9,totalDimensionsCites:91,book:{slug:"humanoid_robots_human_like_machines",title:"Humanoid Robots",fullTitle:"Humanoid Robots, Human-like Machines"},signatures:"Daan G.E. Hobbelen and Martijn Wisse",authors:null}],mostDownloadedChaptersLast30Days:[{id:"62563",title:"Online Mapping-Based Navigation System for Wheeled Mobile Robot in Road Following and Roundabout",slug:"online-mapping-based-navigation-system-for-wheeled-mobile-robot-in-road-following-and-roundabout",totalDownloads:759,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Mohammed A. H. Ali and Musa Mailah",authors:[{id:"32016",title:"Prof.",name:"Musa",middleName:null,surname:"Mailah",slug:"musa-mailah",fullName:"Musa Mailah"},{id:"243606",title:"Dr.",name:"Mohammed A. H",middleName:null,surname:"Ali",slug:"mohammed-a.-h-ali",fullName:"Mohammed A. H Ali"}]},{id:"39430",title:"Novel Yinger Learning Variable Universe Fuzzy Controller",slug:"novel-yinger-learning-variable-universe-fuzzy-controller",totalDownloads:1662,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fuzzy-controllers-recent-advances-in-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers - Recent Advances in Theory and Applications"},signatures:"Ping Zhang and Guodong Gao",authors:[{id:"141337",title:"Dr.",name:"Ping",middleName:null,surname:"Zhang",slug:"ping-zhang",fullName:"Ping Zhang"},{id:"160791",title:"Dr.",name:"GuoDong",middleName:null,surname:"Gao",slug:"guodong-gao",fullName:"GuoDong Gao"}]},{id:"465",title:"Omnidirectional Mobile Robot - Design and Implementation",slug:"omnidirectional_mobile_robot_-__design_and_implementation",totalDownloads:40971,totalCrossrefCites:31,totalDimensionsCites:40,book:{slug:"bioinspiration_and_robotics_walking_and_climbing_robots",title:"Bioinspiration and Robotics",fullTitle:"Bioinspiration and Robotics Walking and Climbing Robots"},signatures:"Ioan Doroftei, Victor Grosu and Veaceslav Spinu",authors:null},{id:"70496",title:"Sky-Farmers: Applications of Unmanned Aerial Vehicles (UAV) in Agriculture",slug:"sky-farmers-applications-of-unmanned-aerial-vehicles-uav-in-agriculture",totalDownloads:710,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"autonomous-vehicles",title:"Autonomous Vehicles",fullTitle:"Autonomous Vehicles"},signatures:"Chika Yinka-Banjo and Olasupo Ajayi",authors:null},{id:"73486",title:"Application of Artificial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation",slug:"application-of-artificial-intelligence-ai-in-prosthetic-and-orthotic-rehabilitation",totalDownloads:292,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"service-robotics",title:"Service Robotics",fullTitle:"Service Robotics"},signatures:"Smita Nayak and Rajesh Kumar Das",authors:[{id:"204704",title:"Mrs.",name:"Smita",middleName:null,surname:"Nayak",slug:"smita-nayak",fullName:"Smita Nayak"},{id:"321308",title:"Dr.",name:"Rajesh",middleName:null,surname:"Das",slug:"rajesh-das",fullName:"Rajesh Das"}]},{id:"67705",title:"Advanced UAVs Nonlinear Control Systems and Applications",slug:"advanced-uavs-nonlinear-control-systems-and-applications",totalDownloads:909,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"unmanned-robotic-systems-and-applications",title:"Unmanned Robotic Systems and Applications",fullTitle:"Unmanned Robotic Systems and Applications"},signatures:"Abdulkader Joukhadar, Mohammad Alchehabi and Adnan Jejeh",authors:null},{id:"51224",title:"Series Elastic Actuator: Design, Analysis and Comparison",slug:"series-elastic-actuator-design-analysis-and-comparison",totalDownloads:2498,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"recent-advances-in-robotic-systems",title:"Recent Advances in Robotic Systems",fullTitle:"Recent Advances in Robotic Systems"},signatures:"Arnaldo Gomes Leal Junior, Rafhael Milanezi de Andrade and\nAntônio Bento Filho",authors:[{id:"182082",title:"Dr.",name:"Rafhael",middleName:"Milanezi De",surname:"Andrade",slug:"rafhael-andrade",fullName:"Rafhael Andrade"},{id:"185372",title:"Dr.",name:"Antônio",middleName:null,surname:"Bento Filho",slug:"antonio-bento-filho",fullName:"Antônio Bento Filho"},{id:"185373",title:"MSc.",name:"Arnaldo",middleName:null,surname:"Gomes Leal Junior",slug:"arnaldo-gomes-leal-junior",fullName:"Arnaldo Gomes Leal Junior"}]},{id:"74572",title:"Visibility-Based Technologies and Methodologies for Autonomous Driving",slug:"visibility-based-technologies-and-methodologies-for-autonomous-driving",totalDownloads:62,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Self-driving Vehicles and Enabling Technologies",fullTitle:"Self-driving Vehicles and Enabling Technologies"},signatures:"Said Easa, Yang Ma, Ashraf Elshorbagy, Ahmed Shaker, Songnian Li and Shriniwas Arkatkar",authors:null},{id:"62978",title:"Intelligent Robotic Perception Systems",slug:"intelligent-robotic-perception-systems",totalDownloads:1219,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Cristiano Premebida, Rares Ambrus and Zoltan-Csaba Marton",authors:[{id:"203409",title:"Ph.D.",name:"Cristiano",middleName:null,surname:"Premebida",slug:"cristiano-premebida",fullName:"Cristiano Premebida"},{id:"254880",title:"Dr.",name:"Rares",middleName:null,surname:"Ambrus",slug:"rares-ambrus",fullName:"Rares Ambrus"},{id:"254881",title:"Dr.",name:"Zoltan-Csaba",middleName:null,surname:"Marton",slug:"zoltan-csaba-marton",fullName:"Zoltan-Csaba Marton"}]},{id:"150",title:"Sensor-based Global Planning for Mobile Manipulators Navigation Using Voronoi Diagram and Fast Marching",slug:"sensor-based_global_planning_for_mobile_manipulators_navigation_using_voronoi_diagram_and_fast_march",totalDownloads:2690,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile_robots_perception_navigation",title:"Mobile Robots",fullTitle:"Mobile Robots: Perception & Navigation"},signatures:"S. Garrido, D. Blanco, M.L. Munoz, L. Moreno and M. Abderrahim",authors:null}],onlineFirstChaptersFilter:{topicSlug:"physical-sciences-engineering-and-technology-robotics",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"74572",title:"Visibility-Based Technologies and Methodologies for Autonomous Driving",slug:"visibility-based-technologies-and-methodologies-for-autonomous-driving",totalDownloads:63,totalDimensionsCites:0,doi:"10.5772/intechopen.95328",book:{title:"Self-driving Vehicles and Enabling Technologies"},signatures:"Said Easa, Yang Ma, Ashraf Elshorbagy, Ahmed Shaker, Songnian Li and Shriniwas Arkatkar"},{id:"74396",title:"Design Considerations for Autonomous Cargo Transportation Multirotor UAVs",slug:"design-considerations-for-autonomous-cargo-transportation-multirotor-uavs",totalDownloads:30,totalDimensionsCites:0,doi:"10.5772/intechopen.95060",book:{title:"Self-driving Vehicles and Enabling Technologies"},signatures:"Denis Kotarski, Petar Piljek and Josip Kasać"},{id:"74476",title:"Selected Issues and Constraints of Image Matching in Terrain-Aided Navigation: A Comparative Study",slug:"selected-issues-and-constraints-of-image-matching-in-terrain-aided-navigation-a-comparative-study",totalDownloads:58,totalDimensionsCites:0,doi:"10.5772/intechopen.95039",book:{title:"Self-driving Vehicles and Enabling Technologies"},signatures:"Piotr Turek, Stanisław Grzywiński and Witold Bużantowicz"}],onlineFirstChaptersTotal:19},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/220095/angela-santos",hash:"",query:{},params:{id:"220095",slug:"angela-santos"},fullPath:"/profiles/220095/angela-santos",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()