Long-span cable-supported bridges are the lifeline structures for the transportation network in a country/state. An effective solution of this type of bridges is therefore indispensable not only to better understand structural response of them but also to conduct an efficient maintenance and management strategy for these bridges. In this study, structural identification (St-Id) is implemented to estimate the performance of the Bosphorus Bridge. In addition, certain efforts from finite element modeling (FEM) to utilization for performance prediction are given based on each step of St-Id. St-Id concept is divided into two main parts: experimental and numerical investigations. Due to the high cost and time limitation for testing of long-span bridges, the most effective solution to the experimental research is SHM system (SHMs). For this purpose, the SHMs of the Bosphorus Bridge is considered, finite element modeling provides an extended solution from analysis to model updating of the bridges. Considering structural performance of the bridge under extreme wind load and multi-point earthquake motion is estimated. The results from the current study indicate that St-Id concept is a robust approach for overall structural condition assessment and performance prediction of long-span cable-supported bridges.
Part of the book: Bridge Engineering