A hybrid energy storage system (HESS) consisting of batteries and supercapacitors can be used to reduce battery stress and recover braking energy efficiently. In this paper, the performance of a novel coaxial power-split hybrid transit bus with an HESS is studied. The coaxial power-split hybrid powertrain consists of a diesel engine, a generator, a clutch, and a motor, whose axles are arranged in a line. A mathematical model of the coaxial power-split hybrid powertrain with an HESS is established and the parameters are configured using experimental data. Subsequently, to estimate the system performance, a program is designed based on Matlab and Advisor. A rule-based control strategy is designed and finely tuned for the coaxial power-split hybrid powertrain. Then, using the Chinese Transit Bus City Driving Cycle (CTBCDC), the system characteristics and energy efficiencies of the designed coaxial power-split hybrid powertrain with an HESS are analysed. The results indicate that the proposed coaxial power-split hybrid powertrain with an HESS can fulfil the drivability requirement of transit bus and enhance the energy efficiency significantly compared with a conventional powertrain bus as well as reduce the battery stress simultaneously. Using an HESS is a good solution for the coaxial power-split hybrid transit bus.
Part of the book: Hybrid Electric Vehicles