CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead the development of autoimmune diseases. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat autoimmune disorders as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) have not been fully defined, especially the signaling mechanisms that the direct differentiation of such Tregs. Ag-specific PSC-Tregs can be tissue-associated and infiltrate to local inflamed tissue to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Development of cell-based therapies using Ag-specific PSC-Tregs will provide an important step toward personalized therapies for autoimmune disorders.
Part of the book: Pluripotent Stem Cells
Autoimmune diabetes is a chronic autoimmune disease caused by the loss or selective destruction of the insulin-producing cells, called pancreatic beta cells. Damage to beta cells results in an absence or insufficient production of insulin produced by the body. Most cases of autoimmune diabetes have an autoimmune basis, and the immune system mistakenly attacks and destroys beta cells. The immune system plays a critical role in controlling the development of autoimmune diabetes. Over the past years there have been significant progress and an accumulation of scientific evidence for the concept of immunotherapy. Immunotherapy for the prevention and treatment of autoimmune diabetes has become the main focus of the research community. Three regimens of immunotherapy have been investigated: (1) Antigen-specific vaccines: Insulin-related molecules have attracted great interest in vaccine development, including the whole recombinant human GAD65 (rhGAD65) and the DiaPep277 peptide of HSP60. (2) Systemic immunomodulators: A large number of non–antigen-specific immunomodulators have been studied, including monoclonal anti-CD3 antibody, anti–CTLA-4 Ig, TNF-a, IFN-a, IL-1R antagonist, regulatory T cells, and dendritic cells. (3) Combination treatments: Combination therapies have the ability to enhance efficacy and will become the standard of care for autoimmune diabetes. Development of safe and efficient prevention of autoimmune diabetes is a general public health object in modern countries now. Although large numbers of preventive modalities including immunotherapy have been accomplished in animal models of autoimmune diabetes, prevention of human autoimmune diabetes remains indefinable. Genetic and environmental factors that control the relapsing-remitting course of β-cell destruction, terminating in complete insulin addiction are being determined. In the long run, initial prevention of islet autoimmunity will likely be the optimal approach to the prevention of autoimmune diabetes. However, environmental causes of islet autoimmunity need to be well stated. Modest predictive assessment of the existing genetic screening tools also means that the number of children requiring intervention will stay great, concerning the number of autoimmune diabetes cases prohibited. Nevertheless, combination treatments are more likely to be used for autoimmune diabetes. Primary systemic immunosuppression followed by antigen-specific induction of tolerance or islet regeneration is a sound approach.
Part of the book: Immunopathogenesis and Immune-based Therapy for Selected Autoimmune Disorders