High‐quality and low‐cost fabrication of Si‐based materials, in which many fundamental and technology problems still remain, have attracted tremendous interests due to their wide applications in solar cell area. Low‐frequency inductively coupled plasma (LFICP) provides a new and competitive solution, thanks to its inherent advantages of high‐density plasma, low sheath potential, and low electron temperature, etc. The plasma characteristic‐dependent microstructures, optical and electronic properties of the LFICP CVD‐based hydrogenated amorphous/microcrystalline silicon and silicon oxides are systematically studied. Remote‐LFICP combing the high‐density plasma nature of ICP and mild ion bombardment on growing surface in remote plasma allows the deposition of high‐quality Si‐based materials providing excellent c‐Si surface passivation. The mechanism of surface passivation by LFICP CVD Si‐based materials, interaction between plasma species and growing surface are analyzed in terms of the plasma properties. These results pave the way for LFICP CVD utilization in Si‐based high‐efficiency and low‐cost solar cell fabrication.
Part of the book: Chemical Vapor Deposition