Energy requirement in relation to nature of lifestyle.
\r\n\t
",isbn:"978-1-83969-347-2",printIsbn:"978-1-83969-346-5",pdfIsbn:"978-1-83969-348-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"4fc73beb0e4416a20cc70c8163fe436f",bookSignature:"Dr. Pinar Erkekoglu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9836.jpg",keywords:"KRAS Gene, Oncogene, Tumor Suppressor Gene, Mutation, Cancer, Microtubule-Associated Protein (MAP), GTPase, Pathological Conditions, Epidermal Nevus, Noonan Syndrome, Costello Syndrome, Environmental Chemicals",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 17th 2020",dateEndSecondStepPublish:"December 15th 2020",dateEndThirdStepPublish:"February 13th 2021",dateEndFourthStepPublish:"May 4th 2021",dateEndFifthStepPublish:"July 3rd 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in toxicology, vaccinology, cosmetics, and Board Member of Turkish Pharmacists Association Pharmacy Academia and Board Member of Hacettepe Vaccine Institute. Published more than 150 scientific papers in international/national journals. Associate editor of the Turkish Journal of Pharmaceutical Sciences.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"109978",title:"Prof.",name:"Pinar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.JPG",biography:"Pınar Erkekoglu was born in Ankara, Turkey. She graduated with a BS from Hacettepe University Faculty of Pharmacy. Later, she received an MSci and Ph.D. in Toxicology. She completed a part of her Ph.D. studies in Grenoble, France, at Universite Joseph Fourier and CEA/INAC/LAN after receiving a full scholarship from both the Erasmus Scholarship Program and CEA. She worked as a post-doc and a visiting associate in the Biological Engineering Department at Massachusetts Institute of Technology. She is currently working as a full professor at Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology. Her main study interests are clinical and medical aspects of toxicology, endocrine-disrupting chemicals, and oxidative stress. She has published more than 150 papers in national and international journals. Dr. Erkekoglu has been a European Registered Toxicologist (ERT) since 2014.",institutionString:"Hacettepe University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5176",title:"Nutritional Deficiency",subtitle:null,isOpenForSubmission:!1,hash:"a2e20dabc8ed6fbaef3686be8c6fce99",slug:"nutritional-deficiency",bookSignature:"Pınar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/5176.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5836",title:"Bisphenol A",subtitle:"Exposure and Health Risks",isOpenForSubmission:!1,hash:"446599b9e5cf929537d445edc546c449",slug:"bisphenol-a-exposure-and-health-risks",bookSignature:"Pinar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/5836.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7281",title:"Oncogenes and Carcinogenesis",subtitle:null,isOpenForSubmission:!1,hash:"728df4ace35f652725e5b94da45d0c4d",slug:"oncogenes-and-carcinogenesis",bookSignature:"Pinar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/7281.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6486",title:"Glutathione in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"23fb1f2e0cea5cf004d57bc8c0d46ce4",slug:"glutathione-in-health-and-disease",bookSignature:"Pinar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/6486.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67343",title:"A Clinical Insight into Gestational Diabetes",doi:"10.5772/intechopen.85892",slug:"a-clinical-insight-into-gestational-diabetes",body:'\nGestational diabetes (GD) is characterised with impaired glucose tolerance (IGT) whose first recognition or onset is during pregnancy. International statistics claim that out of 10 pregnancies, at least 1 is associated with diabetes, most of which are GD. Lack 0f diagnosis or treatment of GD can lead to significant maternal and foetal complications. Moreover, women with GD and their offsprings are comparatively at higher risk of developing type 2 diabetes later [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
\nThe incidence of GD is expected to increase at an expedited rate in the near future, amounting to one in every five pregnant women suffering from GD. According to a field study conducted in one of the Indian states under the ‘Diabetes in Pregnancy’—Awareness and Prevention project, in most of the pregnant women screened in urban, semiurban and rural areas, respectively, the prevalence of GD was reported to be 17.8% in the urban, 13.8% in the semiurban and 9.9% in the rural areas [11, 12, 13, 14, 15, 16].
\nGD may result in development of many pregnancy-associated disorders like polyhydramnios, pre-eclampsia, prolonged labour, obstructed labour, caesarean section, uterine atony, postpartum haemorrhage, infection and progression of retinopathy which are the leading global causes of maternal morbidity and mortality. Moreover, GD could also pose foetal risks including spontaneous abortion, intrauterine death, stillbirth, congenital malformation, birth injuries, neonatal hypoglycaemia and infant respiratory distress syndrome.
\nLong-term clinical effects of GD are important contributors to the burden of non-communicable diseases in many countries [17, 18].
\nDuring normal pregnancy, resistance to insulin action increases. In most pregnancies, the pancreas is able to meet the increased insulin demands, and normal blood glucose level is maintained. On the contrary, women who develop GD have impaired beta-cell response resulting in insufficient insulin secretion to meet the increased insulin demands. The following factors tend to enhance the chances of developing GD:
Age: Due to age-related decreased pancreatic beta-cell reserve.
Obesity: Leads to increased insulin resistance, which is further compounded by pregnancy.
Smoking: Increases insulin resistance and decreases insulin secretion.
Polycystic ovarian syndrome: Associated with insulin resistance and obesity.
Nonwhite ancestry.
Family history of type 2 diabetes.
Intake of diet with low-fibre and high-glycaemic index.
Weight gain.
Lack of physical activity: Exercise increases insulin sensitivity.
Prior GD: GD recurs in as many as 80% of subsequent pregnancies.
Products of the placenta, including tumour necrosis factor-alpha (TNF-α) and human chorionic somatomammotropin, are considered to play pathological roles in inducing maternal insulin resistance. Insulin resistance is observed at peak levels in the third trimester of pregnancy. Women who develop GD have pathologically impaired beta-cell function that leaves them with inability of adapting to pregnancy. In GD, as in type 2 diabetes, the deficit in beta-cell function is usually multifactorial and polygenetic. However, unmasked by the increased insulin needs of pregnancy, autoimmune diabetes and maturity-onset diabetes of youth (MODY) may occasionally be first recognised as GD. Hyperglycaemia in late pregnancy is associated with macrosomia and neonatal hypoglycaemia, hyperbilirubinemia and hypocalcaemia, as well as adverse maternal outcomes, including gestational hypertension, pre-eclampsia and caesarean delivery [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].
\nProfound international evidences and standard protocols suggest definite guidelines for screening pregnant women for GD.
\nThe American and Canadian guidelines recommend universal screening by two-step approach. This includes a screening with 50-g 1-hour blood glucose test (>140 mg/dL taken as screen positive). Women who screen positive are subjected to 100-g oral glucose tolerance test (OGTT), and those with 2 or more abnormal values of blood glucose are diagnosed with gestational diabetes.
\nSimilarly, the National Institute for Health and Care Excellence (NICE), UK, and Australian guidelines recommend a slightly different risk-based screening. It recommends a 75-g 2-hour OGTT. Women with fasting blood glucose ≥126 mg/dL and postprandial (PP) blood glucose ≥140 mg/dL are diagnosed with GD [36, 37].
\nThe WHO and International Federation of Gynaecology and Obstetrics (FIGO) endorse universal screening for GD at 24–28 weeks of gestation using the 75-g 2-hour blood sugar (fasting ≥126 mg/dL and PP ≥140 mg/dL).
\nAlmost all guidelines agree to the management of GD using medical nutrition therapy (MNT) which is a standard diet plan for GD-diagnosed mothers and insulin therapy if required. Recently, global evidences have also concluded that the traditional biguanide—metformin—is safe and effective for GD management after 20 weeks of gestation if blood glucose level is not controlled alone by MNT [38, 39, 40, 41, 42].
\nGD pregnant women should be managed by medical nutrition therapy (MNT) and metformin or insulin therapy as required. In the postpartum period, OGTT must be repeated at 6 weeks post delivery; if blood glucose is <140 mg/dL, then women should be referred for postprandial blood glucose (PPBS) testing annually [43, 44].
\nIdeally, all pregnant women should be screened for gestational diabetes, especially those who have one or more risk factors discussed above.
\nTrained human resources are required to manage the cases after diagnosis. Testing for GD is recommended twice during ante natal care (ANC).
\nThe first testing should be done during the first antenatal contact as early as possible in pregnancy. If the first test result is negative, the test must be repeated between the second and third trimester of pregnancy. It is important to conduct a second test as most pregnant women develop blood glucose intolerance during this period (24–28 weeks). Mostly, one third of all GD-positive women are diagnosed during the first trimester. Hence, the test is repeated after the second trimester.
\nThere should be at least a gap of 4 weeks between the two tests. The test should be conducted for all pregnant women even if she comes late in pregnancy for ANC. However, if the woman is over 28 weeks of pregnancy, only one test should be conducted if it is her first visit for ANC [45, 46, 47, 48, 49, 50, 51].
\nThe following stepwise protocol complies with the WHO guidelines for screening of pregnant women:
The test is conducted with intake of 75 g of oral glucose dissolved in approximately 300 mL of water, irrespective of whether the pregnant woman comes in fasting or non-fasting state, followed by measuring the blood glucose level by a plasma-standardised glucometer after 2 hours of ingestion (postprandial blood glucose).
If within 30 minutes of oral glucose intake the mother vomits, the test has to be repeated the next day. If vomiting occurs after 30 minutes, the test continues.
The threshold blood glucose level of ≥140 mg/dL is considered as limit for diagnosis of GD [52, 53, 54, 55, 56, 57, 58, 59, 60, 61].
All pregnant women who screen positive for GD in the first test are subjected to medical nutrition therapy (MNT) and physical exercise for 2 weeks. The woman is advised to walk or exercise for at least 30 minutes a day.
\nAfter 2 weeks on MNT and physical exercise, a 2-hour PPBS (post meal) should be done. All standardised protocols for management of GD suggest initial management with MNT and physical exercise strictly. If diabetes is not controlled with MNT (lifestyle changes) alone, metformin or insulin therapy is recommended.
\nIf 2-hour PPBS is <120 mg/dL, the test is to be repeated as per high-risk pregnancy protocol, i.e. to undertake eight tests (four regular tests and four additional). It is recommended to conduct at least one test every month during the second and third trimester. More follow-up tests can be done as recommended by the gynaecologist. If 2-hour PPBS is ≥120 mg/dL, medical management (metformin or insulin therapy) has to be started as per guidelines (Figure 1) [62, 63, 64, 65, 66].
\nStandard health management protocol for pregnant women with GD.
All pregnant women with GD should get medical nutrition therapy (MNT) as soon as diagnosis is made. MNT for GD primarily involves a carbohydrate-controlled balanced meal plan which promotes:
\nAssessment of diet or nutrition plan in GD is an important criterion for diagnosis and subsequent follow-up on mother’s and foetus’ development. The nutrition plan must be individualised from patient to patient so that accurate appraisal of the woman’s nutritional status could be assessed. This assessment includes defining her body mass index (BMI) or percentage of desirable weight during pre-pregnancy to the optimal weight gain during the entire tenure of pregnancy [24, 69].
\nThe energy demand of the body during pregnancy increases many times than that in a nonpregnant state. Individualization of nutritional requirement proves to be very helpful in determining the energy requirement and making amendments in the diet plan based on weight change patterns.
\nNormally calorie monitoring is not a point of concern in the first trimester unless a woman is underweight. It becomes more significant during the second and third trimester to monitor the energy requirements. Calorie intake should suffice the appropriate weight gain during gestation.
\nIdeally, for an average woman, weight gain of 10–12 kg is considered normal during pregnancy; an additional 350 kcal/day intake to the adult requirement is recommended during the second and third trimester.
\nSevere caloric restriction is strictly prohibited as it may cause ketonaemia and ketonuria in the mother as well as impair physical and mental growth in the offspring (Tables 1 and 2)[70, 71, 72].
\nS. no. | \nNature of lifestyle | \nEnergy requirement during pregnancy | \nTotal energy requirement (kcal/day) | \n
---|---|---|---|
1. | \nSedentary | \n1900 + 350 | \n2250 | \n
2. | \nModerately active | \n2230 + 350 | \n2580 | \n
3. | \nHighly active | \n2850 + 350 | \n3200 | \n
Energy requirement in relation to nature of lifestyle.
S. no. | \nBody mass index | \nCalorie requirement | \n
---|---|---|
1. | \n<18.5 (underweight) | \nCalorie requirement as per activity + 500 kcal/day | \n
2. | \n18.5–22.9 (normal) | \nCalorie requirement as per activity | \n
3. | \n23–24.9 (overweight) | \nCalorie requirement as per activity | \n
4. | \n>25 (obese) | \nCalorie requirement as per activity—500 kcal/day | \n
Calorie requirement according to body mass index (BMI).
Energy requirement can be calculated as follows:
\n*BMR = basal metabolic rate; *PAL = physical activity level.
\nwhere the basal metabolic rate (BMR) for an adult female in the age group of 18–30 years is calculated as 14 × BW (kg) + 471 and similarly BMR for adult females of age group 30–60 years as 8.3 × BW (kg) + 788 (*BW = body weight).
\nCarbohydrates are essential for both the mother and the baby. They are the ultimate source of glucose in the blood. Hence, the nature, quantity and frequency of carbohydrate intake influence greatly the blood glucose level.
\nThe carbohydrates must be evenly distributed through the daily food chart foods in order to avoid high blood glucose level. It is better to spread carbohydrate foods over three small meals and two to three snacks each day than taking three large meals [8, 73, 74, 75, 76, 77, 78].
\nComplex carbohydrates (like whole-grain cereals like oats, vegetables and fruits) should be preferred over simple carbohydrates like food with lots of added sugar or honey. Also keeping a record of the number of carbohydrate serves that a mother eats during the day helps her to eat the right amount of carbohydrates [79].
\nOverall fat intake by a pregnant woman should be planned in a manner that saturated fat such as butter, coconut oil, palm oil, red meat, organ meat and full cream milk amounts to less than 10% of total calories. The dietary cholesterol must be less than 300 mg/dL. In obese and overweight patients, a lower-fat diet overall can help slow the rate of weight gain [80].
\nProteins are a very important dietary element for the growth and health of the foetus.
\nAt least three servings of protein foods are recommended every day to meet the increased demand. Milk and milk products, egg, fish, chicken, pulses, nuts, etc. are all rich sources of protein that a mother can take during her pregnancy [80].
\nThe widely accepted treatment protocol for gestational diabetes advocates metformin or insulin therapy for clinical management of pregnant women diagnosed with GD that is not well controlled with MNT alone. Insulin is the first drug of choice for GD mothers.
\nThe advantage of insulin therapy over metformin is that it can be started any time during pregnancy for GD management. If the gestation is less than 20 weeks, and medical nutrition therapy (MNT) is not effective in controlling blood glucose levels, insulin should be started, but metformin can be considered only after 20 weeks of gestation for clinical management of GD.
\nMetformin therapy can be started at 20 weeks of pregnancy, if MNT has not been able to control blood glucose alone. In the cases where the woman’s blood glucose is not controlled even with the maximum dose of metformin and MNT, the therapy must be switched to insulin therapy. The dose of metformin is 500 mg BID orally up to a maximum dose up to 2 g/day.
\nThe incidence of hypoglycaemia and weight gain with metformin is less than insulin. If insulin is required in high doses, metformin may be added to the treatment. Any pregnant women on insulin therapy should be instructed to keep sugar/glucose powder handy at home to treat hypoglycaemia if it occurs [81, 82, 83, 84].
\n\n
Diarrhoea
Nausea
Stomach pain
Heartburn
Lactic acidosis
Low blood glucose
Unlike the nonpregnant patients with diabetes who have a plethora of choices to achieve glucose control, the pregnant cases with GD offer a big challenge to the clinicians when it comes to the choice of drugs for its management. In the recent years, we have come across a variety in new insulins, novel delivery systems and additional concentrations of existing insulins. With an alarming increase in the gestational diabetic population, the demands of the newer insulins will be ever increasing; hence, understanding these insulins becomes crucial. Additional pharmacokinetic and pharmacodynamic studies of these insulins in pregnancy are also required [85].
\nIt is identical to human insulin and is synthesised in Escherichia coli bacteria. It is used before meal to compensate for heavy carbohydrates. The onset of action is around 30 minutes but can range from 10 to 75 minutes. The peak action is achieved at 3 hours (range 20 minutes to 7 hours), and the overall duration of action is ~8 hours. U-100 vials can stay at room temperature for 31 days [86].
\nIt is identical to human insulin but more concentrated than the U-100 formulation; its pharmacokinetic profile differs from U-100 as well. The onset is ~30 minutes, but the duration of action can last up to 24 hours. Severe hypoglycaemia may occur 24 hours after the initial dose, although there are clinical reports suggesting that in pregnancy, severe hypoglycaemia is rare with U-500 insulin. Two to three injections daily are required, and a U-500 vial is good for 40 days at room temperature while in use [87, 88, 89].
\nIt is produced in a type of yeast, Saccharomyces cerevisiae, and is homologous to human insulin. It should be taken 5–10 minutes prior to meals. It can be administered as injections or in an insulin pump. The time of peak concentration ranges between 40 and 50 minutes, and the duration of action is 3–5 hours. It is also available in the forms of pens, penfills and vials that retain their pharmacological potency for at least 28 days at room temperature while in use. The risk of developing hypoglycaemia with insulin aspartate is less than regular insulin, although patients allergic to yeast must avoid it as this could potentially cause a site reaction [90].
\nIt is an analogue produced in Escherichia coli. Its onset of action is 10–15 minutes, peak action is attained in 30–90 minutes and the duration of action is 3–4 hours. Intraperitoneal injections are preferred for the maximum absorption and shortest duration of action. It can be used in the form of insulin pumps or as multiple daily injections. The U-100 and U-200 formulations are bioequivalent, having the same pharmacokinetics. Insulin lispro U-200 is only available in pens to avoid administration errors. Pens, penfills and vials can be stored for 28 days at room temperature while in use [91].
\nIt is a U-100, intermediate-acting insulin. It is produced in Escherichia coli and is identical to human insulin available as a suspension. The onset of action is 1–2 hours, with an average peak action of 4 hours (range, 4–8 hours). Duration of action lasts for 10–20 hours. Vials remain usable for 31 days at room temperature, whereas pens can be used for 14 days [92].
\nThis is a long-acting analogue of insulin produced in S. cerevisiae. One of the setbacks with this formulation is that it can potentially cause a reaction in patients who are allergic to yeast. Detemir lacks a defined peak of action, but the pharmacological action lasts for up to 20 hours. The time to onset of action ranges between 1 and 2 hours. The pen and vial can be used up to 42 days at room temperature while in use. The chances of developing hypoglycaemia with detemir are less than NPH in pregnant women [93].
\nIt is a long-acting analogue produced in Escherichia coli. It differs from other contemporaries in terms of its distribution in plasma; the acidic solution is neutralised in subcutaneous tissue to form microprecipitates. These microprecipitates slowly release glargine over a duration of 24 hours, resulting in no well-defined peak. Its onset of action is 1–2 hours. Vials and pens are reusable for 28 days at room temperature.
\nThey are long-acting analogues approved by the US Food and Drug Administration (FDA) in September 2015. The U-100 and the U-200 are considered bioequivalent. Insulin degludec is extracted by means of recombinant DNA technology implemented in S. cerevisiae, to avoid potential reaction to the yeast, if allergic. Insulin degludec’s slow absorption into blood and prolonged action are attributed to the formation of soluble multi-hexamers. Its onset of action is ~1 hour and takes 8 days to reach steady state, and, once achieved, its duration of action lasts for 42 hours. It is usually administered once daily at any time of the day due to its long duration of action. Noncompliant patients may inject their dose at intervals of 8–40 hours without significant decreases in glycosylated haemoglobin (HbA1C) compared to taking it at the same time every day. U-100 degludec and U-200 degludec are only dispensed in pens to decrease administration errors. Pens are good for up to 56 days at room temperature while in use [93].
\nInsulin in the form of inhalational powder is a newer form of insulin introduced in recent years. Human insulin inhalation powder was approved by the FDA in 2014. Inhaled human insulin is produced in Escherichia coli and is adsorbed onto fumaryl diketopiperazine and polysorbate 80 carrier particles. Inhalation powder is equivalent unit for unit to insulin lispro. Its onset is 12–15 minutes, and it takes ~57 minutes to reach peak levels in plasma. The duration of action is ~2 hours. Inhaled human insulin is contraindicated in patients with chronic pulmonary obstructive disease as it may precipitate chronic bronchospasm. Sealed blister cards at room temperature must be discarded after 10 days. If kept in the refrigerator, they are good for use up to 1 month (Figure 2)[94, 95].
\nInsulin therapy for GD*.
A new advent in the field of glucose-lowering agents is glyburides. It is an oral hypoglycaemic class of drugs used for the management of type-II diabetes mellitus. Pharmacologically it belongs to sulphonylurea class of insulin secretagogues. These agents stimulate β cells of the pancreas to release insulin. The members of this class have different binding sites on their target pancreatic β-cell receptor. Their dose, rate of absorption, duration of action and route of elimination also differ from the conventional hypoglycaemic agents. Apart from lowering the blood glucose level directly, glyburide also increases peripheral glucose utilisation, decreases hepatic gluconeogenesis and may increase the number and sensitivity of insulin receptors. Glyburides proved to be advantageous over insulin because weight gain associated with it is less than in the case of insulin. However, one of its fallacies is that it may cause hypoglycaemia and require consistent food intake to decrease this risk. The risk of hypoglycaemia is increased in elderly, debilitated and malnourished individuals. Glyburide has been shown to decrease fasting plasma glucose, postprandial blood glucose and glycosylated haemoglobin (HbA1c) levels. It is metabolised in the liver. Its metabolites are excreted in urine and faeces in approximately equal proportions [96].
\nIt is prescribed to be taken at meal time to lower the blood glucose level in patients with non-insulin-dependent diabetes mellitus where hyperglycaemia cannot be controlled by diet alone.
\nThe half-life of unchanged drug lies between 1 and 2 hours and its metabolites have an extended half-life of 10 hours. Duration of action is 12–24 hours.
\nNausea, heartburn, stomach fullness and weight gain may occur.
\n\n
Contraindicated in hypersensitive patients.
Given the high risk of hypoglycaemia associated with it. Patients must be counselled to avoid driving, the use of machinery or any activity that requires alertness or clear vision as low blood glucose levels may cause drowsiness, fatigue and blurred vision.
Alcohol intake must be avoided under its medication as it aggravates hypoglycaemia and may cause disulfiram-like reaction.
Older adults may be more sensitive to the side effects of this drug, especially low blood sugar.
During pregnancy, this medication should be used only when clearly needed. Pregnancy may cause or worsen diabetes.
If glyburide is used, it may be switched to insulin at least 2 weeks before the expected delivery date because of glyburide’s risk of causing low blood sugar in your newborn.
It is unknown if this medication passes into breast milk. However, similar drugs pass into breast milk [97].
The blood glucose monitoring in gestational diabetic cases remains a bone of contention amongst clinicians worldwide. There have been various cohort studies propounding different procedures for blood glucose level monitoring. Some suggest the evaluation of HbA1C levels as accurate parameter; others suggest ultrasonography and laboratory testing of postprandial blood glucose levels every 2 weeks. For women whose fasting blood glucose levels remain <105 md/dL are well managed alone with medical nutrition therapy, whereas for those whose blood glucose levels are >105 mg/dL require additional medical assistance including insulin therapy. The foetal abdominal circumference (AC) is also considered a pivotal parameter for monitoring the GD mothers. If the foetal AC is <70th percentile at 30 weeks, perinatal outcomes will be free from any complications with continued management on diet therapy and without glucose self-monitoring. The excess risk of macrosomia is attributed to women with a foetal AC >70th percentile at 30 weeks. Such pregnancies will benefit only from aggressive glucose lowering by insulin therapy. The fasting or preprandial glucose targets of 60–80 mg/dL have to be met in such cases to eliminate the excess risk of stillbirth [98, 99, 100, 101].
\nHypoglycaemia is uncommon in women with GD who are only on MNT; the risk of developing hypoglycaemia is however increased in women on pharmacotherapy, i.e. insulin or metformin. Hypoglycaemia incurs potent hazards to the health of the foetus. Hence, management of hypoglycaemia is also a crucial aspect in GD. If hypoglycaemia is asymptomatic, BGL results must be confirmed prior to starting the treatment (Table 3)[102].
\nHypoglycaemia | \nConsiderations | \n
---|---|
Criteria | \n\n
| \n
Causes | \n\n
| \n
Symptoms | \n\n
| \n
Treatment | \n\n
| \n
Lifestyle management | \n\n
| \n
Aspects surrounding hypoglycaemia in women under oral hypoglycaemic drugs or insulin.
Antenatal care is defined as the procedure of regular check-ups that allow clinicians to treat and prevent potential health problems throughout the course of the pregnancy and to promote healthy lifestyles that benefit both the mother and child. In the case of pregnant women with GD, they must be closely monitored. GD women who are diagnosed before 20 weeks of pregnancy undergo foetal anatomical survey by means of ultrasonography within 18–20 weeks of pregnancy.
\nAt 28–30 weeks of gestation, a foetal growth scan should be performed and repeated at 34–36 weeks of gestation. There should be at least 3-week gap between the two ultrasounds, and it should include foetal biometry and amniotic fluid estimation.
\nIn GD women having uncontrolled blood glucose level or any other complication of pregnancy, the antenatal visits should be programmed at least once monthly as per the protocol for high-risk pregnancy.
\nMonitoring of abnormal foetal growth and amniotic fluid volume for growth restriction and polyhydramnios, respectively, at each ANC visit is clinically important. Pregnant women with GD should be diligently monitored for gestational hypertension, proteinuria and other obstetric complications.
\nAntenatal steroids in pregnant women with GD between 24 and 34 weeks of gestation requiring early delivery should be administered as per standardised guidelines. Most guidelines like FIGO suggest dexamethasone injection. More vigilant monitoring of blood glucose levels should be done for the next 72 hours following injection. In the case of raised blood glucose levels during this period, adjustment of insulin dose should be made as required [103, 104, 105].
\nThe rate of foetal morbidity in pregnant women with GD is more than the normal ones. This risk is further accelerated in pregnant women under drug management. Hence vigilant foetal surveillance is required that includes foetal heart rate monitoring by auscultation on each antenatal care visit [105, 106].
\nPregnant women with GD but well controlled of blood glucose (2-hour PPBS <120 mg/dL) levels may be delivered at their respective health facility just like any normal pregnant woman. However, pregnant women with GD on insulin therapy with uncontrolled blood glucose levels (2-hour PPBS ≥120 mg/dL) on MNT and physical exercise and metformin or insulin requirement >20 U/day should be referred at 34–36 weeks for delivery planning at Comprehensive Emergency Obstetric Care (CEmOC) centres under supervision of a gynaecologist [107].
\nMost GD pregnancies are associated with delayed lung maturity of the foetus; hence routine delivery prior to 39 weeks is not recommended. Such referred cases must get assured indoor admission or can be kept in a birth waiting home with round-the-clock availability of gynaecologist for monitoring.
\nManaging the delivery timing in GD mother is very crucial if pregnant women with GD and well-controlled blood glucose have not undergone parturition spontaneously; induction of labour should be scheduled at or after 39 weeks of pregnancy.
\nIf pregnant women with GD present poor blood glucose levels, accompanied with risk factors like gestational hypertension, previous stillbirth and other complications, then the timing of delivery has to be individualised by the obstetrician accordingly.
\nVaginal delivery is preferred, and lower segment caesarean section (LSCS) is done for obstetric indications only such as in the case of foetal macrosomia, a condition where the estimated foetal weight is >4 kg where vaginal delivery may cause shoulder dystocia in the newborn.
\nRegular blood glucose monitoring of the pregnant women with GD on metformin or insulin is required during labour. The morning dose of insulin/metformin is withheld on the day of induction of labour, and pregnant women are subjected to 2 hourly monitoring of blood glucose.
\nIV infusion with normal saline (NS) is to be started and regular insulin to be added according to blood glucose levels as per Table 4 [105, 106, 107, 108].
\nBlood glucose level | \nAmount of insulin to be added in 500 mL of NS | \nRate of NS infusion | \n
---|---|---|
90–120 mg/dL | \n0 | \n100 ml/hour (16 drops/min) | \n
120–140 mg/dL | \n4 U | \n100 ml/hour (16 drops/min) | \n
140–180 mg/dL | \n6 U | \n100 ml/hour (16 drops/min) | \n
>180 mg/dL | \n8 U | \n100 ml/hour (16 drops/min) | \n
Rate and amount of insulin-normal saline infusion in relation to blood glucose level.
Immediate and timely management of all neonates in a proper NICU facility emphasising on early breastfeeding is done on a priority basis to prevent hypoglycaemia. Under any emergency situations, the sick neonates must be immediately resuscitated as per standard guidelines.
\nHypoglycaemia monitoring of the newborn is started within an hour of delivery and repeated every 4 hours (prior to next feed) until four stable glucose values are obtained.
\nThe newborn with the normal birth weight and blood glucose level of <45 mg/dL is considered hypoglycaemic and requires immediate medical management. In the case of intrauterine growth restriction (IUGR), newborns’ Blood Glucose level limit is <54 mg/dL [108].
\nThe glucometers’ testing method is not very reliable for diagnosis of hypoglycaemia as their precision decreases at lower blood glucose level. The most definite diagnosis of hypoglycaemia is by measurement of blood glucose using established laboratory methods such as glucose oxidase method by calorimeter. However, if laboratory facility is unavailable at the place of childbirth, then the treating physician can take a decision to send a blood glucose sample to the laboratory at the nearest location without delaying the next management step. However, under adverse circumstances, blood glucose values obtained by glucometers may be considered for all operational steps if it’s the question of newborn’s wellbeing.
\nSymptoms of hypoglycaemia are difficult to observe as in most cases it is asymptomatic, variable and observed only in a smaller proportion of patients or newborns:
Stupor or apathy
Jitteriness or tremors
Episodes of cyanosis
Convulsions
Intermittent apnoeic spells or tachypnoea
Weak and high-pitched cry, limpness and lethargy
Difficulty in feeding
Eye rolling
Episodes of sweating
Any unexplained clinical feature in baby of diabetic mother
All cases of newborn with hypoglycaemia should be managed in the following manner:
\nWhether there are any symptoms of hypoglycaemia or not, if a baby is born to a GD mother, its blood glucose level must be checked immediately between 1 and 2 hours after birth. If blood glucose values are <45 mg/dL, this should be considered as ‘hypoglycaemia’. The primary management in such cases is that the newborn should be given breastfeed without any delay. Direct breastfeeding is the best management step for neonatal hypoglycaemia. If the infant is unable to suck, expressed breast milk from the mother should be given. If the mother is not in a position to give breastfeed or in the case of no breast milk secretion, the baby should be given any formula feed. If the lactation management centres (human milk banks) are available at the facility, then it can also be involved in feeding the baby.
\nAfter an hour of breastfeeding the newborn, blood glucose level must be monitored again. If it is found to be more than 45 mg/dL, 2 hourly feeding (breastfeeding if not available, formula feed can be given) should be ensured by explaining to the mother/relatives and supervised.
\nIf at any point of time the blood glucose level drops below 20 mg/dL, immediate intravenous bolus injection of 10% dextrose at 2 mL/kg body weight of baby should be given. This should be followed by intravenous infusion of 10% of dextrose at a rate of 100 mL/kg/day. Blood glucose should be checked 30 minutes after starting the infusion. If it is still less than 20 mg/dL, the infant should be referred to a higher centre where a paediatrician is available [109, 110].
\nImmediate postpartum care required for women with GD is a lot similar to that for women without GD, but these women are at high risk to develop type 2 diabetes mellitus in the future, although in 80% of cases, the glucose level usually returns to normal postdelivery.
\nSubsequently, ANC must be performed 75-g OGTT (fasting and 2-hour PP) at 6 weeks postpartum to evaluate glycaemic status of a woman. Cut-off for normal plasma and abnormal blood glucose levels in the fasting and 75-g OGTT values are [111, 112, 113]:
Fasting blood glucose (≥126 mg/dL)
75-g OGTT (2-hour blood glucose)
Normal (<140 mg/dL)
IGT (140–199 mg/dL)
Diabetes (≥200 mg/dL)
This chapter summarises all the clinical aspects surrounding gestational diabetes, ranging from its pathophysiology, aetiology right to its proper clinical management, for both the mother and the newborn, to a GD mother. Pregnancy affects both the maternal and foetal metabolisms, and even the nondiabetic woman exerts a diabetogenic effect. Amongst pregnant women, 2–17.8% develop GD. Metabolic changes in the normal pregnant women also have a degree of insulin resistance that shunts glucose preferentially to the foetus. To maintain blood glucose levels within a tight range, the normal pregnant woman must increase her insulin secretion up to fourfold. When the pancreas is not able to compensate for the increased insulin needs of pregnancy, GD occurs resulting in hyperglycaemia and hyperinsulinemia.
\nThe authors are highly thankful to Prof. S.W. Akhtar, Hon’ble Chancellor Integral University, and Prof. Syed Misbahul Hasan, Dean of the Faculty of Pharmacy, Integral University, Lucknow, India, for providing an academically rich environment in the university’s infrastructure to explore and study extensively into clinically relevant fields.
\nThe authors declare that there are no ‘conflicts of interest’ in regard to this chapter’s contents.
None.
\n\n antenatal care body mass index basal metabolic rate comprehensive emergency obstetric care gestational diabetes impaired glucose tolerance intrauterine growth restriction lower segment caesarean section medical nutrition therapy non-communicable diseases oral glucose tolerance test postprandial blood sugar
Really revolutionary nanotech items, materials and application for example nanorobotics, are years long in the future. But what qualifies as “Nanotechnology” today is fundamental innovation that is going on in research centers everywhere throughout the world. Products of Nanotech which are on business sector today are generally steadily improved products (utilizing evolutionary nanotechnology) where some types of Nano-empowered materials (for example, Carbon nanotubes, nanocomposite structure of nanoparticles of specific substance) or nanotech process (for example Nano-patterning or Quantum Dots for medicinal imaging) is utilized in the assembling procedure. In their progressing and ongoing journey to improve existing products by making smaller parts and better execution materials, all at a lower cost, the number of organization that will make “Nano products” will become extremely fast and soon make up the most of all organization across numerous businesses.
Nanomaterials (NMs) have picked up noticeable quality in technological progressions due to their tunable synthetic, physical and organic properties with improved execution over their bulk counter partners. They are arranged depending on their origin, size, shape and composition. The capacity to anticipate the remarkable properties of NMs expand the estimation of each classification. Nanomaterials speak to an active/functioning area of research and techno-economic parts in numerous application areas. NMs are depicted as a material with a length of 1–1000 nm in at least one dimension [1]. In any case, a single globally acknowledge definition for NMs does not exist. The diverse association has a distinction in assessment in defining NMs. As indicated by the Environmental Protection Agency (EPA), NMs can display remarkable properties unique than the equal chemical compound in a bigger dimension [2]. The US Food and Administration (USFDA) likewise alludes to NMs as “materials that have at least one dimension dependent phenomena” [2]. The International Organization for Standardization (ISO) has depicted NMs as a “Materials with any external nanoscale measurement or having internal nanoscale surface structure” [2]. As of late, the British Standard Institution proposed the following definition for the scientific terms that have been utilized:
Nanoscience: The science and investigation of matter at the nanoscale that manages to understand their size and structure-dependent properties and compares at the rise of individual atoms or molecules or bulk materials related differences [1, 3].
Nanotechnology: manipulation and control of matter on a nanoscale measurement by utilizing scientific logical knowledge of different industrial and biomedical applications [1, 3].
Nanomaterials: Materials with any inside or outside structure on the nanoscale measurements [1, 3].
Nano-objects: Materials that have at least one or more peripheral nanoscale measurements.
Nanoparticles: Nano-objects with three outer nanoscale measurements. The terms Nano rod or Nano plate are utilized, rather than nanoparticles (NP) when the longest and the shortest axes length of a nano-object are unique [1, 3].
Nanofiber: When two comparable exterior nanoscale measurements and a third measurement are available in a nanomaterial, it is alluded to as a nanofiber [1, 3].
Nanocomposite: Multiphase structure with at least one phase on the nanoscale measurement [1, 3].
Nanostructure: Composition of interconnected parts in the nanoscale area [1, 3].
Nanostructured materials: Materials containing interior or surface nanostructure [1, 3].
The nanoparticles shows remarkable chemical, physical and natural properties at nanoscale contrasted with their respective particles at higher scales. This phenomenon is because of a moderately bigger surface region to the volume, expand reactivity or stability in a synthetic procedure, improved mechanical strength and so forth. These properties of nanoparticles have prompted its utilization of different applications [3]. Nanoparticles have been utilized in medication (drug delivery), in food industries, gene delivery and Cancer therapy and so on [3]. The nanoparticles are of various size, structure and shape. It well may be tubular, conical, spherical, hollow core, cylindrical, spiral, flat and so forth or sporadic and contrast from 1 to 100 nm in size. Nanomaterials/or nanoparticles are utilized in an expansive range of use. Today they contained in numerous products and utilized in different technologies. Most Nano items created on an industrial scale are nanoparticle, in spite of the fact that they likewise emerge as by-products in the manufacturing of other materials [4, 5]. Explicit synthesis is utilized to create the different nanoparticles, coating composite and dispersion. Characterized production and reaction condition is pivotal in acquiring such size-dependent molecule. Particle shape, crystallinity, chemical composition and size can be constrained by pH- value, synthetic arrangement (chemical), temperature, procedure control and surface modification [5].
Two fundamental procedures are utilized to create nanoparticles: “Top-down” and “Bottom-up”. The expression “Top-down” alludes here to the mechanical squashing of source materials utilizing a milling procedure. In the “Bottom-up” strategy, structures are developed by the synthetic procedure. The determination of the individual procedure relies upon the compound organization and the desire features indicated for the nanoparticles [6] (Figure 1) (Table 1).
Methods of nanoparticles production: top-down and bottom-up (image: Laboratory for micro and nanotechnology, Paul Scherrer Institut).
Category | Method | Nanoparticles |
---|---|---|
Bottom-up | Pyrolysis | Carbon and metal oxide based |
Biosynthesis | Organic polymers and metal based | |
Spinning | Organic polymers | |
Sol-gel | Carbon metal and metal oxide based | |
Chemical vapor deposition (CVD) | Carbon and metal based | |
Top-down | Sputtering | Metal based |
Laser ablation | Carbon based and metal oxide based | |
Thermal decomposition | Carbon and metal oxide based | |
Nanolithography | Metal based | |
Mechanical milling | Metal, oxide and metal oxide based |
Categories of the nanoparticles synthesized from the various methods [1].
Strangely, the morphological parameters of NPs can be tweaked by shifting the chemical concentration and reaction condition for example pH and temperature. However, if these synthesized NMs are exposed to the real application, then they can experience the following impediment, which is stability in a threatening situation, absence of comprehension in fundamental mechanism and modeling factors, bioaccumulation or toxicity quality, extensive examination requirements recycle, reuse, regeneration. In true word, it is desirable that the properties, behavior and types of nanomaterials ought to be improved to meet the aforementioned points. Then again, these impediments are opening new and extraordinary opportunities in this developing field of research.
To counter those restrictions a new era of green synthesis methodologies is increasing incredible in recent research and innovative work on material science and technologies. Essentially green synthesis will straightforwardly help uplift the ecological friendliness as they are generated through clean up, regulation/guideline, control and remediation process additionally there are few parts like the decrease of derivatives, decrease of contamination, prevention and minimalization of waste and ultimately the utilization of more secure solvent during synthesis process as well as renewable stock. Green synthesis is required to stay away from the production of undesirable or unsafe products through the build-up of reliable, maintainable and eco-friendly methods. Green synthesis of metallic nanoparticles has been embraced to suit different organic material (for example, algae, bacteria, plant extract and fungi) (Figure 2)[7]. Among the accessible green methods of synthesis for metal and metal oxide NPs, usage of plant extract is a fairly straightforward and simple procedure to create nanoparticles at large scale with respect to fungi and bacteria mediated synthesis. Synthesis of metal and metal oxide NPs, plant biodiversity has been comprehensively considered to be because of the availability of effective phytochemicals in different plant extract, particular in leaves such as amide, flavones, phenols, terpenoids, ketones, ascorbic acid, aldehyde and carboxylic acids. These components are equipped of reducing metal salts into metal NPs [7, 8] (Tables 2 and 3).
Different methods for the synthesis of nanoparticles [4, 7].
Sr. no. | Species | Nanoparticles | Size (nm) | Morphology | Application |
---|---|---|---|---|---|
1 | Lactobacillus casei | Silver | 20–50 | Spherical | Drug delivery, bio-labeling |
2 | Desulfovibrio desulfuricans | Gold | 20–50 | Spherical | Catalysis |
3 | E. coli | Cadmium | 2–5 | Fluorescent labels | Wurtzite structures |
4 | Klebsiella pneumonia | Silver | 28–122 | Spherical | Optical receptor, antimicrobial |
5 | Aquaspirillum magnetotacticum | Iron oxide | 40–50 | Octahedral prism | — |
6 | Coriolus versicolor | Silver | 25–75 | Spherical | Water-soluble metallic catalyst |
7 | Penicillium brevicompactum | Silver | 23–105 | Crystalline spherical | Antimicrobial agent |
8 | Phoma glomerata | Silver | 60–80 | Spherical | Antimicrobial agent |
9 | Saccharomyces cerevisiae broth | Gold, silver | 4–15 | Spherical | Catalysis |
10 | Aspergillus flavus TFR7 | Titanium dioxide | 12–15 | Spherical | Plant nutrient fertilizer |
Synthesis of metallic nanoparticles from various biological species (bacteria) [7].
Sr. no. | Species | Nanoparticles | Size (nm) | Morphology | Application |
---|---|---|---|---|---|
1 | Eucalyptus citriodora (neelagiri) | Silver | 20 | Spherical | Antibacterial |
2 | Cymbopogon flexuosus (lemon grass) | Gold | 200–500 | Spherical, triangular | Infrared-absorbing optical coating |
3 | Syzygium aromaticum (clove buds) | Gold | 5–100 | Irregular | Detection and destruction of cancer cells |
4 | Mentha piperita (peppermint) | Silver | 5–30 | Spherical | Kill microbes |
5 | Medicago sativa (alfalfa) | Gold | 2–40 | Hexagonal, tetrahedral, icosahedral | Labeling in structural biology, paints |
6 | Morus (mulberry) | Silver | 15–20 | Spherical | Antimicrobial activity |
7 | Aloe barbadensis Miller(Aloe vera) | Gold, silver | 10–30 | Spherical, triangular | Cancer hyperthermia, optical coating |
8 | Coriandrum sativum (coriander) | Gold | 6.75–57.91 | Spherical, triangular | Drug delivery, tumor imaging |
9 | Azadirachta indica (neem) | Gold, silver | 5–35 | Spherical, hexagonal | Remediation of toxic metal |
10 | Terminalia catappa (almond) | Gold | 10–35 | Spherical | Biomedical field |
Synthesis of metallic nanoparticles from various plant extract [7].
Dendrimers, micelles, liposomes and ferritin are usually known as natural nanoparticles or polymers. These nanoparticles are biodegradable, non-toxic and a few particles for example, micelles and liposomes have a hollow center otherwise known as nanocapsules [9].
Inorganic nanoparticles are not comprised of carbon. Metal and metal oxide based nanoparticles are commonly classified as inorganic nanoparticles.
Metal based: Nanoparticles that are integrated from metals to Nano size either by ruinous or constructive strategies are metal based nanoparticles [1, 9]. Practically every one of metal can be synthesized into their nanoparticles. The normally utilized metals for nanoparticles are aluminum, cobalt, gold, silver, zinc, iron, copper, and cobalt [1, 9]. Nanoparticles have a distinctive size extends from 10 nm to 100 nm.
Metal oxides based: The metal oxides based nanoparticles are orchestrated to adjust the properties of their respective metal based nanoparticles.
Cerium oxide: These nanoparticles have excellent properties when contrasted with their metal partner. For example, zinc oxide. Iron oxide, silicon dioxide, magnetite, etc.
The nanoparticles made totally of carbon are known as carbon-based [1, 9, 10]. They can be classified as:
Fullerenes: Fullerenes is a carbon particle that is spherical on shape and made up of carbon molecules held together by sp2 hybridization. Around 28–1500 carbon atoms form the spherical structure with diameter of 8.2 nm for a single layer and for a multi-layered fullerenes 4–36 nm [9, 10].
Graphene: Graphene is an allotrope of carbon. It is a hexagonal system of honeycomb lattice made of carbon atoms in a 2-D planar surface. The thickness of the graphene is of 1 nm [9, 10].
Carbon nano tubes: In this, nano foil which has a honeycomb lattice of carbon atoms is twisted into a hollow cylinder to frame nanotubes of measurements as low as 0.7 nm [1, 10].
Carbon nanofiber: When graphene nano foil used to produce carbon nanofiber as carbon nanotubes however twisted into a cone or cup shape than a regular cylindrical tube [1, 10].
Carbon black: It is an undefined material comprised of carbon, generally spherical in shape with diameter measurements up to 20–70 nm. Interaction between the particles is high to such as an extent that they aggregate and the agglomeration are seen as of 500 nm [1, 10].
Nano-technology has acquired an incredible revolution in the industrial division. Due to their exceptional physiochemical and electrical properties, Nano-sized materials have increased a great deal of fascination in the field of hardware, biotechnology and aeronautic design. It is additionally being utilized in the field of medicine NPs similar to the novel delivery system for drugs, DNA and so on. Human is exposed to different non-scale materials since the new developing field of nanotechnology has turned into another danger to human life [11, 12]. The proposed hypothesis is that the NPs of size under 10 nm act similar to gas and can enter human tissues effectively and may abrogate the cell typical biochemical condition [11, 13]. There have been studies on human and murine models that the NPs are exposed through orally they are circulated to the spleen, liver, heart and lungs also to the brain and gastrointestinal zone, some other exposure routes may incorporate skin, ingestion, inhalation and injection. Some designed NPs are being utilized in many products with direct exposure to people, for instance, ZnO NPs are added to numerous items including cotton texture, Food packaging and rubber for its freshening up and antibacterial attributes, TiO2 NPs are utilized in food coloring, makeup, skincare item and tattoo pigments, Fe2O3 NPs utilized in the final polish on metallic gems (jewelries) [12]. It has been seen that life expectancy of the nanoparticles in human is around 700 days in which it reliably has a risk to the body. Nanoparticles have an incredible risk to human’s wellbeing when contrasted with large-sized particles of the similar chemical compound and it is commonly said that toxicities are contrarily corresponding to the size of the nanoparticles [14, 15]. As the utilization of engineered nanoparticles keeps on developing exponentially, an unintended and intended exposure may happen, which will prompt a high level of human wellbeing hazard. End product users, occupationally exposed subjects and the overall population may be in danger of antagonistic impact (Figure 3).
The following figure represents usages of nanotechnology/nanoparticles in different field [6].
The physiochemical properties of NPs impact how they interact with cells and thus, their potential danger. Studies have demonstrated the different properties that make some nanoparticles more toxic than others. Hypothetically, molecules size is likely to add to cytotoxicity. Smaller NPs have a bigger specific surface area and thus in this way increasingly accessible surface area to interact with cell components for example, carbohydrates, protein, nucleic acids and fatty acids. Nanoparticles with small size are liable to enter the cells, causing cellular damage. Some nanoparticles lethality were seen as a function of both size and specific surface area. It has additionally been seen that size of NPs has seen to correspond with reactive oxygen species (ROS) generation when comparing the amount of ROS generation per surface area within certain size range [14, 15, 16]. Nanoparticles size between 10 nm or > 30 nm creates comparable level of ROS per surface area. In any case, there was a sensational increment in ROS production per unit surface in particle expanding from 10 to 30 nm. This information or data disclose to us the bits of knowledge with respect to the perplexing connection between NPs properties and Nano toxicity.
Silver nanoparticles are progressively utilized in different fields, including health care, medical, food, consumer and industrial purpose because of their novel physical and chemical properties. Because of their unconventional properties, they have been utilized for a few applications, as in medical device coating, drug delivery, health care products, and food industry, as anticancer agent and orthopedics and also as anti-bacterial agents. AgNPs by a long shot the most generally utilized in customers items, for example, in kitchen utensils, toothpaste, bedding, deodorants, nursing bottles, washing machines, nipples and humidifiers [17]. So as to satisfy the necessity of silver NPs different strategy have been utilized for synthesis, conventional technique like chemical and physical strategies have been utilized, yet they are by all accounts expensive and toxic/hazardous [18].
An organic methodology has been utilized in the synthesis of AgNPs utilizing microorganisms, fungi and plant extract prompting to reliable alterative to chemical and physical techniques in acquiring the nanoparticles in controlled particle size. It has been seen that green synthesis of AgNPs with various stabilizing agents, for example, polyethylene glycol, alcohol vinyl, dextran, cyclodextrins and utilizing “andeli” (rose extract) [19, 20, 21, 22]. This expands utilization of AgNPs in different materials has prompted a more straightforward and direct exposure in human and raised potential dangers to health issues. In an in vivo examination (Sprague-Dawley rodents) they were dealt with orally for 28 days with AgNPs in spite of the fact that there was no observable difference in clinical sign and neither in any difference in body or organ weight. The impacts on blood biochemistry have been seen to increase in cholesterol at high doses of AgNP which indicates that hepatotoxicity and increment in alkaline phosphatase. In another investigation, F344 rodents were fed AgNPs for a time period of 90 days and a decrease in body weight in males was seen following a month of exposure and a dose-dependent change was seen in cholesterolemia and alkaline phosphatases activity which proposed that 125 mg/kg body weight of AgNPs may cause liver harm (Figure 4).
Nanoparticles pathway and toxicological impact [13, 14].
It is commonly realized that NPs can be absorbed by the digestive tract not just through the M-cells in the Peyer’s patch yet additionally by numerous organs as shown in Figure 5. Culture of human mesenchymal stem cells incubated with 0.1 μg ml−1 of normal human lungs fibroblast cells or albumin-capped silver nanoparticles or human glioblastoma cells starch incubated with capped silver nanoparticle (AgNPs) showed genotoxicity up to dosages of 50 μg ml−1. Albumin-capped AgNPs has been demonstrated to be more genotoxic than polysaccharide-capped AgNPs. Silver nanoparticles exposed to in vivo models like mice were seen to be more toxic than fish to capped AgNPs. However NPs toxicity/genotoxicity was seen as more when the concentration of albumin-capped NPs was increased to >100 μg ml−1 (Table 4).
Main target organ of silver nanoparticles.
Sr.no. | Classification | Cell | Size (nm) | Cytotoxicity | Genotoxicity |
---|---|---|---|---|---|
1 | Vertebrate/chordata/mammalian | IMR-90 Human lung fibroblast | 6–20 | 50 μg ml−1 | Comet assay 5 μm (50 comets were analyzed per concentration) (DNA damage at 50 μg ml−1) |
2 | Vertebrate/chordata/mammalian, human | A549 Human lung carc. | 78 | 12.5 μg ml−1 | In this it was indicated that silver NPs mediated ROS-induced genotoxicity |
3 | Vertebrate/chordata/mammalian | mES Mouse embryonic stem cells | 25 | 50 μg ml−1 | 50 μg ml−1 (this conc. upregulates the DNA damage repair proteins Rad51 and phosphorylated-H2AX expression and even upregulates cell cycle checkpoint protein p53) |
4 | Vertebrate/chordata/fish | OLHN12 Medaka fish | 20–30 | 1.3 μg ml−1 | 1.2 μg ml−1 aneuplidy 15.8% |
5 | Vertebrate/chordata/mammalian | BRL 3A Rat liver cells | 25 | 50 μg ml−1 | 10 μg ml−1 |
6 | Plantae/liliopsida | Allium cepa 5000 cells | 24–55 | ROS-induced up to 10 μg ml−1cell death and DNA damage doses 20 μg ml−1 | No genotoxicity |
7 | Vertebrate/chordata/fish | Primary trout hepatocytes N = 3, each treatement | 35 | Significant toxicity from 500–1000 μg ml−1 | Didn’t cause significant lactate dehydrogenase release |
8 | Vertebrate/chordata/mammalian | MEF Mouse embryonic fibroblasts | 25 | 50 μg ml−1 | 50 μg ml−1 this concentration upregulates the Rad51 and phosphorylates-H2AX expression and also upregulates p53 |
9 | Vertebrates/chordata/mammalian, human | Human lymphocytes | 25–45 | Till 400 μg ml−1 | Till 50 μg ml−1 no DNA damage |
10 | Vertebrate/chordata/mammalian, human | HepG2 Human hepatocytes 150 cell per group | 15–20 | 13 μg ml−1 (58% survival) | Here it was indicated that the AGNPs induces ROS-induced nontoxicity |
In vivo cytotoxicity and genotoxicity effects of AgNPs in different organisms [25].
In recent investigation, it has been seen that hepatotoxicity, pulmonary inflammation, genotoxicity, neurotoxicity, inflammatory effects and cytotoxicity have been related with various shape and size of silver nanoparticles. A large number of articles have been proposed that silver nanoparticles assume a noteworthy job in prompting Reactive Oxygen Species (ROS) which in returns lead to cell cytotoxicity and genotoxicity. It has been seen that cytotoxicity has been closely identified to the generation of ROS. For example interaction of AgNPs with mitochondrial can be seen that: 95% of the cell’s energy is generated by mitochondria as it is the powerhouse of the cells. It’s a significant and essential piece of the cell. ROS generation is possible because of the superoxide spillage through the membrane. The interaction of AgNPs with mitochondria which prompts generation of ROS can be clarified in a manner when Ag+ and silver nanoparticles have a high affinity (−SH) thiol group in cysteine residues. AgNPs disrupts the membrane proteins integrity of the mitochondria, also hampers the membrane permeability of the membrane and abrogate the mitochondrial functions (Figure 6).
This figure represents the endogenous ROS production, which are involved in oxidative stress. Interaction between mitochondrial and AgNP generate ROS from mitochondria which leads to cell death [23].
A great deal of studies has demonstrated a connection in ROS generation by silver nanoparticles, oxidative stress and cytotoxicity. Numerous toxicological changes have been reported in embryos when they are exposed to nanoparticles, for example, changes in oxidative stress markers such as apoptosis, changes in expression of genes and lipid oxidation, etc. It has been seen that massive production of free radicals lead to the generation of pro-inflammatory cytokines and furthermore initiation of NOX/NADPH oxidase family. It must be noticed that other than inflammatory effects of oxygen radicals, oxidants helps the release of inflammatory mediators by activating transcription factor including AP-1, hypoxia inducing factor and NF-kB and which prompts to oxidative stress and inflammation. Oxidative stress might have a double role, first as “effector” (by oxidant discharge and induced toxicity) and secondly as “modulator” (managing transcription factor) of chronic micro-inflammation process. This interaction among inflammation and oxidative stress in an amplified manner may prompt to the deleterious impacts brought by silver nanoparticles and which can prompt to DNA damage and cell demise by apoptosis (Figure 7).
Pictorial representation of activation of cellular mechanisms of inflammatory signal when exposed to AgNP generated from ROS and by strengthening of NADPH oxidase activity. By MAP kinases pathway, activation of oxidative IKK-B which is induced by stress leads to NF-kB translocation and expression of marker and potential mediators of inflammation increases, mitochondrial damage and membrane damage which can cause toxicity in cell and leads to death by apoptosis [24].
In brief, the ingenious and extensive demand of nanoparticles has led to their extensive production. After use modalities path their way towards exposure to environment as well as to the human health moreover the product which are being used are also in direct contact with the human tissue. Prolong accumulation of the nanoparticle particularly talking about silver nanoparticles.
The Edited Volume, also known as the IntechOpen Book, is an IntechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters.
",metaTitle:"Edited Volumes",metaDescription:"The Edited Volume, also known as the InTechOpen Book, is an InTechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters. ",metaKeywords:null,canonicalURL:"/pages/edited-volumes",contentRaw:'[{"type":"htmlEditorComponent","content":"WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\\n\\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nQUALITY CONTENT
\\n\\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\\n\\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\\n\\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\\n\\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\\n\\nACCESS
\\n\\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\\n\\nYOUR WORK, YOUR COPYRIGHT
\\n\\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\\n\\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\\n\\nOur Open Access book collection includes:
\\n\\n3,332 OPEN ACCESS BOOKS
\\n\\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\\n\\n113+ MILLION DOWNLOADS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview of all publishing process steps and descriptions here.
\\n\\nCURRENT PROJECTS
\\n\\nTo view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\n\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\n\nQUALITY CONTENT
\n\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\n\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\n\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\n\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\n\nACCESS
\n\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\n\nYOUR WORK, YOUR COPYRIGHT
\n\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\n\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\n\nOur Open Access book collection includes:
\n\n3,332 OPEN ACCESS BOOKS
\n\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\n\n113+ MILLION DOWNLOADS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview of all publishing process steps and descriptions here.
\n\nCURRENT PROJECTS
\n\nTo view current Open Access book projects that are Open for Submissions visit us here.
\n\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",slug:"carmen-feijoo",fullName:"Carmen Feijoo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Andrés Bello University",country:{name:"Chile"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5703},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10246},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15653}],offset:12,limit:12,total:20827},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"23"},books:[{type:"book",id:"9538",title:"Demographic Analysis - Selected Concepts, Tools, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f335c5d0a39e8631d8627546e14ce61f",slug:null,bookSignature:"Ph.D. Andrzej Klimczuk",coverURL:"https://cdn.intechopen.com/books/images_new/9538.jpg",editedByType:null,editors:[{id:"320017",title:"Ph.D.",name:"Andrzej",surname:"Klimczuk",slug:"andrzej-klimczuk",fullName:"Andrzej Klimczuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10811",title:"Urban Transition - Perspectives on Urban Systems and Environments",subtitle:null,isOpenForSubmission:!0,hash:"4885cfa30ba6184b0da9f575aee65998",slug:null,bookSignature:"Ph.D. Marita Wallhagen and Dr. Mathias Cehlin",coverURL:"https://cdn.intechopen.com/books/images_new/10811.jpg",editedByType:null,editors:[{id:"337569",title:"Ph.D.",name:"Marita",surname:"Wallhagen",slug:"marita-wallhagen",fullName:"Marita Wallhagen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse - an Interdisciplinary Approach",subtitle:null,isOpenForSubmission:!0,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:null,bookSignature:"Dr. Ersi Abaci Kalfoglou and Dr. Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:null,editors:[{id:"68678",title:"Dr.",name:"Ersi Abaci",surname:"Kalfoglou",slug:"ersi-abaci-kalfoglou",fullName:"Ersi Abaci Kalfoglou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:57},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5146},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"598",title:"Computational Logic",slug:"numerical-analysis-and-scientific-computing-computational-logic",parent:{title:"Numerical Analysis and Scientific Computing",slug:"numerical-analysis-and-scientific-computing"},numberOfBooks:7,numberOfAuthorsAndEditors:132,numberOfWosCitations:327,numberOfCrossrefCitations:213,numberOfDimensionsCitations:420,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"numerical-analysis-and-scientific-computing-computational-logic",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6299",title:"Simulation and Gaming",subtitle:null,isOpenForSubmission:!1,hash:"e86eaf984e70e1544d594f7df43189ed",slug:"simulation-and-gaming",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/6299.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"133",title:"Cellular Automata",subtitle:"Simplicity Behind Complexity",isOpenForSubmission:!1,hash:"5124eb60c82cab7b51174716cffd7dd4",slug:"cellular-automata-simplicity-behind-complexity",bookSignature:"Alejandro Salcido",coverURL:"https://cdn.intechopen.com/books/images_new/133.jpg",editedByType:"Edited by",editors:[{id:"1120",title:"Dr.",name:"Alejandro",middleName:null,surname:"Salcido",slug:"alejandro-salcido",fullName:"Alejandro Salcido"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1540",title:"Cellular Automata",subtitle:"Innovative Modelling for Science and Engineering",isOpenForSubmission:!1,hash:"a75c3ba71ed14d9f6a7edb3a8dd416f2",slug:"cellular-automata-innovative-modelling-for-science-and-engineering",bookSignature:"Alejandro Salcido",coverURL:"https://cdn.intechopen.com/books/images_new/1540.jpg",editedByType:"Edited by",editors:[{id:"1120",title:"Dr.",name:"Alejandro",middleName:null,surname:"Salcido",slug:"alejandro-salcido",fullName:"Alejandro Salcido"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3778",title:"Game Theory",subtitle:null,isOpenForSubmission:!1,hash:"581e90d1b372cfc84afcc285a318673f",slug:"game-theory",bookSignature:"Qiming Huang",coverURL:"https://cdn.intechopen.com/books/images_new/3778.jpg",editedByType:"Edited by",editors:[{id:"252226",title:"Dr.",name:"Qiming",middleName:null,surname:"Huang",slug:"qiming-huang",fullName:"Qiming Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2713",title:"New Achievements in Evolutionary Computation",subtitle:null,isOpenForSubmission:!1,hash:"3e992f9525c0027064e28589d3889188",slug:"new-achievements-in-evolutionary-computation",bookSignature:"Peter Korosec",coverURL:"https://cdn.intechopen.com/books/images_new/2713.jpg",editedByType:"Edited by",editors:[{id:"4581",title:"prof. dr.",name:"Peter",middleName:null,surname:"Korosec",slug:"peter-korosec",fullName:"Peter Korosec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3749",title:"Evolutionary Computation",subtitle:null,isOpenForSubmission:!1,hash:"413cf10893f15955d121a4934493da16",slug:"evolutionary-computation",bookSignature:"Wellington Pinheiro dos Santos",coverURL:"https://cdn.intechopen.com/books/images_new/3749.jpg",editedByType:"Edited by",editors:[{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3759",title:"Particle Swarm Optimization",subtitle:null,isOpenForSubmission:!1,hash:"85447c3d76565043803bbf8de76e5729",slug:"particle_swarm_optimization",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3759.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"10938",doi:"10.5772/9623",title:"Optimization with the Nature-Inspired Intelligent Water Drops Algorithm",slug:"optimization-with-the-nature-inspired-intelligent-water-drops-algorithm",totalDownloads:4160,totalCrossrefCites:26,totalDimensionsCites:41,book:{slug:"evolutionary-computation",title:"Evolutionary Computation",fullTitle:"Evolutionary Computation"},signatures:"Hamed Shah-Hosseini",authors:null},{id:"8538",doi:"10.5772/8051",title:"A Multi-Criterion Evolutionary Approach Applied to Phylogenetic Reconstruction",slug:"a-multi-criterion-evolutionary-approach-applied-to-phylogenetic-reconstruction",totalDownloads:1566,totalCrossrefCites:6,totalDimensionsCites:20,book:{slug:"new-achievements-in-evolutionary-computation",title:"New Achievements in Evolutionary Computation",fullTitle:"New Achievements in Evolutionary Computation"},signatures:"W. Cancino and A.C.B. Delbem",authors:null},{id:"6255",doi:"10.5772/6742",title:"Individual Parameter Selection Strategy for Particle Swarm Optimization",slug:"individual_parameter_selection_strategy_for_particle_swarm_optimization",totalDownloads:3920,totalCrossrefCites:12,totalDimensionsCites:19,book:{slug:"particle_swarm_optimization",title:"Particle Swarm Optimization",fullTitle:"Particle Swarm Optimization"},signatures:"Xingjuan Cai, Zhihua Cui, Jianchao Zeng and Ying Tan",authors:null}],mostDownloadedChaptersLast30Days:[{id:"57340",title:"An Evaluation of Open Digital Gaming Platforms for Developing Computational Thinking Skills",slug:"an-evaluation-of-open-digital-gaming-platforms-for-developing-computational-thinking-skills",totalDownloads:1471,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"simulation-and-gaming",title:"Simulation and Gaming",fullTitle:"Simulation and Gaming"},signatures:"Andoni Eguíluz, Pablo Garaizar and Mariluz Guenaga",authors:[{id:"212591",title:"Dr.",name:"Pablo",middleName:null,surname:"Garaizar",slug:"pablo-garaizar",fullName:"Pablo Garaizar"},{id:"212592",title:"Mr.",name:"Andoni",middleName:null,surname:"Eguíluz",slug:"andoni-eguiluz",fullName:"Andoni Eguíluz"},{id:"221998",title:"Dr.",name:"Mariluz",middleName:null,surname:"Guenaga",slug:"mariluz-guenaga",fullName:"Mariluz Guenaga"}]},{id:"8535",title:"Morphological-Rank-Linear Models for Financial Time Series Forecasting",slug:"morphological-rank-linear-models-for-financial-time-series-forecasting",totalDownloads:2293,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-achievements-in-evolutionary-computation",title:"New Achievements in Evolutionary Computation",fullTitle:"New Achievements in Evolutionary Computation"},signatures:"Ricardo de A. Araújo, Gláucio G. de M. Melo, Adriano L. I. de Oliveira and Sergio C. B. Soares",authors:null},{id:"8543",title:"Efficient Estimation of Distribution Algorithms by Using the Empirical Selection Distribution",slug:"efficient-estimation-of-distribution-algorithms-by-using-the-empirical-selection-distribution",totalDownloads:1782,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"new-achievements-in-evolutionary-computation",title:"New Achievements in Evolutionary Computation",fullTitle:"New Achievements in Evolutionary Computation"},signatures:"S. Ivvan Valdez, Arturo Hernández and Salvador Botello",authors:null},{id:"57919",title:"Digital Games in the Science Classroom: Leveraging Internal and External Scaffolds during Game Play",slug:"digital-games-in-the-science-classroom-leveraging-internal-and-external-scaffolds-during-game-play",totalDownloads:628,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"simulation-and-gaming",title:"Simulation and Gaming",fullTitle:"Simulation and Gaming"},signatures:"Kara Krinks, Heather Johnson and Douglas B. Clark",authors:[{id:"223669",title:"Dr.",name:"Kara",middleName:null,surname:"Krinks",slug:"kara-krinks",fullName:"Kara Krinks"},{id:"223671",title:"Dr.",name:"Heather",middleName:null,surname:"Johnson",slug:"heather-johnson",fullName:"Heather Johnson"},{id:"230335",title:"Dr.",name:"Douglas",middleName:null,surname:"Clark",slug:"douglas-clark",fullName:"Douglas Clark"}]},{id:"57309",title:"Interaction Design in Virtual Reality Game Using Arduino Sensors",slug:"interaction-design-in-virtual-reality-game-using-arduino-sensors",totalDownloads:1270,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"simulation-and-gaming",title:"Simulation and Gaming",fullTitle:"Simulation and Gaming"},signatures:"Juin-Ling Tseng and Chia-Wei Chu",authors:[{id:"211070",title:"Associate Prof.",name:"Juin-Ling",middleName:null,surname:"Tseng",slug:"juin-ling-tseng",fullName:"Juin-Ling Tseng"},{id:"211646",title:"Dr.",name:"Chia-Wei",middleName:null,surname:"Chu",slug:"chia-wei-chu",fullName:"Chia-Wei Chu"}]},{id:"57873",title:"Worked Examples in Physics Games: Challenges in Integrating Proven Cognitive Scaffolds into Game Mechanics",slug:"worked-examples-in-physics-games-challenges-in-integrating-proven-cognitive-scaffolds-into-game-mech",totalDownloads:629,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"simulation-and-gaming",title:"Simulation and Gaming",fullTitle:"Simulation and Gaming"},signatures:"Deanne Adams, Douglas B. Clark and Satyugjit Virk",authors:[{id:"230335",title:"Dr.",name:"Douglas",middleName:null,surname:"Clark",slug:"douglas-clark",fullName:"Douglas Clark"},{id:"230974",title:"Dr.",name:"Deanne",middleName:null,surname:"Adams",slug:"deanne-adams",fullName:"Deanne Adams"},{id:"230975",title:"Dr.",name:"Satyugjit",middleName:null,surname:"Virk",slug:"satyugjit-virk",fullName:"Satyugjit Virk"}]},{id:"8536",title:"Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection",slug:"evolutionary-logic-synthesis-of-quantum-finite-state-machines-for-sequence-detection",totalDownloads:3190,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-achievements-in-evolutionary-computation",title:"New Achievements in Evolutionary Computation",fullTitle:"New Achievements in Evolutionary Computation"},signatures:"Martin Lukac and Marek Perkowski",authors:null},{id:"6263",title:"Swarm Intelligence in Portfolio Selection",slug:"swarm_intelligence_in_portfolio_selection",totalDownloads:2478,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"particle_swarm_optimization",title:"Particle Swarm Optimization",fullTitle:"Particle Swarm Optimization"},signatures:"Shahab Mohammad-Moradi, Hamid Khaloozadeh, Mohamad Forouzanfar, Ramezan Paravi Torghabeh and Nosratallah Forghani",authors:null},{id:"8539",title:"New Perspectives in Predicting Membrane Protein-Protein Interactions",slug:"new-perspectives-in-predicting-membrane-protein-protein-interactions",totalDownloads:1768,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"new-achievements-in-evolutionary-computation",title:"New Achievements in Evolutionary Computation",fullTitle:"New Achievements in Evolutionary Computation"},signatures:"X. Zhang and B.F. Francis Ouellette",authors:null},{id:"8545",title:"Artificial Societies and Social Simulation Using Ant Colony, Particle Swarm Optimization and Cultural Algorithms",slug:"artificial-societies-and-social-simulation-using-ant-colony-particle-swarm-optimization-and-cultural",totalDownloads:2719,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"new-achievements-in-evolutionary-computation",title:"New Achievements in Evolutionary Computation",fullTitle:"New Achievements in Evolutionary Computation"},signatures:"Alberto Ochoa, Arturo Hernández, Laura Cruz, Julio Ponce, Fernando Montes, Liang Li and Lenka Janacek",authors:null}],onlineFirstChaptersFilter:{topicSlug:"numerical-analysis-and-scientific-computing-computational-logic",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/166312/sara-bolloli",hash:"",query:{},params:{id:"166312",slug:"sara-bolloli"},fullPath:"/profiles/166312/sara-bolloli",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()