Statewise quinquennial average of area and production of wheat.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5220",leadTitle:null,fullTitle:"Oncology Critical Care",title:"Oncology Critical Care",subtitle:null,reviewType:"peer-reviewed",abstract:"According to the American Cancer Society, more than 1.6 million people will be diagnosed with cancer during this year. Outcomes have steadily risen over the last several decades with the advent of newer therapies. As outcomes have improved, more and more cancer patients are developing critical illness. In the not-too-distant past, patients with active malignancy were thought not appropriate for critical care services as decreased longevity related to the cancer suggested poor prognosis for intensive care utilization. More recently, evidence supports rapid activation of critical care services leading to improved outcomes in cancer patients. Moreover, just as sub-subspecialty critical care experience in trauma and neurosciences has proved beneficial, the emerging field of oncology critical care warrants specific attention.",isbn:"978-953-51-2782-6",printIsbn:"978-953-51-2781-9",pdfIsbn:"978-953-51-7324-3",doi:"10.5772/61590",price:119,priceEur:129,priceUsd:155,slug:"oncology-critical-care",numberOfPages:186,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"6ca48669ac7afaf59398a958335eff65",bookSignature:"Jeffrey B. Hoag",publishedDate:"November 30th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5220.jpg",numberOfDownloads:12987,numberOfWosCitations:9,numberOfCrossrefCitations:6,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:7,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:22,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 22nd 2015",dateEndSecondStepPublish:"November 12th 2015",dateEndThirdStepPublish:"February 16th 2016",dateEndFourthStepPublish:"May 16th 2016",dateEndFifthStepPublish:"June 15th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"91738",title:"Dr.",name:"Jeffrey",middleName:null,surname:"Hoag",slug:"jeffrey-hoag",fullName:"Jeffrey Hoag",profilePictureURL:"https://mts.intechopen.com/storage/users/91738/images/5031_n.jpg",biography:"Dr. Jeffrey B. Hoag received his Doctor of Medicine degree from Virginia Commonwealth University School of Medicine in Richmond, Virginia, in 2001. After completing internship and residency in the same institution, he moved to Baltimore, Maryland, where he completed fellowship training at Johns Hopkins University in Pulmonary Medicine and Critical Care Medicine. Along with being an associate professor of Medicine at Drexel University College of Medicine, he is the director of Critical Care at the Eastern Regional Medical Center of Cancer Treatment Centers of America® in Philadelphia, Pennsylvania. Dr. Hoag is also the enterprise chief of Critical Care and vice chairman of Medicine for Medicine and Science, the clinical branch of Cancer Treatment Centers of America®.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Cancer Treatment Centers of America",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"993",title:"Pre-Hospital Emergency Medicine",slug:"critical-care-medicine-pre-hospital-emergency-medicine"}],chapters:[{id:"52657",title:"Oncological Airway Emergencies in the Critical Care Unit",doi:"10.5772/65082",slug:"oncological-airway-emergencies-in-the-critical-care-unit",totalDownloads:1824,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Malignancies involving the upper and lower airways can be presented as acute and/or acute-on-chronic life-threatening emergencies. Most of them require intensive care unit (ICU) admission and acute intervention. Such emergencies include but are not exhaustive to epistaxis, massive hemoptysis, central airways obstruction, postobstructive pneumonia, tracheoesophageal fistula, and pleural disease. These are frequent consequences of disease, iatrogenicity, and various pleural diseases causing respiratory failure. The incidence, physiology, symptoms, and sequelae of each disease will be outlined in addition to potential surgical, pharmacologic, and conservative interventions. An anatomical approach from the upper airway, lower airway, mediastinum, and pleura will be taken. Here, we discuss interventions such as emergent cautery, nasal packing, emergent airways, and tracheostomy in addition to a brief glance at other surgical modalities. We will also detail central airway complications such as obstructing endobronchial tumors, massive hemoptysis, bronchoscopy, rigid bronchoscopy, stent placement, and other interventions (cautery, cryotherapy, one-way valves). Finally, pleural disorders such as tension pneumothorax, bronchopleural fistulas, massive pleural effusion, and hemothorax will be reviewed.",signatures:"Osheen Abramian, Diana Kolman and Emil Abramian",downloadPdfUrl:"/chapter/pdf-download/52657",previewPdfUrl:"/chapter/pdf-preview/52657",authors:[{id:"181010",title:"Dr.",name:"Emil",surname:"Abramian",slug:"emil-abramian",fullName:"Emil Abramian"}],corrections:null},{id:"52236",title:"Pharmacologic Considerations in Oncology Critical Care",doi:"10.5772/64599",slug:"pharmacologic-considerations-in-oncology-critical-care",totalDownloads:1883,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Critical care in the oncology population consists of diverse levels of diseases, syndromes, and emergencies that are not observed in typical medically-ill patients and, with it, comes even more specialized treatment strategies. Therefore, the uncommon or less well-understood pharmacologic considerations in this population must be discussed to better assist any clinician at the bedside. This chapter outlines some of the situations commonly encountered in this setting such as the challenge of treating and preventing infectious diseases when the patient lacks the ability to mount appropriate immune responses to conventional therapy, the paradigm of treating thromboembolism in the group of patients who are at highest risk for both bleeding and clotting and treatment of acute and long-term consequences of cancer or chemotherapy requiring escalation of care to the intensive care unit (ICU).",signatures:"Trisha Patel, Erica M. McGovern, Denise Wolfe, Mark E. Lewis and\nMashiul Chowdhury",downloadPdfUrl:"/chapter/pdf-download/52236",previewPdfUrl:"/chapter/pdf-preview/52236",authors:[{id:"181743",title:"Dr.",name:"Trisha",surname:"Patel",slug:"trisha-patel",fullName:"Trisha Patel"},{id:"181846",title:"Dr.",name:"Mashiul",surname:"Chowdhury",slug:"mashiul-chowdhury",fullName:"Mashiul Chowdhury"},{id:"181847",title:"M.Sc.",name:"Erica",surname:"McGovern",slug:"erica-mcgovern",fullName:"Erica McGovern"},{id:"181848",title:"Dr.",name:"Denise",surname:"Wolfe",slug:"denise-wolfe",fullName:"Denise Wolfe"},{id:"184410",title:"Mr.",name:"Mark",surname:"Lewis",slug:"mark-lewis",fullName:"Mark Lewis"}],corrections:null},{id:"52287",title:"Improving Outcome in Gastrointestinal and Hepatopancreaticobiliary Surgical Oncology by Preoperative Risk Assessment and Optimization of Perioperative Care",doi:"10.5772/64775",slug:"improving-outcome-in-gastrointestinal-and-hepatopancreaticobiliary-surgical-oncology-by-preoperative",totalDownloads:2264,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter discusses the most important challenges in the perioperative phase of the oncology patient undergoing surgery of the gastrointestinal tract. Because of the aging population, the surgeon is ever more confronted with frail patients at risk for an adverse surgical outcome. The chapter therefore reviews factors contributing to an impaired postoperative outcome such as sarcopenia, frailty, cachexia, and malnutrition and gives an insight into their pathophysiology. Next, it provides an overview of validated preoperative classification systems to identify the patients at risk for surgical complications. Furthermore, it discusses the most essential recommendations of standardized care for patients undergoing hepatopancreaticobiliary, gastric, and colorectal surgery. Special attention is paid to the use of clinical pathways in the perioperative phase that are aimed at a multimodal approach of reducing surgical morbidity by lowering the perioperative physiological and psychological stress. Recent literature is discussed regarding care in the intensive care unit, and the final paragraph focuses on improving postoperative outcome by means of prehabilitation or exercise as well as dietary interventions and optimized nutrition.",signatures:"Audrey C.H.M. Jongen, Victor van Woerden, Jeroen L.A. van Vugt,\nPatrick A. de Hoogt, Elisabeth M.L. de Wijkerslooth de\nWeerdesteijn, Juul J.W. Tegels, Nicole D. Bouvy and Jan H.M.B. Stoot",downloadPdfUrl:"/chapter/pdf-download/52287",previewPdfUrl:"/chapter/pdf-preview/52287",authors:[{id:"181922",title:"Dr.",name:"Jeroen",surname:"Van Vugt",slug:"jeroen-van-vugt",fullName:"Jeroen Van Vugt"},{id:"181949",title:"Ph.D. Student",name:"Audrey",surname:"Jongen",slug:"audrey-jongen",fullName:"Audrey Jongen"},{id:"181960",title:"MSc.",name:"Victor",surname:"Van Woerden",slug:"victor-van-woerden",fullName:"Victor Van Woerden"},{id:"181961",title:"BSc.",name:"Elisabeth",surname:"De Wijkerslooth De Weerdesteijn",slug:"elisabeth-de-wijkerslooth-de-weerdesteijn",fullName:"Elisabeth De Wijkerslooth De Weerdesteijn"},{id:"181962",title:"MSc.",name:"Patrick",surname:"De Hoogt",slug:"patrick-de-hoogt",fullName:"Patrick De Hoogt"},{id:"181963",title:"Dr.",name:"Jan",surname:"Stoot",slug:"jan-stoot",fullName:"Jan Stoot"},{id:"181964",title:"MSc.",name:"Juul",surname:"Tegels",slug:"juul-tegels",fullName:"Juul Tegels"}],corrections:null},{id:"52089",title:"Infections in Cancer Patients",doi:"10.5772/64372",slug:"infections-in-cancer-patients",totalDownloads:2570,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Cancer therapy is a dynamically evolving field. Chemotherapy and biologic agents impact the magnitude and duration of immunosuppression in the already-immunocompromised cancer hosts who are then susceptible to a broad spectrum of infectious complications ranging from mild opportunistic infections to severe, fatal neutropenic sepsis. Numerous bacterial, fungal, and viral organisms have been implicated dictating varied preventative approaches. Rapid assessment and risk stratification of febrile patients identify individuals requiring hospital admission. Timely delivery of antimicrobials reduces the risk of complications and death. Herein, we summarize the current “state of art” in the management of infection in the cancer patient. We detail the advances in antibacterial and antifungal therapy.",signatures:"Deepjot Singh and Robert A. Bonomo",downloadPdfUrl:"/chapter/pdf-download/52089",previewPdfUrl:"/chapter/pdf-preview/52089",authors:[{id:"181936",title:"Dr.",name:"Deepjot",surname:"Singh",slug:"deepjot-singh",fullName:"Deepjot Singh"},{id:"187145",title:"Dr.",name:"Robert",surname:"Bonomo",slug:"robert-bonomo",fullName:"Robert Bonomo"}],corrections:null},{id:"52059",title:"Nutrition and Indirect Calorimetry",doi:"10.5772/64385",slug:"nutrition-and-indirect-calorimetry",totalDownloads:2505,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Nutrition support is important in the care of patients with both acute and chronic illness. Optimizing nutritional support for the critically ill and patients with acute and chronic respiratory disorders has been shown to shorten length of stay, shorten duration of mechanical ventilation, lower health-care costs and reduce morbidity and mortality while improving functional quality of life. Nutritional requirements are difficult to predict in patients diagnosed with cancer due to their disease processes, altered inflammatory responses and metabolic rates among many other variables. Often predictive equations are used to estimate energy requirements and the average dietary energy intake needed to maintain energy balance. Energy requirements can be estimated through the use of over 200 predictive equations. Utilization of indirect calorimetry as the ‘gold standard’ for measuring resting metabolic rate (RMR) and resting energy expenditure (REE) can provide support in all states of health and disease. This chapter will identify and discuss the role of indirect calorimetry, examine the reasons why indirect calorimetry is more reliable than predictive equations in determining a patient’s calorie requirement, and when it is most applicable to incorporate indirect calorimetry measurements in the care of cancer patients.",signatures:"Danish Ahmad, Kellie Joseph and Christopher Halpin",downloadPdfUrl:"/chapter/pdf-download/52059",previewPdfUrl:"/chapter/pdf-preview/52059",authors:[{id:"181851",title:"Ms.",name:"Kellie",surname:"Joseph",slug:"kellie-joseph",fullName:"Kellie Joseph"},{id:"183846",title:"Dr.",name:"Christopher",surname:"Halpin",slug:"christopher-halpin",fullName:"Christopher Halpin"},{id:"185539",title:"M.D.",name:"Danish",surname:"Ahmad",slug:"danish-ahmad",fullName:"Danish Ahmad"}],corrections:null},{id:"51544",title:"Management of Pain, Agitation, and Delirium in Mechanically Ventilated Oncology Patients",doi:"10.5772/64268",slug:"management-of-pain-agitation-and-delirium-in-mechanically-ventilated-oncology-patients",totalDownloads:1941,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Attention has heightened over the last several years to the importance of managing pain, agitation, and delirium in mechanically ventilated patients due to the multiple long‐term adverse effects patients experience after an intensive care unit (ICU) admission. Furthermore, clinical practice is being molded not just by the guidelines and randomized controlled trials, but also by the information gathered from real patient experiences to improve care at the bedside. The literature continues to remain sparse for providing guidance specifically in the oncology population. Therefore, several resources have been combined to better assist clinicians on making sound decisions for keeping patients comfortable on the ventilator while recognizing the differences in treatment that may need to be employed due to these patients’ medical condition.",signatures:"Trisha Patel, Erica M. McGovern, Denise Wolfe, Mark E. Lewis and\nMashiul Chowdhury",downloadPdfUrl:"/chapter/pdf-download/51544",previewPdfUrl:"/chapter/pdf-preview/51544",authors:[{id:"181743",title:"Dr.",name:"Trisha",surname:"Patel",slug:"trisha-patel",fullName:"Trisha Patel"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"5756",title:"Intensive Care",subtitle:null,isOpenForSubmission:!1,hash:"c15f872f6c0158a19bf64f081fe1e854",slug:"intensive-care",bookSignature:"Nissar Shaikh",coverURL:"https://cdn.intechopen.com/books/images_new/5756.jpg",editedByType:"Edited by",editors:[{id:"107703",title:"Dr.",name:"Nissar",surname:"Shaikh",slug:"nissar-shaikh",fullName:"Nissar Shaikh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5970",title:"Bedside Procedures",subtitle:null,isOpenForSubmission:!1,hash:"ba56d3036ac823a7155f40e4a02c030d",slug:"bedside-procedures",bookSignature:"Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/5970.jpg",editedByType:"Edited by",editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-pregnancy-and-graves-disease",title:"Corrigendum: Pregnancy and Graves’ Disease",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79786.pdf",downloadPdfUrl:"/chapter/pdf-download/79786",previewPdfUrl:"/chapter/pdf-preview/79786",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79786",risUrl:"/chapter/ris/79786",chapter:{id:"75306",slug:"pregnancy-in-women-with-graves-disease-focus-on-fetal-surveillance",signatures:"Anca Maria Panaitescu",dateSubmitted:"December 16th 2020",dateReviewed:"January 27th 2021",datePrePublished:"February 18th 2021",datePublished:"December 1st 2021",book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251062",title:"Ph.D.",name:"Anca",middleName:null,surname:"Panaitescu",fullName:"Anca Panaitescu",slug:"anca-panaitescu",email:"panaitescu.anca@yahoo.com",position:null,institution:null}]}},chapter:{id:"75306",slug:"pregnancy-in-women-with-graves-disease-focus-on-fetal-surveillance",signatures:"Anca Maria Panaitescu",dateSubmitted:"December 16th 2020",dateReviewed:"January 27th 2021",datePrePublished:"February 18th 2021",datePublished:"December 1st 2021",book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251062",title:"Ph.D.",name:"Anca",middleName:null,surname:"Panaitescu",fullName:"Anca Panaitescu",slug:"anca-panaitescu",email:"panaitescu.anca@yahoo.com",position:null,institution:null}]},book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12088",leadTitle:null,title:"Ataxia",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"fb35aa995feab6834b56ef9828065b3e",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12088.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 2nd 2022",dateEndSecondStepPublish:"March 23rd 2022",dateEndThirdStepPublish:"May 22nd 2022",dateEndFourthStepPublish:"August 10th 2022",dateEndFifthStepPublish:"October 9th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"5 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"6779",title:"Resonant Tunnelling Optoelectronic Circuits",doi:"10.5772/7146",slug:"resonant-tunnelling-optoelectronic-circuits",body:'\n\t\t
Nowadays, most communication networks such as local area networks (LANs), metropolitan area networks (MANs), and wide area networks (WANs) have replaced or are about to replace coaxial cable or twisted copper wire with fiber optical cables. Light-wave communication systems comprise a transmitter based on a visible or near-infrared light source, whose carrier is modulated by the information signal to be transmitted, a transmission media such as an optical fiber, eventually utilizing in-line optical amplification, and a receiver based on a photo-detector that recovers the information signal (Liu, 1996)(Einarsson, 1996). The transmitter consists of a driver circuit along a semiconductor laser or a light emitting diode (LED). The receiver is a signal processing circuit coupled to a photo-detector such as a photodiode, an avalanche photodiode (APD), a phototransistor or a high speed photoconductor that processes the photo-detected signal and recovers the primitive information signal.
\n\t\t\tTransmitters and receivers are classical examples of optoelectronic integrated circuits (OEICs) (Wada, 1994). OEIC technologies aim to emulate CMOS microelectronics by (i) integrating optoelectronic devices and electronic circuitry on the same package or substrate (hybrid integration), (ii) monolithically integrate III-V optoelectronic devices on silicon (difficulty since silicon is not useful for many optoelectronic functions) or (iii) monolithically integrate III-V electronics with optoelectronic devices. The simply way to do hybrid integration is combining packaged devices on a ceramic substrate. More advanced techniques include flip-chip/solder-ball or -bump integration of discrete optoelectronic devices on multi-chip modules or directly on silicon integrated circuit (IC) chips, and flip-bonding on IC chips. Although, hybrid integration offers immediate solutions when many different kinds of devices need to be combined it produces OEICs with very low device density. Moreover, in certain cases the advantages of using optical devices is greatly reduced. On the contrary, monolithic integration leads to superior speed, component density, reliability, complexity, and manufacturability (Katz, 1992).
\n\t\t\tThere was been substantial efforts towards monolithical integration of III-V electronics with optoelectronic devices to improve the performance of transmitters and receivers. Approaches to light modulation, light detection and light generation at microwave and millimetre-wave frequencies have been investigated by combining double barrier quantum well (DBQW) resonant tunnelling diodes (RTDs) with optical components such as waveguides (Figueiredo, 2000) and semiconductor lasers (\n\t\t\t\t\tSlight, 2006\n\t\t\t\t). These RTD based OEICs can operate as novel optoelectronic voltage controlled oscillators (OVCOs), with potential to simplify clock recovery circuits, improve control of microwave oscillators functionalities, to generate electrical and optical aperiodic waveforms, and as microwave-to-optical subcarrier and optical subcarrier-to-microwave converters for radio-over-fiber systems, where the integration of electrical and optical components in a single chip is a major challenge in order to obtain high reliability, small size and low cost (Sauer et al., 2007).
\n\t\t\tThis chapter reports investigation on resonant tunnelling (RT) based OEICs that demonstrate new functionalities for optical modulators and sources for application in telecommunication systems and signal processing circuits. Section 2 starts with a brief description of DBQW-RTD’s operating principle, followed by the presentation of a physics based model of its current-voltage (
Resonant tunnelling diodes (RTDs) are nanoelectronic structures that can be easily integrated with conventional electronic and photonic devices (Davies, 1998)(Mizuta & Tanoue, 1995)(Sun et al., 1998), such as transistors (Mazumder et al., 1998), optical waveguides (McMeekin et al., 1994)(Figueiredo, 2000) and laser diodes (\n\t\t\t\t\tSlight, 2006\n\t\t\t\t) with potential to not only reduce power consumption and cost but also increase functionality, speed and circuit reliability, without losing any advantage of using optical devices. They have two distinct features when compared with other semiconductor devices (Mazumder et al., 1998): their potential for extremely high frequency operation up to terahertz and their negative differential conductance (NDC). The former arises from the very small size of the resonant tunnelling structure along the direction of carriers transport. The second corresponds to electric gain which makes possible to operate RTDs as amplifiers and oscillators, significantly reducing the number of elements required for a given function (Mazumder et al., 1998). Functional RTD based devices and circuits span from signal generators, detectors and mixers, multi-valued logic switches, low-power amplifiers, local oscillators, frequency locking circuits, and also as generators of multiple high frequency harmonics (Mizuta & Tanoue, 1995). In this section, the physics of double barrier quantum well resonant tunnelling diodes (DBQW-RTDs) is discussed and analyzed, aiming at its application in high speed optoelectronic converters (rf-optical and optical-rf), such as light emitters, light modulators and light detectors.
\n\t\t\tResonant tunnelling through double potential barriers was predicted by (Bohm, 1951). Latter, (Iogansen, 1964) discussed the possibility of resonant transmission of an electron through double barriers formed in semiconductor crystals. They concluded that structures with identical barriers show tunnelling transmission coefficients of 1 when the particles incident energy equals the structure resonant energies, however small the transmission through the individual barriers may be (Mizuta & Tanoue, 1995). Figure 1 compares schematically the transmission coefficient
Single and DBQW transmission coefficients as function of incident carrier energy.
A semiconductor double barrier quantum well resonant tunnelling diode (DBQW-RTD) consists of a low band-gap semiconductor layer (the quantum well, typical 5 nm to 10 nm wide) surrounded by two thinner layers of higher band-gap material (barriers, typical 1.5 nm to 5 nm), both sandwiched between low band-gap
a) DBQW semiconductor structure. (b) AlGaAs DBQW structure (left); -conduction band profiles at zero and at the first resonance voltage (right).
Under applied bias, the overall carrier flow through a DBQW-RTD is qualitatively different from that of a single barrier diode since the double barrier structure acts as a band filter to charge carrier energy distribution (Mizuta & Tanoue, 1995)(Sun et al., 1998). This filter action is exploited applying a voltage across the DBQW structure to control the number of carriers that can take part in the conduction through resonant levels. The carrier transmission coefficient maxima shown in Figure 1 give rise to current-voltage characteristics with regions of strong NDC. The resonant tunnelling phenomenon in AlGaAs DBQW structures was first predicted in 1973 (Tsu & Esaki, 1973), and demonstrated experimentally in 1974 (Chang et al., 1974). In 1983, Sollner et al. demonstrated resonant tunnelling through quantum wells at frequencies up to 2.5 THz (Sollner et al., 1983). Figure 3(a) shows a typical InGaAs/AlAs RTD
a) Typical InGaAlAs RTD I-V characteristic. (b) Current transport mechanisms in DBQW-RTDs at the peak voltage (
The RTD current-voltage characteristic of Figure 3(a) can be understood with the help of the -conduction band profile shown in Figure 2(b) and 3(b) (Davies, 1998). When the applied bias is small, i.e.,
The most common material systems used to implement RTD devices are III-V compounds such as AlGaAs and InP-based materials.. Si/SiGe RTDs based on Si/SiGe heterojunctions have been demonstrated but the performance is not comparable to III-V RTDs because of the limited band edge discontinuity in both valence and conduction bands. Organic RTDs are currently being investigated (Park et al., 2006)(Ryu et al., 2007)(Zheng et al., 2009).
\n\t\t\tThe RTDs inherent high speed operation, up to terahertz frequency, the pronounced nonlinear current-voltage characteristic, wide-bandwidth NDC, structural simplicity, flexible design, relative ease of fabrication, and versatile circuit functionality, make them excellent candidates for nanoelectronic circuit applications. In order to take advantage of the full potential of RTD based devices several attempts have been made to incorporate the full RTD characteristics into circuit simulation packages such as SPICE-like CAD tools (Mizuta & Tanoue, 1995)(\n\t\t\t\t\t\tBrown et al., 1996\n\t\t\t\t\t)(Sun et al., 1998).
\n\t\t\t\tSince a quantum mechanics based model that includes all RTD features is not yet available, a number of empirical models have been advanced (Sun et al., 1998). Most models describe the RTD by small-signal equivalent circuits consisting of a capacitance C, resulting from charging and discharging of electrons of DBQW and depletion regions, in parallel with a voltage depend current source I = F(V), a series resistance R arising mainly from the ohmic contacts and an inductance L due to bond wire connections, Figure 4. The current source F(V) is usually implemented as polynomial or piecewise functions (Brown et al., 1997)(Sun et al., 1998), which is not satisfactory if a detailed circuit description is needed. More useful RTD non-linear characteristic representations have to consider a wide variety of device structures and the materials available, i.e., the modelled I –V characteristic has to be based as much as possible on the RTD physical parameters such as material properties, layer dimensions, energy levels, dopant concentrations, and the device geometry.
\n\t\t\t\tElectrical equivalent circuit of an RTD represented by a capacitance in parallel with a voltage dependent current source F(V). The inductance L and the resistor R are due to bonding wires and contacts.
The physics based model proposed by Schulman et al. consists of a mathematical function which provides a satisfactory I –V shape characteristic for InGaAs and GaAs RTD based devices (Schulman et al., 1996). The expression obtained contains physical quantities which can also be treated as empirical parameters for fitting purposes. In their analysis the resonant tunnelling current density is expressed within the effective mass approximation (Davies, 1998), which includes nonzero temperature, Fermi-Dirac statistics and the transmission coefficient T(E,V):
\n\t\t\t\twhere
where the parameters A, B, C, D, and n1 can be used to shape the curve to match the first PDC region of the measured I –V characteristic, having at the same time a well-defined physical interpretation: A and B are related, among other factors, with resonance width and Fermi level energies, and allow adjustment of the RTD peak current; C and n1 determine essentially the RTD peak voltage, correlated with the energy of the resonant level relative to the bottom of the well and with the transmission coefficient; finally, D is related to the resonance width Er.
\n\t\t\t\tIn order to represent the increasing valley current due to tunnelling through higher resonances or thermal excitation over the barriers, an additional current density component, identical to the classical diode current, the non-resonant term JNR, have to be included:
\n\t\t\t\tParameters D and H adjustment of adjust the peak to valley current ratio (PVCR) and the peak to valley voltage ratio (PVVR).
\n\t\t\t\t\n\t\t\t\t\tEquation 2 and 3 give good estimations of the peak current and the NDC region of current-voltage characteristic. The final form of the RTD current-voltage curve is then given by:
\n\t\t\t\twhere the multiplying factor M is used to scale Equation 4, in order to take into account the devices area. Figure 5 shows experimental I – V curves of AlGaAs (a), and InGaAlAs (b), RTDs, with the corresponding fit given by Equation 4. The fits assumed operation at temperature T =300 K and a multiplying factor M=210-6 cm2, with the following parameters: A=1950 A/cm2, B=0.05 V, C=0.0874 V, D=0.0073 V, n1=0.0352, H=18343 A/cm2, and n2=0.0031 for AlGaAs; A=3800 A/cm2, B=0.068 V, C=0.1035 V, D=0.0088 V, n1=0.0862, H=4515 A/cm2, and n2=0.0127 for InGaAlAs. Higher values of A and B are used in the InGaAlAs fitting due to RTD higher peak current; parameter D was also slightly larger for the InGaAlAs due to superior PVCR and PVVR. The parameter H was around four times larger in the AlGaAs due mainly to their higher peak voltages.
\n\t\t\t\tGaAs/AlAs (a) and InGaAs/AlAs (b) RTD experimental I –Vs and fittings.
Since the RTD is a voltage-dependent current source device, when incorporated in a resonant circuit and biased in the NDC portion of its I –V characteristic produces oscillations at circuit characteristic frequency (\n\t\t\t\t\t\tBrown & Parker, 1996\n\t\t\t\t\t). In order to understand the origin of the circuit self-oscillations induced by the RTD we consider the small-signal equivalent circuit of Figure 4. Typical RTD switching times are in general dominated by the effects of current densities and capacitances, i.e., by the circuit RC time constant (Brown et al., 1997) (Brown & Parker, 1996).
\n\t\t\t\tA general analysis of a circuit containing an RTD considers the small signal equivalent circuit of Figure 4, where the RTD non-linear I –V characteristic is represented by a voltage dependent current source F(V), given by Equation 4, in parallel with RTD intrinsic capacitance C. Resistor R and inductor L encompasses for the device series resistance and connections inductance, respectively. By applying Kirchoff’s laws (using Faraday’s law) to the circuit of Figure 4, the voltage V across the capacitance C and the current I through the inductor L are given by the following set of two first-order non-autonomous differential equations (Slight et al., 2008):
\n\t\t\t\tAfter some algebra, we find that the system of Equation 5-6 is equivalent to the following second-order differential equation, referred as one of the generalized nonlinear Liénard systems (Slight et al., 2008)(Figueiredo, 1970):
\n\t\t\t\twhere \n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
The circuit of Figure 4 dc biased in the NDC acts as a relaxation oscillator producing oscillations at a frequency around\n\t\t\t\t\t
Several optoelectronic devices and circuits whose functions depend on embedded resonant tunnelling structures have been proposed and demonstrated, including resonant tunneling light emitting diodes (RT-LEDs) (Van Hoof et al., 1992), vertically integrated semiconductor lasers with RTDs (Grave et al., 1991), resonant tunnelling effect quantum-well lasers (Kawamura et al., 1994), resonant tunnelling injection laser (Capasso et al., 1986), multi-quantum well (MQW) lasers (Kawamura et al., 1987) and photo-detecting (PD) structures (Chen et al., 1991). The nature and the energies involved in the carrier transition induced by the light interaction with the tunnelling layers determine the operation in the optical or in the infrared part of the electromagnetic spectrum. Optical applications such as photo-detection, light emission, optical switching, utilize inter-band transitions (band-gap transitions), whereas infrared applications include intra-band and inter-sub-band photo-detection, and infrared emission. Below is presented a brief summary of the main progress on optical and optoelectronic devices whose functionalities depend of embedded RT structures.
\n\t\t\t\tBistability in the light output of bipolar RT-LEDs has been reported, showing that these devices are capable of ultrafast optical switching and high frequency optical oscillation (Van Hoof et al., 1993). Laser transistors incorporating a resonant tunnelling structure have been reported, with carrier injection or extraction controlled via resonant tunnelling structure, with light output controlled by the collector voltage and achieving higher speed than with conventional semiconductor lasers (Kawamura et al., 1992). Embedding RTs into multi-quantum well (MQW) devices introduces negative differential conductance over wide valley region, which is very effective for getting large voltage switching and high on/off ratio current switching (Kawamura et al., 1988) leading to electro-optic bistability (Chen et al., 1991). Optical bistability in QW lasers integrated with DBQW-RTDs, and a RTD with a MQW modulator/detector based on the p – i(MQW)–n configuration, operating at room temperature, were reported (Kawamura et al., 1994). Clear negative differential conductance and bistability, with high contrast and high sensitivity in resonant tunnelling triangular barrier optoelectronic switch (R-TOPS), which consists of a double barrier resonant tunnelling diode and a triangular barrier phototransistor has been demonstrated (Sakata et al., 1995).
\n\t\t\t\tA light pulse incident upon a resonant tunnelling diode produces photo-charges that reduce the series resistance, leading to a shift of the peak and valley voltages which can induce RTD switching and give rise to changes in the current flow (Moise et al., 1995). Optically switched resonant tunnelling diode (ORTD) photo-detectors have been demonstrated (Moise et al., 1997). Phase locking of an oscillating GaAs/AlGaAs RTD to a train of light pulses achieved by direct illumination was reported (Lann et al., 1993), as well as optical switching in resonant tunnelling diode (England et al., 1991) and optical injection locking of the resonant tunnelling oscillator (Kan et al., 2001). The RT structures can be used to implement light-by-light switching (England et al., 1991). Ultra-fast optoelectronic circuits using RTDs and uni-travelling-carrier photodiodes (UTC-PDs) to de-multiplex ultra-fast optical data signals into electrical data signals with lower bit rate and low power consumption has been demonstrated (Sano et al., 1998).
\n\t\t\t\tOur work on optoelectronic devices based on the integration of a RTD within an optical waveguide, and on hybrid and monolithic integrations of RTDs with laser diodes is discussed in the remaining sections of this chapter.
\n\t\t\tNovel information and communication technologies relying on microwave/millimetre-wavelightwave interactions are fundamental to the development of applications such as low-cost fibre-optic communication networks, cable television signal distribution, mobile communications, and radio local area networks (Sauer et al., 2007). In this section, electrical active, high speed, highly efficient and low-cost electro-absorption modulators and photo- detectors based on the integration of a RT structure within a semiconductor optical waveguide are described.
\n\t\t\tAs discussed previously, when the RTD is biased in the valley region most of the applied voltage is dropped across the depletion region formed between the second barrier and the collector contact, Figure 6(a), where a strong electric field builds-in. Inter-band electro-absorption of light with photon energies close to but smaller than the collector band-gap energy is achieved through the Franz-Keldysh effect (Chuang, 1995). According to the Franz-Keldysh effect the semiconductor material optical absorption band-edge is broadened by the presence of an electric field, resulting in an increase of absorption of light with photon energies smaller but close to the material band-gap (Keldysh, 1958). This effect is used to implement either electro-absorption (EAM) (intensity) modulators (Wakita et al., 1998) or waveguide photo-detectors (Chuang, 1995). However, in typical RTD structures the light is injected perpendicularly to the tunnelling plane, which gives a light interaction (absorption) length well below 100 nm, and thus very small light absorption. This limitation can be easily overcome embedding the RTD into the core of a unipolar semiconductor optical waveguide (McMeekin et al., 1994). A typical waveguide structure is represented schematically in Figure 6(a), showing also wafer -conduction band-edge and refractive index profiles. This optoelectronic device is called resonant tunnelling diode optical waveguide (RTD-OW). The waveguide refractive index distribution confines light end-fire coupled along the tunnelling layers and the collector depleted region, therefore increasing substantially the light interaction volume along the waveguide length as indicated in Figure 6(b).
\n\t\t\t\tThe RTD-OW, apart from the light confining layers (the lower refractive index regions – upper and lower cladding layers), corresponds to a DBQW-RTD with thick low doped
\n\t\t\t\ta) Diagram of a unipolar resonant tunnelling diode optical waveguide (RTD-OW) wafer structure, and the corresponding -conduction band-edge and refractive index profiles. (b) Ridged waveguide channel configuration.
emitter and collector spacer layers. The presence of the DBQW within the waveguide core modifies the unipolar waveguide linear current-voltage characteristic towards the DBQW-RTD strong nonlinear I –V curve (McMeekin et al., 1994)(Figueiredo, 2000). Moreover, it leads to a non-linear electric field distribution across the collector side waveguide core that is strongly dependent on the bias voltage, due to the electron accumulation close to the emitter barrier and the creation of a depletion region on the collector spacer layer. Since a small voltage can be used to make a RTD operating point to switch between peak and valley regions, the RTD-OW can be employed to implement electro-absorption modulators (McMeekin et al., 1994)(Figueiredo, 2000). A small voltage change results in large modulation of the electric field across the device collector depletion region, resulting, though the Franz-Keldysh effect, in waveguide propagation losses and electro-absorption for photon energies close to but smaller than the waveguide core band-gap energy (Figueiredo, 2000)(Figueiredo et al., 2001).
\n\t\t\t\tThe RTD-OW electric field distribution dependence on the bias voltage can be understood by considering the -conduction band profile of the collector spacer layer, Figure 7. Below resonance (first PDC region), the applied voltage is dropped mainly across the DBQW, and the electric field in the collector core is rather small, Figure 7(a). Any optical loss increase with the applied voltage is mainly due to the thermal effects induced by the current flow, which rise linearly with the current. Above resonance (in the NDC and on the second PDC region), the additional applied bias voltage is dropped mainly across the depleted part of the collector spacer layer, Figure 7(b), and the electric field magnitude is now much stronger than on the first PDC region, inducing large light absorption. The thermal optical absorption is now much less important because the current flowing through the devices biased on the valley region is significantly lower.
\n\t\t\t\tEffect of applied biased on RTD-OW -band: (a) before the peak and (b) on the valley.
The electric field enhancement EVP induced by the peak to valley switching can be estimated as (Figueiredo, 2000)(Figueiredo et al., 2001):
\n\t\t\t\twhere VVP is the voltage dropped across the depletion region, JPV is the corresponding current density change, sat is the carrier saturation velocity and Wdep is the depletion thickness. At a given photon energy the absorption change induced by the electric field enhancement due to the peak to valley switching is given by (Figueiredo, 2000):
\n\t\t\t\twhere (,E) is given, in the weak field approximation, by the Franz-Keldysh effect electroabsorption coefficient (Chuang, 1995)(Keldysh, 1958). The light modulation depth due to the peak to valley switching can be calculated using (Chuang, 1995):
\n\t\t\t\twhere f is the optical filling factor which corresponds to the fraction of the optical power guided in the depleted region of the waveguide, and is the RTD-OW electrically active length, defined by the RTD metal contacts length [see Figure 6(b)]. The measured Franz-Keldysh effect effective band-edge shift to longer wavelengths can be compared with the value given by theory (Chuang, 1995)(Keldysh, 1958):
\n\t\t\t\tThe measured g gives an independent way to determine the electric field change EVP induced by the peak to valley switching.
\n\t\t\t\tAs mentioned, RTD-OWs designed to show considerable NDC with a significant portion of the waveguide core being depleted at bias voltages higher than the peak voltage can have their operation point switched between the two I –V PDC regions by small high frequency ac signals (< 1 V). This leads to high speed electric field switching, resulting in high frequency modulation of the waveguide optical transmission loss. In this mode of operation the RTD-OW is called a resonant tunnelling diode electro-absorption modulator (RTD-EAM). In the RTD-EAM the modulation depth depends essentially on the overlap between the electric field in the collector depleted volume and the optical mode. The peak to valley electric field magnitude boost is determined mainly by the NDC region characteristics, V and J. Figure 8 represents schematically the light absorption on the collector depleted region induced by the Franz-Keldysh effect when the RTD-OW is biased on the valley region, Figure 8(a), and the change in the absorption coefficient associated with the bistable switching of the device plotted against wavelength, Figure 8(b).
\n\t\t\t\tThe device concept was implemented using AlGaAs ternary material system for operation on 900 nm optical window, and InGaAlAs quaternary compound to work on 1300 nm and 1550 nm optical windows, where the optical fibre present zero dispersion and have the lowest losses, respectively. For operation in the 900 nm spectral region, GaAs was used to form the waveguide core and the quantum well; AlAs and AlGaAs were employed to form the barriers and waveguide cladding layers, respectively. For operation at around 1550 nm,
\n\t\t\t\ta) Schematic diagram of light absorption induced by Franz-Keldysh effect in a RTD-OW biased around the valley point. (b) Change in absorption produced by the change in the voltage characteristic of the NDC pulse plotted with the absorption in dB/cm of bulk GaAs against wavelength (McMeekin et al., 1994).
the InGaAlAs quaternary material system was used to implement the waveguide core and the quantum well, with AlAs and In0.48Al0.52As/InP being employed for the barriers and the waveguide cladding layers, respectively. The InGaAsP quaternary compound also allows operation on 1300 nm and 1550 nm optical windows but was not used. A detailed description of the RTD-OW structures implemented can be found in (Figueiredo, 2000). Next we describe the experimental operation of RTD-OW electro-absorption modulators on the optical communication windows around 900 nm and 1550 nm.
\n\t\t\tThe RTD-OW operation as an electro-absorption modulator at around 900 nm was achieved by growing the waveguide and DBQW layers using the AlGaAs/GaAs material system on semi-insulating GaAs. The GaAs waveguide core was made 1m thick to allow easy end-fire light coupling, with n-type Si doping concentration of 2 ×1016 cm–3; the cladding layers were made of Al0.33Ga0.67As, a direct band-gap compound alloy, with Si doping concentration around 2 × 1018 cm–3. The refractive index difference between the core and cladding layers around 0.224 at 900 nm is sufficiently to obtain efficient light confinement with relatively thin cladding layers. The upper cladding layer thickness was made 300 nm thick, twice the reciprocal of the optical waveguide first mode exponential decaying factor, to keep the device series resistance low. Because the waveguide core and the substrate have similar real refractive indices, the lower cladding layer was made 600 nm thick with Si doping concentration of 2×1018 cm–3, to act as an isolation layer separating the core from the substrate, in order to significantly reduce radiation leakage into the GaAs substrate. The DBQW consisted of a 7 nm GaAs quantum well sandwiched between 1.4 nm AlAs barriers. The detailed description and fabrication of AlGaAs/GaAs structures can be found in (Figueiredo, 2000). Figure 9 shows the top view of a RTD-OW die and a packaged device.
\n\t\t\t\tWhen dc biased in the NDC region, all tested devices showed instabilities at around few MHz. These where removed connecting devices to the dc power supply via a wide bandwidth bias-T. In certain cases, a high frequency energy-storage element, such as a coax transmission line, was inserted between the RTD and the bias-T, resulting in a RTD-EAM transmission line relaxation oscillator whenever the cavity characteristic frequency was within the NDC bandwidth (Figueiredo et al., 1999). Typical electrical relaxation oscillations due to a 15 cm long coaxial transmission line are shown in Figure 10(a). The relaxation oscillations RF spectra show harmonic components up to 15 GHz (Figueiredo, 2000). The free-running oscillation frequency was changeable by varying the optical power coupled
\n\t\t\t\tRTD-OW die top view and a packaged device. The parameter here represents devices electrical active length, which with the waveguide width defines devices active area.
into the RTD-EAM, as shown in Figure 10(b); in the cases observed the free-running frequency decreased when the coupled optical power was increased. In a circuit with a free-running oscillation frequency around 470 MHz, a tuning range of 10 MHz was observed. The frequency tuning effect is mainly due to the creation of charge carriers in the depletion region that reduces the device series resistance and moves the operating point through the NDC region, which change the device impedance [mainly the capacitance and the negative differential resistance (NDR)]. In the experiment light from a tunable Ti:sapphire laser emitting at around 900 nm was used; the optical power was kept to few mW in order to avoid damaging waveguide input facet.
\n\t\t\t\ta) Self-sustained oscillations in a RTD-EAM connected via a 15 cm long coaxial line. (b) Self-oscillations frequency tuning induced by incident light.
The free-running relaxation oscillation frequency is also affected by the dc bias voltage because of the device intrinsic impedance dependence on the voltage. These behaviours can be used to implement both optical controlled oscillators (OCOs) and voltage controlled oscillators (VCOs). The OCO can be used to optically control microwave oscillators, and will be briefly analyzed when discussing the RTD-OW operation as photo-detector. The VCO behaviour makes possible operating the RTD-EAM as an optoelectronic voltage controlled oscillator (OVCO) since the electric field across the depleted collector region also self-oscillates at the free-running frequency, self-modulating the transmission properties of the waveguide. Before discussing OVCO operation we present electro-absorption response of the RTD-EAM. The RTD-EAM waveguide transmission spectra at zero bias, at slightly below the peak, and just above the valley points, are shown in Figure 11(a) for devices with active areas around 800 m2. (The devices were not dc biased in the NDC region in order to avoid self-oscillation.) As the applied voltage increases from the peak to the valley point, there is a sharp drop in the waveguide transmission at wavelengths in the range 890 nm to 910 nm. The observed Franz-Keldysh absorption band-edge shift was around 12 nm which compares to 9 nm estimated using Equation 12, taking in consideration the approximations made (Figueiredo, 2000). Figure 11(b) presents the optical modulation depth as a function of the operating wavelength due to the transition between the two positive PDC regions induced by a square signal with peak-to-peak voltage slight higher than VVP = VV –VP. Modulation depth up to 13 dB around 908 nm was achieved. Modulation depths up to 18 dB were observed in waveguides with 400 m active length and 4 m wide ridges.
\n\t\t\t\ta) AlGaAs RTD-EAM optical transmission spectrum at zero volts, around the peak and at the valley region. (b) Modulation depth as function of the operating wavelength due to peak-to-valley switching induced by a square voltage waveform.
Direct modulation was obtained dc biasing the RTD-EAM slightly above the valley point and injecting through a wide band bias-T the rf modulating signals. Figure 12 shows examples of modulation due to 950 MHz and 16 GHz rf signal voltages. In both cases the driving signals amplitude was kept slightly larger than VVP ~ 0.4 V. Optical modulation depths as high as 11 dB were achieved (Figueiredo et al., 1999)(Figueiredo, 2000). The 16 GHz response shown in Figure 12(b) gives a good estimation of the bandwidth and modulation depth potential of the devices. The modulation efficiency characterized by the bandwidth-to-drive-voltage ratio, defined as the ratio of the operation bandwidth to the operating voltage for at least 10 dB modulation depth, was 40 GHz/V (Figueiredo et al., 1999)(Figueiredo, 2000).
\n\t\t\t\ta) Direct modulation at around 950 MHz, with modulation depth up to 11 dB (=908 nm). (b) Modulator response to a 16 GHz rf signal.
As discussed previously, when dc biased in the NDC region and connected to a bias-T through a coaxial line the RTD-EAM can operate in the self-oscillation mode, producing an optical output modulated by the NDC induced relaxation oscillations, at frequencies determined by the electrical length of the transmission line, as shown in Figure 13.
\n\t\t\t\tOptical responses measured with Streak Camera of RTD-EAM transmission line relaxation oscillators with lines 15 cm (a) and 10 cm (b) long.
The AlGaAs RTD-EAM operation modes discussed above can be employed in LANs systems primarily as devices for electrically controlling guided-wave optical signals in the 880 nm to 1100 nm wavelength range such as waveguide intensity modulators, directional couplers and optical switches. The capability to operate in relaxation oscillation mode can be applied in clock extraction circuits, for optical pulse generation and de-multiplexing in optical time division multiplexed systems.
\n\t\t\tThe AlGaAs/GaAs RTD-EAM achieved performances led the work to the demonstration of device concept operation at 1550 nm, where standard single-mode optical fibres have lowest losses (Liu, 1996). For band gap energies between 0.75 eV and 1.439 eV, quaternary alloys lattice matched to InP, which combine In, Ga, Al, and As (In1–x–yGaxAlyAs) or In, Ga, As, and P (In1–x–yGaxAs1–yPy), can be used (Chuang, 1995)(Figueiredo, 2000). The RTD-OW concept operating at 1550 nm was demonstrated using InGaAlAs lattice matched to InP because phosphorus based heterostructures have lower conduction band discontinuity, which prevents strong localization of electrons in the lower band gap material. Moreover, they are difficult to grow with conventional MBE systems due to the need to handle solid phosphorus and high concentration of phosphorus at its vapour pressure, and also due to the difficulty to control As/P ratio. Structures incorporating InGaAsP are usually grown by MOCVD (Bohrer et al., 1993).
The InGaAlAs RTD-OW schematic wafer structure for operation at 1550 nm is shown in Figure 14, with wafer -valley and refractive index profiles. The core consisted of two In0.53Ga0.42Al0.05As layers (refractive index of 3.56), 0.5 m thick each, with a band-gap energy around 0.826 eV (absorption band-edge wavelength around 1500 nm), to allow operation at 1550 nm when biased around the peak voltage. The upper cladding was implemented using a layer of In0.52Al0.48As, refractive index of 3.24. Because InP refractive index at 1550 nm ( 3.17) is considerably smaller than the In0.53Ga0.42Al0.05As refractive index, the n-type InP substrate acted as lower cladding region. As previously discussed, the upper cladding layer thickness was made 300 nm thick. A detailed description of the wafer structure is given in (Figueiredo, 2000). Most of the RTD-EAMs characterized were 4 m wide ridges with 200 m active lengths. Typical current-voltage characteristic of 4 m × 200 m InGaAlAs/InP RTD-EAM is presented in Figure 5(b) (section 2), showing PVCR around 3. These devices showed valley-to-peak voltage differences VVP ~ 0.8 V, with peak-to-valley current density differences JPV ~ 10 kA/cm2. (Typical GaAs/AlAs devices show VVP ~ 0.4 V and JPV ~ 5 kA/cm2.)
\n\t\t\t\tInGaAlAs RTD-EAM structure, -valley and refractive index profiles.
The devices’ frequency response was investigated by on wafer impedance measurements in the 45 MHz to 18 GHz frequency range for all values of bias voltage. The results indicate the InGaAlAs RTD-EAM small signal equivalent circuit consists of a capacitance C in parallel with a non-linear resistor Rd(V), in series with a resistance RS; the series inductance was found to be negligible (Figueiredo, 2000)(Alkeev et al., 2000). The devices average capacitance C and shunt resistance R around the NDC region were 1 pF and -15 , respectively; the RS was typical few ohms (less than 5 ) ((Figueiredo, 2000)(Alkeev et al., 2000). The device switching time can be estimated as tR 4(VVP/JPV)CV, where CV is the device capacitance per unit area (CV ≈ ε/Wdep(V)). For the devices tested the expected modulation bandwidth was superior to 30 GHz (Figueiredo, 2000).
\n\t\t\t\tFollowing the frequency characterization, the waveguide low frequency electro-absorption response was characterized with no applied voltage, dc biased at slightly below the peak voltage, and on the valley region; the device was not dc biased in the NDC region in order to avoid self-oscillations. Light from a Tunics diode laser, tunable in the wavelength range 1480 nm to 1580 nm was fibre coupled to the waveguide, with the light output fibre coupled to an optical power meter or a high bandwidth photo-detector. The InGaAlAs/InP RTD-EAM waveguide transmission spectrum change due to the Franz-Keldysh effect absorption bandedge broadening induced by peak-to-valley switching is indicated in Figure 15(a). The measured wavelength band-edge shift was 43 nm, which compares quite well with the estimation of 46 nm, Equation 12. The low frequency electro-absorption response showed 5 dB absorption changes induced by 1 mV dc voltage increments, an exceptionally high transmission change per unit of voltage (Figueiredo, 2000). Figure 15(b) shows modulator response as function of the dc bias voltage when driven by 3 GHz voltage signals of amplitude from 1 mV to 100 mV; also represented is the RTD-EAM dc I –V characteristic. The rf photo-detected power increased by about 15 dB when the device dc bias point moved from the peak to the valley region at driving amplitudes as low as 50 mV. An indication the modulator can be driven by very low voltage signals due to its intrinsic built-in electrical amplifier.
\n\t\t\t\ta) InGaAlAs RTD-EAM transmission spectrum in the wavelength range 1500 nm to 1580 nm, with the applied voltage as a parameter. (b) Modulator response as function of the dc bias voltage when driven by 3 GHz rf signals, with injected amplitude as a parameter.
RTD-EAM high frequency optical characterisation employed a microwave synthesized signal generator with a maximum output of +20 dBm and an upper frequency limit of 26 GHz (Figueiredo, 2000). Figure 16(a) shows the modulation depth as function of the light wavelength induced by the transition between the two PDC regions produced by a square signal with peak-to-peak voltage slight higher than VVP ~ 0.8 V. The devices were dc biased in the valley region in order to minimize thermal effects and avoid self-oscillations. Modulation depths up to 28 dB were measured on devices with active areas around 800 m2, more than 10 dB superior to the values observed on the AlGaAs/GaAs devices. The modulator response up to 26 GHz driving signals for two power values is shown in Figure 16(b).
\n\t\t\t\ta) Modulation depth as function of the wavelength. (b) Spectrum of the 26 GHz photo-detected signal at the modulator driving power of -20 dBm and +7.7 dBm.
The photo-detected power increases more than 10 dB when the driving rf power rises from -20 dBm to +7.7 dBm, an indication the device is capable to achieve modulation extinction ratios higher than 10 dB induced by low power driving signals, less than 10mW, as the consequence of the built-in electrical amplifier. The RTD intrinsic amplifier effect reduces substantially the rf power required for modulation. This on-chip amplification can eliminate the need of an external rf amplifier which is usually required to drive EAMs (Wakita et al., 1998).
\n\t\t\tLight-wave receivers contain photo-detecting devices that convert the light-wave carrier modulation into an electrical signal that needs to be amplified before processing to recover the information signal (Liu, 1996)(Einarsson, 1996). The amplifying circuitry can be the system main penalty in terms of cost and power. We are currently investigating a receiver based on the RTD-OW to take advantage of the RTD intrinsic built-in amplifier.
\n\t\t\t\tBecause in the RTD-OW the light interaction length is much longer than in conventional RTDs, the RTD-OW will produce substantial inter-band absorption, giving rise to a responsivitygain superior to the one obtained with conventional photo-detectors (Moise et al., 1995). The RTD-OW photo-detection characterization employed light from a Tunics tunable laser diode capable to be directly modulated up to 1 GHz and operate in the mode locked regime at 5 GHz. Figure 17(a) presents the rf power capture level when light modulated at 1 GHz was end-fire coupled to the waveguide. The RTD-OW responsitivity-gain increases with the transition from peak to valley voltage, Vp and Vv, by more than 15 dB. Figure 17(b) shows the photo-detected rf power as function of wavelength for dc bias on the peak and on the valley. Photo-detection of mode locked light at 5 GHz showed similar performance.
\n\t\t\t\ta) RTD-OW I –V characteristic and rf power produced due 1550 nm optical signals modulated at 1 GHz. (b) Rf power produced optical signals modulated at 1 GHz as function of wavelength, at DC biased on the peak and on the valley.
When dc biased in the NDC region the RTD-OW self-oscillations lock to the injected light subcarrier, producing electrical signals that emulate the optical subcarrier. We are currently investigating the synchronization between optical subcarriers and RTD-OW free-running oscillations to transfer the information bearing signals such as Phase Shifted Keyed signals from the optical to the rf wireless domain without the need of an external amplifier (Romeiraa et al., 2009).
\n\t\t\tA light-wave transmitter comprises a driving circuit and a LED or a laser diode which converts the supplied electrical signal containing the information into a light-wave signal. Novel alternatives to traditional laser diode transistor-driver circuits have been proposed based on the integration of a DBQW with semiconductor light sources, since the DBQW layers fit well with the epitaxial layers that make up semiconductor light sources. Furthermore, since the RTD can act as a voltage controlled switch, low voltage digital signals can be employed to switch the RTD between on and off states. It is expected the light sources high-speed modulation characteristics will improve significantly. In what follows we make a brief description of the first monolithic integration of a RTD with an optical communication laser operating at 1500 nm, and give a detailed report on recent advances on the hybrid integrated version operating at 1550 nm optical windows.
\n\t\t\tThe first integration of a DBQW-RTD and an optical communication laser operating at around 1500 nm was reported by (Slight & Ironside, 2007). The device consisted of a vertical integration of a DBQW on an InGaAs/InGaAlAs multiple quantum well laser structure. Such integration is straightforward as the RTD section requires only the growth of four to six extra epilayers above a laser structure grown on p–type InP substrate, allowing the RTD to be implemented on the laser junction n–type region. The DBQW was made of a 5 nm InGaAs well and 2 nm AlAs barriers. The devices fabricated were ridge waveguides with the DBQW situated in the ridge between the laser section and the n–type contact, Figure 18(a). A detailed description of device structure and fabrication can be found in (\n\t\t\t\t\t\tSlight et al., 2006\n\t\t\t\t\t). The RTD-LD current-voltage characteristic emulates the RTD non-linear I – V curve, hysteresis and bistability (Slight & Ironside, 2007). Figure 18(b) shows a typical RTD-LD optical-voltage characteristic at 130 K, where a hysteresis window is clearly seen; bistable operation was also observed (\n\t\t\t\t\t\tSlight et al., 2006\n\t\t\t\t\t). The results demonstrate the feasibility of monolithically integrated RTDs with LDs. In order to achieve room temperature operation a new wafer was designed and device fabrication will start soon. Further investigation of the monolithic RTD-LD will include high-frequency operation characterization.
\n\t\t\t\ta) Cross section schematic of the ridge waveguide RTD-LD. (b) optical-voltage (P –V) characteristic at 130 K, clearly showing bistability and hysteresis.
Once demonstrated the bistable operation of monolithically integrated RTD-LDs the work concentrated on the hybrid integrated circuit (HIC) versions using components similar to the targeted monolithic integrated device. Although without the monolithic expected superior performance, laboratory hybrid RTD-LDs are easy and much less costly to implement, allowing to study both components behaviour separately. The first HICs combined an InGaAs RTD and a commercial prototype laser diode (Slight & Ironside, 2007). The In- GaAs RTD used was fabricated from RTD epi-material originally used in the work described in section 3; the laser diode was a 5 m ridge wide waveguide designed for continuous-wave (CW) emission at around 980 nm. The RTD and LD were attached to a small copper block using electrically conductive silver epoxy resin, and connected in series through 25 m diameter gold wire bonding, as schematically represented in Figure 19(a). Also shown are LD and RTD-LD experimental and PSPICE simulated I –V characteristics, Figure 19(b) (Slight & Ironside, 2007). The PSPICE code used can be found in (Slight & Ironside, 2007).
\n\t\t\t\tThe RTD reduces significantly the laser driving circuits’ complexity by taking advantage of its high nonlinear I –V characteristic, with the NDC region providing electrical gain to the circuit. The RTD features make possible to operate the RTD-LD as an autonomous OVCO, where the running frequency is fine tuned by the dc bias voltage. Light modulation due to relaxation oscillations at 5 MHz was observed with optical power on/off or extinction ratio up to 31 dB. Moreover, because of RTD bistability the RTD-LD optical output is also bistable, as shown in Figure 19(c), a feature of particularly convenience for non-return to zero (NZR) digital modulation.
\n\t\t\t\ta) Illustration of the RTD-LD module. (b) LD and RTD-LD I – V characteristics. (c) Optical power versus voltage (P – V) characteristic showing bistability and a 410 mV wide hysteresis loop. Dashed lines show the PSPICE simulations.
To increase the relaxation oscillations free-running frequency the hybrid circuit was redesigned. InGaAlAs RTD-OW devices with areas around 1000 m2 were used together with commercial prototype ridge waveguide laser dies designed for CW operation with emission at around 1550 nm with 5 mW average output power, bandwidth of 20 GHz and threshold current Ith around 6 mA. The new circuits layouts were mounted directly onto the surface of printed circuit boards (PCBs) containing a 50 copper microstrip transmission line laminated onto the non-conductive PCB substrate. These new improvements on the hybrid RTD-LD circuits lead to some significant breakthroughs: (i) the use of commercial communications laser diodes operating at 1550 nm; (ii) the oscillation frequency went up to for more than two orders of magnitude by solving the instabilities associated to the dc bias circuitry; (iii) demonstration of operation as an autonomous relaxation oscillator in the GHz-range, controlled by voltage; (iv) observation of new operation capabilities induced by injected periodic and phase modulated signals.
\n\t\t\t\tIn the improved circuits the RTD and LD components were attached directly onto the PCBs using silver epoxy resin and bond wires where used to connect the RTD emitter contact to LD, and the RTD collector contact to the 50 copper microstrip line, as shown in Figure 20(a). A parallel resistor-capacitor shunt was incorporated as close as possible to the RTD-LD components to reduce the spurious oscillations and to act as a short circuit for the rf signals generated by the RTD-LD. The circuit shunt component values were typically 5 and 3.3 nF. The dc bias and rf injected signals were applied via a wideband bias-T through the resistor-capacitor shunt that also acts as the circuit input port. The circuit electrical output port was defined by the PCB ground plane and the microstrip line, and corresponds to the RTD-LD series terminals as shown in Figure 20(a). The laser optical output was coupled to a lensed fibre before photo-detection. The light coupling efficiency was estimated from the laser mode profile and single mode fiber characteristics to be around 10 per cent. In Figure 20(b) are presented the typical I-V characteristics of the LD (with the threshold current inset) and of two RTD-LD circuits, I and II, measured without the shunt resistorcapacitor. RTD-LD circuits I and II analysed here have similar PCB layout designs and LD and shunt components. The RTDs used in circuit I and II have approximately the same current peaks, Ip, but different valley currents, Iv, and thus different peak-to-valley current ratios. RTD-LD II was designed to have a lower bond wire length connection between RTD and LD components, which increased its oscillation frequency operation, as discussed below. In both cases Ith< Iv, which meant that when dc biased in the NDC region, the lasers were working well above threshold current.
\n\t\t\t\ta) Layout of the improved hybrid RTD-LD circuit. (b) Current-voltage characteristic of the laser diode and two RTD-LD circuits, showing the RTD NDC is preserved by the RTDLD module.
The RTD-LD circuit of Figure 20(a) can be represented by circuit electrical layout of Figure 21(a). When dc biased in or close to the NDC region the laser diode is operating well above the threshold current the laser is well represented simple by its differential resistance. Because its capacitance is much larger than the RTD’s, the RTD-LD module equivalent capacitance corresponded to the RTD intrinsic capacitance. This approximation seems reasonable since changing the laser diode did not alter the circuit free-running frequency whenever the lengths of the bond wires used to connect the RTD to the LD were identical. Indeed, the circuit of Figure 21(a) behaves at rf frequencies like an RL circuit connected to the RTD small signal equivalent circuit (a voltage dependent current source F(V) in parallel with the RTD-LD capacitance, as discussed in section 2.2). Its electric behaviour under external perturbation can be studied numerically using the small signal equivalent circuit shown in Figure 21(b). The lumped LCR components of Figure 21(b) represents the microstrip transmission line and wire bond equivalent inductance, the RTD intrinsic capacitance and the devices equivalent series resistance, respectively.
\n\t\t\t\ta) Electrical schematic of the RTD-LD circuit where V represents the electrical output taken across the RTD-LD. (b) RTD-LD small-signal equivalent lumped circuit. Vac sin(2fint) represents an ac injected driving signal.
The maximum operating free-running frequency of circuit RTD-LD I was around 640 MHz, whereas for RTD-LD II the maximum observed free-running frequency was 2.15 GHz (the maximum obtained with the hybrid circuits presented here). The RTD-LD II higher running frequency was mainly due to the smaller inductance achieved with this circuit layout due to the shortening of bond wires length used to connect the RTD to the LD, roughly from 5 mm to less than 2 mm that corresponded to a reduction of the equivalent inductance value from approximately 8 nH to around 1.5 nH. In both circuits the estimated capacitance C was 3 pF. These values when used in the electrical circuit model, Equation 8, lead to theoretical maximum relaxation oscillation frequencies, given by 1/2\n\t\t\t\t\t
When dc biased in the NDC region, the circuit of Figure 20(a) behaves as a classic negative- resistance oscillator (Van der Pol, 1927). Since the circuit of Figure 21(b) is similar to the circuit of Figure 4, apart from the injected ac driving signal Vac sin(2fint), we applied the same procedure, obtaining a second-order differential equation (see section 2.2), commonly referred as one of the generalized forced nonlinear Liénard systems (Romeira et al., 2008)(Figueiredo, 1970):
\n\t\t\t\twhere G(V) is a nonlinear force and H(V)\n\t\t\t\t\t
To describe the RTD-LD optoelectronic behaviour we coupled Equation 13 to the laser diode single mode rate equations that governs the interrelationship between carrier density and photon density. Assuming the laser oscillates in a single mode and the population inversion is homogeneous, the laser rate equations for photon density S and injected carrier density N are:
\n\t\t\t\twhere I is the total current through the laser diode given by generalized Liénard’s system, Equation 13, plus the dc bias current; q is the electron charge, is the laser active region volume, n and p are the spontaneous electron and photon lifetimes, respectively; is the spontaneous emission factor; g0 is the gain coefficient; N0 is the minimum electron density required to obtain a positive gain and is the value for the nonlinear gain compression factor. The numerical analysis employed typical parameters of semiconductor laser diodes, as described in (Slight et al., 2008)(Romeira et al., 2008). The coupled system of Equation 13-15 has been successfully used to predict the experimental behaviour of RTD-LD electrical and optical outputs.
\n\t\t\tIt is well known that a single-port device that has a negative differential conductance in a portion of its operating range may be used as the basis of a bistable or multistable circuit, and can also be used to form astable circuits (relaxation oscillators), monostable circuits (single-pulse generators), and sine-wave generators (Brown et al., 1997). A simple way to implement a RTD oscillator is to couple a RTD dc biased in the NDC to a resonant tank circuit or a resonant cavity that provides frequency stability (the coupling location in the cavity can serve to partially match its impedance to that of the RTD). Such oscillator corresponds to a relaxation oscillator system since it operates by sequential transitions between unstable states. The RTD-LD circuit of Figure 20(a), whose circuit schematic is represented in Figure 21 with the small signal equivalent circuit, operates as a relaxation oscillator when dc biased in the NDC region. The circuit free-running frequency is determined primarily by the round trip time of the ac feedback loop (effective length of equivalent transmission line from the shunt resistor-capacitor to the RTDLD module), in combination with the RTD and the LD parasitics (mainly the inductance from the wire bonding).
\n\t\t\t\tThe RTD successive switching events (relaxation oscillations) produce sharp current pulses that modulate the laser output yielding sharp optical pulses at the relaxation oscillation fundamental frequency (free-running frequency). Typical RTD-LD self-sustained oscillation voltage output and photodetect optical waveforms are shown in Figure 22. Figure 22(a) shows RTD-LD I voltage output waveform at free-running frequency around 600 MHz; Figure 22(b) presents the photo-detected laser optical output modulated by the current relaxation oscillations with an on/off superior to 20 dB.
\n\t\t\t\tThe pulsed nature of the photo-detected laser optical output shown in Figure 22 confirms the capacitive character of the current induced by the RTD switching (described in detail in (Brown et al., 1997)). The full width at half maximum (FWHM) of the photo-detected pulses is approximately 200 ps but this measurement is limited by the temporal acquisition resolution of the oscilloscope. Figure 23 shows rf spectra of the electrical and optical outputs of RTD-LD circuits I and II of Figure 20(b), both dc biased close to the valley region. Figure 23(a) confirms the pulse nature of the current relaxation oscillations with a high harmonic content up to 12th harmonic being measured.
\n\t\t\t\tTuning the dc bias across the NDC region changes the RTD impedance and as consequence tunes the relaxation oscillation frequency making the circuit operate as a voltage controlled oscillator (VCO). Since the current relaxation oscillation waveforms flow through the laser diode, the circuit optical output emulates the current oscillations. The laser output shows the same repetitive switching and harmonic content of the relaxation oscillation current waveforms, making the RTD-LD circuit operate as an optoelectronic voltage controlled oscillator (OVCO). That is, the RTD-LD biased on the NDC region produces electrical and optical oscillatory signals whose frequency is controlled by the bias voltage quiescent point.
\n\t\t\t\tRTD-LD I relaxation oscillation (a) electrical and (b) photo-detected optical output waveforms at around 600 MHz.
Electrical and photo-detected optical spectra of free-running oscillations at 600 MHz (a) and 2.1 GHz (b), circuits I and II, respectively.
\n\t\t\t\t\tFigure 24 shows the frequency response to dc voltage sweep across the NDC region of circuits RTD-LD I and II, whose I –V characteristics are presented in Figure 20(b).
\n\t\t\t\tThe oscillation frequency of circuit I changed with the dc voltage from around 500 MHz to 640 MHz, that is, RTD-LD I had a tuning range around 140 MHz, whereas the circuit II oscillate from 1.97 GHz to 2.15 GHz, i.e., RTD-LD II had a tuning range around 180 MHz. Although the dc voltage tuning of circuit I was larger, the tuning sensitivity/tuning performance expressed in tuning range per voltage range was higher for circuit II. In the RTD-LD oscillators analyzed, we found that a linear deviation characteristic is attained considering only voltages close to the peak voltage. The voltage tuning range of circuit I, Figure 24(a), is much larger than the circuit II, Figure 24(b), as expected from higher PVVR measured in the I –V characteristic. Frequency tuning ranges up to 450 MHz were observed in RTD-LD circuits having NDC widths and I – V characteristics identical to RTD-LD I. Generally speaking, to have a wide dc operating range and therefore large tunability, a wide negative conductance region (large difference between the peak and valley voltage) is required.
\n\t\t\t\tRTD-LD I (a) and RTD-LD II (b) experimental and simulated frequency tuning responses to voltage sweeping across the NDC regions.
The RTD-LD optoelectronic voltage controlled oscillator is a simple way to convert fast, short electrical pulses with low timing jitter and phase noise, into fast, sharp optical pulses.
\n\t\t\tThe injection-locking of an electrical oscillator was first described by (Van Der Pol, 1927), and the first locking bandwidth equation for electrically injection-locked oscillators was developed by (Adler, 1946), with a model based on a vacuum tube transistor. The most comprehensive theoretical review of injection-locking solid-state oscillators was given by (Kurokawa, 1973). Most of the characteristic and properties identified by the above authors can be observed with RTD-LD circuits which are much simpler oscillator configuration. When externally perturbed the RTD-LD circuit behaves as a non-autonomous oscillator (Romeirab et al. 2009), being a practical demonstration of nonlinear systems theory extensively developed over the last decades (Pikovsky et al., 2001).
\n\t\t\t\tThroughout the work, we observed that under appropriated bias and injection conditions the RTD-LD circuit relaxation oscillations lock to low-power injected signals that take over the oscillations, controlling the laser diode output characteristics. To investigate these locking characteristics periodic external signals at microwave frequencies were injected into the circuit. The analysis included the effects of the frequency, signal power level, and injected signal modulation formats. Phase-locking with significant noise reduction to low power signals (below -30 dBm) at frequencies around the circuits’ natural frequencies are observed. Figure 25(a) presents rf spectra of photo-detected laser optical outputs when the circuit was free-runing at 600 MHz and when phase-locked to -25 dBm power rf signal also at 600 MHz. The single side band (SSB) phase noise measurement showed the oscillation noise at 10 kHz offset was reduced by about 35 dB due to the phase-locking. For the conditions of Figure 25(a) the locking range was 1.8 MHz. The frequency locking range increases as the injected power rises, as shown in Figure 25(b). This behavior is well described by the optoelectronic model presented previously and is represented by the red zone of Figure 25(b), known as Arnold tongue. Arnold tongues correspond to synchronization regions were locking occurs between two competing frequencies (Pikovsky et al., 2001). When the injected signal frequency becomes out of the oscillator locking range, the circuit generate mixing products of the injected signal and free-running oscillations.
\n\t\t\t\tSince the phase of a signal plays an important role in communications, particularly wireless communication, and in the theory of synchronisation, we investigated the effect of phase modulation in the RTD-LD outputs. Figure 25(c) shows circuit response to an injected 600 MHz carrier phase modulated with 1 MHz frequency sub-carrier with phase shift and 3/2. As the sub-carrier frequency was varied from 100 kHz up to 2 MHz, the laser output followed the phase modulation of the sine-wave signal subcarrier.
\n\t\t\t\ta) Rf spectra of photo-detected laser output in free-running mode and when phase-locked to -25 dBm injected signal at 600 MHz frequency. (b) Frequency locking range as function of the injected power. The dotted points are experimental data and the red area (Arnold tongue) was numerically obtained. (c) Rf spectra of photo-detected laser output when phase-locking to a phase modulated 600 MHz sine-wave carrier signal.
The observed phase-locking converts phase differences on shifts in the laser output modulating its intensity. This behaviour can be applied to implement phase shift keying (PSK) digital modulation, which is employed in numerous digital communication systems. The phase-locking capabilities of RTD-LD based relaxation oscillators can also be used for error free timing extraction in optoelectronic circuits.
\n\t\t\tWhen the injected signal frequency is out of the oscillator locking range the circuit generates mixing products of the injected signal and free-running oscillations, producing either/ both harmonic and sub-harmonic phase-locking. To investigate the mixing capability of the circuit we analysed numerically the behaviour of the circuit over a range of frequencies to obtain the laser optical output bifurcation diagram of Figure 26. A bifurcation diagram shows the amplitude peaks heights of output photon density oscillations, S, as a function of the normalized excitation frequency fin/ f0, where f0 is the free running oscillation frequency. The simulation results show that when the frequency of the injected signal, fin, is successively increased, a stable period–n, n = 1, 2,... is obtained, followed by an unlocked region, then a stable period–(n +1), a new unlocked region and so on (Figueiredo et al., 2008)(Pikovsky et al., 2001). This phenomenon is known as period-adding, where windows of consecutive regions showing frequency division are separated by zones of unlocked, even chaotic, signals. The frequency division regions were obtained experimentally and calculated numerically dc biasing the RTD-LD circuit on the NDC region and varying the frequency of the injected signal from 0.1 GHz to 3 GHz, with drive amplitudes as low as 100 mV. Frequency division regions for constant amplitudes were observed following the period-adding sequence at up to frequency division by 6. In Figure 26(a) the period-adding is clearly distinguished in a sequence of unlocked (dots) and periodic (branch regions) oscillations, as observed experimentally. Figure 26(b) presents an experimental example of frequency division by 2 when a 0.9 GHz sine-wave was injected.
\n\t\t\t\ta) Calculated bifurcation diagram for Vac = 150 mV up to frequency division by 6. (b) Photo-detected laser output showing frequency division by 2 when a signal with fin = 0.9 GHz was injected into an RTD-LD free-running oscillating at around 0.5 GHz.
Since the sub-harmonic windows appear in limited frequency regions, the RTD-LD circuit can be regarded as an optoelectronic dynamic frequency divider with a selectable dividing ratio.
\n\t\t\tElectro-optical and all-optical solutions for complex chaos generation have attracted considerable attention in the last decade due to their potential applications in optical chaos communications (Argyris et al., 2005). The use of chaotic carriers allows steganography at the physical layer, which can substantially improve the security of software encryption techniques. The frequency bands corresponding to period multiplication, indicated in Figure 26(a), are separated by frequency regions where the circuit generates aperiodic signals - chaotic or quasi-periodic output - a direct result from the mixing between free-running oscillation and external injected frequencies (Romeira et al. 2010). An important characteristic of a chaotic signal is its sensitivity to initial conditions. Figure 27 shows an example of a transition to chaos observed in the RTD-LD circuit optical output. The optical waveform presented in Figure 27(a) is characterized by a series of aperiodic acute peaks (spikes) changing chaotically. Another important characteristic of chaos is demonstrated in the corresponding power spectrum of the time series. Figure 27(b) shows a continuous and broadband spectrum resembling a noisy process with a few dominant frequencies appearing, in this case the rf injected frequency. The results of Figure 27 are also confirmed numerically by calculating the circuit Lyapunov exponents (Romeira et al., 2001).
\n\t\t\t\tThis RTD-LD mode of operation provides a simply way to generate and convert electrical chaotic signals into optical sub-carriers that can be transmitted by conventional optical channels. Moreover, the circuit allows direct addition of the message to be transmitted and masked within the chaotic signal.
\n\t\t\t\tChaotic behaviour in the laser output induced by a driving signal of frequency 1.485 GHz and amplitude 793 mV. Optical waverform (a) and corresponding Fourier spectrum (b).
As discussed, embedding DBQW-RTDs within semiconductor optical waveguides can lead to the implementation of highly efficient electro-absorption modulators and photo-detectors operating at optical wavelengths around 900 nm and 1550 nm. The presence of the DBQW introduces high non-linearities and NDC regions in the semiconductor optical waveguides current-voltage characteristics, making the electric field distribution across the waveguide core strongly dependent on the bias voltage, which can be used to modulate guided light through the Franz-Keldysh electro-absorption effect. When biased on the NDC region the RTD-OW operates as an optoelectronic voltage controlled oscillator. Electro-absorption modulation up to 28 dB is achieved with high frequency signals as low as 100 mV. The key difference between these RTD-OW electro-absorption modulators and conventional p – i – n electro-absorption modulators is that the RTD-EAM has in essence an integrated electronic amplifier and therefore requires considerably less switching/driving power. Since, the RTD-OWs can also work as photo-detectors with built-in amplifiers, recovering the original transmitted rf signals used to modulated the optical carriers, they can be employed at the base station to convert information from the optical to the rf domains. We foresee that optimized devices can have bandwidths up to 60 GHz.
\n\t\t\tBy integrating a DBQW-RTD with a laser diode low-cost microwave-photonic circuits operating up to 2.15 GHz were implemented. These circuits reduced significantly the driving circuitry of laser diodes. Several optoelectronic operation modes were observed, including optoelectronic voltage controlled oscillator (OVCO), phase-locking, frequency division and generation of aperiodic electrical and optical waveforms. Their simple circuit layout is appropriated for high functional single chip transmitter platforms due to their non-linear optoelectronic characteristics, reduced size and low power consumption. We anticipate that the optimised RTD-LD monolithic integrated versions can operate at much higher frequencies (tens of Gbits), having several advantages when compared to conventional devices currently used in lightwave communication systems.
\n\t\t\tThe RTD-OW and RTD-LD operation as optoelectronic voltage controlled oscillators can be used to simplify significantly clock generation and clock extraction circuits. Due to the nonlinear response to applied voltage the RTD based circuits can work as short optical pulse generators with high repetition rates. At the same time, their integration with other functional devices can be used to encode generated optical pulses. The combination of RTD-OW and RTD-LD functions on a single circuit can be used to incorporate simultaneously rf subcarrier signals into optical carriers and optical subcarrier signals into rf carriers. This is possible due the following simultaneously capabilities: modulation, photo-detection and intrinsic amplification. Thus, the RTD-OW and RTD-LD circuits offer the possibility of implementing very simple microwave/photonics interfaces of cellular network terminal base stations based on radio-over-fiber systems.
\n\t\t\tSince next generation wireless access picocellular networks will be based on large numbers of short range cells with each office in a building with its own cells and base stations, the RTD based optoelectronic devices offer low cost single chip solutions as microwave/optical interfaces capable of electrical-to-optical conversion of microwave signals into optical subcarriers, taking advantage of the NDC and phase-locking properties of RTD devices. The photo-detecting capabilities allows recovery of the original transmitted rf signals used to modulated the optical carriers sent from the office terminal station to each base station via optical fibre, converting the information from the optical to the rf domain; light generation function is used to transfer the wireless received information bearing signals from the rf domain to optical domain which is then sent from the base stations to the office terminal station via optical fibre.
\n\t\tBruno Romeira and José Figueiredo acknowledge the support of the Centro de Electrónica, Optoelectrónica e Telecomunicações, Portugal. This work was also supported in part by the Fundação para a Ciência e a Tecnologia, Portugal, through the grants PRAXIS XXI/BD/2871/94 and SFRH/BD/43433/2008, by the Fundação Calouste Gulbenkian, Portugal, and by Research Networks - Treaty of Windsor Programme 2008/09-U32, Portugal. The authors would like to thank W. Meredith of Compound Semiconductor Technologies Global, Ltd. for providing the laser diodes, and Liquan Wang and Edward Wasige by the fruitful discussions and PCB layout design in the RTD-LD work.
\n\t\tCereals play a pivotal role to satisfy the global food demand of growing population, particularly in developing nations where cereal-based production system is the only predominant source of nutrition and calorie intake [1, 2]. The nutri-rich cereal is grown in diversified environments; globally wheat occupies around 217 million hectares holding the position of highest acreage among all crops with an annual production hovering around 731 million tonnes [3]. Wheat (
India, being blessed and enriched with a diverse agroecological condition, ensuring food and nutrition security to a majority of the Indian population through production and steady supply particularly in the recent past, is the second largest producer of wheat worldwide [4, 5, 6]. The crop has been under cultivation in about 30 million hectares (14% of global area) to produce the all-time highest output of 99.70 million tonnes of wheat (13.64% of world production) with a record average productivity of 3371 kg/ha [7]. Having a significant share in consumption of food basket with a 36% share in the total food grains produced from India and ensuring not only food security but also nutrition security, wheat is extensively procured by the government and distributed to a majority of the population; it ensures not only food security but also nutrition security. The cereal is one of the cheapest sources of energy, provides a major share of protein (20%) and calorie intake (19%) from consumption. Wheat is accessible across the country and consumed as various processed forms from prehistoric times [4].
After independence, India was net deficit in food production and had to import wheat for domestic consumption. During 1966–1967, India adopted new strategy which led the ‘Green Revolution’, especially in the production of wheat and rice. Coordinated research and several developmental and food security-based programmes in various phases have made the nation to progress closer towards ‘food and nutrition for all’ by achieving record and surplus production of wheat. After the Green Revolution, the nation has maintained strategic distance from famine even during unfavorable weather conditions. The impact of the All India Coordinated Research Project (AICRP) on wheat improvement is explicit and contributed significantly to the nation’s food security [8].
The All India Coordinated Wheat Improvement Project (AICWIP) was started in 1965 at the Indian Agricultural Research Institute (IARI), New Delhi, the nodal centre of the coordinated research. The AICWIP is one of the largest crop improvement network projects which set the dawn for the ‘Green Revolution’ in India. Under this project, several high-yielding wheat varieties have been developed which became extensively popular and adopted by the farming community. For instance, C 306, HD 2009, WL 711, UP 262, HUW 234, HD 2189, WH 147, Lok 1, HI 617 (Sujata), HD 2285, HD 2329, PBW 343, Raj 3765, PBW 502, HD 2733, HD 2967, HD 3086, DBW 17, PBW 550, GW 273, GW 322 and GW 496 in bread wheat and Raj 1555, PBW 34, HI 8498 and PDW 233 in durum wheat were developed and became the popular deliverables of the project. Apart from the aforementioned varieties, viz., NP 4, Kalyansona, Sonalika, Sharbati Sonora, WL 711, HD 1220, HD 1931 ‘SIB’, HD 2009, HD 2172, UP 262, etc., developed through the AICWIP were also cultivated beyond national borders. Several changes happened post inception of the AICWIP, and during 2017, the project has been renamed as the All India Coordinated Research Project (AICRP) on Wheat and Barley with ICAR-Indian Institute of Wheat and Barley Research as its headquarter based at Karnal (Haryana). It is a premier organization under the aegis of ICAR coordinating the multidisciplinary and multilocation testing of varieties in different AICRP centres across the different ecosystems for enhancing and sustaining the wheat production [8]. At present, there are 29 funded centres located in different agroclimatic regions across the country supporting the multidisciplinary research. The project, hitherto, has contributed in the release of around 448 high-yielding improved wheat varieties comprising bread, durum and dicoccum wheat. Over the years, prominent improvements have been made in the development arena post inception of the coordinated project (Figure 1).
Major developments in the country post inception of the AICRP.
Since the establishment of the AICRP, the productivity of wheat has increased by 2.5-folds (308%: +2.54 tonnes/ha) as furnished in Figure 2. A decadal analysis of productivity growth across major food commodities indicates that wheat production growth has outperformed rice and pulses for the past 5 decades since 1950. Overall scenario indicated that wheat production has grown at 4.72 percent per annum since 1950, the highest among other food grains [9].
Productivity trend in Indian wheat pre- and post-AICRP.
In India wheat crop is cultivated in
State/UT | Area (million ha) | Change (%) | Production (million tonnes) | Change (%) | ||
---|---|---|---|---|---|---|
2008–2009 to 2012–2013 | 2013–2014 to 2017–2018 | 2008–2009 to 2012–2013 | 2013–2014 to 2017–2018 | |||
Assam | 0.05 | 0.02 | −52.35 | 0.06 | 0.03 | −43.40 |
Bihar | 2.16 | 2.08 | −3.57 | 4.63 | 4.86 | 4.98 |
Chhattisgarh | 0.10 | 0.10 | 0.59 | 0.12 | 0.14 | 13.22 |
Gujarat | 1.12 | 1.09 | −2.85 | 3.20 | 3.22 | 0.60 |
Haryana | 2.50 | 2.55 | 2.21 | 11.35 | 11.24 | −0.93 |
Himachal Pradesh | 0.36 | 0.34 | −4.26 | 0.53 | 0.66 | 24.79 |
Jammu and Kashmir | 0.29 | 0.29 | 1.83 | 0.44 | 0.48 | 10.52 |
Jharkhand | 0.12 | 0.19 | 50.99 | 0.22 | 0.38 | 70.04 |
Karnataka | 0.25 | 0.19 | −25.30 | 0.23 | 0.20 | −13.23 |
Madhya Pradesh | 4.52 | 5.73 | 26.76 | 9.45 | 16.32 | 72.72 |
Maharashtra | 1.01 | 1.05 | 4.79 | 1.61 | 1.48 | −8.27 |
Punjab | 3.52 | 3.51 | −0.40 | 16.25 | 16.61 | 2.21 |
Rajasthan | 2.63 | 2.98 | 12.99 | 8.12 | 9.31 | 14.62 |
Uttar Pradesh | 9.66 | 9.75 | 0.94 | 29.33 | 27.93 | −4.77 |
Uttarakhand | 0.38 | 0.34 | −9.89 | 0.85 | 0.81 | −4.64 |
West Bengal | 0.32 | 0.29 | −8.33 | 0.85 | 0.80 | −5.94 |
Others | 0.04 | 0.04 | −20.64 | 0.12 | 0.12 | −3.54 |
All India | 29.04 | 30.54 | 5.16 | 87.39 | 94.57 | 8.22 |
Statewise quinquennial average of area and production of wheat.
State/UT | 2008–2009 to 2012–2013 | 2013–2014 to 2017–2018 | Change (%) |
---|---|---|---|
India | 3009 | 3100 | 3.03 |
Punjab | 4617 | 4738 | 2.61 |
Haryana | 4544 | 4407 | −3.01 |
Others | 3083 | 3331 | 8.05 |
Rajasthan | 3038 | 3133 | 3.12 |
Gujarat | 2845 | 2922 | 2.69 |
Uttar Pradesh | 2724 | 2867 | 5.23 |
Madhya Pradesh | 2698 | 2843 | 5.38 |
West Bengal | 2241 | 2754 | 22.90 |
Uttarakhand | 2144 | 2375 | 10.76 |
Bihar | 2091 | 2339 | 11.87 |
Jharkhand | 1790 | 2005 | 12.01 |
Himachal Pradesh | 1602 | 1911 | 19.28 |
Jammu and Kashmir | 1511 | 1656 | 9.58 |
Maharashtra | 1466 | 1400 | −4.53 |
Assam | 1180 | 1373 | 16.39 |
Chhattisgarh | 1149 | 1328 | 15.59 |
Karnataka | 914 | 1057 | 15.64 |
Statewise quinquennial average of wheat yield (kg/ha).
The production of wheat has also showed an increasing trend, from 87.39 to 94.57 million tonnes from 2012–2013 to 2017–2018 with a magnitude of 7.18 million tonnes (8.22%). The major source of this increase in production is mainly attributed to expansion in area followed by marginal increase in productivity. Uttar Pradesh still holds the position of largest producer in the country accounting for about 28 million tonnes which is roughly 30% of the total production. Around 85 million tonnes (90%) of wheat has been produced from traditional wheat-growing regions such as Uttar Pradesh, Punjab, Haryana, Madhya Pradesh, Bihar and Rajasthan [10]. The maximum quantum jump has been noticed in Madhya Pradesh and Jharkhand which almost doubled their production from 9.45–16.32 million tonnes to 0.22–0.38 million tonnes. However, 1.4 million tonnes reduction was noticed in Uttar Pradesh during the same period which is a matter of serious concern.
The national productivity trend for wheat showed a marginal improvement, which has increased from 3009 kg/ha to 3100 kg/ha from 2012–2013 to 2017–2018 (Table 2). This rise in productivity is due to adoption of high-yielding varieties coupled with other inputs. The traditional wheat-growing states Punjab and Haryana have highest productivity than the national productivity [10]. The maximum increase in productivity has been observed in nontraditional wheat-growing states like West Bengal (23%), Himachal Pradesh (19.28%) and Assam (16.39%). However, the productivity of Haryana has declined which pose a serious matter of concern.
Quinquennial data on wheat area, production and yield for India indicates that there is a variation in crop acreage that declined to 29.58 million hectare (Figure 3). However, the production of wheat has increased significantly from 95.85 to 99.70 million tonnes. Increase in production was largely attributed to rise in productivity levels registered across the wheat-growing regions.
Quinquennial scenario in area, production and yield of wheat.
Wheat is one of the predominant staple foods and a main cereal crop of many diets around the world. Table 3 furnishes the current scenario of area, production and yield of wheat in the world. Globally wheat is cultivated in an area about 220 million hectares with a record production of 763.06 million tonnes of grain. Maximum area under wheat is in India (14%), followed by Russia (12.43%), China (11.14%) and the USA (6.90%) which altogether accounts for about 45% of global area. However, China is the major producer of wheat with a record production of 136 million tonnes, followed by India (98.51mt), Russia (85mt) and the USA (47.35mt). Around 449 million tonnes (58%) of wheat has been produced from traditional wheat-growing countries like China, India, Russia, the USA, Canada, Ukraine and Pakistan. The average yield per hectare is maximum in New Zealand (10 tonnes/ha), followed by Zambia (7 tonnes/ha) and Mexico (6 tonnes/ha). However, the average wheat yield in major wheat-growing countries is significantly low, and only China has maximum yield (5.48 tonnes/ha) followed by Ukraine, India and the USA. Despite India’s productivity being on par with the world average, the per day productivity is relatively high (20 kg/day) in comparison to other countries, viz. the USA, Uzbekistan, Hungary, Poland, Italy, Bulgaria and Romania, which predominantly cultivates winter wheat with crop cycle hovering around 275 days. However, in India, in comparison to its competing country, China, the per day productivity is almost the same. It should be noted that the winter wheat-cultivating countries do not deal with any other crop in a year, while in India, in which spring wheat cultivation occurs around 150 days duration, farmers has the choice to grow at the maximum two sole crops apart from wheat [8].
Countries | Area (million ha) | Production (million tonnes) | Yield (tonnes/ha) |
---|---|---|---|
China | 24.51 (11.14) | 134.33 (17.60) | 5.48 |
India | 29.58 (14.00) | 99.70 (12.91) | 3.37 |
Russia | 27.34 (12.43) | 84.99 (11.14) | 3.11 |
USA | 15.19 (6.90) | 47.35 (6.21) | 3.12 |
Canada | 8.98 (4.08) | 29.98 (3.93) | 3.34 |
Ukraine | 6.64 (3.02) | 26.98 (3.54) | 4.06 |
Pakistan | 8.97 (4.08) | 26.67 (3.50) | 2.97 |
Australia | 12.25 (5.57) | 21.30 (2.79) | 1.74 |
Turkey | 7.8 (3.55) | 21.00 (2.75) | 2.69 |
Kazakhstan | 11.91 (5.41) | 14.80 (1.93) | 1.24 |
World | 220 | 763.06 | 3.47 |
Area, production and yield of major wheat-producing countries (2017–2018).
Note: Figure within parenthesis indicates the percent to world.
The global wheat production has increased around 7 million tonnes (0.9%) in the year 2017–2018 in comparison to its past. The major source for the increase in production is mainly attributed to increase in productivity followed by marginal increase in area in major wheat-growing countries (Figure 4).
Annual growth in area, production and yield (2017–2018 over 2016–2017).
At the national level, there is a shift in area, production and yield under wheat during 2008–2009 to 2012–2013 vis-à-vis 2013–2014 to 2017–2018. Currently, wheat acreage is around 30 million hectares. Comparing the past two periods, the change was more prominent in wheat production, followed by area and yield (Tables 1 and 2). The average change in production was around 9%. The country on an average produced 7.3 million tonnes more than the past period. The major wheat-growing states like Punjab, Madhya Pradesh and Rajasthan have witnessed positive change in area and yield and production [6]. Surprisingly, Jharkhand registered positive change in area, yield and production, while Haryana and Uttar Pradesh, the major traditional wheat-growing states, witnessed a negative change in production due to negative change in yield. Regional disparities in area and yield had a significant impact on the wheat production. Average production in Madhya Pradesh showed an increase by 6.87 million tonnes, followed by Rajasthan (1.2 million tonnes). However, the production has declined in Uttar Pradesh (1.41 million tonnes) and Haryana (0.11 million tonnes).
Statewise comparison of area and production for 2017–2018 shows that Uttar Pradesh, Punjab, Madhya Pradesh and Haryana were the major contributors to the national production (Figure 5). However, Punjab, Haryana and Uttar Pradesh retained the status of higher productivity for many years. The scope for additional production of these states has been limited due to stagnation of wheat acreage and yield. This indicates that these states almost reached their saturation in wheat cultivation and production. Potential exists for states like Rajasthan and Madhya Pradesh to explore for additional wheat production in the coming years. Area under these states has to increase in yield at farmers’ field so as to attain higher production. The current production from these states is around 29 million tonnes which has to be doubled by 2050 with an overall production target of 140 million tonnes [11, 12, 13].
Statewise comparison of wheat area and production (2017–2018).
Production constraints are manifold and vary from crop to crop and between regions. Burgeoning population vis-à-vis increasing demand for food; growing competition for cultivable land, irrigation water and energy; intensive cropping especially in the Indo-Gangetic Plains resulting in irrational use of resources; pest-environment interaction; reduction of natural resource base; declining total factor productivity; and yield plateau (Figure 6) are the prominent challenges put forth against crop production [11, 12, 13, 14]. Wheat production not only faces the above routine challenges, but the intensity gets magnified in the context of climate change owing to its vulnerability [15, 16, 17, 18].
Production challenges in Indian setting.
In India a significant part of wheat area is under heat stress, and Gangetic plains and central and peninsular India are the most heat-stressed regions, whereas it is moderate in northwestern parts of Indo-Gangetic Plains [19]. Variability in climate is also one of the biggest environmental threats to Indian agriculture, potentially impacting the wheat production and security. In India, it has been predicted that with every rise in 1°C temperature, the wheat production will be decreased by 4–6 million tonnes. Rainfed wheat will experience a reduction in yield with 9–25% profit loss for every 2–3.5°C rise in temperature [20].
After the Green Revolution, the productivity of wheat has been significantly increased with the increase in input usage, plant protection chemicals and irrigated areas. The excessive use of fertilizer, chemicals and irrigation has degraded the fertility of the soil and also caused a reduction in groundwater table. The monocropping system led to deterioration in soil quality. If the current trend continues, the country will face a serious problem in utilization of scarce natural resources.
In India about 4.5 million hectares salt affected area is under wheat cultivation posing a major problem for canal irrigated areas [21]. Even though soil amendments and proper drainage are the more constructive solution, pace of reclamation is not substantial. This will significantly reduce the wheat yield.
As year passes, the pests of wheat have developed some resistance even though controlled under contingent situation. If not, a new range of pests and diseases have been emerging putting a serious constraint on the wheat productivity.
Adoption system and germplasm dissemination in India have been made in formal (organized) and informal (unorganized) ways [22]. Even though new improved varieties are developed and made available to farmers by NARS around, 80% of all seeds are saved by the farmers [19]. Further, a majority of farmers in India have lack of awareness of improved wheat varieties due to weak linkages [19]. The development and diffusion of improved varieties are crucial for achieving target production of wheat.
Volatility in prices of agricultural commodities has received considerable attention in the recent past among producers, consumers and policy makers. Price fluctuations create an uncertain farming situation threatening wheat production and have a negative impact on the welfare of wheat growers. Further, volatility in prices of wheat in international market hinders the smooth flow of trade across nations.
Over the years, a visible declining trend in farm holding size has been observed and is another major concern for the nation as a whole. This is caused by fragmentation of farmland owing to nuclear family system and decline in cultivable area due to urbanization. Estimate from the agricultural census (2010–2011) reports that the average operational holding in India was 1.16 ha. Among major wheat-growing states, average operational holding was highest in the case of Punjab (3.77 ha) and lowest in Bihar (0.39 ha). Declining farm size and conversion of farmland to residential area are the major setbacks with respect to food production in general and wheat production in particular.
A major concern among policy makers is the declining total factor productivity over the years owing to stagnating yield levels with increased use of inputs and resource services. It is a major concern in the intensive cropping areas wherein rice-wheat is widely under cultivation. This can be countered by adoption of improved technologies coupled with the use of optimal resources.
The constraints in wheat production are region-specific (Table 4), and it requires setting research priorities to address them. Rust, infestation of weeds such as
Zone | Major production constraints |
---|---|
Northern hills zone | Lack of accessibility of seed of newly released variety, |
Northwestern plains zone | High cost of inputs, low price of wheat, erratic power supply, |
Northeastern plains zone | Small land holdings, inadequacy of seeds of newly released variety, lack of information among the farmers about recently developed new technologies, late sowing, temperature fluctuations during growth, high-priced inputs, poor quality of seeds, non-availability of labour, low organic matter in the soil, non-availability of farm machinery |
Central zone | Non-availability of labour, imbalanced use of fertilizer, high temperature at maturity, limited accessibility to seed of newly released variety, temperature fluctuation during crop growth, high cost of inputs, lack of irrigation facilities, small land holding, decline in water table, untimely rain |
Peninsular zone | Low price of wheat, irregular power supply, high cost of inputs, non-availability of labour, non-availability of electricity, higher rate of custom hiring, untimely rain, lack of facilities of canal irrigation, poor accessibility to seeds of newly released variety, temperature fluctuation during crop growth |
Zone-wise production constraints in wheat.
With a limited scope for increasing the crop acreage besides the production threats and challenges at the forefront [12, 13], the production target has been fixed at 140 mt by 2050 (Figure 7) [11]. Under stable wheat acreage and given the optimistic production target, the existing average yield has to be increased from 33 to 47 Qtls/ha by 2050. Concerted research should focus to break the yield barriers in gradual manner and develop genotypes tailored for specific wheat-growing regions.
Existing production and target for 2050.
The following are the strategies set for increasing the crop productivity to achieve the set target of 140 million tonnes [9, 23, 24]:
Improvement of wheat under conventional methods
Exploitation of heterosis for developing the hybrids
Pre-breeding programme by broadening the varieties’ genetic base
Capitalizing exotic germplasm and extensive utilization
Precision phenotyping of germplasm
Mining novel alleles for genes of known function
Production of segregating populations for lines of interest identified in primary germplasm screens
Use of existing landrace x elite segregating populations to identify QTL controlling traits of interest
Production of NILs for QTL and allelic variants
Assessing agronomic performance of NILs
Development of informative genetic markers and their use in commercial wheat breeding programmes
Development of new plant types
Desired canopy structure
Rapid leaf area development
Rapid nutrient uptake
Increasing lodging resistance (robust stem)
Biotechnological interventions
Marker-assisted breeding
Wheat genome sequence and associated genomic tools
Allele mining on the basis of probing germplasm sets for specific gene sequences
Innumerable new molecular markers in genomic regions of choice to facilitate large-scale cloning of new genes
A plethora of approaches for understanding the function of each and every gene
Understanding temporal and tissue-specific gene expression in response to developmental and environmental cues
Uncovering molecular basis of complex adaptation syndromes including tolerance to various abiotic stresses
Designing of a genome-wide perfect marker system based on SNPs in entire gene space of the species
Potential of wheat transgenics and possibilities of greater public acceptance
Functional characterization of genome
Tackling disease resistance
Tackling abiotic stress-climate change
Resource management
Quality improvement
Policy reorientation [6]
Price policy
Seed policy
Credit policy
Institutional innovations like e-National Agriculture Market
Extension: transfer of technology
Economic assessment of various improved technologies for upscaling and outscaling
Promotion of resource conservation technologies [25]
Awareness among farmers of new improved varieties and production technologies for yield as well as income enhancement [26, 27]
Wheat atlas: creation and updating regional-level database on parameters like area, production, yield, yield gaps and input usage.
Analysis of benefit-cost ratio (BCR) in wheat production and development
Access to critical inputs for timely sowing like improved seeds particularly in eastern UP, Bihar, Jharkhand and Chhattisgarh; access to fertilizers, irrigation water and farm machinery [28]
Infrastructure development (roads, storage structures, market)
Agriculture transformation is of utmost importance for regional development. Cutting-edge research involving multidiscipline is the need of the hour and is expected to develop superior genotypes breaking the yield barrier. Despite being cost-intensive, development is mandatory which warrants for higher public and private investment in R&D. In addition, productivity has to be increased through massive efforts from extension personnel who serve as change agents among the farming community. A reorientation in price policy (fair price system benefiting both producers and consumers, deficient payment system to producers for difference between the market and procurement price and cash transfers to producers under colossal loss), seed policy (quality seed production and ensuring its availability for all) and credit policy (timely distribution with minimum administrative work) is highly required to support the existing production system and to carry forward. Increased access to input and output markets, revamped distributions systems, investment in rural infrastructures and skilling of the rural labour force will help immensely to increase the crop productivity. On the whole, a synergy between research-extension-policy-institutions will play an impending role to achieve the desired level of production as well as to ensure food security for future generation. The realization of the expected increase in production in agriculture will only be possible with high efficiency, high quality, resistance to biotic and abiotic stresses and by offering them to the service of the farmer by improving the stable varieties in breeding programmes.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22423},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33699}],offset:12,limit:12,total:135704},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"11857",title:"Updates on Excitons",subtitle:null,isOpenForSubmission:!0,hash:"8a2fd9bbbbae283bf115881d9d5cc47a",slug:null,bookSignature:"Dr. Ashim Kumar Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11857.jpg",editedByType:null,editors:[{id:"277477",title:"Dr.",name:"Ashim",surname:"Dutta",slug:"ashim-dutta",fullName:"Ashim Dutta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11861",title:"Redefining Standard Model Particle Physics",subtitle:null,isOpenForSubmission:!0,hash:"085d4f6e00016fdad598675f825d6775",slug:null,bookSignature:"Prof. Brian Albert Robson",coverURL:"https://cdn.intechopen.com/books/images_new/11861.jpg",editedByType:null,editors:[{id:"102886",title:"Prof.",name:"Brian Albert",surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12013",title:"Plasma Science - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0261ac62d10563bf93735982748e3a2e",slug:null,bookSignature:"Dr. Sukhmander Singh",coverURL:"https://cdn.intechopen.com/books/images_new/12013.jpg",editedByType:null,editors:[{id:"282807",title:"Dr.",name:"Sukhmander",surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12014",title:"Aerodynamics of Sports",subtitle:null,isOpenForSubmission:!0,hash:"a15f5d35a75d3dfee7d27e19238306b0",slug:null,bookSignature:"Dr. Rakhab Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/12014.jpg",editedByType:null,editors:[{id:"56358",title:"Dr.",name:"Rakhab",surname:"Mehta",slug:"rakhab-mehta",fullName:"Rakhab Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12270",title:"Laser Ablation",subtitle:null,isOpenForSubmission:!0,hash:"998af2dd3ea1e28f4db7451a65010272",slug:null,bookSignature:"Dr. Masoud Harooni",coverURL:"https://cdn.intechopen.com/books/images_new/12270.jpg",editedByType:null,editors:[{id:"184282",title:"Dr.",name:"Masoud",surname:"Harooni",slug:"masoud-harooni",fullName:"Masoud Harooni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!1,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:"terahertz-technology",bookSignature:"Borwen You and Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editors:[{id:"191131",title:"Dr.",name:"Borwen",middleName:null,surname:"You",slug:"borwen-you",fullName:"Borwen You"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!1,hash:"7a2d81fa4893fcf74e7b3823a3e4f385",slug:"liquid-crystals",bookSignature:"Pankaj Kumar Choudhury and Abdel-Baset M.A. Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/10957.jpg",editors:[{id:"205744",title:"Dr.",name:"Pankaj",middleName:null,surname:"Kumar Choudhury",slug:"pankaj-kumar-choudhury",fullName:"Pankaj Kumar Choudhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10652",title:"Information Extraction and Object Tracking in Digital Video",subtitle:null,isOpenForSubmission:!1,hash:"d13718b2d986d058d55cf91e69bf21c0",slug:"information-extraction-and-object-tracking-in-digital-video",bookSignature:"Antonio José Ribeiro Neves and Francisco Javier Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editors:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10728",title:"Blood Groups",subtitle:"More than Inheritance of Antigenic Substances",isOpenForSubmission:!1,hash:"b5e79b54a382651f3130c9ee5ab862b4",slug:"blood-groups-more-than-inheritance-of-antigenic-substances",bookSignature:"Kaneez Fatima Shad",coverURL:"https://cdn.intechopen.com/books/images_new/10728.jpg",editors:[{id:"31988",title:"Prof.",name:"Kaneez",middleName:null,surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",publishedDate:"August 17th 2022",numberOfDownloads:2310,editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"August 17th 2022",numberOfDownloads:2095,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",publishedDate:"August 17th 2022",numberOfDownloads:2079,editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",publishedDate:"August 17th 2022",numberOfDownloads:1987,editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!1,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:"terahertz-technology",bookSignature:"Borwen You and Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",publishedDate:"August 17th 2022",numberOfDownloads:1528,editors:[{id:"191131",title:"Dr.",name:"Borwen",middleName:null,surname:"You",slug:"borwen-you",fullName:"Borwen You"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",publishedDate:"August 17th 2022",numberOfDownloads:932,editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",publishedDate:"August 17th 2022",numberOfDownloads:700,editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!1,hash:"7a2d81fa4893fcf74e7b3823a3e4f385",slug:"liquid-crystals",bookSignature:"Pankaj Kumar Choudhury and Abdel-Baset M.A. Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/10957.jpg",publishedDate:"August 17th 2022",numberOfDownloads:676,editors:[{id:"205744",title:"Dr.",name:"Pankaj",middleName:null,surname:"Kumar Choudhury",slug:"pankaj-kumar-choudhury",fullName:"Pankaj Kumar Choudhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7215,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10652",title:"Information Extraction and Object Tracking in Digital Video",subtitle:null,isOpenForSubmission:!1,hash:"d13718b2d986d058d55cf91e69bf21c0",slug:"information-extraction-and-object-tracking-in-digital-video",bookSignature:"Antonio José Ribeiro Neves and Francisco Javier Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",publishedDate:"August 17th 2022",numberOfDownloads:602,editors:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"206",title:"Composite Materials",slug:"nanotechnology-and-nanomaterials-composite-materials",parent:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"},numberOfBooks:15,numberOfSeries:0,numberOfAuthorsAndEditors:713,numberOfWosCitations:2278,numberOfCrossrefCitations:939,numberOfDimensionsCitations:2301,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"206",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6854",title:"Nanocomposites",subtitle:"Recent Evolutions",isOpenForSubmission:!1,hash:"fed595e75f84d3ab7e0817721acca1bd",slug:"nanocomposites-recent-evolutions",bookSignature:"Subbarayan Sivasankaran",coverURL:"https://cdn.intechopen.com/books/images_new/6854.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",middleName:null,surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6233",title:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources",subtitle:null,isOpenForSubmission:!1,hash:"3bdc5c86f24513451093c4484320aa8a",slug:"natural-and-artificial-fiber-reinforced-composites-as-renewable-sources",bookSignature:"Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/6233.jpg",editedByType:"Edited by",editors:[{id:"186402",title:"Associate Prof.",name:"Ezgi",middleName:null,surname:"Günay",slug:"ezgi-gunay",fullName:"Ezgi Günay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5167",title:"Carbon Nanotubes",subtitle:"Current Progress of their Polymer Composites",isOpenForSubmission:!1,hash:"f3551c28c8054c6ff0ca06ee3f3a3db7",slug:"carbon-nanotubes-current-progress-of-their-polymer-composites",bookSignature:"Mohamed Reda Berber and Inas Hazzaa Hafez",coverURL:"https://cdn.intechopen.com/books/images_new/5167.jpg",editedByType:"Edited by",editors:[{id:"41703",title:"Dr.",name:"Mohamed",middleName:"R.",surname:"Berber",slug:"mohamed-berber",fullName:"Mohamed Berber"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4753",title:"Graphene",subtitle:"New Trends and Developments",isOpenForSubmission:!1,hash:"7a2a89285055016ae39942309f30c4b5",slug:"graphene-new-trends-and-developments",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/4753.jpg",editedByType:"Edited by",editors:[{id:"20062",title:"Dr.",name:"Farzad",middleName:null,surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3087",title:"Nanocomposites",subtitle:"New Trends and Developments",isOpenForSubmission:!1,hash:"418833096f70a3aa12b5cbd6c8734d86",slug:"nanocomposites-new-trends-and-developments",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/3087.jpg",editedByType:"Edited by",editors:[{id:"71997",title:"Dr.",name:"Farzad",middleName:null,surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1275",title:"Graphene",subtitle:"Synthesis, Characterization, Properties and Applications",isOpenForSubmission:!1,hash:"6fddb872d37abf20533e73c030b55566",slug:"graphene-synthesis-characterization-properties-and-applications",bookSignature:"Jian Ru Gong",coverURL:"https://cdn.intechopen.com/books/images_new/1275.jpg",editedByType:"Edited by",editors:[{id:"61172",title:"Prof.",name:"Jian Ru",middleName:null,surname:"Gong",slug:"jian-ru-gong",fullName:"Jian Ru Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"180",title:"Carbon Nanotubes",subtitle:"Growth and Applications",isOpenForSubmission:!1,hash:"32865140876c21193ac4e9b1f5d95d2d",slug:"carbon-nanotubes-growth-and-applications",bookSignature:"Dr. Mohammad Naraghi",coverURL:"https://cdn.intechopen.com/books/images_new/180.jpg",editedByType:"Edited by",editors:[{id:"67361",title:"Dr.",name:"Mohammad",middleName:null,surname:"Naraghi",slug:"mohammad-naraghi",fullName:"Mohammad Naraghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"328",title:"Graphene Simulation",subtitle:null,isOpenForSubmission:!1,hash:"26044659f984fbaeac93a996ab1d4995",slug:"graphene-simulation",bookSignature:"Jian Ru Gong",coverURL:"https://cdn.intechopen.com/books/images_new/328.jpg",editedByType:"Edited by",editors:[{id:"61172",title:"Prof.",name:"Jian Ru",middleName:null,surname:"Gong",slug:"jian-ru-gong",fullName:"Jian Ru Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"465",title:"Carbon Nanotubes",subtitle:"Applications on Electron Devices",isOpenForSubmission:!1,hash:null,slug:"carbon-nanotubes-applications-on-electron-devices",bookSignature:"Jose Mauricio Marulanda",coverURL:"https://cdn.intechopen.com/books/images_new/465.jpg",editedByType:"Edited by",editors:[{id:"9142",title:"Prof.",name:"Jose Mauricio",middleName:null,surname:"Marulanda",slug:"jose-mauricio-marulanda",fullName:"Jose Mauricio Marulanda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"466",title:"Carbon Nanotubes",subtitle:"Synthesis, Characterization, Applications",isOpenForSubmission:!1,hash:null,slug:"carbon-nanotubes-synthesis-characterization-applications",bookSignature:"Siva Yellampalli",coverURL:"https://cdn.intechopen.com/books/images_new/466.jpg",editedByType:"Edited by",editors:[{id:"62863",title:"Dr.",name:"Siva",middleName:null,surname:"Yellampalli",slug:"siva-yellampalli",fullName:"Siva Yellampalli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"469",title:"Carbon Nanotubes",subtitle:"From Research to Applications",isOpenForSubmission:!1,hash:null,slug:"carbon-nanotubes-from-research-to-applications",bookSignature:"Stefano Bianco",coverURL:"https://cdn.intechopen.com/books/images_new/469.jpg",editedByType:"Edited by",editors:[{id:"32081",title:"Dr.",name:"Stefano",middleName:null,surname:"Bianco",slug:"stefano-bianco",fullName:"Stefano Bianco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",middleName:null,surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:15,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"15270",doi:"10.5772/14156",title:"Thermal Reduction of Graphene Oxide",slug:"thermal-reduction-of-graphene-oxide",totalDownloads:21126,totalCrossrefCites:20,totalDimensionsCites:163,abstract:null,book:{id:"57",slug:"physics-and-applications-of-graphene-experiments",title:"Physics and Applications of Graphene",fullTitle:"Physics and Applications of Graphene - Experiments"},signatures:"Seung Hun Huh",authors:[{id:"17002",title:"Dr.",name:"Seung Hun",middleName:null,surname:"Huh",slug:"seung-hun-huh",fullName:"Seung Hun Huh"}]},{id:"50950",doi:"10.5772/62497",title:"Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications",slug:"carbon-nanotube-based-polymer-composites-synthesis-properties-and-applications",totalDownloads:4847,totalCrossrefCites:45,totalDimensionsCites:85,abstract:"The present chapter covers the designing, development, properties and applications of carbon nanotube-loaded polymer composites. The first section will provide a brief overview of carbon nanotubes (CNTs), their synthesis, properties and functionalization routes. The second section will shed light on the CNT/polymer composites, their types, synthesis routes and characterization. The last section will illustrate the various applications of CNT/polymer composites; important properties, parameters and performance indices backed by comprehensive literature account of the same. The chapter concludes with the current challenges and future aspects.",book:{id:"5167",slug:"carbon-nanotubes-current-progress-of-their-polymer-composites",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - Current Progress of their Polymer Composites"},signatures:"Waseem Khan, Rahul Sharma and Parveen Saini",authors:[{id:"149897",title:"Dr.",name:"Parveen",middleName:null,surname:"Saini",slug:"parveen-saini",fullName:"Parveen Saini"}]},{id:"16802",doi:"10.5772/19331",title:"Carbon Nanotube Synthesis and Growth Mechanism",slug:"carbon-nanotube-synthesis-and-growth-mechanism",totalDownloads:18052,totalCrossrefCites:32,totalDimensionsCites:69,abstract:null,book:{id:"466",slug:"carbon-nanotubes-synthesis-characterization-applications",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - Synthesis, Characterization, Applications"},signatures:"Mukul Kumar",authors:[{id:"34559",title:"Dr.",name:"Mukul",middleName:null,surname:"Kumar",slug:"mukul-kumar",fullName:"Mukul Kumar"}]},{id:"64843",doi:"10.5772/intechopen.81329",title:"Polymer Nanocomposites with Different Types of Nanofiller",slug:"polymer-nanocomposites-with-different-types-of-nanofiller",totalDownloads:4209,totalCrossrefCites:21,totalDimensionsCites:65,abstract:"The development of polymer nanocomposites has been an area of high scientific and industrial interest in the recent years, due to several improvements achieved in these materials, as a result of the combination of a polymeric matrix and, usually, an inorganic nanomaterial. The improved performance of those materials can include mechanical strength, toughness and stiffness, electrical and thermal conductivity, superior flame retardancy and higher barrier to moisture and gases. Nanocomposites can also show unique design possibilities, which offer excellent advantages in creating functional materials with desired properties for specific applications. The possibility of using natural resources and the fact of being environmentally friendly have also offered new opportunities for applications. This chapter aims to review the main topics and recent progresses related to polymer nanocomposites, such as techniques of characterization, methods of production, structures, compatibilization and applications. First, the most important concepts about nanocomposites will be presented. Additionally, an approach on the different types of filler that can be used as reinforcement in polymeric matrices will be made. After that, sections about methods of production and structures of nanocomposites will be detailed. Finally, some properties and potential applications that have been achieved in polymer nanocomposites will be highlighted.",book:{id:"6854",slug:"nanocomposites-recent-evolutions",title:"Nanocomposites",fullTitle:"Nanocomposites - Recent Evolutions"},signatures:"Amanda Dantas de Oliveira and Cesar Augusto Gonçalves Beatrice",authors:[{id:"249768",title:"Ph.D.",name:"Amanda",middleName:null,surname:"Oliveira",slug:"amanda-oliveira",fullName:"Amanda Oliveira"},{id:"254512",title:"Ph.D.",name:"Cesar",middleName:"Augusto Gonçalves",surname:"Beatrice",slug:"cesar-beatrice",fullName:"Cesar Beatrice"}]},{id:"16834",doi:"10.5772/18009",title:"Syntheses of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation",slug:"syntheses-of-carbon-nanotube-metal-oxides-composites-adsorption-and-photo-degradation",totalDownloads:11386,totalCrossrefCites:24,totalDimensionsCites:59,abstract:null,book:{id:"469",slug:"carbon-nanotubes-from-research-to-applications",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - From Research to Applications"},signatures:"Vinod Gupta and Tawfik A. Saleh",authors:[{id:"30105",title:"Prof.",name:"Vinod",middleName:"Kumar",surname:"Gupta",slug:"vinod-gupta",fullName:"Vinod Gupta"},{id:"30752",title:"Dr.",name:"Tawfik A.",middleName:"Abdo",surname:"Saleh",slug:"tawfik-a.-saleh",fullName:"Tawfik A. Saleh"}]}],mostDownloadedChaptersLast30Days:[{id:"64843",title:"Polymer Nanocomposites with Different Types of Nanofiller",slug:"polymer-nanocomposites-with-different-types-of-nanofiller",totalDownloads:4209,totalCrossrefCites:21,totalDimensionsCites:65,abstract:"The development of polymer nanocomposites has been an area of high scientific and industrial interest in the recent years, due to several improvements achieved in these materials, as a result of the combination of a polymeric matrix and, usually, an inorganic nanomaterial. The improved performance of those materials can include mechanical strength, toughness and stiffness, electrical and thermal conductivity, superior flame retardancy and higher barrier to moisture and gases. Nanocomposites can also show unique design possibilities, which offer excellent advantages in creating functional materials with desired properties for specific applications. The possibility of using natural resources and the fact of being environmentally friendly have also offered new opportunities for applications. This chapter aims to review the main topics and recent progresses related to polymer nanocomposites, such as techniques of characterization, methods of production, structures, compatibilization and applications. First, the most important concepts about nanocomposites will be presented. Additionally, an approach on the different types of filler that can be used as reinforcement in polymeric matrices will be made. After that, sections about methods of production and structures of nanocomposites will be detailed. Finally, some properties and potential applications that have been achieved in polymer nanocomposites will be highlighted.",book:{id:"6854",slug:"nanocomposites-recent-evolutions",title:"Nanocomposites",fullTitle:"Nanocomposites - Recent Evolutions"},signatures:"Amanda Dantas de Oliveira and Cesar Augusto Gonçalves Beatrice",authors:[{id:"249768",title:"Ph.D.",name:"Amanda",middleName:null,surname:"Oliveira",slug:"amanda-oliveira",fullName:"Amanda Oliveira"},{id:"254512",title:"Ph.D.",name:"Cesar",middleName:"Augusto Gonçalves",surname:"Beatrice",slug:"cesar-beatrice",fullName:"Cesar Beatrice"}]},{id:"57267",title:"Natural Fibers for Sustainable Bio-Composites",slug:"natural-fibers-for-sustainable-bio-composites",totalDownloads:2449,totalCrossrefCites:21,totalDimensionsCites:31,abstract:"Over the past decade, the concept of utilizing green materials has become more mainstream. With considerable awareness of preserving the environment, sincere efforts across the globe can be cited in looking for bio-degradable and bio-based sources. Applications of bio-based materials from renewable and bio-degradable sources for preparation of higher valued green chemicals and bio-based products have forced many scientists to investigate the potential use of natural fibers as reinforcement materials for green bio-composites. Cellulosic fibers are becoming very interesting for bio-based material development as they possess advantages with their mechanical properties, low density, environmental benefits, renewability, and economic feasibility. Recently, natural-fiber polymer composites have received much attention for different industrial applications because of their low density and renewability. The bio-composites with natural fiber components are derivatives of depleting resources and can be considered to have substantial environmental and economic benefits. This chapter addresses the potential utilization of natural fiber for the development of green polymer composite materials, with the objective to elucidate the possibility of using these bio-based materials for various industrial applications.",book:{id:"6233",slug:"natural-and-artificial-fiber-reinforced-composites-as-renewable-sources",title:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources",fullTitle:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources"},signatures:"Tri-Dung Ngo",authors:[{id:"208798",title:"Ph.D.",name:"Tri-Dung",middleName:null,surname:"Ngo",slug:"tri-dung-ngo",fullName:"Tri-Dung Ngo"}]},{id:"57169",title:"Development of Hemp Fibers: The Key Components of Hemp Plastic Composites",slug:"development-of-hemp-fibers-the-key-components-of-hemp-plastic-composites",totalDownloads:1894,totalCrossrefCites:4,totalDimensionsCites:6,abstract:"Plant fibers in general and hemp fibers in particular have great prospects for their use in various innovative applications such as ecological, biodegradable, and renewable resources with unique properties. Such properties together with the increased strength due to high-cellulose content and specific morphological parameters are widely used to produce plant fiber–based plastic composites. The properties of plant fibers that may influence the properties of composites depend on crop processing, but the basis for them is provided during fiber development in planta. It is known that two types of bast fibers are developed in the hemp stem: primary fibers formed from procambium cells and secondary fibers that originate as a result of cambium activity. Both types of fibers may significantly vary in their yield and quality depending on the variety and growth conditions. Differences in the anatomical and morphological characteristics of the two types of hemp fibers, together with peculiarities in the composition and architecture of cell wall, influence the technical parameters of the raw material quality. Based on our study of both primary and secondary fiber development in hemp stem that was focused on the two key stages, intrusive elongation and deposition of thick cell wall layers, we suggest the set of parameters that can influence the quality of the mature fibers and trace their biological origin.",book:{id:"6233",slug:"natural-and-artificial-fiber-reinforced-composites-as-renewable-sources",title:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources",fullTitle:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources"},signatures:"Chernova Tatyana, Mikshina Polina, Salnikov Vadim, Ageeva\nMarina, Ibragimova Nadezda, Sautkina Olga and Gorshkova\nTatyana",authors:[{id:"158372",title:"Dr.",name:"Tatyana",middleName:null,surname:"Chernova",slug:"tatyana-chernova",fullName:"Tatyana Chernova"},{id:"209953",title:"Prof.",name:"Tatyana",middleName:null,surname:"Gorshkova",slug:"tatyana-gorshkova",fullName:"Tatyana Gorshkova"},{id:"209955",title:"Dr.",name:"Polina",middleName:null,surname:"Mikshina",slug:"polina-mikshina",fullName:"Polina Mikshina"},{id:"209956",title:"Dr.",name:"Marina",middleName:null,surname:"Ageeva",slug:"marina-ageeva",fullName:"Marina Ageeva"},{id:"209957",title:"MSc.",name:"Olga",middleName:null,surname:"Sautkina",slug:"olga-sautkina",fullName:"Olga Sautkina"}]},{id:"50950",title:"Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications",slug:"carbon-nanotube-based-polymer-composites-synthesis-properties-and-applications",totalDownloads:4847,totalCrossrefCites:45,totalDimensionsCites:85,abstract:"The present chapter covers the designing, development, properties and applications of carbon nanotube-loaded polymer composites. The first section will provide a brief overview of carbon nanotubes (CNTs), their synthesis, properties and functionalization routes. The second section will shed light on the CNT/polymer composites, their types, synthesis routes and characterization. The last section will illustrate the various applications of CNT/polymer composites; important properties, parameters and performance indices backed by comprehensive literature account of the same. The chapter concludes with the current challenges and future aspects.",book:{id:"5167",slug:"carbon-nanotubes-current-progress-of-their-polymer-composites",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - Current Progress of their Polymer Composites"},signatures:"Waseem Khan, Rahul Sharma and Parveen Saini",authors:[{id:"149897",title:"Dr.",name:"Parveen",middleName:null,surname:"Saini",slug:"parveen-saini",fullName:"Parveen Saini"}]},{id:"56947",title:"Waste and Recycled Textiles as Reinforcements of Building Materials",slug:"waste-and-recycled-textiles-as-reinforcements-of-building-materials",totalDownloads:1599,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"Currently, the use of composite materials in the construction areas has had a great impact on the society; mainly, those related with sustainability and environment aspects. Daily proposals aimed at overcoming the properties of traditional materials that arise, which include emergent materials either from waste or recycled products. One of them is related to the textile materials, which include fibers such as wool, hemp, linen, and cotton. In the past decade, special attention has been focused on the used clothes, which represent a source of raw materials environmentally responsible and economically profitable. Textile materials are discarded daily around the world, representing approximately 1.5% of the generated waste. Blue jeans are the most used clothing in the world, and they are elaborated by one of the most commonly used natural textile fibers—cotton. Textile materials have been reused in different applications, for example, in the production of poor-quality wires, crushed to manufacture noise and temperature insulation materials, and as fillers or reinforcements of concrete. In this chapter, different topics are described that include: (a) environmental impact of textile waste—a result of massive consumption of clothing, (b) recycling and reuse of textile waste, and (c) waste and recycled textile materials used as building materials.",book:{id:"6233",slug:"natural-and-artificial-fiber-reinforced-composites-as-renewable-sources",title:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources",fullTitle:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources"},signatures:"Patricia Peña Pichardo, Gonzalo Martínez-Barrera, Miguel Martínez-\nLópez, Fernando Ureña-Núñez and Liliana I. Ávila-Córdoba",authors:[{id:"102080",title:"Dr.",name:"Gonzalo",middleName:null,surname:"Martínez-Barrera",slug:"gonzalo-martinez-barrera",fullName:"Gonzalo Martínez-Barrera"},{id:"110214",title:"Dr.",name:"Fernando",middleName:null,surname:"Ureña-Nuñez",slug:"fernando-urena-nunez",fullName:"Fernando Ureña-Nuñez"},{id:"177864",title:"Dr.",name:"Liliana Ivette",middleName:null,surname:"Ávila-Córdoba",slug:"liliana-ivette-avila-cordoba",fullName:"Liliana Ivette Ávila-Córdoba"},{id:"177865",title:"Dr.",name:"Miguel",middleName:null,surname:"Martínez-López",slug:"miguel-martinez-lopez",fullName:"Miguel Martínez-López"},{id:"217120",title:"MSc.",name:"Patricia",middleName:null,surname:"Peña-Pichardo",slug:"patricia-pena-pichardo",fullName:"Patricia Peña-Pichardo"}]}],onlineFirstChaptersFilter:{topicId:"206",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Rosa María Martínez-Espinosa is a Full Professor of Biochemistry and Molecular Biology at the University of Alicante, Spain, and has been the vice president of International Relations and Development Cooperation at this university since 2010. She created the research group in applied biochemistry in 2017 (https://web.ua.es/en/appbiochem/), and from 1999 to the present has made more than 200 contributions to Spanish and international conferences. Furthermore, she has around seventy-five scientific publications in indexed journals, eighty book chapters, and one patent to her credit. Her research work focuses on microbial metabolism (particularly on extremophile microorganisms), purification and characterization of enzymes with potential industrial and biotechnological applications, protocol optimization for genetically manipulating microorganisms, gene regulation characterization, carotenoid (pigment) production, and design and development of contaminated water and soil bioremediation processes by means of microorganisms. This research has received competitive public grants from the European Commission, the Spanish Ministry of Economy and Competitiveness, the Valencia Region Government, and the University of Alicante.",institutionString:"University of Alicante",institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83115",title:"Fungi and Oomycetes–Allies in Eliminating Environmental Pathogens",doi:"10.5772/intechopen.106498",signatures:"Iasmina Luca",slug:"fungi-and-oomycetes-allies-in-eliminating-environmental-pathogens",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82797",title:"Anatomical Guide to the Paranasal Sinuses of Domestic Animals",doi:"10.5772/intechopen.106157",signatures:"Mohamed A.M. Alsafy, Samir A.A. El-Gendy and Catrin Sian Rutland",slug:"anatomical-guide-to-the-paranasal-sinuses-of-domestic-animals",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:3,group:"subseries"},{caption:"Animal Science",value:19,count:18,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:755,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a scientist and Principal Investigator at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering the lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via artificial intelligence-based analyses of exosomal Raman signatures. Dr. Paul also works on spatial multiplex immunofluorescence-based tissue mapping to understand the immune repertoire in lung cancer. Dr. Paul has published in more than sixty-five peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award and the 2022 AAISCR-R Vijayalaxmi Award for Innovative Cancer Research. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"83117",title:"Endothelial Secretome",doi:"10.5772/intechopen.106550",signatures:"Luiza Rusu",slug:"endothelial-secretome",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Luiza",surname:"Rusu"}],book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"78064",title:"The Salivary Secretome",doi:"10.5772/intechopen.98278",signatures:"Luís Perpétuo, Rita Ferreira, Sofia Guedes, Francisco Amado and Rui Vitorino",slug:"the-salivary-secretome",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"65334",title:"Introductory Chapter: Some Important Aspects of Root Canal Treatment",doi:"10.5772/intechopen.83653",signatures:"Ana Luiza de Carvalho Felippini",slug:"introductory-chapter-some-important-aspects-of-root-canal-treatment",totalDownloads:852,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ana Luiza",surname:"De Carvalho Felippini"}],book:{title:"Root Canal",coverURL:"https://cdn.intechopen.com/books/images_new/7133.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",slug:"potassium-in-human-health",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Jie Tang",hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",volumeInSeries:12,fullTitle:"Potassium in Human Health",editors:[{id:"181267",title:"Dr.",name:"Jie",middleName:null,surname:"Tang",slug:"jie-tang",fullName:"Jie Tang",profilePictureURL:"https://mts.intechopen.com/storage/users/181267/images/system/181267.png",institutionString:"Brown University",institution:{name:"Brown University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10835",title:"Autonomic Nervous System",subtitle:"Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",slug:"autonomic-nervous-system-special-interest-topics",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Theodoros Aslanidis and Christos Nouris",hash:"48ac242dc6c5073b2590a509c44628e2",volumeInSeries:14,fullTitle:"Autonomic Nervous System - Special Interest Topics",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis",profilePictureURL:"https://mts.intechopen.com/storage/users/200252/images/system/200252.png",institutionString:"Saint Paul General Hospital of Thessaloniki",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"