\r\n\tThe purpose of this book is to discuss some of the critical security challenges in today’s computing world and to discuss mechanisms for defending against those attacks by using classical and modern approaches to cryptography and other security solutions. With this objective, the book invites contributions from researchers in the field of cryptography and its applications in network security. Some illustrative topics of interest (but not limited to) are cryptography algorithms, authentication, authorization, integrity, confidentiality, privacy, security in wireless networks, security in wireless local area networks, wireless sensor networks, wireless ad hoc networks, vehicular ad hoc networks, security and privacy in the Internet of Things. Privacy of information, Blockchains, and Machine Learning in Security are three additional topics that the book will also deal with.
",isbn:"978-1-83768-196-9",printIsbn:"978-1-83769-980-3",pdfIsbn:"978-1-83768-197-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"b268e581d5e458cb91b82c518f2717eb",bookSignature:"Prof. Jaydip Sen",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11547.jpg",keywords:"Symmetric Key Cryptography, Block Ciphers, Authentication Protocols, Electronic Mail Security, User Privacy, Privacy-Preserving Data Mining, Blockchain Security, Anomaly Detection, Malware Analysis, Secure Quantum Communications, Internet of Things, Cyber Laws",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 4th 2022",dateEndSecondStepPublish:"July 5th 2022",dateEndThirdStepPublish:"September 3rd 2022",dateEndFourthStepPublish:"November 22nd 2022",dateEndFifthStepPublish:"January 21st 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Prof. Sen is a pioneering researcher in machine learning and artificial intelligence. He is an IEEE and ACM senior member who has been listed among the top 2% scientists in the world by Stanford University, USA. Prof. Sen has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"7",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"418641",firstName:"Iva",lastName:"Ribic",middleName:null,title:"M.Sc.",imageUrl:"https://mts.intechopen.com/storage/users/418641/images/16830_n.png",email:"iva.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67052",title:"Novel Applications of Aluminium Metal Matrix Composites",doi:"10.5772/intechopen.86225",slug:"novel-applications-of-aluminium-metal-matrix-composites",body:'\n
\n
1. Introduction
\n
The choice of the right materials is an arduous engineering challenge to the materials engineer and, if done carefully, can be a springboard to the proper and successful implementation and subsequent operation of the design. There are a host of materials available to the designer, and making the right decision is a vital achievement in putting forth a successful design. Materials are required to perform according to the designer’s expectations and must possess and retain the right properties in the working environment throughout the working period.
\n
Material selection is in most cases a contradictory decision-making process. Light-weight materials will most likely not possess sufficient strength, and brittle materials will not necessarily be good in fatigue resistance, stiffness or toughness. It is also almost impossible to find a single monolithic material with the required property profile for engineering applications. Moreover, material properties are greatly affected by the working environment (such as temperature, pressure, humidity, etc.) and the nature of loading (gradual, fluctuating, impact, fatigue, etc.). There is need, therefore, to combine two or more materials, as alloys or composites so as to utilise the different useful properties offered by the different materials. Most engineering materials appear in this configuration, and very few applications utilise pure monolithic materials [1]. This is true of aluminium, the most abundant metallic element in the Earth’s crust, accounting for 8% of the planet’s soil and rocks. Aluminium has been a metal of tremendous importance to the domestic and manufacturing industries from the mediaeval period (fifth–fifteenth century) and played an important role in the early years of the industrial revolution. The successful extraction and the first commercial applications of aluminium took place in the nineteenth century, the period in which the enthusiasm for new materials and their possible uses was immense [2].
\n
The first mention of aluminium as a metal of industrial importance indicated the metal was first utilised in the manufacture of household and ornamental items before becoming an important material in the construction of large industrial structures and machine components. With the advent of alloying technology, the use of aluminium was developed farther and positioned aluminium as the most utilised industrial metal for decades. The popularity of aluminium grew due to its good attributes related to its unique properties, mainly of light-weight combined with good thermal/electrical conduction and reasonably good strength and resistance to corrosion. With alloying, aluminium has found more applications than previously envisioned, making aluminium a serious competitor with (and sometimes a preferred alternative to) the traditional “strong” metals iron and steel [3].
\n
Aluminium alloys and composites have, in most applications, exhibited superior performance compared to their rival metals. The choice of aluminium alloys and composites derives from one important attribute of aluminium metal—light-weight. Light-weight translates into many important outcomes in engineering applications. In the automotive industry, it means less dead weight, lower fuel consumption, lower emissions, increased payload (for passengers and cargo) and easier handling. In the aerospace and aircraft industry, it translates into more payload (cargo), less fuel and lower emissions. There are similar advantages in all areas where aluminium is utilised—marine, rail, packaging, thermal management, building and construction, sports and recreation, etc. Aluminium’s good electrical and thermal conductivity have seen its increased use in electrical conductors, electronic packaging and thermal management. Nowadays, aluminium is viewed as an important material for energy conservation and environmental protection [4].
\n
Modern technology aims at meeting the market whose standards are ever appreciating. The market demands faster, more comfortable and hassle-free transport, more compact and lighter machines and tools, more efficient methods of power generation, etc. Most engineered materials can easily meet or surpass design specifications that would not have been envisaged a few years back. Today’s materials are subjected to more critical loads, more stresses and more severe operating conditions in an environment never experienced before. In a spacecraft, for example, the operating conditions experienced are quite unique and require special types of materials to withstand the severe stresses imposed on the spacecraft during take-off and maintenance in the orbiting space. Traditional materials have been found wanting in meeting these operating conditions and hence the need to intensify research and development (R&D) efforts in new and advanced materials for specific applications and efficiency improvement. Among the advanced materials on the R&D, the menu is the metal matrix micro- and nanocomposites. Metal matrix composites (MMCs) are metals or metal alloys that incorporate particles, whiskers, fibres or hollow microballoons made of a different material and offer unique opportunities to tailor materials to specific design needs [5]. In automotive applications, for example, these materials can be tailored to be light-weight and with various other useful properties including high specific strength and specific stiffness, high hardness and wear resistance, high thermal conductivity, high energy absorption and a damping capacity and low coefficients of friction and thermal expansion.
\n
MMCs, therefore, offer more possibilities for wider applications of materials by manipulating their processing to suit the requisite properties under different working environments. The design of composite materials with specific properties can, moreover, be accomplished with the use of finite element modelling techniques. It is possible to predict the properties of a certain material of specified composition by using these techniques. In the same way, it is possible to design materials to offer specified properties by the use of these techniques [1].
\n
\n
\n
2. Types of metal matrix composites and their methods of production
\n
\n
2.1 An overview of metal matrix composites
\n
A composite is a mixture of two or more constituents or phases which are chemically distinct on a microscopic scale, separated by a distinct interface, and can easily be specified. In addition, other criteria are normally satisfied before a material can be called a composite. The constituents have to be present in reasonable proportions, and the constituent phases should have distinctly different properties, such that the properties of the composite are noticeably different from the properties of the constituents [4]. The constituent which is continuous and in most cases available in larger quantities is termed the matrix. It is commonly viewed that it is the properties of the matrix that are improved upon in the process of producing a composite. The second constituent is known as the reinforcing phase, or reinforcement, as it enhances or reinforces the mechanical properties of the matrix. In most cases the reinforcement is harder, stronger and stiffer than the matrix, although there are some exceptions. The matrix may be in form of a ceramic material, metallic or polymeric, with each of these three classes of materials having considerably different /unique mechanical properties. Generally, polymers have low Young’s moduli and strengths; ceramics are strong, stiff and brittle; and metals have intermediate moduli, strengths and good ductility [6].
\n
Composite materials are usually classified according to the physical or chemical nature of the matrix, e.g. metal matrix, polymer matrix and ceramic composites. Additionally, the emergence of the intermetallic matrix and carbon matrix composites as reported by [7] has broadened the scope of composites. Intermetallic compounds are metal-based systems centred on the fixed atomic compositions occurring in metallic systems of aluminium with nickel (Ni), titanium (Ti) and niobium (Nb), such as Ni3Al, Ti3Al, TiAl and Nb3Al. Intermetallic compounds are of interest because they often exhibit higher melting points and less ease of deformation due to the lattice arrangement of their atoms [8].
\n
In certain applications, metal matrix composite materials, formed by combining two or more materials—one of which is a metal—exhibit a primary advantage over their counterpart organic matrix composites in regard to the maximum operating temperature. To support this point, [9] reports that the boron/aluminium composite offers useful mechanical properties up to a temperature of 510°C, whereas an equivalent boron/epoxy composite is limited to about 190°C. Furthermore, composites of graphite/aluminium, graphite/copper and graphite/magnesium exhibit higher thermal conductivity due to the significant contribution from the metallic matrix. A metal matrix composite retains the desirable properties of both the matrix and the reinforcement by combining the strength of its reinforcement with the ductility of its matrix [10]. The reinforcing constituent may be a particle, platelet, short fibre or continuous fibre and may range from sub-micrometre to millimetre in size. There is a difference between metal matrix composites and multiphase metallic alloys as the concept of MMCs introduces additional degrees of freedom into designing the microstructure. Materials with desirable properties not obtainable by conventional alloying and heat treatment can be created compositing. This can be achieved by altering the reinforcement type (metallic, ceramic or polymeric), content (volume fraction), size, shape, distribution and orientation [11].
\n
In the early development of MMCs, continuous ceramic fibres and single-crystal ceramic whiskers were the preferred reinforcements as they provided the most remarkable increase in strength and stiffness. Later, particulate and discontinuously reinforced MMCs then followed, registering substantial progress on many fronts especially in composites with aluminium as the metal matrix. In aluminium metal matrix composites (AlMMCs), aluminium or its alloy forms a percolating network and is the matrix phase, while the other constituent, which is embedded in this matrix, is the reinforcement. The reinforcement is usually ceramic such as silicon carbide (SiC) or aluminium oxide (Al2O3). The properties of AlMMCs can be varied by varying the nature of the constituent phases and their volume fractions [4].
\n
Although the MMCs have been in existence since the 1960s, they have not been put to full commercial use due to their higher production costs and lack of proper understanding of their high-temperature behaviour [12]. The higher costs are mainly attributed to the machining processes requiring tool materials to have very high wear resistance because of the reinforcement component being extremely abrasive [13]. However, with the invention of functionally graded materials (FGMs), it is now possible to reduce the cost of secondary processing. FGMs are an emerging category of advanced materials that exhibit gradual microstructural transitions and/or the composition in a specific direction and hence different functional performances within a part [14, 15].
\n
The rapid growth and development of AlMMCs happened in the years after the launch of the Aluminium Metal Matrix Composites Roadmap 2002, a policy document produced by the Aluminium Metal Matrix Composites Consortium with support from the Technology Research Corporation (TRC) of the United States and other stakeholders. The document spelt out a pathway for the AlMMCs’ growth in 20 years from 2002 and asserted the industry’s vision to position AlMMCs as the material of choice in a broad range of structural and nonstructural applications. This vision was to be achieved by addressing three strategic goals, namely:
To reduce the cost of discontinuously reinforced AlMMCs to be comparable to existing alternatives by 2010
To develop the necessary infrastructure to provide design confidence for AlMMCs
To increase the market size for AlMMCs
\n
By that time, AlMMCs had proved their potential in such applications as aerospace, automotive, electronic packaging, commercial and industrial markets. The market was projected to grow at a 14% overall rate to $173 million by 2004. The industry believed then that there was much greater unrealised potential for growth [16].
\n
\n
\n
2.2 Classification of metal matrix composites
\n
Metal matrix composites can be classified into several distinct classes, generally defined with reference to the type, shape and method of their reinforcements. The following classification is relevant to MMCs with aluminium as the matrix metal as explained in [4] and [11]. Typical microstructures are shown in Figures 1 and 2.
\n
Figure 1.
Typical microstructures of AlMMCs. (a) Al/Al2O3 platelets. (b) Al/Al2O3 continuous fibres. (c) Al/SiCp. (d) Al/graphite with 20 vol.% graphite flakes taken along the basal plane (source: [17, 18]).
Particle-reinforced MMCs: Invariably known as particulate-reinforced MMCs, these composites generally contain equi-axed ceramic reinforcements, mainly oxides (e.g. alumina, Al2O3), carbides (e.g. silicon carbide, SiC) or borides (e.g. titanium bromide, TiB2), with an aspect ratio less than 5 and present in volume fraction less than 30%. They can be produced by blending metal and the ceramic powders, followed by solid-state sintering or by liquid-metal techniques such as stir casting, squeeze infiltration and in situ processes.
\n
Continuous fibre-reinforced MMCs: These contain either relatively fine continuous fibres, usually of Al2O3, SiC or carbon, with a diameter below 20 μm, or coarser fibres or monofilaments. The former can be either parallel or pre-woven prior to infiltration to form a composite, while the bending flexibility of the latter limits the range of shapes that can be produced. Monofilaments are large diameter (100–150 μm) fibres, usually produced by chemical vapour deposition (CVD) of either SiC or boron (B) into a core of carbon fibre or tungsten (W).
\n
Whisker- and short-fibre-reinforced MMCs: These contain reinforcements with an aspect ratio of greater than 5 but are not continuous. Short Al2O3 fibre-reinforced MMCs have been dominantly used in pistons. Whisker-reinforced composites, produced by either powder metallurgy or squeeze infiltration into a fibre preform, are generally produced to net/near-net shape. However, usage of whiskers as reinforcements is being restricted due to perceived health hazards.
\n
Hybrid MMCs: Hybrid MMCs essentially contain more than one type of reinforcement, for example, a mixture of particle and whisker, a mixture of fibre and particle or a mixture of hard and soft reinforcements. With the discovery of carbon nanotubes (CNT), composites with superior mechanical properties over those of carbon have been produced [19].
\n
Other MMCs with variety of matrices other than aluminium include: Cemented carbides (cermets)—which are made by powder blending of a high proportion (60–75%) of ceramic or titanium carbide (TiC) with a metal such as cobalt, followed by holding for a short period at a temperature sufficient to melt the metallic constituent (liquid-phase sintering). In situ composites—in which directional solidification is used to form relatively fine aligned two-phase fibre or lamellar structures, resulting in an intermetallic reinforcement with high stiffness and strength. Co-deformed composites - in which immiscible metals are co-deformed such that filaments of the second phase with very large aspect ratio are formed within the matrix material. Typical examples include Cu-Cr and Cu-Nb systems. Cermets have outstanding high-temperature strength and are widely used for tool bits [11].
\n
\n
\n
2.3 Methods of production of AlMMCs
\n
Primary compositing processes for manufacturing of AlMMCs at industrial scale can be classified into two main groups, namely, (1) liquid-state processes and (2) solid-state processes [4]. The liquid-state processes are further classified into liquid-metal-mixing processes and liquid-metal-infiltration processes. Specifically, liquid-metal mixing is the primary compositing route for producing materials considered for high-volume automotive applications, liquid-metal infiltration for high-volume electronic packaging applications and solid-state processing for high-performance aerospace applications [20].
\n
\n
2.3.1 Liquid-metal-mixing processes
\n
The liquid-metal-mixing process involves the incorporation of reinforcement particles or short fibres into a molten or semi-solid aluminium matrix through a stirring process. In stir casting technique, the process involves the incorporating of ceramic particulate into liquid aluminium melt and allowing the mixture to solidify. It is crucial to ensure that good wettability between the particulate reinforcement and the liquid aluminium alloy melt is achieved. Generally it is possible to incorporate up to 30% ceramic particles in the size range from 5 to 100 μm in a variety of molten aluminium alloys [16]. Surappa [4] identifies another variation of the stir casting process, called compo-casting, in which ceramic particles are incorporated into the alloy in the semi-solid state.
\n
Particulate-reinforced AlMMCs have been commercially available in significant quantities since the 1990s. The interest in these MMCs was driven by the combination of improved mechanical and physical properties imparted by the reinforcement while still maintaining the favourable metalworking characteristics and predominantly metal-like behaviour. A second motivating factor was the ability to tailor the mechanical and physical properties through selection of the reinforcement composition along with the matrix alloy.
\n
\n
\n
2.3.2 Liquid-metal-infiltration processes
\n
In the liquid-metal-infiltration process, the molten aluminium or its alloy is moved into a preform of the reinforcement, either as a packed bed or a rigid, free-standing structure. In order for the preform to retain its integrity and shape, it is often necessary to use silica- and alumina-based mixtures as a binder. Some degree of pressure is needed to overcome the wetting and capillary resistance, and this can vary from atmospheric to thousands of Pascal. In this process, the concept was to take advantage of the excellent reinforcement properties in a product that was essentially formed to net shape by the casting process. This process can produce materials with a range of reinforcement volume fraction but is especially well suited for reinforcement levels above 50% and in some cases approaching 80%. As a result, the materials produced by this process are well suited for electronic packaging [19, 21].
\n
Other variations of this technique include spray deposition and in situ (reactive) processing. In spray deposition techniques, the droplet stream may either be produced from a molten bath (Osprey process) or by continuous feeding of cold metal into a zone of rapid heat injection (thermal spray process). This process has been extensively explored for the production of AlMMCs by injecting a ceramic reinforcement into the spray. The AlMMC processed by spray deposition technique is relatively inexpensive with a cost that is usually intermediate between stir cast and P/M processes. In situ processing applies to several different processes, which include liquid-solid, liquid-liquid, liquid-gas and mixed salt reactions. These processes lead to the formation of a refractory reinforcement in the aluminium alloy matrix. For example, in the directional oxidation of aluminium (the DIMOX process) [4], the alloy of Al-Mg is placed in a crucible on top of a ceramic preform and the entire assembly heated to a suitable temperature in an atmosphere of free-flowing nitrogen-carrying gas mixture. The molten Al-Mg alloy then infiltrates into the preform—forming the composite [22].
\n
The liquid-metal-infiltration process was first successfully demonstrated in the production of the Toyota piston in which a discontinuous fibre preform was infiltrated by squeeze casting to provide a local improvement in wear resistance in the piston ring land area. The technology has since been adopted for the manufacture of several automotive and military powertrain and suspension components [20].
\n
\n
\n
2.3.3 Solid-state processes
\n
Solid-state processes involve the mixing of reinforcement (particles or whiskers) into a solid-state matrix. Historically, these methods employed solid-state-based processes, such as powder metallurgy (P/M), to produce AlMMCs with the highest combinations of properties. Therefore, these materials are primarily employed in higher-performance applications, especially in the aerospace and automotive markets, where these materials are used in high-performance components, mostly those dominated by fatigue. Initially, ceramic-whisker materials were produced, and subsequently, ceramic-particulate-reinforced materials followed. These materials, while expensive both in terms of the reinforcement and processing costs, developed dramatically improved properties over the base metal and were used in a number of high-performance applications, both military and commercial. However, due to the health risks posed by whisker-reinforced MMCs, particulate-reinforced MMCs have replaced them in many applications, leaving the whisker-reinforced MMCs for specialised military applications [23]. Particulate reinforcement, besides being of lower cost, also exhibited improvements in strength and stiffness almost as high as those obtained in whisker-reinforced materials.
\n
Variations in solid-state processing have been identified (see, e.g. [4]):
\n
Powder blending and consolidation (P/M processing): Blending of aluminium alloy powder with ceramic short fibre/whisker is a versatile technique for the production of AlMMCs. Blending is usually followed by cold compaction, canning, degassing and high-temperature consolidation stages such as hot isostatic pressing (HIP) or extrusion. Depending on processing conditions, AlMMCs processed through the P/M route may contain oxide particles in volume fractions ranging from 0.05 to 0.5 and in the form of platelets of few tens of nanometres in thickness.
\n
Diffusion bonding: Monofilament-reinforced AlMMCs are mainly produced by the diffusion bonding route or by evaporation of relatively thick layers of aluminium on the fibre surface. The 6061 Al-boron fibre composites have been produced by this process. The process is more commonly used in production of Ti-based fibre-reinforced composites. However, it is a cumbersome process and is not suitable for production of complex shapes.
\n
Physical vapour deposition: In this process, the continuous passage of fibre is passed continuously through a region of high partial pressure of the metal to be deposited. Here condensation takes place, producing a relatively thick coating on the fibre. Vapour deposition is then accomplished by directing a high-power electron beam onto the end of a solid bar feedstock. Typically, deposition rates per minute are in the range of 5–10 μm. Composites with volume fraction as high as 80% can be produced by this technique.
\n
\n
\n
\n
2.4 Properties of AlMMCs and resulting end uses
\n
\n
2.4.1 Properties of aluminium and AlMMCs
\n
Generally, aluminium has derived its importance in industrial and commercial applications due to the following attributes, most of which are imparted to its alloys and/or composites:
Aluminium is light; its density is only one-third that of steel.
Aluminium is resistant to weather, common atmospheric gases and a wide range of corrosive liquids.
Aluminium is safe and can be used in contact with a wide range of foodstuffs.
Due to its high reflectivity, aluminium is usually employed in a number of decorative applications.
The strength of aluminium alloys can equal (and sometimes exceed) the strength of normal construction steel.
Aluminium is highly elastic, a property which qualifies it to be employed in structures subjected to shock loads.
Aluminium has a unique behaviour of maintaining its toughness down to very low temperatures, unlike carbon steels which would otherwise suffer embrittlement.
Aluminium exhibits ease of workability and formability and can easily be rolled to very thin gauges.
Aluminium conducts electricity and heat nearly as well as copper.
\n
With alloying and compositing, these attributes are enhanced, and the shortcomings of the base aluminium metal are improved tremendously. The major improvements in the properties of AlMMCs are manifested in form of greater strength and improved stiffness, reduced density, improved abrasion and wear resistance, improved high-temperature properties, better control of thermal expansion coefficient, better thermal/heat management, enhanced and tailored electrical performance, better control of reciprocating mass and improved damping capabilities.
\n
The above advantages have been quantified for a better appreciation. For example, [4] reports that the elastic modulus of pure aluminium can be enhanced from 70 to 240 GPa by reinforcing with 60 vol% continuous alumina fibre. Also, a decrease in the coefficient of thermal expansion from 24 to 7 ppm/oC can be achieved by incorporation of 60 vol% alumina fibre in pure aluminium.
\n
With the advent of nanostructured materials, new materials have been developed with exceptional properties exceeding those expected for monolithic alloys or composites. For example, carbon nanotubes have ultrahigh strength and modulus; when included in a matrix, they could impart significant property improvements to the resulting nanocomposite [5]. Jun and co-workers [24] present quantifiable results to the effect that incorporating only 10 vol% of 50 nm alumina particles to an aluminium alloy matrix using the powder metallurgy process increased yield strength to 515 MPa—which is 15 times stronger than the base alloy and over 1.5 times stronger than AISI 304 stainless steel.
\n
\n
\n
2.4.2 AlMMCs end uses
\n
Aluminium metal matrix composites are increasingly registering success as “high-tech” materials in various applications. Significant performance-related benefits and economic as well as environmental benefits have been realised as a result of utilisation of AlMMCs. Notable among them are improved properties, increased component lifetime, improved productivity, energy savings, lower maintenance costs and environmental benefits such as lower noise levels and fewer airborne emissions. These composites can replace monolithic materials that include ferrous alloys, aluminium and titanium alloys and polymer-based composites in many applications. For widespread replacement, the whole system may be redesigned in order to gain additional weight and volume savings. Ideally, AlMMCs can be viewed not only as a replacement for existing materials but also as a means of enabling radical changes to the product or system design [4].
\n
Engineering viability of AlMMCs in a number of applications has been well-documented. AlMMCs having a different type of reinforcements and produced both by solid-state and liquid-state processing have been used in many engineering applications. Some of the newer and visible applications of different types of AlMMCs are detailed below.
\n
Particle-reinforced aluminium metal matrix composites produced by P/M stir cast/melt infiltration/spraying/in situ processing techniques at industrial level with particulate reinforcements of SiC, Al2O3, TiC, TiB2 and B4C have been successfully used in the manufacture of automotive and aerospace components and thermal management. In the gas turbine engine, particle-reinforced AlMMCs have been used in fabrication of fan exit guide vanes (FEGV). They are also used as rotating blade sleeves in helicopters and as ventral fins and fuel access cover doors in military aircraft [25]. Flight control hydraulic manifolds made of particulate silicon carbide (about 40 vol%) reinforced AlMMCs have been successfully used. On a high-volume basis, applications of particle-reinforced AlMMCs have been reported in braking systems of trains and automobiles. Presently AlMMC brake discs are extensively used in European railways and certain models of passenger cars in the United States. Other applications in the automotive industry include valves, crankshafts, gear parts and suspension arms. In recreation and sports, particle-reinforced AlMMCs are used in production of a variety of products including golf club shaft and head, skating shoe, baseball shafts, horseshoes and bicycle frames. Aluminium metal matrix composites containing high volume fractions of ceramic particles are used as microprocessor lids and integrated heat sinks in electronic packaging. They are also in use as carrier plates and microwave housing.
\n
Whisker- and short-fibre-reinforced aluminium metal matrix composites: In the wake of greater health risks associated with the handling of ceramic whiskers, production of whisker-reinforced aluminium composites has been limited to specialised use such as the production of track shoes in advanced military tanks. Short-fibre-reinforced AlMMCs are being used in piston and cylinder liner applications [26].
\n
Continuous fibre-reinforced aluminium matrix composites: Carbon fibre-reinforced AlMMCs have been used as antenna waveguides for the Hubble Space Telescope for their ability to provide high dimensional accuracy and high thermal and electrical conductivity with no outgassing oxidation resistance. The 6061 Al-boron continuous fibre composites have been used as struts in the main cargo bay of space shuttles. The 3M™ company developed continuous fibre AlMMCs which offer strength equivalent to that of high-strength steel at less than half the density and which retain their strength beyond 300°C [4]. These composites possess four times the electrical conductivity of steel (or half that of pure aluminium) and have been targeting various functional applications, such as (a) core of overhead electrical conductors, (b) automotive push rods, (c) energy storage flywheels, (d) retainer rings for high-speed motors and (e) automotive brake callipers. Aluminium metal matrix composites enable the use of smaller flywheels compared to polymer composites. Thin-walled retainer rings of AlMMCs provide excellent advantages in high-speed motors and can resist very high rotational speeds and still maintain their precise shape. Compared to cast iron, AlMMCs brake callipers made of continuous fibre reinforcement offer such benefits as increased damping, reduced unsprung weight, increased fuel efficiency and improved performance, handling and ride.
\n
Detailed applications and the current state of utilisation are covered in Chapter 3.
\n
\n
\n
\n
\n
3. The current state of applications of AlMMCs in various industries
\n
\n
3.1 AlMMCs in innovative light-weight designs
\n
\n
3.1.1 Automotive industry
\n
The automotive market represents the largest current market for AlMMCs on a volume basis. The potential for AlMMCs in this area is barely tapped, however, and represents a great opportunity for substantial growth. Through R&D, lighter, engineered materials are being developed which offer better performance than the existing materials. Replacement of steel and cast iron in internal combustion engine applications as well as in unsprung weight components, such as the brake system, is judged the most promising for the near term.
\n
Aluminium metal matrix composites are suitable replacements, not only for steel but also for aluminium alloys in various automotive systems and components. There are many ways to achieve light-weight without compromising the strength and safety requirements. Ideally, it is common practice to completely replace the existing structural material with the material of higher yield strength, with a possible reduction in section dimensions. The other way of achieving weight saving is to selectively replace conventional steel at specific areas with the lighter materials. By applying the mass reduction techniques, the mass of vehicles can be reduced independent of vehicle size, functionality, class or model [1]. In most of these techniques, lower density aluminium composites continue to replace the carbon steels. Aluminium-based engine blocks, suspension components, body panels and frame members are increasingly becoming common [27]. Most cylinder heads are aluminium-based, and by 2005, engine blocks made from aluminium in the US light-duty vehicles passed the 50% mark, surpassing steel in this area for the first time [28]. However, engine blocks typically require cast iron cylinder liners due to the inferior wear properties of aluminium—a shortcoming that has attracted considerable research and development (R&D) efforts, leading to some positive results. For example, [5] reports about the progress made in the development of aluminium alloy cylinder liners containing dispersed graphite particles that provide solid lubrication. Aluminium alloys and composites are also competing to replace many various traditional steel components in vehicles, such as valve covers, torque converter and transmission housings, crankcase, control arms, cradles, suspension links, door frames, steering wheels, dashboards, sheet panels and beams are also being replaced by alloy aluminium alloys and composites [29]. New areas are being explored for aluminium-based materials, and these include “all aluminium” bodies, bumpers, crash management systems and unibody construction [30].
\n
The automotive breaking system components, such as the disc brakes and callipers, are another area where significant weight savings can be realised by utilising AlMMCs. Most modern vehicle models including Lotus Elise, General Motors EV1, Chrysler Prowler, Volkswagen Lupo 3 L and Toyota RAV4 EV have used SiC-reinforced aluminium brake rotors [31]. Regarding the chassis, the requirements for vehicle performance and survivability of occupants in severe crashes dictate that chassis materials should possess adequate strength and toughness. Aluminium-fly ash (a waste by-product of coal power plants) cenosphere syntactic foams can be used to reinforce box or tubular frame sections in crumple zones to increase torsional rigidity and energy absorption upon vehicle impact [32]. Further cost/weight savings can be realised by incorporating fly ash in the aluminium matrix for components that do not experience extreme loading. In the suspension system, the use of aluminium-based materials has led to reduction in the unsprung weight, consequently, improving vehicle dynamics. Control arms and wheel hubs made of SiC-reinforced aluminium nanocomposites have exhibited improved strength characteristics similar to cast iron while using less material than aluminium. Self-lubricating graphite-reinforced aluminium bushings can also be incorporated into control arm castings to allow for service-free components [5].
\n
Apart from the core body frame structure, weight saving technology features in other areas can add up to substantial secondary weight reductions elsewhere. Lighter roof panels, side panels and beams are being offered by different vehicle manufacturers with thinner gauge high-strength steel (HSS), aluminium and some limited magnesium [33]. Significant weight reductions are being registered within the suspension and chassis system by utilising “alloy” (i.e. aluminium alloy) wheels and redesigned braking systems. In addition, many suspension and chassis parts can realise secondary weight savings from reduction in their size that result from weight reductions elsewhere on the vehicle [1].
\n
There is a limit to the savings made. Although primary weight savings also enable downsizing many of the other vehicle systems, a study sponsored by the National Highway Traffic Safety Administration (NHTSA) evaluated the maximum weight reductions possible for some car models. Using Honda Accord as the study sample, it was found out that the baseline body-in-white (BIW) mass, which was 48% HSS, could be reduced by 22% with advanced high-strength steel (AHSS) and by up to 35% with an aluminium-intensive design [1, 34]. In another study conducted by IKA, University of Aachen (Germany), it was observed that it was possible to obtain a weight reduction of their “alumaximised” model car from 1229 to 785 kg, after primary and maximum secondary weight savings [35].
\n
Weight reduction has been driven to higher heights by new and advanced technologies and concepts. The new concept of “multi-material designs”, used mainly for high-volume production, is an alternative to the “all-aluminium” designs of BIW. The concept consists of mixing various materials to benefit from their individual advantages. To this end, it is possible to use aluminium together with high- and ultrahigh-strength steels, magnesium and plastics or composites, where applicable [1]. The driving force behind this concept is to use the “best and most suitable” material for the appropriate functions in order to achieve an overall cost-efficient light-weight design. This concept has been championed by some European car manufacturers, notably, BMW, in their 5 E60 series which utilises 20% as deep-drawing steels, 42% as higher-strength steels, 20% as ultrahigh-strength steels and 18% aluminium alloys. The front-end substructure consists of 16.4 kg steel, and 29.4 kg is made of 86 aluminium-based parts (stamped sheet, extrusions, high-pressure die castings and hydroformed tubes) [35, 36].
\n
The multi-material design concept was adopted and further developed by the SuperLIGHT-CAR (SLC) project. Under the umbrella of the European Council for Automotive Research (EUCAR), the European Commission (EC) in the year 2005 co-funded the 4-year collaborative SLC project, whose overall objective was to develop truly light-weight multi-material car concepts up to 50% lighter than the high-volume cars produced in the year 2004. The SLC project, recognising the importance of weight reduction as one of the most effective ways of reducing fuel consumption and CO2 emissions in the road transport sector, embarked on developing the integrated knowledge and technological capabilities needed to design and manufacture multi-material car bodies with reduced raw material consumption of up to 30% [37]. This was achieved by an ingenious mix of metals headed by aluminium. The multi-material concept consequently exceeded the initial target and yielded a 35% (or an equivalent of 101 kg) weight reduction compared to the reference 2004 benchmark of a VW Golf V [38].
\n
Lutsey [27] reports that reductions are more likely to be registered in manufacturing costs for vehicle mass reduction options up to about 20% for the light-duty vehicles in the 2009 fleet. Quoting the IMPACT Ford F150 project as an example, it is reported that the vehicle designs that reduced the pickup’s mass by 19% were achieved at net-zero manufacturing cost, whereas the full 25% mass reduction package came with a $ 500 per vehicle cost increase. Other studies involving aluminium-intensive designs also showed the potential for minimal net-vehicle costs with substantial mass reductions. The SLC multi-material design also shows the feasibility of a unibody structure of aluminium, magnesium and composites that delivers up to a 39% body mass reduction and with costs that are less than €10/kg-saved. The Lotus High Development vehicle study [39] found out that a 33% mass reduction is achievable at a 3% cost increase, which would roughly correspond to a $ 400–600 per vehicle increase in manufacturing cost. All these studies attest to the fact that it is possible to register significant cost reductions by increasingly making use of AlMMCs.
\n
\n
\n
3.1.2 Aerospace and aircraft industry
\n
Aluminium alloys and composites have played a big role in the advancement of aircraft and rocket technology. Right from the Wright brothers’ utilisation of aluminium in the engine of their first biplane to NASA’s use of an aluminium-lithium alloy in the spacecraft, aluminium has created and enhanced the mankind’s potential to fly around the Earth and into the outer space.
\n
Aluminium alloys and/or composites are the favoured choice for the fuselage, wing and supporting structures of commercial airliners and military or cargo aircraft. The airframe of a typical modern commercial transport aircraft is composed of 80% aluminium by weight. Attention is now focused towards aluminium casting technology, which offers lower manufacturing costs, the ability to form complex shapes and the flexibility to incorporate innovative design concepts.
\n
Aluminium metal matrix composites have been the material of choice for space structures of all types ever since the launch of Sputnik 1 (October 4, 1957). Chosen for their light-weight and their ability to withstand the stresses that occur during launch and operation in space, AlMMCs and alloys have been used on Apollo spacecraft, the Skylab, the space shuttles and the International Space Station. Aluminium alloys/composites consistently exceed other metals in such areas as mechanical stability, dampening, thermal management and reduced weight [40].
\n
\n
\n
3.1.3 Rail transport
\n
Aluminium railroad cars were pioneered for the railroad industry in the late 1950s and are still the material of choice for this mode of transportation. Rail cars, designed with aluminium-based extrusions, require one-third the number of components, have reduced welding needs and are two-thirds the weight of comparable steel cars. The higher carrying capacity of aluminium repays its higher initial cost in less than 2 years, and the life-cycle fuel costs are lower due to the lighter weight of the car [41]. Aluminium-based materials offer excellent resistance to corrosion and high salvage value.
\n
Designing with aluminium results in light-weight cars that retain the strength of steel cars but can carry greater loads, hence saving money in increased freight and reduced fuel costs. The third generation of the French TGV Duplex high-speed train is a good example in this case. The train converted from steel to aluminium-based materials, resulting in a 20% weight saving, while at the same time converting to two decks and keeping the axle load below 17 tons. Similarly, the Japanese high-speed “bullet” train and the Washington DC Metro trains are also made with aluminium-based materials.
\n
The durability of aluminium makes it a suitable material for the railroad environment. Extensive shaking tests and decades of use offer testimony to aluminium’s superiority for this application. A recent study shows that after 20 years of service, there is a negligible loss of metal thickness or surface defects on cars used to ship different materials an average of 110,000 miles per year. Metal loss on floors and sidewalls from corrosion and wear measured approximately 25% less than comparable steel cars [42].
\n
\n
\n
3.1.4 Marine transport
\n
Marine transport has also been revolutionised with the use of aluminium alloys and composites. The use of these materials has enabled an increase in the speed and size of boats, yachts, ferries and ships while improving their fuel efficiency, seaworthiness, safety and reliability and reducing maintenance costs. By substituting aluminium for steel, weight savings of 35–45% in hulls and 55–65% in superstructures can be achieved [42]. Higher vessel speeds and load capacities translate into extra traffic volume and profits for a ship or boat operator.
\n
It is also possible to increase vessel volume and height without loss of stability. Passenger compartments can be larger, and more cabins can be located above sea level. The use of aluminium-based materials also ensures increased manoeuvrability and access to shallow draught ports.
\n
Aluminium-intensive cargo ships with load capacities up to 3000 metric tons have been designed to operate at up to 60 knots, crossing the Atlantic in under 60 hours. Military requirements seek smaller, more agile vessel designs with a lower radar cross section and capable of 60–80 knots or more—another excellent fit for aluminium, which is made possible due to advances in manufacturing methods, such as friction-stir welding and structural bonding.
\n
Aluminium-based materials satisfy the requirements of the International Maritime Organization high-speed code for vessel design, safety and control of fire risk. Compared to steel, aluminium performs better in handling the torsional, flexural, compression and impact loads of high-speed water travel [42].
\n
\n
\n
3.1.5 Building and construction industry
\n
In 2009 the building and construction market constituted the third largest North American market for aluminium. Strength and stiffness are the two most important characteristics for structural applications of aluminium-based materials. The composites of aluminium such as the fibre-reinforced alloys of aluminium, discontinuously reinforced aluminium (DRA) and the conventional metals and graphite/epoxy composites provide the good uniaxial specific stiffness and specific strength and hence are the materials of choice for applications where maximum structural efficiency is the primary selection criterion [43].
\n
Aluminium was first used in large quantities for building and construction in the 1920s, with the applications primarily oriented towards decorative detailing and art deco structures. Nowadays, aluminium-based materials are recognised as some of the most energy efficient and sustainable construction materials. Moreover, an estimated 85% of the aluminium used in modern buildings comes from recycled material. Bridge decks made from aluminium-based materials need minimal maintenance, are corrosion-resistant, require no painting and, unlike concrete, require no extension framework or cure time. Advanced aluminium alloys and composites can easily support the weight of heavy glass spans, thus maximising the building’s capability for using natural sunlight.
\n
Aluminium has, over time, been viewed as a vital component of sustainable buildings since the metal is easily recycled and loses none of its properties during recycling. Moreover, the recycling process reduces energy consumption by more than 90% compared to the energy required to produce new aluminium [44]. Aluminium and its alloys are infinitely recyclable. More than 75% of all aluminium produced is still in use today.
\n
\n
\n
3.1.6 Offshore applications
\n
Offshore platforms, helidecks and seawalls are other possible areas where aluminium-based materials can be effectively utilised. In water depths of 400 feet, a 1 ton weight saving in platform superstructure means weight savings of 6 tons in the supporting structure [42].
\n
Aluminium-based materials are often used in the construction of helicopter decks (helidecks) for resupply of oil rigs. Here, marine-grade aluminium alloys offer maintenance-free service with remarkable corrosion resistance. Using aluminium components reduces handling and offshore lifting costs and speeds the task of assembly. Aluminium is safe to use as it does not burn and presents no thermite sparking risks. It requires minimal maintenance. Even in salty water applications, little or no protective coatings are required for aluminium seawalls.
\n
Marine-grade aluminium alloys are used for helidecks, telescoping bridges, accommodation modules, stair towers, cable ladders, fire walls, mud mats, gratings and many other applications. Aluminium structures weigh 40–70% less than equivalent steel structures. Handling is made easier since larger, lighter aluminium structures can be handled and lifted with smaller, less expensive equipment. In marine environments, properly selected aluminium alloys/composites require no painting and require little or no maintenance.
\n
Aluminium seawall shapes are generally extruded, achieving the most strength with the least material. Aluminium is easy to extrude and fabricate; hence, retrofitting of the offshore platforms and customisation become cost-effective. Installation is also easy since designers can create either a single-piece component, bolted connections or interlocking sections for fast and simple fit-up on site. Various proven mechanical methods joining can be applied to aluminium. Its weldability is good as it can be welded three times faster than steel, using inexpensive MIG machines. Aluminium offers excellent safety advantages as it is non-combustible and gives off no flammable vapour when heated—an important consideration when choosing materials for offshore applications such as helidecks [42].
\n
\n
\n
\n
3.2 High-temperature applications
\n
\n
3.2.1 Automotive industry
\n
The high-temperature applications in the automotive industry are mainly concerned with the engine, transmission and braking components. These experience temperatures up to about 300°C. The AlMMCs suitable for use under these circumstances must be able to retain the desired properties of the part/component operating under these conditions [1].
\n
The major automotive components that have been successfully manufactured from AlMMCs are the following:
\n
Pistons and cylinder liners. The University of Wisconsin-Milwaukee (UWM) reportedly developed aluminium alloy pistons and cylinder liners containing dispersed graphite particles that provide solid lubrication [5]. The graphite-containing aluminium has a lower friction coefficient and wear rate and does not seize under boundary lubrication. Aluminium/graphite pistons and liners were tested in gas and diesel engines and in race cars, and the results showed reduced friction coefficients and wear rates. The friction coefficient of Al-graphite composites was measured and found to be as low as 0.2 [45]. This makes it a suitable material for cylinder liners in light-weight aluminium-engine blocks, for its ability to enable engines reach operating temperatures more quickly while providing superior wear resistance, improved cold start emissions and reduced weight [46]. Aluminium-based composite liners can be cast in situ using conventional methods, including sand, permanent mould, die casting and centrifugal casting.
\n
Main bearings. Lead-free aluminium or copper matrix composites containing graphite particles, as developed at UWM [5], can replace the copper-lead bearings used in crankshaft main-bearing caps. The bearings also improve wear characteristics because deformation of the graphite particles results in the formation of a continuous graphite film, which provides self-lubrication of the component, allowing for improved component longevity. Virtually all journal bearings in the power train could benefit from these materials. Selectively reinforced functionally gradient bearings of aluminium-graphite and copper-graphite alloys can be manufactured in a single step by centrifugal casting of metal-graphite suspensions [47].
\n
Connecting rods. For components requiring high strength at high temperatures, such as connecting rods, cast aluminium matrix nanocomposites may be ideal to produce near-net-shape components to replace steel, forged aluminium and titanium components while reducing reciprocating mass.
\n
Accessories. For components not exposed to extreme loading, further cost and weight reductions can be realised by incorporating fly ash in the aluminium matrix. Components such as A/C pump brackets, timing belt/chain covers, alternator housings, transmission housing, valve covers and intake manifolds can be replaced with aluminium-fly ash composites, reducing the vehicle cost and weight, thereby improving emissions and saving energy. Adding fly ash to aluminium also reduces its coefficient of thermal expansion and increases its wear resistance along with making lighter and less expensive material [46].
\n
Suspension. Although many automakers use aluminium and light gauge steel for suspension components to reduce unsprung weight and improve vehicle dynamics, a big number of components are still being made from cast iron. Components such as control arms or wheel hubs made of strong silicon carbide (SiC)-reinforced aluminium or aluminium nanocomposites can further improve aluminium alloy designs by enhancing strength while using less material than similar aluminium arms [31].
\n
Brakes. Automotive disc brakes and brake callipers, typically made of cast iron, are an area where significant weight reduction can be realised. SiC-reinforced aluminium brake rotors have been embraced by a number of prominent vehicle manufacturers [47]. High cost and machinability issues need to be addressed for widespread use of aluminium composite brake rotors. UWM developed aluminium-silicon carbide-graphite composites, aluminium alumina-graphite and hypereutectic aluminium-silicon graphite alloys with reduced silicon carbide to help overcome cost and machinability barriers. Aluminium-fly ash composites developed at UWM have been explored to make prototype brake rotors in Australia [31]. Strength improvements seen in aluminium nanocomposites being developed at UWM can provide significant improvements in component rigidity without adding a significant amount of material, resulting in lower-weight components.
\n
\n
\n
3.2.2 Applications in aerospace and aircraft industry
\n
Aerospace propulsion and power systems are ever placing increasing demands on load bearing materials. The quest to propel bigger payloads into space and provide electrical power for space experiments while at the same time meeting the demands of manned and unmanned spacecraft flying at hypersonic velocities requires the right materials. The materials must be light-weight and be able to withstand high temperatures for long periods of time in hostile environments.
\n
Metal matrix composites have the potential to meet the wide variety of these requirements. By selection of the proper high-temperature fibre and combining the fibres with an appropriate matrix, a high temperature, light-weight MMC can be produced. Extensive research is needed on advanced fibres and matrices. Since the fibres provide the characteristics that dominate the strength, stiffness and conductivity of a composite, superior fibres need to be developed. Fibres having high melting points and coefficients of thermal expansion matching those of the matrices need to be evaluated for high-temperature strength, modulus and compatibility with various matrices. In case of matrices, intermetallic compounds offer higher melting points, light-weight and (in the case of aluminides and silicides) good oxidation resistance for aerospace propulsion systems [48].
\n
\n
\n
\n
3.3 Other novel applications of AlMMCs
\n
\n
3.3.1 Electronic packaging and thermal management
\n
Heat sinks play two key roles in electronic packaging: thermal management and mechanical support. Heat sinks support electronic devices and provide a path for heat dissipation. They are used in packages and with printed circuit boards (PCBs). Traditional heat sinks were primarily aluminium, copper or unalloyed blends of two metals, such as copper-tungsten or copper-molybdenum. The traditional heat sinks have exhibited a number of shortcomings, which has necessitated designing of new improved materials, primarily composites reinforced with fibres and particles. The new materials exhibit better properties including high thermal conductivities; low, controllable coefficients of thermal expansion; weight reductions; high strength and stiffness; and availability of net-shape fabrication processes.
\n
The packaging density is ever on the increase, which has resulted in the demand for materials with high thermal conductivities. In addition, to minimise thermal stresses that can cause component or solder failure, it is desirable that the packaging material should have a coefficient of thermal expansion (CTE) matching that of the ceramic component it supports. Utilisation of composite materials is not a new phenomenon in electronic packaging. For example, polymer matrix composites (PMCs) in the form of E-glass fibre-reinforced polymer PCBs are well-established packaging materials.
\n
Aluminium metal matrix composites with the high volume fraction of reinforcement are attractive materials for thermal management. This is in view of the possibility to further enhance the thermal conductivity (TC) of the composite material by the use of high TC reinforcements and the flexibility to adjust the CTE by controlling the volume fraction of the reinforcement. Aluminium and copper were usually used as matrices due to their high TCs, and the reinforcements involved SiC, carbon and diamond. However, owing to the fact that the specific thermal conductivity of aluminium-based composites was higher than that of Cu-based composites, aluminium-based composites are more desirable in avionic applications where light-weight is demanded [49].
\n
\n
\n
3.3.2 Packaging and containerisation
\n
In 2009, containers and packaging regained their position as the top market for aluminium-based materials. The aluminium industry shipped 4.73 billion pounds for packaging applications or 26.5% of all shipments [42]. Aluminium-based materials are used in products such as beverage cans and bottles, food containers and household and institutional foil. Manufacturers and consumers appreciate foil for its impermeability to light, water and air—making it a preferred packaging material for food, beverage and pharmaceutical products. Moreover, aluminium’s light-weight gives it a competitive advantage over other materials with regard to shipping costs and volume.
\n
Regarding containerisation, it is difficult to discuss rail transport of freight and commercial goods without reference to the ubiquitous container. The cargo can be packed into large containers and conveniently shipped to their destinations interchangeably by rail, road, sea or air. The container has greatly simplified the transport of goods and has been adapted to the different modes of transport. With a backbone of aluminium extrusions and with considerable use of aluminium-based sheet material, the growth of containerisation has greatly facilitated the transportation industry.
\n
\n
\n
3.3.3 Electrical transmission
\n
Aluminium-based materials have many advantages for electrical applications. Properties such as light-weight, strength, corrosion resistance and high efficiency in electrical conduction (aluminium has twice the conductivity of copper) render these materials the best choice for transmitting power from generating stations to homes and businesses. Their ease of recyclability makes them a perfect fit for today’s environment.
\n
In 2010, electrical market applications rose by 13.1%, and shipments of aluminium conductor steel-reinforced (ACSR) cable, bare cable, insulated wire and cable products soared to 631 million pounds, an increase of 11 million pounds from the previous year. The North American electrical market was the fourth largest for aluminium worldwide, accounting for 7.3% of all aluminium shipments during the year [42].
\n
\n
\n
3.3.4 Sports and recreation
\n
The sporting goods industry is not left behind as far as utilisation of AlMMCs is concerned. Aluminium metal matrix composites are very attractive as materials for sporting goods applications. The material used generally consists of an aluminium matrix reinforced with particles of silicone carbide or boron carbide. The specific strength and modulus of these materials can offer design advantages not possible with steel or carbon/epoxy composites. In addition, they have a tremendous marketing appeal for the high-end sporting goods consumer as they are a new phenomenon [50]. Recreational products, including those used in golf, cycling, baseball, skiing and other leisure as well as competitive sporting activities, have always offered profitable opportunities for high-performance materials due to the focus on performance over cost. Although AlMMCs have been used in niche applications, more widespread opportunities are available if an improved combination of performance, manufacturability and cost can be achieved through specific R&D activities.
\n
Finally, AlMMCs have been considered for specialised applications in which the combination of properties makes them especially well suited. Examples of these applications include robotics, medical, biomedical and nuclear shielding. These applications may require specific R&D activities to be carried out and technical problems solved before substantial use can occur but may represent high-value market opportunities for the industry if successful [16].
\n
\n
\n
\n
\n
4. Challenges and barriers in the development of AlMMCs
\n
Several challenges must be overcome in order to intensify the engineering usage of AlMMCs. Design, research and product development efforts and business development skills are required to overcome these challenges. Surappa [4] emphasised the need to address the following issues:
A more and thorough understanding of the science of primary processing, especially the factors affecting the microstructural integrity including agglomerates in AlMMCs.
Need to improve the damage tolerant properties particularly fracture toughness and ductility in AlMMCs.
Need for work to be done towards the production of high-quality and low-cost reinforcements from industrial wastes and by-products.
An urgent need to develop simple, economical and portable non-destructive kits to quantify undesirable defects in AlMMCs.
Work in developing less expensive secondary processing tools for machining and cutting AlMMCs.
Work must be done to develop recycling technology for AlMMCs.
\n
The challenges and barriers listed above are echoed by [16]. Further penetration of AlMMCs will largely depend on their primary production processes and secondary machining processes being affordable. Generally, the cost of aluminium is around 4–5 times that of steel. In addition, the manufacturability of these composites is cumbersome. These challenges are being addressed through R&D activities. In early development of AlMMCs, the industry was modelled on the roadmap drawn by the Aluminium Metal Matrix Composites Roadmap 2002, which spelt out a pathway for the AlMMCs growth in 20 years from 2002 and asserted the industry’s vision to position AlMMCs as the material of choice in a broad range of structural and nonstructural applications [1]. During the workshop that gave birth to the AlMMCs Roadmap 2002, a number of critical barriers hampering the market penetration of AlMMCs were identified, and common themes agreed on how to mitigate these barriers and realise their vision [16].
\n
\n
\n
5. Conclusion
\n
AlMMCs present a great opportunity and a host of possibilities for the materials/design engineer. There are now many possibilities for manipulation of properties/property combinations to suit specific requirements of material and component properties in order to enhance performance and reliability. New and emerging technological developments point to increased utilisation of AlMMCs in current and future industrial developments. Some of the existing barriers and challenges are being addressed through various R&D efforts to find a lasting solution.
\n
From the foregoing review, it is evident that the future of AlMMCs in various industrial and commercial applications is very bright. Advanced technological developments in primary and secondary processing of AlMMCs will continue to give them a competitive edge over the alternative materials such as Mg, AHSS and polymer composites. The main challenges and barriers that have been identified include lack of property modelling (especially the high-temperature behaviour of AlMMCs), lack of design data and high costs of primary and secondary processes. However, there are promising signs of technological breakthroughs by various research efforts dedicated to finding solutions to these challenges. New developments in CNT and nanotechnology have, for example, offered possibilities of production of AlMMCs with enhanced properties for high-temperature applications and improved wear and corrosion resistance. Other developments such as the novel rheocasting process of semi-solid alloys [e.g. see [51]] and FGMs have also offered new possibilities of cost reduction in primary production and secondary processing of AlMMCs, respectively. New alloys of aluminium have been developed for application in such areas as crash management (crash alloy)—an area previously dominated by steel. These alloys offer new R&D opportunities for further development of AlMMCs and will redefine new roles and potential of AlMMCs in automotive applications. Various researchers are also coming up with innovative cost-reduction techniques to bring down the cost of replacing conventional ferrous materials with aluminium metal matrix composites.
\n
\n
Acknowledgments
\n
The authors would like to sincerely acknowledge the material and financial support extended by the Vaal University of Technology, Department of Mechanical Engineering and the collaborating institutions—The Council for Scientific and Industrial Research, Pretoria and Makerere University, Kampala Uganda.
\n
Conflict of interest
The authors envisage no conflict of interest.
\n',keywords:"aluminium, metal matrix composites, novel applications, light-weight, high-temperature",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/67052.pdf",chapterXML:"https://mts.intechopen.com/source/xml/67052.xml",downloadPdfUrl:"/chapter/pdf-download/67052",previewPdfUrl:"/chapter/pdf-preview/67052",totalDownloads:2795,totalViews:0,totalCrossrefCites:25,totalDimensionsCites:49,totalAltmetricsMentions:0,impactScore:18,impactScorePercentile:99,impactScoreQuartile:4,hasAltmetrics:0,dateSubmitted:"November 22nd 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 10th 2019",datePublished:"March 4th 2020",dateFinished:"May 10th 2019",readingETA:"0",abstract:"Advanced materials have offered the materials designer a wide range of options in the specification and selection of materials for various applications. Material properties are continually being improved to meet safety and operational standards in line with prevailing technological developments. Modern technological requirements, together with the consumers’ demands for systems and machines that are more energy efficient, stronger, light-weight, cost-effective, etc., dictate that the search for new and advanced materials will remain a subject of interest all the time. The difficulty in designing materials for such stringent specifications cannot be overstated, owing to the conflicting nature of these specifications. Aluminium metal matrix composites (AlMMCs) are a class of materials that have proven successful in meeting most of the rigorous specifications in applications where light-weight, high stiffness and moderate strength are the requisite properties. With a variety of reinforcement materials and flexibility in their primary processing, AlMMCs offer great potential for the development of composites with the desired properties for certain applications. In this review, the development, utilisation and future potential of AlMMCs in various industrial and commercial applications is discussed, together with the existing challenges hindering their full market penetration.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/67052",risUrl:"/chapter/ris/67052",book:{id:"8862",slug:"aluminium-alloys-and-composites"},signatures:"Francis Nturanabo, Leonard Masu and John Baptist Kirabira",authors:[{id:"286492",title:"Mr.",name:"Francis",middleName:null,surname:"Nturanabo",fullName:"Francis Nturanabo",slug:"francis-nturanabo",email:"fmpazi@yahoo.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Vaal University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"299246",title:"Prof.",name:"Leonard",middleName:null,surname:"Masu",fullName:"Leonard Masu",slug:"leonard-masu",email:"leonard@vut.ac.za",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"299247",title:"Prof.",name:"John Baptist",middleName:null,surname:"Kirabira",fullName:"John Baptist Kirabira",slug:"john-baptist-kirabira",email:"jbkirabira@cedat.mak.ac.ug",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Types of metal matrix composites and their methods of production",level:"1"},{id:"sec_2_2",title:"2.1 An overview of metal matrix composites",level:"2"},{id:"sec_3_2",title:"2.2 Classification of metal matrix composites",level:"2"},{id:"sec_4_2",title:"2.3 Methods of production of AlMMCs",level:"2"},{id:"sec_4_3",title:"2.3.1 Liquid-metal-mixing processes",level:"3"},{id:"sec_5_3",title:"2.3.2 Liquid-metal-infiltration processes",level:"3"},{id:"sec_6_3",title:"2.3.3 Solid-state processes",level:"3"},{id:"sec_8_2",title:"2.4 Properties of AlMMCs and resulting end uses",level:"2"},{id:"sec_8_3",title:"2.4.1 Properties of aluminium and AlMMCs",level:"3"},{id:"sec_9_3",title:"2.4.2 AlMMCs end uses",level:"3"},{id:"sec_12",title:"3. The current state of applications of AlMMCs in various industries",level:"1"},{id:"sec_12_2",title:"3.1 AlMMCs in innovative light-weight designs",level:"2"},{id:"sec_12_3",title:"3.1.1 Automotive industry",level:"3"},{id:"sec_13_3",title:"3.1.2 Aerospace and aircraft industry",level:"3"},{id:"sec_14_3",title:"3.1.3 Rail transport",level:"3"},{id:"sec_15_3",title:"3.1.4 Marine transport",level:"3"},{id:"sec_16_3",title:"3.1.5 Building and construction industry",level:"3"},{id:"sec_17_3",title:"3.1.6 Offshore applications",level:"3"},{id:"sec_19_2",title:"3.2 High-temperature applications",level:"2"},{id:"sec_19_3",title:"3.2.1 Automotive industry",level:"3"},{id:"sec_20_3",title:"3.2.2 Applications in aerospace and aircraft industry",level:"3"},{id:"sec_22_2",title:"3.3 Other novel applications of AlMMCs",level:"2"},{id:"sec_22_3",title:"3.3.1 Electronic packaging and thermal management",level:"3"},{id:"sec_23_3",title:"3.3.2 Packaging and containerisation",level:"3"},{id:"sec_24_3",title:"3.3.3 Electrical transmission",level:"3"},{id:"sec_25_3",title:"3.3.4 Sports and recreation",level:"3"},{id:"sec_28",title:"4. Challenges and barriers in the development of AlMMCs",level:"1"},{id:"sec_29",title:"5. Conclusion",level:"1"},{id:"sec_30",title:"Acknowledgments",level:"1"},{id:"sec_33",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Nturanabo F, Masu LM, Govender G. Automotive light-weighting using aluminium metal matrix composites. In: Materials Science Forum Aug 1, 2015. Vol. 828. Switzerland: Trans Tech Publications Ltd; 2015. p. 485\n'},{id:"B2",body:'Nappi C. The global aluminium industry 40 years from 1972. World Aluminium. Feb 2013:1-27. Available at: http://www.world-aluminium.org/media/filer_public/2013/02/25/an_outlook_of_the_global_aluminium_industry_1972_-_present_day.pdf [Accessed: Mar 15, 2019]\n'},{id:"B3",body:'The Aluminum Association. The Aluminum Advantage—History of Aluminum. Available from: https://www.aluminum.org/aluminum-advantage/history-aluminum [Accessed: Jan 25, 2019]\n'},{id:"B4",body:'Surappa MK. Aluminium matrix composites: Challenges and opportunities. Sādhanā. 2003;28(Parts 1 & 2):319-334\n'},{id:"B5",body:'Macke A, Schultz BF, Rohatgi P. Metal matrix composites—Offer the automotive industry an opportunity to reduce vehicle weight, improve performance. Advanced Materials & Processes. March 2012;170(3):19-23\n'},{id:"B6",body:'Matthews FL, Davies GA, Hitchings D, Soutis C. Finite Element Modelling of Composite Materials and Structures. UK: Elsevier; 2000\n'},{id:"B7",body:'Cheng SL, Yang GC, Man ZH, Wang JC, Zhou YH. Mechanical properties and fracture mechanisms of aluminum matrix composites reinforced by Al9(Co, Ni)2 intermetallics. Transactions of Nonferrous Metals Society of China. 2010;20(4):572-576\n'},{id:"B8",body:'Sims CT. High-temperature materials. In: AccessScience. USA: McGraw-Hill Education; 2014. DOI: 10.1036/1097-8542.318600\n'},{id:"B9",body:'Rawal S. Metal-matrix composites for space applications. Journal of Management. 2001;53(4):14-17\n'},{id:"B10",body:'Kurumlu D, Payton EJ, Young ML, Schöbel M, Requena G, Eggeler G. High-temperature strength and damage evolution in short fiber reinforced aluminum alloys studied by miniature creep testing and synchrotron microtomography. Acta Materialia. 2012;60(1):67-78\n'},{id:"B11",body:'Withers PJ. Metal matrix composite. In: AccessScience. United Kingdom: McGraw-Hill Education; 2014. DOI: 10.1036/1097-8542.418600\n'},{id:"B12",body:'Perez Ipiña JE, Yawny AA, Stuke R, Gonzalez Oliver C. Fracture toughness in metal matrix composites. Materials Research. 2000;3(3):74-78\n'},{id:"B13",body:'Di Ilio A, Paoletti A, D’Addona D. Characterization and modelling of the grinding process of metal matrix composites. CIRP Annals. 2009;58(1):291-294\n'},{id:"B14",body:'Bolzon G, Chiarullo EJ, Egizabal P, Estournes C. Constitutive modelling and mechanical characterization of aluminium-based metal matrix composites produced by spark plasma sintering. Mechanics of Materials. 2010;42(5):548-558\n'},{id:"B15",body:'Rajan TP, Pillai RM, Pai BC. Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites. Materials Characterization. 2010;61(10):923-928\n'},{id:"B16",body:'Aluminium Metal Matrix Composites Technology Roadmap TRC Document 0032RE02; Aluminium Metal Matrix Composites Consortium—National Centre for Manufacturing Sciences. Ann Arbour, Michigan. 2002. Available from: http://www.almmc.com\n\n'},{id:"B17",body:'Chen JK, Huang IS. Thermal properties of aluminum-graphite composites by powder metallurgy. Composites Part B: Engineering. 2013;44(1):698-703\n'},{id:"B18",body:'Aghajanian MK, Rocazella MA, Burke JT, Keck SD. The fabrication of metal matrix composites by a pressureless infiltration technique. Journal of Materials Science. 1991;26(2):447-454\n'},{id:"B19",body:'Mahendra KV, Radhakrishna K. Characterization of stir cast Al-Cu-(fly ash + SiC) hybrid metal matrix composites. Journal of Composite Materials. 2010;44(8):989-1005\n'},{id:"B20",body:'Mortensen A, Llorca J. Metal matrix composites. Annual Review of Materials Research. 2010;40:243-270\n'},{id:"B21",body:'Hashim J, Looney L, Hashmi MS. Metal matrix composites: Production by the stir casting method. Journal of Materials Processing Technology. 1999;92:1-7\n'},{id:"B22",body:'Schiroky GH, Miller DA, Aghajanian MK, Fareed AS. Fabrication of CMCs and MMCs using novel processes. In: Key Engineering Materials. Vol. 127. Trans Tech Publications; 1997. pp. 141-152\n'},{id:"B23",body:'Srivatsan TS, Ibrahim IA, Mohamed FA, Lavernia EJ. Processing techniques for particulate-reinforced metal aluminium matrix composites. Journal of Materials Science. 1 Nov 1991;26(22):5965-5978\n'},{id:"B24",body:'Jun Q , Linan A, Blau PJ. Sliding friction and Wear characteristics of Al2O3-Al Nanocomposites. In: STLE/ASME 2006 International Joint Tribology Conference. San Antonio, Texas, USA: American Society of Mechanical Engineers; 23-25 October 2006. pp. 59-60\n'},{id:"B25",body:'Subramanian R, Kannan G, Nanjappan N, Vijayan K. Analysis of temperature distribution in wire electrical discharge machine on hybrid Al-MMCs. Indian Journal of Engineering and Materials Sciences. 2018;25:301-306\n'},{id:"B26",body:'Lu H, Wang X, Zhang T, Cheng Z, Fang Q. Design, fabrication, and properties of high damping metal matrix composites—A review. Materials (Basel). 2009;2(3):958-977. (published Aug 18, 2009). DOI: 10.3390/ma2030958\n'},{id:"B27",body:'Lutsey N. Review of technical literature and trends related to automobile mass reduction technology. California Air Resources Board. 2010. UCD-ITS-RR-10-10. Available from: https://escholarship.org/uc/item/9t04t94w [Accessed: Jan 25, 2019]\n'},{id:"B28",body:'Simpson J. Aluminum advances: Aluminum passes iron among automotive materials in use worldwide; what lies ahead? Aluminum Now. 2006. Available from: https://www.thefreelibrary.com/Aluminum+advances%3a+aluminum+passes+iron+among+automotive+materials+in…-a0168130424. [Accessed: Jan 25, 2019]\n'},{id:"B29",body:'Caceres CH. Economical and environmental factors in light alloys: Automotive applications. Metallurgical and Material Transactions A. 2007;38(A):1649-1662\n'},{id:"B30",body:'Muneer S, Khairul AI. Forecasting of global automotive industry—key trends in passenger vehicles. ARPN Journal of Engineering and Applied Sciences. Sep 2015;10(17):7830-7834\n'},{id:"B31",body:'Withers G, De Waas Tilakaratna P. Performance evaluation of ULTALITE®low cost aluminium metal matrix composite based brake drums. SAE transactions. 1 Jan 2005:902-907\n'},{id:"B32",body:'Maddever W, Guinehut S. Use of Aluminum Foam to Increase Crash Box Efficiency. SAE Technical Paper. 11 Apr 2005\n'},{id:"B33",body:'Ghassemieh E. Materials in automotive application, state of the art and prospects. In: Chiaberge M, editor. New Trends and Developments in Automotive Industry. Croatia: InTech; 2011. ISBN: 978-953-307-999-8\n'},{id:"B34",body:'Lewis AM, Kelly JC, Keoleian GA. Vehicle light-weighting vs. electrification. Life cycle energy and GHG emissions results for diverse powertrain vehicles. Journal of Applied Energy. 2014;126:13-20\n'},{id:"B35",body:'Lahaye C, Hirsch J, Bassan D, Criqui B, Sahr C, Goede M, Volkswagen AG. Contribution of aluminium to the multi-material light-weight BIW design of superlight-car [C]. In: Hirsch J, Skrotzki B, Gottstein G, editor. Proceedings of the 11th International Conference on Aluminium Alloys. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. pp. 2363-2373\n'},{id:"B36",body:'Goede M, Stehlin M. SuperLIGHT-car project—An integrated research approach for lightweight car body innovations. In: Innovative Developments for Lightweight Vehicle Structures. Wolfsburg: Conference proceedings. May 2009. pp. 26-27\n'},{id:"B37",body:'SuperLIGHT-CAR (SLC) Project. Sustainable Production Technologies of Emission-reduced Lightweight Car Concepts. 2009. Available from: http://www.superlightcar.com and http://ec.europa.eu/ [Accessed: Jan 31, 2017]\n'},{id:"B38",body:'van der Wiel JW. Future of Automotive Design & Materials Trends and Developments in Design and Materials. Automotive Technology Center-Acermr. eu. 2011\n'},{id:"B39",body:'Caffrey C, Bolon K, Harris H, Kolwich G, Johnston R, Shaw T. Cost-Effectiveness of a Lightweight Design for 2017-2020: An Assessment of a Midsize Crossover Utility Vehicle. SAE Technical Paper 2013-01-0656. 8 Apr 2013. Available from: https://doi.org/10.4271/2013-01-0656 [Accessed: Mar 15, 2019]\n'},{id:"B40",body:'Finckenor MM. Materials for Spacecraft. Alabama: NASA, Marshall Space Flight Center. Available from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160013391.pdf [Accessed: Feb 11, 2017]\n'},{id:"B41",body:'Skillingberg M, Green J. Aluminum applications in the rail industry. Light Metal Age-Chicago. Oct 2007;65(5):8\n'},{id:"B42",body:'The Aluminum Association. Product markets. Available from: https://www.aluminum.org/product-markets/other-markets [Accessed: Jan 25, 2019]\n'},{id:"B43",body:'Miracle DB. Metal matrix composites—From science to technological significance. Composites Science and Technology. 2005;65:2526-2540\n'},{id:"B44",body:'The Aluminum Association. Product markets. Available from: https://www.aluminum.org/product-markets/building-construction [Accessed: Jan 25, 2019]\n'},{id:"B45",body:'Rohatgi PK, Ray S, Liu Y. Tribological properties of metal matrix graphite particle composites. International Materials Reviews, (USA-UK). 1992;37(3):129\n'},{id:"B46",body:'Gumus M. Reducing cold-start emission from internal combustion engines by means of thermal energy storage system. Applied Thermal Engineering. 2009;29:652-660\n'},{id:"B47",body:'Hunt WH, Miracle DB. Automotive applications of metal matrix composites. In: Miracle DB, Donaldson SL, editors. ASM Handbook: Composites. Vol. 21. Materials Park, Ohio: ASM International; 2001. pp. 1029-1032\n'},{id:"B48",body:'Stephens J. High temperature metal matrix composites for future aerospace systems. In: 24th Joint Propulsion Conference. Boston, MA, USA. 1 Oct 1987. p. 3059\n'},{id:"B49",body:'Zweben C. Ultrahigh-thermal-conductivity packaging materials. In: Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium. San Jose, CA, USA. 15 Mar 2005. pp. 168-174\n'},{id:"B50",body:'Berg JS. Composite material advances in the golf industry. Available from: http://www.iccm-central.org/Proceedings/ICCM12proceedings/site/papers/pap338.pdf [Accessed: Jan 25, 2019]\n'},{id:"B51",body:'Ivanchev L, Wilkins D, Govender S, Du Preez W, Bean R. Rheo-processing of semi-solid alloys: A new technology for manufacturing automotive and aerospace components. South African Journal of Science. Aug 2008;104(7-8):257-259\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Francis Nturanabo",address:"fmpazi@yahoo.com",affiliation:'
Department of Mechanical Engineering, Vaal University of Technology, Andries Potgieter Boulevard, South Africa
Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, Uganda
Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, Uganda
'}],corrections:null},book:{id:"8862",type:"book",title:"Aluminium Alloys and Composites",subtitle:null,fullTitle:"Aluminium Alloys and Composites",slug:"aluminium-alloys-and-composites",publishedDate:"March 4th 2020",bookSignature:"Kavian Omar Cooke",coverURL:"https://cdn.intechopen.com/books/images_new/8862.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-515-0",printIsbn:"978-1-78984-514-3",pdfIsbn:"978-1-83880-080-2",reviewType:"peer-reviewed",numberOfWosCitations:22,isAvailableForWebshopOrdering:!0,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"930"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"70514",type:"chapter",title:"Introductory Chapter: Structural Aluminum Alloys and Composites",slug:"introductory-chapter-structural-aluminum-alloys-and-composites",totalDownloads:908,totalCrossrefCites:1,signatures:"Kavian Omar Cooke",reviewType:"peer-reviewed",authors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",fullName:"Kavian Cooke",slug:"kavian-cooke"}]},{id:"62120",type:"chapter",title:"Aluminum Mineral Processing and Metallurgy: Iron-Rich Bauxite and Bayer Red Muds",slug:"aluminum-mineral-processing-and-metallurgy-iron-rich-bauxite-and-bayer-red-muds",totalDownloads:1458,totalCrossrefCites:1,signatures:"Yingyi Zhang, Yuanhong Qi and Jiaxin Li",reviewType:"peer-reviewed",authors:[{id:"221673",title:"Dr.",name:"Yingyi",middleName:null,surname:"Zhang",fullName:"Yingyi Zhang",slug:"yingyi-zhang"},{id:"251993",title:"Prof.",name:"Yuanhong",middleName:null,surname:"Qi",fullName:"Yuanhong Qi",slug:"yuanhong-qi"},{id:"252009",title:"Prof.",name:"Jiaxin",middleName:null,surname:"Li",fullName:"Jiaxin Li",slug:"jiaxin-li"}]},{id:"68558",type:"chapter",title:"Aluminium and Its Interlinking Properties",slug:"aluminium-and-its-interlinking-properties",totalDownloads:1015,totalCrossrefCites:0,signatures:"K. Velmanirajan and K. Anuradha",reviewType:"peer-reviewed",authors:[{id:"283479",title:"Dr.",name:"Kathambarajan",middleName:null,surname:"Velmanirajan",fullName:"Kathambarajan Velmanirajan",slug:"kathambarajan-velmanirajan"},{id:"288095",title:"Dr.",name:"K",middleName:null,surname:"Anuradha",fullName:"K Anuradha",slug:"k-anuradha"}]},{id:"70002",type:"chapter",title:"Composites and Alloys Based on the Al-Ce System",slug:"composites-and-alloys-based-on-the-al-ce-system",totalDownloads:1037,totalCrossrefCites:3,signatures:"David Weiss",reviewType:"peer-reviewed",authors:[{id:"206168",title:"Mr.",name:"David",middleName:null,surname:"Weiss",fullName:"David Weiss",slug:"david-weiss"}]},{id:"67052",type:"chapter",title:"Novel Applications of Aluminium Metal Matrix Composites",slug:"novel-applications-of-aluminium-metal-matrix-composites",totalDownloads:2795,totalCrossrefCites:25,signatures:"Francis Nturanabo, Leonard Masu and John Baptist Kirabira",reviewType:"peer-reviewed",authors:[{id:"286492",title:"Mr.",name:"Francis",middleName:null,surname:"Nturanabo",fullName:"Francis Nturanabo",slug:"francis-nturanabo"},{id:"299246",title:"Prof.",name:"Leonard",middleName:null,surname:"Masu",fullName:"Leonard Masu",slug:"leonard-masu"},{id:"299247",title:"Prof.",name:"John Baptist",middleName:null,surname:"Kirabira",fullName:"John Baptist Kirabira",slug:"john-baptist-kirabira"}]},{id:"67176",type:"chapter",title:"Effect of Grain Size on Superplastic Deformation of Metallic Materials",slug:"effect-of-grain-size-on-superplastic-deformation-of-metallic-materials",totalDownloads:1203,totalCrossrefCites:0,signatures:"Allavikutty Raja, Rengaswamy Jayaganthan, Abhishek Tiwari and Ch. Srinivasa Rakesh",reviewType:"peer-reviewed",authors:[{id:"288303",title:"Prof.",name:"Jayaganthan",middleName:null,surname:"Rengaswamy",fullName:"Jayaganthan Rengaswamy",slug:"jayaganthan-rengaswamy"},{id:"288336",title:"Dr.",name:"Raja",middleName:null,surname:"A",fullName:"Raja A",slug:"raja-a"},{id:"296893",title:"Dr.",name:"Abhishek",middleName:null,surname:"Tiwari",fullName:"Abhishek Tiwari",slug:"abhishek-tiwari"},{id:"296895",title:"Mr.",name:"Srinivasa Rakesh",middleName:null,surname:"Ch",fullName:"Srinivasa Rakesh Ch",slug:"srinivasa-rakesh-ch"}]},{id:"69454",type:"chapter",title:"Wear Behaviour of Aluminium Alloy 8011 with 4% Fly Ash Composites by Using Sensitivity Analysis",slug:"wear-behaviour-of-aluminium-alloy-8011-with-4-fly-ash-composites-by-using-sensitivity-analysis",totalDownloads:615,totalCrossrefCites:0,signatures:"Subramaniam Magibalan",reviewType:"peer-reviewed",authors:[{id:"282552",title:"Dr.",name:"Magibalan",middleName:null,surname:"S",fullName:"Magibalan S",slug:"magibalan-s"}]},{id:"69724",type:"chapter",title:"Experimental Investigations on AA 6061 Alloy Welded Joints by Friction Stir Welding",slug:"experimental-investigations-on-aa-6061-alloy-welded-joints-by-friction-stir-welding",totalDownloads:888,totalCrossrefCites:4,signatures:"Pothur Hema",reviewType:"peer-reviewed",authors:[{id:"285121",title:"Dr.",name:"P.",middleName:null,surname:"Hema",fullName:"P. Hema",slug:"p.-hema"}]},{id:"67310",type:"chapter",title:"Aluminum Alloys Behavior during Forming",slug:"aluminum-alloys-behavior-during-forming",totalDownloads:995,totalCrossrefCites:0,signatures:"Perumalla Janaki Ramulu",reviewType:"peer-reviewed",authors:[{id:"283483",title:"Associate Prof.",name:"Perumalla",middleName:null,surname:"Janaki Ramulu",fullName:"Perumalla Janaki Ramulu",slug:"perumalla-janaki-ramulu"}]}]},relatedBooks:[{type:"book",id:"6172",title:"Creep",subtitle:null,isOpenForSubmission:!1,hash:"e4bebb76aea6fbaad3502b8de2a43e7c",slug:"creep",bookSignature:"Tomasz Tanski, Marek Sroka and Adam Zielinski",coverURL:"https://cdn.intechopen.com/books/images_new/6172.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"58082",title:"Introductory Chapter: Why Creep is Continuously Interesting for Science",slug:"introductory-chapter-why-creep-is-continuously-interesting-for-science",signatures:"Tomasz Tański, Marek Sroka and Adam Zieliński",authors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",middleName:null,surname:"Tański",fullName:"Tomasz Arkadiusz Tański",slug:"tomasz-arkadiusz-tanski"},{id:"205602",title:"Prof.",name:"Adam",middleName:null,surname:"Zieliński",fullName:"Adam Zieliński",slug:"adam-zielinski"},{id:"205603",title:"Dr.",name:"Marek",middleName:null,surname:"Sroka",fullName:"Marek Sroka",slug:"marek-sroka"}]},{id:"57860",title:"A Modern Philosophy for Creep Lifing in Engineering Alloys",slug:"a-modern-philosophy-for-creep-lifing-in-engineering-alloys",signatures:"Mark Whittaker, Veronica Gray and William Harrison",authors:[{id:"43526",title:"Dr.",name:"Mark",middleName:null,surname:"Whittaker",fullName:"Mark Whittaker",slug:"mark-whittaker"},{id:"207720",title:"Dr.",name:"Veronica",middleName:null,surname:"Gray",fullName:"Veronica Gray",slug:"veronica-gray"},{id:"208364",title:"Dr.",name:"William",middleName:null,surname:"Harrison",fullName:"William Harrison",slug:"william-harrison"}]},{id:"56841",title:"Degradation of the Microstructure and Mechanical Properties of High-Chromium Steels Used in the Power Industry",slug:"degradation-of-the-microstructure-and-mechanical-properties-of-high-chromium-steels-used-in-the-powe",signatures:"Grzegorz Golański, Cezary Kolan and Joanna Jasak",authors:[{id:"206667",title:"Prof.",name:"Grzegorz",middleName:null,surname:"Golański",fullName:"Grzegorz Golański",slug:"grzegorz-golanski"},{id:"208837",title:"Dr.",name:"Joanna",middleName:null,surname:"Jasak",fullName:"Joanna Jasak",slug:"joanna-jasak"},{id:"216926",title:"Dr.",name:"Cezary",middleName:null,surname:"Kolan",fullName:"Cezary Kolan",slug:"cezary-kolan"}]},{id:"57166",title:"High Temperature Creep of Metal Oxides",slug:"high-temperature-creep-of-metal-oxides",signatures:"Krystyna Schneider and Mieczyslaw Rekas",authors:[{id:"208702",title:"Prof.",name:"Mieczyslaw",middleName:null,surname:"Rękas",fullName:"Mieczyslaw Rękas",slug:"mieczyslaw-rekas"},{id:"216276",title:"Dr.",name:"Krystyna",middleName:null,surname:"Schneider",fullName:"Krystyna Schneider",slug:"krystyna-schneider"}]},{id:"57480",title:"A Unified Creep-Fatigue Equation with Application to Engineering Design",slug:"a-unified-creep-fatigue-equation-with-application-to-engineering-design",signatures:"Dan Liu and Dirk John Pons",authors:[{id:"207496",title:"Ph.D.",name:"Dan",middleName:null,surname:"Liu",fullName:"Dan Liu",slug:"dan-liu"},{id:"207973",title:"Dr.",name:"Dirk John",middleName:null,surname:"Pons",fullName:"Dirk John Pons",slug:"dirk-john-pons"}]},{id:"58385",title:"Review of Long-Term Durable Creep Performance of Geosynthetics by Constitutive Equations of Reduction Factors",slug:"review-of-long-term-durable-creep-performance-of-geosynthetics-by-constitutive-equations-of-reductio",signatures:"Han-Yong Jeon",authors:[{id:"114618",title:"Prof.",name:"Han-Yong",middleName:null,surname:"Jeon",fullName:"Han-Yong Jeon",slug:"han-yong-jeon"}]},{id:"58367",title:"Creep Lifing Models and Techniques",slug:"creep-lifing-models-and-techniques",signatures:"Zakaria Abdallah, Karen Perkins and Cris Arnold",authors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",fullName:"Zak Abdallah",slug:"zak-abdallah"}]},{id:"56801",title:"Small Punch Creep",slug:"small-punch-creep",signatures:"Robert J. Lancaster and Spencer P. Jeffs",authors:[{id:"207762",title:"Dr.",name:"Robert",middleName:"Joseph",surname:"Lancaster",fullName:"Robert Lancaster",slug:"robert-lancaster"},{id:"208043",title:"Dr.",name:"Spencer",middleName:null,surname:"Jeffs",fullName:"Spencer Jeffs",slug:"spencer-jeffs"}]},{id:"58167",title:"Thermomechanical Time-Dependent Deformation and Fracturing of Brittle Rocks",slug:"thermomechanical-time-dependent-deformation-and-fracturing-of-brittle-rocks",signatures:"Tao Xu and Guang-lei Zhou",authors:[{id:"208107",title:"Prof.",name:"Tao",middleName:null,surname:"Xu",fullName:"Tao Xu",slug:"tao-xu"},{id:"208751",title:"Mr.",name:"Guanglei",middleName:null,surname:"Zhou",fullName:"Guanglei Zhou",slug:"guanglei-zhou"}]},{id:"57867",title:"Review on Creep Analysis and Solved Problems",slug:"review-on-creep-analysis-and-solved-problems",signatures:"Vahid Monfared",authors:[{id:"195492",title:"Dr.",name:"Vahid",middleName:null,surname:"Monfared",fullName:"Vahid Monfared",slug:"vahid-monfared"}]},{id:"58091",title:"Advanced Methods for Creep in Engineering Design",slug:"advanced-methods-for-creep-in-engineering-design",signatures:"William Harrison, Mark Whittaker and Veronica Gray",authors:[{id:"43526",title:"Dr.",name:"Mark",middleName:null,surname:"Whittaker",fullName:"Mark Whittaker",slug:"mark-whittaker"},{id:"207720",title:"Dr.",name:"Veronica",middleName:null,surname:"Gray",fullName:"Veronica Gray",slug:"veronica-gray"},{id:"208364",title:"Dr.",name:"William",middleName:null,surname:"Harrison",fullName:"William Harrison",slug:"william-harrison"}]},{id:"56982",title:"Fundamental Models for the Creep of Metals",slug:"fundamental-models-for-the-creep-of-metals",signatures:"Rolf Sandström",authors:[{id:"191540",title:"Prof.",name:"Rolf",middleName:null,surname:"Sandström",fullName:"Rolf Sandström",slug:"rolf-sandstrom"}]}]}],publishedBooks:[{type:"book",id:"6172",title:"Creep",subtitle:null,isOpenForSubmission:!1,hash:"e4bebb76aea6fbaad3502b8de2a43e7c",slug:"creep",bookSignature:"Tomasz Tanski, Marek Sroka and Adam Zielinski",coverURL:"https://cdn.intechopen.com/books/images_new/6172.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6873",title:"Magnesium",subtitle:"The Wonder Element for Engineering/Biomedical Applications",isOpenForSubmission:!1,hash:"36f7a7ad1be568643bb9e63cbf6d96e5",slug:"magnesium-the-wonder-element-for-engineering-biomedical-applications",bookSignature:"Manoj Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/6873.jpg",editedByType:"Edited by",editors:[{id:"206890",title:"Prof.",name:"Manoj",surname:"Gupta",slug:"manoj-gupta",fullName:"Manoj Gupta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8862",title:"Aluminium Alloys and Composites",subtitle:null,isOpenForSubmission:!1,hash:"57e5fedfca420ce68029b02e20a79651",slug:"aluminium-alloys-and-composites",bookSignature:"Kavian Omar Cooke",coverURL:"https://cdn.intechopen.com/books/images_new/8862.jpg",editedByType:"Edited by",editors:[{id:"138778",title:"Dr.",name:"Kavian",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6513",title:"Cement Based Materials",subtitle:null,isOpenForSubmission:!1,hash:"7c92db3d5c64117861b425cb692b5695",slug:"cement-based-materials",bookSignature:"Hosam El-Din M. Saleh and Rehab O. Abdel Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/6513.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6522",title:"Modified Asphalt",subtitle:null,isOpenForSubmission:!1,hash:"3f759084429ece2b3f7ec329b8242459",slug:"modified-asphalt",bookSignature:"Jose Luis Rivera-Armenta and Beatriz Adriana Salazar-Cruz",coverURL:"https://cdn.intechopen.com/books/images_new/6522.jpg",editedByType:"Edited by",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"8862",title:"Aluminium Alloys and Composites",subtitle:null,isOpenForSubmission:!1,hash:"57e5fedfca420ce68029b02e20a79651",slug:"aluminium-alloys-and-composites",bookSignature:"Kavian Omar Cooke",coverURL:"https://cdn.intechopen.com/books/images_new/8862.jpg",editedByType:"Edited by",editors:[{id:"138778",title:"Dr.",name:"Kavian",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"77470",title:"The Versatility of Autologous Fat Transplantation in Abnormalities of the Craniofacial-Complex and Facial Esthetics",doi:"10.5772/intechopen.97015",slug:"the-versatility-of-autologous-fat-transplantation-in-abnormalities-of-the-craniofacial-complex-and-f",body:'\n
\n
1. Introduction
\n
Many procedures have been described throughout history in an attempt to increase lost tissue volume: dermo-fat grafts, omental free flaps, and musculoskeletal flaps, to name a few.
\n
The history of autologous fat transfer began in Europe with Neuber presenting his first fat transfer work at the 22nd Congress of the German Society of Surgery in 1893 [1], followed by Mojallal [2], Lexer [3], and Rehn [4] who described its use in a variety of procedures including thoracic and abdominal surgeries, breast surgeries and the field of neurosurgery and orthopedics, within the so-called “open-air” era - before liposuction (1889–1977).
\n
Brunning was the first, in 1911, to inject fat into the subcutaneous tissue for augmentation [5]. This technique continued to be promoted as an alternative to resolve depressive areas. Without a doubt, its incorporation into the field of plastic surgery is where it has had its maximum development.
\n
The first attempts consisted of excising fatty tissue and placing it in small pockets in the subcutaneous layer. In the 50s, Peer observed that by placing small portions, at least 50% of their initial volume was lost in the long term and that this would depend mainly on early anastomosis of the recipient and donor vasculature, thus describing the theory of survival of fatty tissue grafts. It was established that the number of viable adipocytes at the time of graft placement directly correlates with the final volume that survives [6].
\n
The concept of absorption of fat grafts began practically from the moment of its use. Due to this, throughout its development, different theories arose that tried to explain what happened with transplanted fat [7, 8].
\n
For some time, fat transfer lost popularity. This led to the search for other alternatives, such as silicone, polymers, and hydroxyapatite crystals. It was in 1980 with the appearance of liposuction when the trend of obtaining fat for grafting was renewed [9]. From our perspective, we consider that different stages have contributed to the boom in autologous fat transfer in the field of cosmetic and reconstructive surgery. Ironically, during the development and refinement of liposuction techniques, the collected fat was thrown away. The question soon arose, why not use it in other areas of the body to provide volume and solve depressions?\n
\n
In 1986, Fournier [10] and Illouz [11] presented modifications in the technique for obtaining fat through aspiration syringes. Coleman in 1994 introduced his technique, perfectly describing the steps for sampling, purification by centrifugation, and transfer (reinjection), which he later called: Lipostructure®, warning that any traumatic act to obtain fat should be avoided, thus dividing the times: “unpurified” (With the discovery of liposuction 1977–1994), and “purified or atraumatic” (after the descriptions of Roger Coleman from 1994 to date). The literature has described that fat tissue grafts can cause a lasting correction; however, it has also been documented that fat undergoes multiple manipulations in its reinjection process, which affects its survival [12].
\n
Verderame described that the surgeon had to compensate for this “shrinkage” by transplanting a greater amount of fat than required, hoping that the initial desired result with this “overcorrection” would equalize with subsequent reabsorption [13].
\n
This natural evolution on the improvement of the liposuction technique included improvements in equipment (suction machines and cannulas) and scientific bases to better understand the metabolism of adipocytes, their viability, and performance, and permanence over time [14, 15, 16].
\n
There are reports in the literature that compare the benefits of centrifugation, decantation, and washing of fat tissue, in an attempt to ensure the best viability of adipocytes and, therefore, better permanence.
\n
In a recent systematic review, Zhou et al. evaluated graft survival based on technique. The authors reported a statistically significantly higher facial fat graft survival rate of 71% in the cell-assisted lipotransfer group compared to 52% in the control group (standard fat grafting) [17].
\n
From the beginning of stem cells obtained from adipose tissue, their potential therapeutic use was already envisioned at the level of tissue engineering and cell biology [18]. Matsumoto et al. in 2006, [19] described a technique called cell-assisted transfer (CAL). This technique consists of autologous transplantation of adipocytes enriched with stem cells derived from fatty tissue. Enzyme digestion is achieved using collagenase. With favorable culture media and different centrifugation steps, the stromal vascular fraction (SVF) is obtained. The SVF contains; stromal cells, endothelial progenitor cells, preadipocytes, ASCs, etc. In an adipogenic environment, ASCs can directly differentiate into adipocytes and contribute to volumetric restoration. They also promote graft survival through angiogenesis and the release of growth factors [20]. Yoshimura [21] described the use of this technique in cases of facial lipoatrophy and post-reconstruction breast augmentation and described the technique for obtaining the ASCs.
\n
The current use of fat transfer to replace volume or camouflage soft tissues is an increasingly popular method in plastic surgery, especially in craniofacial surgery. Due to our current globalized and increasingly competitive environment, it is undeniable that in the field of esthetic surgery, volumetric lipoinjection with adipose stem cells as facial profiling or combined with facial rejuvenation surgical procedures has great acceptance.
\n
\n
\n
2. Diagnosis/patient presentation
\n
The ideal patient for this procedure is one with a volume deficit due to soft tissue atrophy. Multiple pathologies have soft tissue hypoplasia as a common characteristic. Hemifacial microsomia is one of the most frequent abnormalities of the craniofacial complex [22]. Progressive hemifacial atrophy or Parry-Romberg syndrome is characterized by a progressive deformation and reduced soft tissue volume on one side of the face. It is also accompanied by trigeminal neuralgia, alopecia areata, and eye alterations. This condition can benefit from the transfer of stem cell-enriched fatty tissue [23, 24].
\n
We have recently described an alternative for postoperative cranioplasty for craniosynostosis. A specific population of these patients develops asymmetries categorized as depressions, particularly in the frontoorbital and temporal region, which are camouflaged using volumetric lipoinjection of adipose stem cells. This maneuver provides a volumetric effect and improves the inherent characteristics of the skin. All this contributes to a more harmonious facial appearance [25].
\n
Its use has also been described in mild volumetric deficits of the middle and lower facial third secondary to skeletal fractures [26], even a camouflage option in patients with mild orthognathic alterations, such as micrognathia and microgenia [27]. We have used this alternative technique for more than a decade in our Craniofacial Surgery Clinic. In general, we use volumetric adipose stem cells in a wide range of disorders of the craniofacial complex, such as syndromes with a common characteristic, soft tissue hypoplasia, asymmetries secondary to facial skeletal trauma sequelae, and asymmetries due to craniosynostosis sequelae. Logically, this technical variant is also widely used to complement facial rejuvenation procedures or as an isolated facial profiling procedure.
\n
Craniofacial malformations have a certain degree of psychosocial involvement, and children, particularly at an early age, are vulnerable to comments, ridicule, and harassment related to their appearance. Therefore, we consider it essential to provide an esthetic balance that promotes better facial symmetry. This is highly relevant since children at this stage are in the full development of their image, identity, and personality; hence, we consider that it is a priority to favor an adequate environment that facilitates greater self-esteem and better psychosocial development and integration. In some instances, it has a positive result in school performance [28].
\n
\n
\n
3. Treatment/surgical technique
\n
The surgical protocol should always include a complete medical history and an analysis of the degree of deformity to estimate the volume to be replaced. Also, photographic controls to assess its evolution in the medium and long term. Informed consent must be obtained.
\n
Before starting the procedure, a tracing is made on the preoperative images to better estimate the required volume, the mini-approaches necessary for its application, and a projection of the desired result.
\n
The lower abdomen of each patient is evaluated as the donor area of choice. Other areas may be the lower back and thighs since, in pediatric patients, the availability of abdominal fat may be limited.
\n
An oral dose of cephalexin is indicated the day before surgery and will continue for 4 days after. In pediatric patients, the procedure is performed under general anesthesia.
\n
\n
3.1 Tumescence and fat aspiration
\n
The lower abdomen is infiltrated with a tumescent solution (0.25 mg of epinephrine in 250 mL saline solution) to perform fat aspiration. The ratio of infiltration is 1 mL of solution per 1 mL of harvested fat. We perform fat collection using a blunt-tipped #20 1-mm sharpened holes cannula 10 cm long and 2.5 mm in diameter attached to a 10-mL Luer-lock syringe. According to the areas to be treated and their degree of deformity, the average number of syringes usually collected is 2 to 3. In adults, for facial esthetics, it varies from 3 to 6.
\n
\n
\n
3.2 Fat processing technique and isolation of ASCs
\n
The extracted fat is separated into two samples, one is used for the isolation of ASCs, and the other will be enriched with the ASCs. The second sample is processed according to the Coleman protocol [12]. The isolation of the ASCs is carried out according to the technique described by Yoshimura [20]. It is important to point out that, in our beginning, the protocol for obtaining and isolating stem cells was in accordance with what was previously described. We currently treat fat in a simple way. In this way, we obtain 3 types of fat grafts: Mini-fat grafts (where adipocytes provide an average of 85% of the cell volume), Micro-fat grafts (average volume 50%), and Nano-fat grafts (virtually no adipocytes and a higher cell concentration of elements of the stromal vascular fraction), very similar to that described by Tonnard et al., however, with some variants [29].
\n
Once the fat has been collected with 10 ml syringes for mini-grafts, it is centrifuged for 1 min at 3000 rpm, and the infranatant fluid (composed mainly of tumescence fluid, blood, detritus, free fatty acids, etc.) is eliminated. We then connect a 2.5 mm diameter female-to-female transfer device at one end of the syringe, and on the other end, we connect 1 and 3 mL Luer lock syringes, ready to be filled and injected.
\n
For micro-grafts, the centrifugation and obtention process is similar. Afterward, the syringes are connected to another 10 ml Luer lock connector through the transfer device and are passed to the empty syringe “round trip” 5 times. The product is centrifuged again for 1 min at 3000 rpm, the infranatant is eliminated, and the cell conglomerate is transferred to 1- and 3-mL syringes ready to be injected.
\n
Mini and micro-fat injections are performed with short and long malleable fine cannulas, 1.5 to 2 mm in diameter. The process to obtain nano-fat is also similar to the previous one, with the difference that the fat is emulsified by making 30 “round trip” passes, with a 1.5 mm transfer. The syringes are then centrifuged for 1 min at 3000 rpm. Injections are performed with short and long, fine malleable cannulas, 1.5 to 2 mm in diameter.
\n
Logically, we use mini-graft and micro-graft for volumetric increases. In nano-grafts, adipocytes are practically destroyed; therefore, they do not provide volume, and it has been shown that they have a higher concentration of ACSs with a vast potential for cell regeneration [30]. We use them to enrich the mini and micro-graft, and for injection into the subcutaneous and intradermal stratum (with 23-to-27-gauge needles) and to improve the inherent characteristics of the skin such as shine and texture due to the thickening of the dermis, moisturizing, and better contraction quality. It even better unifies the natural tone of the skin. All this provides a more youthful appearance of facial expression. We have recently also used nano-grafts to improve the appearance of tear trough, dark circles of the eyelids, and camouflage scars in general.
\n
\n
\n
3.3 Volumetric lipoinjection technique
\n
We use 3-mL syringes and a 2-mm blunt-tipped cannula for lipoinjection. The micro-approaches to be made will depend on the area to be injected. We make these incisions initially with a 22-gauge needle. The area to which we will have access should be considered when performing our approaches to achieve a uniform “fan-shaped” distribution of the entire area to be lipoinjected and keep the cannula tip in mind (Figure 1).
\n
Figure 1.
Intraoperative view of the lipoinjection of adipose stem cells. (A) Glabellar approach. (B) Temporal approach (behind the hairline).
\n
The final step consists of manual manipulation and remodeling of the injected fat, and in some cases, removal of excess grafted fat through the entry site. We use a 6–0 nylon suture to close the micro-approaches and 4–0 nylon for the scalp. The sutures are removed on the 4th or 5th postoperative day.
\n
\n
\n
\n
4. Clinical cases
\n
\n
4.1 Case 1 – Parry Romberg syndrome
\n
The patient is a 35-year-old man with no previous medical history, diagnosed with progressive right hemifacial atrophy of 10 years evolution and 5 years with a stabilized condition. On examination, alopecia was found in the parietal and temporal region, together with subcutaneous tissue atrophy of the temporal region and the right midface, tooth loss, decreased range of motion of the temporomandibular joint, and trigeminal neuralgia. Three-dimensional (3D) reconstruction computed tomography showed the absence of the temporomandibular joint and a significant reduction of tissue volume in the affected side.
\n
Infiltration with enriched autologous fat containing ASCs reduced the severe depression of the frontotemporal region and provided better volume and symmetry. An acceptable improvement of the malar prominence and cheek was also achieved, with greater volume and projection on the front view and profile. From its angle to the chin, the mandibular contour was redefined, achieving a better balance; even the neck base benefitted volumetrically. It is important to point out the permanence of the fat graft in the lips, which allowed the teeth to be hidden because of increased lip volume. The graft’s permanence remained stable in all the injected areas, even in the nasolabial folds and lips, which are areas of maximum mobility and reabsorption [24] (Figure 2).
\n
Figure 2.
(A, C, E) preoperative view. (B, D, F) postoperative view 12 months after lipoinjection enriched with stem cells and elements of the stromal vascular fraction.
\n
\n
\n
4.2 Case 2 - Craniosynostosis
\n
A 4-year-old male diagnosed with anterior plagiocephaly, which was initially treated with cranioplasty and frontal bandeau at the age of 12 months. A defect is observed in the frontal glabellar region. A fat transfer was performed to achieve symmetry in both regions through a minimally invasive approach [31] (Figure 3).
\n
Figure 3.
Intraoperative view. (A) Glabellar lipoinjection was performed in a fan shape until adequate symmetry was achieved. (B) the treated left area. (C) both treated areas.
\n
\n
\n
4.3 Case 3 – Congenital constriction band syndrome
\n
Congenital bands are compressive rings with a groove of different depths that can be partially or wholly circular at one end.
\n
Its etiology remains unknown. Its rupture has been described through the use of Z- and W-plasty and excision and primary closure; However, new alternatives to its treatment have recently been described.
\n
A 36-year-old woman with no relevant medical history presents a simple congenital constriction band in the distal part of both legs, without functional impairment (Type 1 Patterson Classification). The right leg had an incomplete circumferential constriction band with minimal depth, and the left leg a circumferential constriction band of moderate depth. The left leg was treated. The procedure was performed under epidural anesthesia with intravenous sedation [32] (Figure 4).
\n
Figure 4.
Preoperative images of the left leg. (A) Lateral view, (B) frontal view, (C) medial view.
\n
Three approaches (2 mm) that were remote to the constriction band were marked. Initially, the fibrous band was released from the deep tissues with a flat-grove blunt-tipped 2-mm Toledo cannula, 10 cm in length. Afterward, with this same cannula, multiple perpendicular cuts were made in the inner surface of the fibrous ring leaving a 1 cm gap between each cut until completing the circumference of the band.
\n
Lipoinjection was performed in the virtual subcutaneous space from a deep to a superficial plane with a 2-mm blunt cannula with 5-ml syringes. We injected the amount of fat needed to reverse the appearance of depression without overcorrecting (Figure 5).
\n
Figure 5.
Change in the concave surface (“hourglass sign”) for a homogeneous surface. (A, C, E) preoperative view. (B, D, F) postoperative view 18 months after the procedure (note the three approaches with some degree of hyperpigmentation).
\n
\n
\n
4.4 Case 4 – Facial esthetics
\n
A 27-year-old female with no significant history requested a facial profiling procedure.
\n
The patient presented adequate skin quality; however, she was not satisfied with the definition of her facial frame and neck. Today, patients come to our consultation with a lot of Internet information, and in many cases, they request specific procedures. It is always good to listen to them, and in this way, know how to properly advise our patients. After an adequate clinical evaluation, we suggested carrying out the following procedures: Bichectomy, neck liposculpture, and enhance the definition of the entire lower facial frame by volumetric lipoinjection with adipose stem cells, in addition to a slight increase in projection on the upper lip in the philtrum region.
\n
For seven years, we have developed an innovative alternative for nasal modeling. In this case, we also use fat and stem cells (in our practice, we have named this RINO-CELL®).
\n
To a large extent, we consider that the success of any procedure in facial esthetics lies in obtaining an adequate definition of the full jaw contour. In this way, it is possible to visualize the border between the face and the neck, and it is also our objective to redefine the cervicofacial angle. All these characteristics represent a clear sign of beauty and youth (Figure 6).
\n
Figure 6.
(A, C, E) preoperative view. (B, D, F) postoperative view 10 days after the procedure.
\n
\n
\n
\n
5. Post-surgical care/complications
\n
In a recent systematic analysis, Gornitsky et al. describe 2.2% complications in facial fat transfer procedures, with asymmetry being the most common. Other complications are skin irregularities, prolonged edema, hypertrophy, fat necrosis, infection, telangiectasia, and acne reactivation [33].
\n
Cases of emboli following autologous fat grafting to the glabella and nose have been attributed to retrograde arterial injection, facilitated by the abundant vascular supply in these regions; notably, the frontal and dorsal nasal arteries that are supplied by the ophthalmic artery [34].
\n
In our experience, we have found a reabsorption percentage of 49% of the injected volume. We have concluded that when the results are not favorable, the volume of fat calculated and injected was insufficient or to other particularities that increase reabsorption in the specific area. These situations may be resolved with secondary or re-touch procedures.
\n
Most parents reported feeling happier with their children’s facial appearance. An important factor to consider is the variability of reabsorption of the injected fat. However, if necessary, the fat injection can be repeated as an isolated procedure.
\n
\n
\n
6. Conclusion
\n
It is important to comment that current evidence regarding lipoinjection with adipose stem cells suggests that they can increase the permanence of the grafted fat to a certain degree; however, it is essential to explain to patients that this procedure can be repeated to obtain a better result in the medium and long term.
\n
We believe that lipoinjection alone or with adipose stem cells is an excellent alternative to improve appearance in patients suffering from a wide range of craniofacial malformations or sequelae.
\n
The search for a more youthful appearance is constant; therefore, we consider that lipoinjection as facial contouring, or in combination with other rejuvenation techniques, currently constitute an excellent therapeutic resource in facial esthetics.
\n
Finally, we consider that the facial image plays a significant role in psychosocial development and integration. We believe that volumetric lipoinjection with or without adipose stem cells represents an excellent alternative to obtain greater facial esthetic harmony, which directly contributes to the self-esteem of children and adult patients.
\n
\n
Acknowledgments
\n
We want to thank our patients and their families for allowing us to be a part of their process and for sharing their experiences for educational purposes.
\n
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"adipose stem cells, lipoinjection, lipofilling, craniofacial malformations, facial profiling",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/77470.pdf",chapterXML:"https://mts.intechopen.com/source/xml/77470.xml",downloadPdfUrl:"/chapter/pdf-download/77470",previewPdfUrl:"/chapter/pdf-preview/77470",totalDownloads:82,totalViews:0,totalCrossrefCites:0,dateSubmitted:"February 23rd 2021",dateReviewed:"March 4th 2021",datePrePublished:"July 8th 2021",datePublished:"April 20th 2022",dateFinished:"July 8th 2021",readingETA:"0",abstract:"In the historical pursuit of soft tissue augmentation, fat has seemed a natural choice for plastic surgeons. The use of fat transfer to replace volume or camouflage soft tissues is an increasingly popular method in craniofacial surgery and facial esthetics. Craniofacial malformations undoubtedly have a certain psychosocial effect. Children of early age are particularly vulnerable to comments, teasing, and harassment related to their appearance; therefore, improving the facial image is of great importance. We believe that volumetric lipoinjection represents an excellent alternative to obtain greater facial esthetic harmony, which directly increases patient self-esteem in children and adults.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/77470",risUrl:"/chapter/ris/77470",signatures:"Yanko Castro-Govea, Cynthia M. Gonzalez-Cantu, Gabriel A. Mecott, Everardo Valdes-Flores and Mauricio M. Garcia-Perez",book:{id:"10351",type:"book",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",fullTitle:"Enhanced Liposuction - New Perspectives and Techniques",slug:"enhanced-liposuction-new-perspectives-and-techniques",publishedDate:"April 20th 2022",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-105-9",printIsbn:"978-1-83962-823-8",pdfIsbn:"978-1-83968-106-6",isAvailableForWebshopOrdering:!0,editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"344434",title:"Ph.D.",name:"Yanko",middleName:null,surname:"Castro-Govea",fullName:"Yanko Castro-Govea",slug:"yanko-castro-govea",email:"goveayanko@hotmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"344435",title:"Dr.",name:"Cynthia M.",middleName:null,surname:"Gonzalez-Cantu",fullName:"Cynthia M. Gonzalez-Cantu",slug:"cynthia-m.-gonzalez-cantu",email:"dracynthiacantu@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Hospital Universitario Dr José Eleuterio Gonzalez",institutionURL:null,country:{name:"Mexico"}}},{id:"424944",title:"Dr.",name:"Gabriel A.",middleName:null,surname:"Mecott",fullName:"Gabriel A. Mecott",slug:"gabriel-a.-mecott",email:"gabriel.mecott@uanl.edu.mx",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"424945",title:"Dr.",name:"Everardo",middleName:null,surname:"Valdez-Flores",fullName:"Everardo Valdez-Flores",slug:"everardo-valdez-flores",email:"eeverardovf@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"424946",title:"Dr.",name:"Mauricio M.",middleName:null,surname:"Garcia-Perez",fullName:"Mauricio M. Garcia-Perez",slug:"mauricio-m.-garcia-perez",email:"drmauriciogarcia@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Diagnosis/patient presentation",level:"1"},{id:"sec_3",title:"3. Treatment/surgical technique",level:"1"},{id:"sec_3_2",title:"3.1 Tumescence and fat aspiration",level:"2"},{id:"sec_4_2",title:"3.2 Fat processing technique and isolation of ASCs",level:"2"},{id:"sec_5_2",title:"3.3 Volumetric lipoinjection technique",level:"2"},{id:"sec_7",title:"4. Clinical cases",level:"1"},{id:"sec_7_2",title:"4.1 Case 1 – Parry Romberg syndrome",level:"2"},{id:"sec_8_2",title:"4.2 Case 2 - Craniosynostosis",level:"2"},{id:"sec_9_2",title:"4.3 Case 3 – Congenital constriction band syndrome",level:"2"},{id:"sec_10_2",title:"4.4 Case 4 – Facial esthetics",level:"2"},{id:"sec_12",title:"5. Post-surgical care/complications",level:"1"},{id:"sec_13",title:"6. Conclusion",level:"1"},{id:"sec_14",title:"Acknowledgments",level:"1"},{id:"sec_17",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'\nNeuber, G. (1910). Asepsis und kunstliche Blutleere. Verhandl d deutschGesellsch F Chir (Berl), 22, 159.\n'},{id:"B2",body:'\nMojallal, A., & Foyatier, J. L. (2004, October). Historique de l’utilisation du tissu adipeux comme produit de comblement en chirurgie plastique. In Annales de chirurgie plastique esthetique (Vol. 49, No. 5, pp. 419-425). Elsevier Masson.\n'},{id:"B3",body:'\nLexer, E. (1910). Freie fettransplantation. Dtsch Med Wochenschr, 36(36), 340.\n'},{id:"B4",body:'\nRehn, E. (1913). Die Verwendung der autoplastischen Fett-Transplantationen bei Dura-und Hirndefekten. Langenbecks Arch Chir, 101, 962-996.\n'},{id:"B5",body:'\nBrunning, P. (1919). Contribution à l’étude des greffes adipeuses (Vol. 28, Ser. 440). Bull Mem Acad R Med Belg.\n'},{id:"B6",body:'\nPeer, L. A. (1956). The neglected "free fat graft," its behavior and clinical use The American Journal of Surgery, 92(1), 40-47\n'},{id:"B7",body:'\nPeer, L. A. (1950). Loss of weight and volume in human fat grafts: with postulation of a "cell survival theory". Plastic and reconstructive surgery, 5(3), 217-230.\n'},{id:"B8",body:'\nIllouz YG. The fat cell "graft": a new technique to fill depressions. Plast Reconstr Surg. 1986;78(1):122-123.\n'},{id:"B9",body:'\nGuerrerosantos, J. (1996). Autologous fat grafting for body contouring. Clinics in plastic surgery, 23(4), 619-631.\n'},{id:"B10",body:'\nFournier, P. F. (1985). Microlipoextraction et microlipoinjection. Rev Chir Esthet Lang Franc, 10(41).\n'},{id:"B11",body:'\nIllouz, Y. G. (1990). Fat injection: a four-year clinical trial. Lipoplasty: the theory and practice of blunt suction lipectomy. Boston: Little Brown, 239-246.\n'},{id:"B12",body:'\nColeman, S. R. (1995). Long-term survival of fat transplants: controlled demonstrations. Aesthetic plastic surgery, 19(5), 421-425.\n'},{id:"B13",body:'\nVerderame, P. (1909). Ueber fettransplantation bei adharenten knochennarben am orbitalrand. Klin Monatsbl Augenheilkd, 47, 433-442.\n'},{id:"B14",body:'\nZhu M, Zhou Z, Chen Y, et al. Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg 2010;64:222-228.\n'},{id:"B15",body:'\nChen X, Yan L, Guo Z, et al. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. Cell Death Dis 2016;7: e2369.\n'},{id:"B16",body:'\nEto H, Suga H, Matsumoto D, et al. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg 2009;124:1087-1097.\n'},{id:"B17",body:'\nZhou Y., Wang J., Li H., et al. Efficacy and safety of cell-assisted lipotransfer: a systematic review and meta-analysis. Plast Reconstr Surg, 137 (1) (2016), pp.44e-57e)\n'},{id:"B18",body:'\nZuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211-228.)\n'},{id:"B19",body:'\nMatsumoto D, Sato K, Gonda K, et al. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 2006;12:3375-3382.\n'},{id:"B20",body:'\nRigotti G, Marchi A, Sbarbati A. Adipose-derived mesenchymal stem cells: past, present, and future. Aesthetic Plast Surg 2009;33:271-273.\n'},{id:"B21",body:'\nYoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 2008;34:1178-1185.\n'},{id:"B22",body:'\nTanikawa DY, Aguena M, Bueno DF, et al. Fat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomia. Plast Reconstr Surg 2013;132:141-152.\n'},{id:"B23",body:'\nInigo F, Jimenez-Murat Y, Arroyo O, et al. Restoration of facial contour in Romberg\'s disease and hemifacial microsomia: experience with 118 cases. Microsurgery. 2000;20:167-172.\n'},{id:"B24",body:'\nCastro-Govea Y, De La Garza-Pineda O, Lara-Arias J, et al. Cell-assisted lipotransfer for the treatment of parry-Romberg syndrome. Arch Plast Surg 2012;39:659-662.\n'},{id:"B25",body:'\nY Castro-Govea, O De La Garza-Pineda, A Salazar-Lozano. Mini–Temporal and Perilobular Approach to Facelift: Mini-TAPA-Facelift Facial Plastic Surgery 29 (03), 244-252\n'},{id:"B26",body:'\nMatthew R. Endara, MD, Lindsay Jones Allred, BS, Kevin D. Han, MD, Stephen B. Baker, MD, DDS, Applications of Fat Grafting in Facial Aesthetic Skeletal Surgery, Aesthetic Surgery Journal, Volume 34, Issue 3, March 2014, Pages 363-373, https://doi.org/10.1177/1090820X14525964\n\n'},{id:"B27",body:'\nLaurent F, Capon-Degardin N, Martinot-Duquennoy V, et al. Role of lipo-filling in the treatment of sequelae in craniosynostosis surgery. Ann Chir Plast Esthet 2006;51:512-516.\n'},{id:"B28",body:'\nVersnel SL, Plomp RG, Passchier J, et al. Long-term psychological functioning of adults with severe congenital facial disfigurement. Plast Reconstr Surg 2012;129:110-117.\n'},{id:"B29",body:'\nTonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg. 2013 Oct;132(4):1017-1026. doi: 10.1097/PRS.0b013e31829fe1b0. PMID: 23783059.\n'},{id:"B30",body:'\nTonnard P, Verpaele A, Carvas M. Fat Grafting for Facial Rejuvenation with Nanofat Grafts. Clin Plast Surg. 2020 Jan;47(1):53-62. doi: 10.1016/j.cps.2019.08.006. Epub 2019 Oct 28. PMID: 31739897.\n'},{id:"B31",body:'\nY Castro-Govea, A Vela-Martinez, LA Treviño-Garcia. Volumetric lipoinjection of the fronto-orbital and temporal complex with adipose stem cells for the aesthetic restoration of sequelae of craniosynostosis. Archives of plastic surgery 45 (2), 128\n'},{id:"B32",body:'\nY Castro-Govea, A Vela-Martinez, LA Trevino-Garcia. Lipoinjection and multiple internal cuts for congenital constriction bands: a new treatment approach. Aesthetic plastic surgery 41 (2), 375-380\n'},{id:"B33",body:'\nGornitsky, J., Viezel-Mathieu, A., Alnaif, N., Azzi, A. J., & Gilardino, M. S. (2019). A systematic review of the effectiveness and complications of fat grafting in the facial region. JPRAS Open, 19, 87-97. doi:10.1016/j.jpra.2018.12.004\n'},{id:"B34",body:'\nN.G. Dreizen, L. Framm. Sudden unilateral visual loss after autologous fat injection into the glabellar area Am J Ophthalmol, 107 (1989), pp. 85-87\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Yanko Castro-Govea",address:"goveayanko@hotmail.com",affiliation:'
Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
'},{corresp:null,contributorFullName:"Cynthia M. Gonzalez-Cantu",address:null,affiliation:'
Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
'},{corresp:null,contributorFullName:"Gabriel A. Mecott",address:null,affiliation:'
Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
'},{corresp:null,contributorFullName:"Mauricio M. Garcia-Perez",address:null,affiliation:'
Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
'}],corrections:null},book:{id:"10351",type:"book",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",fullTitle:"Enhanced Liposuction - New Perspectives and Techniques",slug:"enhanced-liposuction-new-perspectives-and-techniques",publishedDate:"April 20th 2022",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-105-9",printIsbn:"978-1-83962-823-8",pdfIsbn:"978-1-83968-106-6",isAvailableForWebshopOrdering:!0,editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"130066",title:"Dr.",name:"Nasir",middleName:null,surname:"Sulaiman",email:"navaerasulaiman@hotmail.com",fullName:"Nasir Sulaiman",slug:"nasir-sulaiman",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"33812",title:"Urological Surgical Procedures Under Local Anesthesia",slug:"common-urological-procedures-under-local-anethesia",abstract:null,signatures:"M. Hammad Ather, Ammara Mushtaq and M. Nasir Sulaiman",authors:[{id:"88868",title:"Prof.",name:"M Hammad",surname:"Ather",fullName:"M Hammad Ather",slug:"m-hammad-ather",email:"hammad.ather@aku.edu"},{id:"130066",title:"Dr.",name:"Nasir",surname:"Sulaiman",fullName:"Nasir Sulaiman",slug:"nasir-sulaiman",email:"navaerasulaiman@hotmail.com"},{id:"130067",title:"Ms.",name:"Ammara",surname:"Mushtaq",fullName:"Ammara Mushtaq",slug:"ammara-mushtaq",email:"ammara.mushtaq@live.com"}],book:{id:"716",title:"Clinical Use of Local Anesthetics",slug:"clinical-use-of-local-anesthetics",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"84949",title:"Dr.",name:"Niteen",surname:"Dhepe",slug:"niteen-dhepe",fullName:"Niteen Dhepe",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"85858",title:"Prof.",name:"Alberto",surname:"Acevedo",slug:"alberto-acevedo",fullName:"Alberto Acevedo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"86656",title:"Dr.",name:"Hasan",surname:"Garip",slug:"hasan-garip",fullName:"Hasan Garip",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Marmara University",institutionURL:null,country:{name:"Turkey"}}},{id:"87174",title:"Dr.",name:"Tülin",surname:"Satılmış",slug:"tulin-satilmis",fullName:"Tülin Satılmış",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Marmara University",institutionURL:null,country:{name:"Turkey"}}},{id:"87222",title:"Dr.",name:"Onur",surname:"Gönül",slug:"onur-gonul",fullName:"Onur Gönül",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Marmara University",institutionURL:null,country:{name:"Turkey"}}},{id:"87224",title:"Prof.",name:"Kamil",surname:"Göker",slug:"kamil-goker",fullName:"Kamil Göker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Marmara University",institutionURL:null,country:{name:"Turkey"}}},{id:"88868",title:"Prof.",name:"M Hammad",surname:"Ather",slug:"m-hammad-ather",fullName:"M Hammad Ather",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/88868/images/system/88868.jpg",biography:"Prof. M Hammad Ather is a consulting urological surgeon, and professor and head of Urology at the Aga Khan University, Karachi. He is an editorial board member of many international urological journals, and author of over 110 articles in international peer reviewed journals and 10 book chapters. He is also an adviser and reviewer for over two dozen international urological journals, and for dissertations at various universities nationally and the National University of Singapore. Dr. Ather was trained in Karachi and London, and has many fellowship attachments in Europe at Erasmus University, Rotterdam, Katholique Universiteit Leuven, and University College London. He has also served as the General secretary of Pakistan Association of Urological surgeons (PAUS). He is an international advisory board member of the EULIS (EAU) and national representative of Asia-Pacific society of uro-oncology (UAA). Currently, he is the Vice chairman of the U Merge (Urology in emerging countries). His research interests include topics related to urolithiasis, bladder, and advanced prostate cancer.",institutionString:"Aga Khan University",institution:{name:"Aga Khan University",institutionURL:null,country:{name:"Pakistan"}}},{id:"93738",title:"Dr.",name:"Katsuto",surname:"Shinohara",slug:"katsuto-shinohara",fullName:"Katsuto Shinohara",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of California, San Francisco",institutionURL:null,country:{name:"United States of America"}}},{id:"95854",title:"Dr.",name:"Milind",surname:"Naik",slug:"milind-naik",fullName:"Milind Naik",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"L V Prasad Eye Institute",institutionURL:null,country:{name:"India"}}},{id:"130067",title:"Ms.",name:"Ammara",surname:"Mushtaq",slug:"ammara-mushtaq",fullName:"Ammara Mushtaq",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"our-story",title:"Our story",intro:"
The company was founded in Vienna in 2004 by Alex Lazinica and Vedran Kordic, two PhD students researching robotics. While completing our PhDs, we found it difficult to access the research we needed. So, we decided to create a new Open Access publisher. A better one, where researchers like us could find the information they needed easily. The result is IntechOpen, an Open Access publisher that puts the academic needs of the researchers before the business interests of publishers.
",metaTitle:"Our story",metaDescription:"The company was founded in Vienna in 2004 by Alex Lazinica and Vedran Kordic, two PhD students researching robotics. While completing our PhDs, we found it difficult to access the research we needed. So, we decided to create a new Open Access publisher. A better one, where researchers like us could find the information they needed easily. The result is IntechOpen, an Open Access publisher that puts the academic needs of the researchers before the business interests of publishers.",metaKeywords:null,canonicalURL:"/page/our-story",contentRaw:'[{"type":"htmlEditorComponent","content":"
We started by publishing journals and books from the fields of science we were most familiar with - AI, robotics, manufacturing and operations research. Through our growing network of institutions and authors, we soon expanded into related fields like environmental engineering, nanotechnology, computer science, renewable energy and electrical engineering, Today, we are the world’s largest Open Access publisher of scientific research, with over 4,200 books and 54,000 scientific works including peer-reviewed content from more than 116,000 scientists spanning 161 countries. Our authors range from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery.
\\n\\n
In the same year that IntechOpen was founded, we launched what was at the time the first ever Open Access, peer-reviewed journal in its field: the International Journal of Advanced Robotic Systems (IJARS).
\\n\\n
The IntechOpen timeline
\\n\\n
2004
\\n\\n
\\n\\t
Intech Open is founded in Vienna, Austria, by Alex Lazinica and Vedran Kordic, two PhD students, and their first Open Access journals and books are published.
\\n\\t
Alex and Vedran launch the first Open Access, peer-reviewed robotics journal and IntechOpen’s flagship publication, the International Journal of Advanced Robotic Systems (IJARS).
\\n
\\n\\n
2005
\\n\\n
\\n\\t
IntechOpen publishes its first Open Access book: Cutting Edge Robotics.
\\n
\\n\\n
2006
\\n\\n
\\n\\t
IntechOpen publishes a special issue of IJARS, featuring contributions from NASA scientists regarding the Mars Exploration Rover missions.
\\n
\\n\\n
2008
\\n\\n
\\n\\t
Downloads milestone: 200,000 downloads reached
\\n
\\n\\n
2009
\\n\\n
\\n\\t
Publishing milestone: the first 100 Open Access STM books are published
\\n
\\n\\n
2010
\\n\\n
\\n\\t
Downloads milestone: one million downloads reached
\\n\\t
IntechOpen expands its book publishing into a new field: medicine.
\\n
\\n\\n
2011
\\n\\n
\\n\\t
Publishing milestone: More than five million downloads reached
\\n\\t
IntechOpen publishes 1996 Nobel Prize in Chemistry winner Harold W. Kroto’s “Strategies to Successfully Cross-Link Carbon Nanotubes”. Find it here.
\\n\\t
IntechOpen and TBI collaborate on a project to explore the changing needs of researchers and the evolving ways that they discover, publish and exchange information. The result is the survey “Author Attitudes Towards Open Access Publishing: A Market Research Program”.
\\n\\t
IntechOpen hosts SHOW - Share Open Access Worldwide; a series of lectures, debates, round-tables and events to bring people together in discussion of open source principles, intellectual property, content licensing innovations, remixed and shared culture and free knowledge.
\\n
\\n\\n
2012
\\n\\n
\\n\\t
Publishing milestone: 10 million downloads reached
\\n\\t
IntechOpen holds Interact2012, a free series of workshops held by figureheads of the scientific community including Professor Hiroshi Ishiguro, director of the Intelligent Robotics Laboratory, who took the audience through some of the most impressive human-robot interactions observed in his lab.
\\n
\\n\\n
2013
\\n\\n
\\n\\t
IntechOpen joins the Committee on Publication Ethics (COPE) as part of a commitment to guaranteeing the highest standards of publishing.
\\n
\\n\\n
2014
\\n\\n
\\n\\t
IntechOpen turns 10, with more than 30 million downloads to date.
\\n\\t
IntechOpen appoints its first Regional Representatives - members of the team situated around the world dedicated to increasing the visibility of our authors’ published work within their local scientific communities.
\\n
\\n\\n
2015
\\n\\n
\\n\\t
Downloads milestone: More than 70 million downloads reached, more than doubling since the previous year.
\\n\\t
Publishing milestone: IntechOpen publishes its 2,500th book and 40,000th Open Access chapter, reaching 20,000 citations in Thomson Reuters ISI Web of Science.
\\n\\t
40 IntechOpen authors are included in the top one per cent of the world’s most-cited researchers.
\\n\\t
Thomson Reuters’ ISI Web of Science Book Citation Index begins indexing IntechOpen’s books in its database.
\\n
\\n\\n
2016
\\n\\n
\\n\\t
IntechOpen is identified as a world leader in Simba Information’s Open Access Book Publishing 2016-2020 report and forecast. IntechOpen came in as the world’s largest Open Access book publisher by title count.
\\n
\\n\\n
2017
\\n\\n
\\n\\t
Downloads milestone: IntechOpen reaches more than 100 million downloads
\\n\\t
Publishing milestone: IntechOpen publishes its 3,000th Open Access book, making it the largest Open Access book collection in the world
We started by publishing journals and books from the fields of science we were most familiar with - AI, robotics, manufacturing and operations research. Through our growing network of institutions and authors, we soon expanded into related fields like environmental engineering, nanotechnology, computer science, renewable energy and electrical engineering, Today, we are the world’s largest Open Access publisher of scientific research, with over 4,200 books and 54,000 scientific works including peer-reviewed content from more than 116,000 scientists spanning 161 countries. Our authors range from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery.
\n\n
In the same year that IntechOpen was founded, we launched what was at the time the first ever Open Access, peer-reviewed journal in its field: the International Journal of Advanced Robotic Systems (IJARS).
\n\n
The IntechOpen timeline
\n\n
2004
\n\n
\n\t
Intech Open is founded in Vienna, Austria, by Alex Lazinica and Vedran Kordic, two PhD students, and their first Open Access journals and books are published.
\n\t
Alex and Vedran launch the first Open Access, peer-reviewed robotics journal and IntechOpen’s flagship publication, the International Journal of Advanced Robotic Systems (IJARS).
\n
\n\n
2005
\n\n
\n\t
IntechOpen publishes its first Open Access book: Cutting Edge Robotics.
\n
\n\n
2006
\n\n
\n\t
IntechOpen publishes a special issue of IJARS, featuring contributions from NASA scientists regarding the Mars Exploration Rover missions.
\n
\n\n
2008
\n\n
\n\t
Downloads milestone: 200,000 downloads reached
\n
\n\n
2009
\n\n
\n\t
Publishing milestone: the first 100 Open Access STM books are published
\n
\n\n
2010
\n\n
\n\t
Downloads milestone: one million downloads reached
\n\t
IntechOpen expands its book publishing into a new field: medicine.
\n
\n\n
2011
\n\n
\n\t
Publishing milestone: More than five million downloads reached
\n\t
IntechOpen publishes 1996 Nobel Prize in Chemistry winner Harold W. Kroto’s “Strategies to Successfully Cross-Link Carbon Nanotubes”. Find it here.
\n\t
IntechOpen and TBI collaborate on a project to explore the changing needs of researchers and the evolving ways that they discover, publish and exchange information. The result is the survey “Author Attitudes Towards Open Access Publishing: A Market Research Program”.
\n\t
IntechOpen hosts SHOW - Share Open Access Worldwide; a series of lectures, debates, round-tables and events to bring people together in discussion of open source principles, intellectual property, content licensing innovations, remixed and shared culture and free knowledge.
\n
\n\n
2012
\n\n
\n\t
Publishing milestone: 10 million downloads reached
\n\t
IntechOpen holds Interact2012, a free series of workshops held by figureheads of the scientific community including Professor Hiroshi Ishiguro, director of the Intelligent Robotics Laboratory, who took the audience through some of the most impressive human-robot interactions observed in his lab.
\n
\n\n
2013
\n\n
\n\t
IntechOpen joins the Committee on Publication Ethics (COPE) as part of a commitment to guaranteeing the highest standards of publishing.
\n
\n\n
2014
\n\n
\n\t
IntechOpen turns 10, with more than 30 million downloads to date.
\n\t
IntechOpen appoints its first Regional Representatives - members of the team situated around the world dedicated to increasing the visibility of our authors’ published work within their local scientific communities.
\n
\n\n
2015
\n\n
\n\t
Downloads milestone: More than 70 million downloads reached, more than doubling since the previous year.
\n\t
Publishing milestone: IntechOpen publishes its 2,500th book and 40,000th Open Access chapter, reaching 20,000 citations in Thomson Reuters ISI Web of Science.
\n\t
40 IntechOpen authors are included in the top one per cent of the world’s most-cited researchers.
\n\t
Thomson Reuters’ ISI Web of Science Book Citation Index begins indexing IntechOpen’s books in its database.
\n
\n\n
2016
\n\n
\n\t
IntechOpen is identified as a world leader in Simba Information’s Open Access Book Publishing 2016-2020 report and forecast. IntechOpen came in as the world’s largest Open Access book publisher by title count.
\n
\n\n
2017
\n\n
\n\t
Downloads milestone: IntechOpen reaches more than 100 million downloads
\n\t
Publishing milestone: IntechOpen publishes its 3,000th Open Access book, making it the largest Open Access book collection in the world
\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12717},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"161925"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"736",title:"Condensed Matter Physics",slug:"electrical-and-electronic-engineering-condensed-matter-physics",parent:{id:"116",title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:23,numberOfWosCitations:56,numberOfCrossrefCitations:21,numberOfDimensionsCitations:34,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"736",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7626",title:"Advanced Thermoelectric Materials for Energy Harvesting Applications",subtitle:null,isOpenForSubmission:!1,hash:"9fce5693499cb159b7d957e2838b7d13",slug:"advanced-thermoelectric-materials-for-energy-harvesting-applications",bookSignature:"Saim Memon",coverURL:"https://cdn.intechopen.com/books/images_new/7626.jpg",editedByType:"Edited by",editors:[{id:"235606",title:"Dr.",name:"Saim",middleName:null,surname:"Memon",slug:"saim-memon",fullName:"Saim Memon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3573",title:"Superconductor",subtitle:null,isOpenForSubmission:!1,hash:"0affa2ff9e236ece7968d8246bf5ed71",slug:"superconductor",bookSignature:"Adir Moyses Luiz",coverURL:"https://cdn.intechopen.com/books/images_new/3573.jpg",editedByType:"Edited by",editors:[{id:"10012",title:"Dr.",name:"Adir",middleName:"Moysés",surname:"Luiz",slug:"adir-luiz",fullName:"Adir Luiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"11863",doi:"10.5772/10118",title:"Microstructure, Diffusion and Growth Mechanism of Nb3Sn Superconductor by Bronze Technique",slug:"microstructure-diffusion-and-growth-mechanism-of-nb3sn-superconductor-by-bronze-technique",totalDownloads:3407,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"3573",slug:"superconductor",title:"Superconductor",fullTitle:"Superconductor"},signatures:"Aloke Paul, Tomi Laurila and Vesa Vuorinen",authors:null},{id:"11866",doi:"10.5772/10121",title:"Superconducting Properties of Carbonaceous Chemical Doped MgB2",slug:"superconducting-properties-of-carbonaceous-chemical-doped-mgb2",totalDownloads:2024,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3573",slug:"superconductor",title:"Superconductor",fullTitle:"Superconductor"},signatures:"Wenxian Li and Shi-Xue Dou",authors:null},{id:"11862",doi:"10.5772/10117",title:"The Discovery of Type II Superconductors (Shubnikov Phase)",slug:"the-discovery-of-type-ii-superconductors-shubnikov-phase-",totalDownloads:3109,totalCrossrefCites:4,totalDimensionsCites:4,abstract:null,book:{id:"3573",slug:"superconductor",title:"Superconductor",fullTitle:"Superconductor"},signatures:"Anatoly Shepelev",authors:null},{id:"67825",doi:"10.5772/intechopen.86946",title:"Organic Thermoelectrics and Thermoelectric Generators (TEGs)",slug:"organic-thermoelectrics-and-thermoelectric-generators-tegs-",totalDownloads:1259,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Inorganic and organic thermoelectric (TE) materials have received an extensive scientific interest during the last decades, due to their ability to directly convert the thermal energy to electricity. This is described by the well-known “Seebeck effect”. TE materials can convert also electricity into cooling through the “Peltier effect”. As such, TE materials and thermoelectric generator (TEG) devices can be utilized for potential applications including (i) thermal energy harvesting, (ii) local cooling and (iii) temperature sensing. The direct conversion of heat into electricity has been one of the most attractive solutions to the severe environmental and energy issues the humanity is coming across. This chapter covers the fundamental working principle of TE materials, the synthetic protocols for inorganic and organic thermoelectric materials, techniques and technologies for the fabrication of thermoelectric generators (otherwise defined as thermoelectric module devices) and a number of applications. Finally, future aspects and outlooks for further advancements at the “material” or “device” level for efficient power generation are remarked.",book:{id:"7626",slug:"advanced-thermoelectric-materials-for-energy-harvesting-applications",title:"Advanced Thermoelectric Materials for Energy Harvesting Applications",fullTitle:"Advanced Thermoelectric Materials for Energy Harvesting Applications"},signatures:"Lazaros Tzounis",authors:[{id:"288931",title:"Dr.",name:"Lazaros",middleName:null,surname:"Tzounis",slug:"lazaros-tzounis",fullName:"Lazaros Tzounis"}]},{id:"11874",doi:"10.5772/10128",title:"Some Chaotic Points in Cuprate Superconductors",slug:"some-chaotic-points-in-cuprate-superconductors",totalDownloads:2122,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"3573",slug:"superconductor",title:"Superconductor",fullTitle:"Superconductor"},signatures:"Özden Aslan Cataltepe",authors:null}],mostDownloadedChaptersLast30Days:[{id:"67825",title:"Organic Thermoelectrics and Thermoelectric Generators (TEGs)",slug:"organic-thermoelectrics-and-thermoelectric-generators-tegs-",totalDownloads:1259,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Inorganic and organic thermoelectric (TE) materials have received an extensive scientific interest during the last decades, due to their ability to directly convert the thermal energy to electricity. This is described by the well-known “Seebeck effect”. TE materials can convert also electricity into cooling through the “Peltier effect”. As such, TE materials and thermoelectric generator (TEG) devices can be utilized for potential applications including (i) thermal energy harvesting, (ii) local cooling and (iii) temperature sensing. The direct conversion of heat into electricity has been one of the most attractive solutions to the severe environmental and energy issues the humanity is coming across. This chapter covers the fundamental working principle of TE materials, the synthetic protocols for inorganic and organic thermoelectric materials, techniques and technologies for the fabrication of thermoelectric generators (otherwise defined as thermoelectric module devices) and a number of applications. Finally, future aspects and outlooks for further advancements at the “material” or “device” level for efficient power generation are remarked.",book:{id:"7626",slug:"advanced-thermoelectric-materials-for-energy-harvesting-applications",title:"Advanced Thermoelectric Materials for Energy Harvesting Applications",fullTitle:"Advanced Thermoelectric Materials for Energy Harvesting Applications"},signatures:"Lazaros Tzounis",authors:[{id:"288931",title:"Dr.",name:"Lazaros",middleName:null,surname:"Tzounis",slug:"lazaros-tzounis",fullName:"Lazaros Tzounis"}]},{id:"11871",title:"X-ray Micro-Tomography as a New and Powerful Tool for Characterization of MgB2 Superconductor",slug:"x-ray-micro-tomography-as-a-tool-for-quantitative-characterization-of-mgb2-superconducting-materials",totalDownloads:2815,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"3573",slug:"superconductor",title:"Superconductor",fullTitle:"Superconductor"},signatures:"Gheorghe Aldica, Ion Tiseanu, Petre Badica, Teddy Craciunescu and Mattew Rindfleisch",authors:null},{id:"66134",title:"Heat Recovery and Power Generation Using Thermoelectric Generator",slug:"heat-recovery-and-power-generation-using-thermoelectric-generator",totalDownloads:1271,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"In this chapter, experimental analysis of the direct conversion of thermal energy into electric energy was carried out, in order to encourage the conscious use of energy and to reduce waste. The conversion of thermal energy into electrical energy occurs in a thermoelectric generator through the Seebeck effect. This effect is associated with the appearance of an electric potential difference between two different materials, placed in contact at different temperatures. This relation between temperature and electrical properties of the material is known as thermoelectricity. This experimental study has as objective the obtaining of operating characteristic curves of the thermoelectric generator TEG1-12611-6.0, for different temperature gradients and under constant pressure between the heater plate and the heat sink. Resistors were used to heat the thermoelectric generator, which simulates the residual heat, and insulation material to minimize the dissipation of heat to the environment. For cooling, a heat exchanger was used in order to maximize the temperature difference between the sides of the thermoelectric generator. In this way, it was possible to perform an experimental analysis of the obtained electric power for different temperature ranges between the faces of the generator and, with this, verify the applicability in real systems.",book:{id:"7626",slug:"advanced-thermoelectric-materials-for-energy-harvesting-applications",title:"Advanced Thermoelectric Materials for Energy Harvesting Applications",fullTitle:"Advanced Thermoelectric Materials for Energy Harvesting Applications"},signatures:"Luis Vitorio Gulineli Fachini, Pedro Leineker Ochoski Machado, Larissa Krambeck, Romeu Miqueias Szmoski and Thiago Antonini Alves",authors:[{id:"227996",title:"Prof.",name:"Thiago",middleName:null,surname:"Antonini Alves",slug:"thiago-antonini-alves",fullName:"Thiago Antonini Alves"},{id:"229395",title:"MSc.",name:"Larissa",middleName:null,surname:"Krambeck",slug:"larissa-krambeck",fullName:"Larissa Krambeck"},{id:"286032",title:"Mr.",name:"Luis Vitorio",middleName:null,surname:"Gulineli Fachini",slug:"luis-vitorio-gulineli-fachini",fullName:"Luis Vitorio Gulineli Fachini"},{id:"293535",title:"Mr.",name:"Pedro Leineker",middleName:null,surname:"Ochoski Machado",slug:"pedro-leineker-ochoski-machado",fullName:"Pedro Leineker Ochoski Machado"},{id:"293537",title:"Prof.",name:"Romeu",middleName:null,surname:"Miqueias Szmoski",slug:"romeu-miqueias-szmoski",fullName:"Romeu Miqueias Szmoski"}]},{id:"66622",title:"Thermoelectric Generator Using Passive Cooling",slug:"thermoelectric-generator-using-passive-cooling",totalDownloads:899,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"This chapter presents an analysis of a point-of-use thermoelectric generator that is patented by one of the authors. The design, implementation and performance of the generator for powering electronic monitoring devices and charging batteries is discussed. This passive generator has no moving parts and relies on ambient air cooling. In one iteration it produces 6.9 W of steady state power using six Laird thermoelectric modules (Laird PB23 Series, HT8, 12) when placed on a 160°C steam pipe with a 30°C ambient environment (\n\nΔ\nT\n\n of 130°C). The generator produced 31.2 volts (V) open circuit and 0.89 amperes (A) short circuit. It successfully powered two microcontroller-based security cameras, one with a wireless Local Area Network (LAN) and another with cellular connectivity. In another scenario, the generator produced approximately 6 W with a steam pipe temperature of 140°C and an ambient of 25°C (\n\nΔ\nT\n\n of 115°C). This second system powered LED lights, a cellular-interfaced video surveillance system, and monitoring robots, while simultaneously trickle charging batteries. A third installation totally powered a stand-alone 3G web security camera system.",book:{id:"7626",slug:"advanced-thermoelectric-materials-for-energy-harvesting-applications",title:"Advanced Thermoelectric Materials for Energy Harvesting Applications",fullTitle:"Advanced Thermoelectric Materials for Energy Harvesting Applications"},signatures:"Robert Dell, Michael Thomas Petralia, Ashish Pokharel and Runar Unnthorsson",authors:[{id:"86966",title:"Dr.",name:"Runar",middleName:null,surname:"Unnthorsson",slug:"runar-unnthorsson",fullName:"Runar Unnthorsson"},{id:"285210",title:"Prof.",name:"Robert",middleName:null,surname:"Dell",slug:"robert-dell",fullName:"Robert Dell"},{id:"294487",title:"MSc.",name:"Michael Thomas",middleName:null,surname:"Petralia",slug:"michael-thomas-petralia",fullName:"Michael Thomas Petralia"},{id:"294497",title:"BSc.",name:"Ashish",middleName:null,surname:"Pokharel",slug:"ashish-pokharel",fullName:"Ashish Pokharel"}]},{id:"67254",title:"Quantum Theory of the Seebeck Coefficient in YBCO",slug:"quantum-theory-of-the-seebeck-coefficient-in-ybco",totalDownloads:737,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The measured in-plane thermoelectric power (Seebeck coefficient) \n\n\nS\nab\n\n\n in YBCO below the superconducting temperature \n\n\nT\nc\n\n\n (\n\n∼\n\n94 K) \n\n\nS\nab\n\n\n is negative and \n\nT\n\n-independent. This is shown to arise from the fact that the “electrons” (minority carriers) having heavier mass contribute more to the thermoelectric power. The measured out-of-plane thermoelectric power \n\n\nS\nc\n\n\n rises linearly with the temperature \n\nT\n\n. This arises from moving bosonic pairons (Cooper pairs), the Bose-Einstein condensation (BEC) of which generates a supercurrent below \n\n\nT\nc\n\n\n. The center of mass of pairons moves as bosons. The resistivity \n\n\nρ\nab\n\n\n above \n\n\nT\nc\n\n\n has \n\nT\n\n-linear and \n\nT\n\n-quadratic components, the latter arising from the Cooper pairs being scattered by phonons.",book:{id:"7626",slug:"advanced-thermoelectric-materials-for-energy-harvesting-applications",title:"Advanced Thermoelectric Materials for Energy Harvesting Applications",fullTitle:"Advanced Thermoelectric Materials for Energy Harvesting Applications"},signatures:"Shigeji Fujita and Akira Suzuki",authors:[{id:"82812",title:"Prof.",name:"Shigeji",middleName:null,surname:"Fujita",slug:"shigeji-fujita",fullName:"Shigeji Fujita"},{id:"87760",title:"Prof.",name:"Akira",middleName:null,surname:"Suzuki",slug:"akira-suzuki",fullName:"Akira Suzuki"}]}],onlineFirstChaptersFilter:{topicId:"736",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:6,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:26,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/130066",hash:"",query:{},params:{id:"130066"},fullPath:"/profiles/130066",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()