Parameter for seven type of voltage sag.
\r\n\t
",isbn:"978-1-83969-642-8",printIsbn:"978-1-83969-641-1",pdfIsbn:"978-1-83969-643-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"5d7f2aa74874444bc6986e613ccebd7c",bookSignature:"Prof. Antonio Morata, Dr. Iris Loira and Prof. Carmen González",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",keywords:"Grape, Wine, Vine Biotechnology, Plant Disease, Vine Physiology, Wine Technology, Winemaking, Fungal Disease, Biological Control, Vigor Management, Aroma Compound, Polysaccharide",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 4th 2021",dateEndSecondStepPublish:"April 1st 2021",dateEndThirdStepPublish:"May 31st 2021",dateEndFourthStepPublish:"August 19th 2021",dateEndFifthStepPublish:"October 18th 2021",remainingDaysToSecondStep:"23 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Prof. Morata is the Spanish delegate at the group of experts in wine microbiology and wine technology of the International Organisation of Vine and Wine (OIV). His team won the international Enoforum award 2019 by the application of UHPH in wines and was among the 5 finalists in 2020 by using PL.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata",profilePictureURL:"https://mts.intechopen.com/storage/users/180952/images/system/180952.jpg",biography:"Antonio Morata is a professor of Food Science and Technology at the Universidad Politécnica de Madrid (UPM), Spain, specializing in wine technology. He is the coordinator of the Master in Food Engineering Program at UPM, and a professor of enology and wine technology in the European Master of Viticulture and Enology, Euromaster Vinifera-Erasmus+. He is the Spanish delegate at the group of experts in wine microbiology and wine technology of the International Organisation of Vine and Wine (OIV). He is the author of more than 70 research articles, 3 books, 4 edited books, 6 special issues and 16 book chapters.",institutionString:"Technical University of Madrid",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Technical University of Madrid",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:{id:"186423",title:"Dr.",name:"Iris",middleName:null,surname:"Loira",slug:"iris-loira",fullName:"Iris Loira",profilePictureURL:"https://mts.intechopen.com/storage/users/186423/images/system/186423.jpg",biography:"Iris Loira is an assistant professor of Food Science and Technology at the Universidad Politécnica de Madrid (UPM), Spain. She is the author of 46 research articles, 3 books and 11 book chapters.",institutionString:"Technical University of Madrid",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Technical University of Madrid",institutionURL:null,country:{name:"Spain"}}},coeditorTwo:{id:"201384",title:"Prof.",name:"Carmen",middleName:null,surname:"González",slug:"carmen-gonzalez",fullName:"Carmen González",profilePictureURL:"https://mts.intechopen.com/storage/users/201384/images/system/201384.jpg",biography:"Dr González-Chamorro has worked as a professor at the UPM since 1993. She has dedicated her teaching work to food technology and applications in the fruit and vegetable industries and fermented meat products. From 2004 until 2016 she held management positions in the university (Ombudsman and Deputy Director of University extension and International Relations). Her research activity has focused on the field of oenological biotechnology and on the selection of microorganisms (yeasts and BAL) that are of special interest in wine making processes. She has extensive experience in the use of instrumental and sensory tests to assess the quality of alcoholic beverages (wine and beer) and meat products. She has participated in different educational innovation projects and coordinated three of them. These projects have made it possible to coordinate working groups for the implementation of degrees in the EEES, and apply new teaching methodologies that allow the acquisition of horizontal competences by students. She has also evaluated research projects and national and international degrees (different Quality Agencies).",institutionString:"Technical University of Madrid",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Technical University of Madrid",institutionURL:null,country:{name:"Spain"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Dr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39331",title:"Voltage Sag Waveform Using SagWave GUI",doi:"10.5772/46448",slug:"voltage-sag-waveform-using-sagwave-gui",body:'A recent survey attributes that 92% of all disturbances in power system is caused by voltage sags. Three-phase voltage sag can be classified in seven types as shown in Fig.1 (Bollen MHJ, 2000). The electrical sensitive load often trips of shunts down when voltage sag occur. It\'s very important to know how these sensitive equipment works when the voltage sag occur. This is the reason to develop the voltage sag generator that can created varied type of voltage sag waveform. The purpose of voltage sag generator is use to test the immunity of equipment against the voltage sag.
The magnitude and angle of three phase voltage sag can calculate form equation 1 to equation 7(Bollen MHJ, 2000).
Type A
Type B
Type C
Type D
Type E
Type F
Type G
The seven type of voltage sag (Bollen MHJ, 2000).
Previous works (Takahashi et al., 2008; Rylander et al., 2007; Bhavar et al., 2008; Teke et al., 2008; Ma and Karady, 2008), have developed voltage sag generator which can be simply classified into 4 types. These four types of voltage sag generator are transformer, switching-impedance, generator and amplifier. The transformer type uses a switch to adjust both pre-sag voltage and sag magnitudes. The switching-impedance type creates voltage sags by switching impedance into a power system by using a thyristor-controlled reactor (TCR). The generator type uses a synchronous generator to give controlled 3-phase voltage sags. The amplifier type uses a waveform generator to create controlled 3-phase voltage sags.
An autotransformer is used as the 1-phase voltage sag generator as demonstrated (Rylander et al., 2007, Bhavar et al., 2008); Rylander, et al.used MOSFET to turn-on/turn-off for changing between the primary source and the secondary source. Bhavsar, et al. used motorized variac with multi tapping transformer, the position of the variac is changed using a signal generated by the PIC. The main disadvantage of this method is that the non-conducting pairs connected to the unselected taps dissipate power due to the taps. It has a complex structure and requires control of signal processors. The TCR type creates a difference in voltage by firing the TCR at different angles. The disadvantages of TCR are the generation of low frequency harmonic current components and higher losses when working in the inductive region (Teke et al., 2008). The generator type uses a synchronous generator that provides voltage sag by changing the exciting current of the generator. The control of sag generator’s operation and monitoring of the system under test in performed by the Visual Basic programming (Collins and Morgan, 1996). The software of this paper had not displayed the waveform of voltage sag and disadvantages of this type are that it needs more space to install and is more expensive (Ma & Karady, 2008). The amplifier type can provide voltage sags with varying magnitude, duration, frequency and harmonics. After defining the desired waveform data is passed to power amplifier, at which outputs of adequate voltage levels of voltage sag are produced. This type is more convenient than others types, because it enables more precise control of all voltage sag characteristics and also allows testing of equipment in context of frequency variations and harmonic distortions. Therefore, a power amplifier type of voltage sag generator is selected for designing the voltage sag generator in this study. This chapter presents a 3-phase 4-wire voltage sag generator based on an abc algorithm((Oranpiroj et al., 2009). Voltage sag generator has been created waveform by SagWave software. The actual voltage sag is created by the 3-phase 4-wire inverter which is controlled by low-cost dsPIC.
The graphic user interface (GUI) “SagWave” (Oranpiroj et al., 2010, Oranpiroj et al., 2011) is designed for easy input of the designed waveform. The user can create sag magnitude, sag duration, phase angle jump and point on wave for a designed sag waveform from the front panel of GUI. Users can verify the desired waveform in time domain or vector form as shown in windows. Then, parameters of desired sag waveform can be sent to dsPIC microcontroller directly from GUI to control voltage sag generator. From the requirement, the SagWage GUI had designed consisted of:
The window for showing the 3-phase voltage.
The window for showing vector of A, B and C phase.
Magnitude of Voltage (A, B and C phase), user had used value box or slider bar.
Phase angle jump of voltage sag on A, B or C phase.
Sag type for selected the voltage sag type (single-phase, two-phase and three-phase).
Display normal or repeat mode of voltage sag.
Point on wave in degree.
Sag duration time for period time of voltage sag.
Number of repeat of voltage sag.
The button “Plot” for generated the voltage sag waveform.
The button “Send” for send the data from SagWave to the dsPIC microcontroller.
The button “Refresh” for clear the value and graphic display.
The layout of GUI "SagWave" designed as shown in Fig.2. The SagWave development on MATLAB\'s Graphical User interface Development Environment (GUIDE)(Patrick Marchand & O. Thomas Holland., 2003).
This is an "Axes" object in component palette (
This "Axes2" to shown the vector of A, B and C of voltage sag, then we assigned name to "Com_pass" in Property inspector by double click on "Axes2" as shown in Fig. 4.
GUI "SagWave" designed.
This group used the Edit Text and Slider object. The Edit Text and Slider object set the default value as 100%. In the property inspector of three Edit Text changed the String to "100", Max to "1.0" and Min to "0.0", as shown in Fig. 5. The String in Edit Text property to changed to the number value in m-file. In the property inspector of three Slider changed the Value to "[100.0]", Max to "100.0" and Min to "0.0", as shown in Fig. 6.
The property inspector of Axes1 assigned name to "Time_Plot".
The property inspector of Axes2 assigned name to "Com_pass".
The property inspector of Edit Text (Magnitude) set Max and Min. (Magnitude) set Max and Min.
The property inspector of Slider.
This group used the Edit Text (
This group are "Radio Button" objects in component palette (
The property inspector of Edit Text of the Magnitude group.
The property inspector of Slider of the Magnitude group.
The property inspector of Radio Button of voltage sag type group.
These groups are "Radio Button" objects same as the voltage type group. The Radio Button of this group used to select the graph to shown normal and repeat mode of voltage sag. The property inspector was shown in Fig. 10.
This object is the Edit Text for input degree of voltage on wave. The property inspector was shown in Fig.11.
This object is the Edit Text for input time duration of voltage sag. The property inspector was shown in Fig.11.
The property inspector of Radio Button of show group set to Normal and Repeat.
This object is the Edit Text for input the repeated number of voltage sag. The property inspector was shown in Fig.11.
The property inspector of Point on Wave, Sag Duration and Repeat.
This object is "Button" objects in component palette (
The "Send" button used to send the wave form data of voltage sag to dsPIC microcontroller. The property inspector was shown in Fig.12.
The "Refresh" button used to clear the graphic, all of the value in program to provide the new value. The property inspector was shown in Fig.12.
The property inspector of Plot, Send and Refresh Button.
Finally users are ready to let GUIDE create the Fig-file and M-file. They are two options to create; one, simply select menu File Save As.., or users can run GUI by select menu Tools Run or click
The concept of SagWave programming shown in Fig. 13. Form the 3th topic, GUIDE will create an M-File with callback function prototypes. The callback function was response to an event by MATLAB code. There must be a callback to implement the function of each graphical component on the GUI. Now we must be programming the callback to implement the function of each component on the SagWave.
These groups to input the magnitude of the voltage sag. There are two ways to input the magnitude;
Edit Text (Phase A, Phase B, Phase C Magnitude)
The Edit Text is an element that user to enter a text string(0 to 100). The program of this element is shown in Fig.14, in this program shown how to converse string to numeric.
The main concept of SagWave programming.
Program on Edit Text(Magnitude) callback function for input Magnitude.
Slider (Phase A, Phase B, Phase C Magnitude)
The Slider is the element that user to select values from continuous range between a specified minimum and maximum value by moving a bar with mouse. The program of this element is shown in Fig.15.
Program on Slider(Magnitude) callback function for input Magnitude.
These groups to input the phase angel of voltage sag. There are two ways to input the magnitude;
Edit Text (Phase A, Phase B, Phase C Phase angle)
The Edit Text is an element that user to enter a text string (-90 to +90). The program of this element is shown in Fig.16, in this program shown how to converse string to numeric.
Slider (Phase A, Phase B, Phase C Phase angle)
The program of this element is shown in Fig.17.
Program on Edit Text(Phase angle) callback function for input phase angle.
Fig. 17. Program on Slider(Phase angle) callback function for input phase angle.
These groups to select the voltage sag type, the program of this element shown in Fig. 18.
Program on Radio Button callback function for select voltage sag type.
These groups to select the program to show single or repeat of voltage sag, program of this element shown in Fig. 19.
Program on Radio Button callback function for show Normal and Repeat.
These groups to enter the value of Point on Wave, Sag duration and Repeat of voltage sag, the program of this element shown in Fig. 20.
The Send Button is the button for user to send the data from SagWave to dsPIC microcontroller. The Duty.dat was generated by SagWave. The user clicked the "Send" button to send the Data.dat to dsPIC microcontroller by a RS-232 port. The program of this element shown in Fig. 21.
Program on Edit Text(Point on Wave, Sag Duration and Repeat) callback function.
Program on "Send" Button callback function for open communication port and send file.
The Refresh Button is the button for user to clear the parameter and graph in SagWave for the next simulation. The program of this element shown in Fig. 22.
Program on "Refresh" Button callback function to clear all parameter.
From equation 1 to equation 7 in Topic 1, if we need 60%(V = 0.6) voltage sag there can be calculate and result in Table. 1. The operation of this program with the user designing the voltage sag wave form SagWave software. Then the user clicks the “Send” button to send the parameters to dsPIC microcontroller. The actual voltage sag is created by a 3-phase 4-leg 4-wire inverter based on an abc algorithm.
The program of graph and vector of phase voltage plotting section.
For example, the designed waveforms have parameters as found in “Bollen, (2000)”. The parameters in Table 1. are used to generate seven types of voltage sag. Users can verify waveforms through graphic display windows as shown in Fig. 24.
Voltage Sag Type | Phase Voltage | |||||||||
A | B | C | ||||||||
Magnitude | Phase | Magnitude | Phase | Lag | Lead | Magnitude | Phase | Lag | Lead | |
A | - | - | - | - | ||||||
B | - | - | - | - | ||||||
C | - | - | ||||||||
D | - | - | ||||||||
E | - | - | - | - | ||||||
F | - | - | ||||||||
G | - | - |
Parameter for seven type of voltage sag.
SagWave software can create point on wave single-phase(phase A) voltage sag, the parameters are shown in Table 2. The display of waveforms was is in Fig. 25. The parameters of single-phase(phase A) repeated voltage sag is shown in Table 3, and the simulation waveform in Fig.26.
The program of Normal and Repeat as Repeat = 3.
Case | Manitude(%) | Duration(ms) | Point on Wave (degree) |
Parameter of point on wave voltage sag.
The seven types of voltage sag created using SagWave software.
a) The point on wave at45°; b) The point on wave at45°; c) The point on wave at 270°
Case | Manitude(%) | Duration(ms) | Number of repeated |
Parameter of repeated voltage sag.
The simulation of single-phase voltage sag repeated.
From section 3 the SagWave software generates the parameter file and sends it to the dsPIC microcontroller. The dsPIC uses this file to control the 3-phase 4-leg 4-wire inverter in order to create the actual waveform. Experimental results for voltage sag types A, B and E are shown in Fig. 27-29, respectively.
The experimental results in Fig. 27 are according with simulation results in Fig.24 (Type A). Fig.27 shows the 3-phase voltage and 3-phase current of voltage sag Type A. During voltage sag, the voltage on phase A (
Voltage sag Type A.
Voltage sag Type B.
Voltage sag Type E.
Experimental result: a) point on wave at 45° b) point on wave at 45° c) point on wave at 270°
Experimental results: a) 4 repeated voltage sag b) 6 repeated voltage sag
The experimental results in Fig. 28 are according with simulation results in Fig.24(Type B). Fig.28 shows the 3-phase voltage and 3-phase current of voltage sag Type B. During voltage sag, the voltage on phase A (
The experimental results in Fig. 29 are according with simulation results in Fig.24 (Type E). Fig. 29 shows the 3-phase voltage and 3-phase current of voltage sag Type E. During voltage sag, the voltage on phase B (
The experimental results of point on wave are shown in Fig. 30. The sag generator can generate waveform at any point of wave of sine wave as desired.
The experimental results of repeated voltage sags are shown in Fig. 31. The sag generator can generate repeated voltage sag waveform as many as desired.
This chapter has proposed the use of GUI SagWave software to provide a visual interactive capability generating data for the dsPIC controller. SagWave software can show the waveform and the phasor of the three-phase voltage. The simulation and experimental results have shown a simple control algorithm for generating the sag signal for testing. The experimental results have shown the main advantages of this prototype: point on wave, sag duration, magnitude of voltage sag and varied type of voltage sag. A future study will design software for the dsPIC microcontroller to generate all seven types of voltage sag and to test the dynamic and nonlinear loads.
Corrosion of steels represents worldwide, one of the most costly problems that several industries are challenged every day due to the aggressive conditions during the manufacturing process of the steel parts or the premature failure of steel tools by stress corrosion cracking (SCC) as well as deterioration of steel components from equipment and machinery in a certain service. The construction industry is an example in where steel is essential, which requires durable and strong structures for the build of bridges, tunnels, towers, buildings, airports, roads, plants and railways. Many of these constructions are usually outdoors, exposed to the atmosphere conditions, additionally, the surrounding environment where these steels are placed for their service is often highly polluted, that it often degrades the steel structure at a considerable corrosion rate. Some of those steels are also design to be used in the; mining industry, pipeline transport of fluids, shipbuilding, agriculture equipment and heavy machinery, among others. During their usage, steels are also severely damaged by one type of corrosion mechanism [1, 2, 3, 4]. According to Zaki Ahmad [5] the concept of corrosion must be defined taking into account the environment in which the metal-materials are place to serve for long periods of exposure time, thus, all the environments are considered corrosive to some degree of damage as follows; i) air humidity, ii) fresh, distilled, salt and marine water, iii) natural urban, marine and industrial atmospheres, iv) steam and gases, v) ammonia and hydrogen sulfide, vi) sulfur dioxide and oxides of nitrogen, vii) fuel gases, acids, alkalis and soils.
Therefore, the concept of corrosion in steels is then define as a natural electrochemical process that destroys the integrity of the metal structure in the presence of any environment containing moisture and oxygen. This process involves two electrode reactions that can occur in a spontaneously way at the interface between the metal and the aqueous environment according to the thermodynamic’s Law; One, is the reaction of metal-base with chemical species from the environment (i.e. anodic-oxidation reaction, which discharge electrons from the metal substrate) and the second is the reduction reaction of an oxidizing agent (i.e. cathodic reaction, which restores the electron deficiency with reduction of protons from the metal surface). The exchange of electrons between anodic and cathodic reactions produces an electronic current flow across the metal interface, which is known as corrosion potential (Ecorr). This means the value at which the two-coupled reactions are in equilibrium, some effects can be caused by imposing an electrical potential on the metal surface as much greater than the Ecorr to favored the metal dissolution reaction as a soluble species that diffuses into the aqueous solution [4, 5]. This suggests that Fe contained in steel as a base component is oxidized and depends on the free energy like a driving force of Ecorr. The transfer of the charge (ions/electrons) through the metal interface, react with the oxygen from the steel surface, with the subsequent growth of an unstable corrosion product in the form of a thick porous-oxide layer (also known as rust), which occupies more volume than the original material. However, hydrated iron oxides are not considered as a protective layer on steels in presence of negative ions, Cl−, SO42− or NO32−. Figure 1 shows a typical example of the degradation mechanism of concrete structures due to corrosion of the steel reinforcement embedded in it; i) initially, the pores of the concrete structure are the access pathway of negative ions that come from the environment, ii) then, corrosion reduces the cross-sectional area of the steel bar, iii) it produces oxides (hydrated ferric oxide-rust) with a larger volume that cause tensile stress in surrounding concrete areas, which results in cracking and subsequent structural failure of the concrete [6].
Physical and chemical model that represents the concrete failure by corrosion on the steel reinforcement [6].
In other conditions, a thin oxide film can grow on metal-base to provide the protection against corrosion attack, that steels require in order to be useful when they are exposed to severe atmospheric conditions during their usage. This passive film is so thin that it is invisible to the naked eye; however, this film can be self-repaired immediately, when it is suddenly scratched or intentionally removed. An example of this outstanding property is the existence of several types of stainless steels that usually contains a significant proportion of chromium (12 to 25 wt.% Cr) with nickel and molybdenum to prevent the formation of ferrous hydroxide
For conventional steels produced by casting process, the most useful steel products are those that contain small amounts of alloying elements such as plain carbon steels (Mn, Si, S, P), alloyed steels (Cu, Ni, Cr or Al) and tool or machinery steels (W, Mo, Co, B and V). This alloying provides mechanical strength, ductility, machinability, and a substantial corrosion resistance. Although, these steels do not have the same ability of corrosion protection as the stainless steel does; the oxide film formed on the surface has only a few micrometers thick with microporous or growth defects, so it is possible to inferred that this oxide layer does not protect the metal from corrosion attack, this means a temporally low passivity is considered. However, in aggressive aqueous solutions the porous oxide layer can dissolve or break-down at least some areas of the film, therefore, leading to the Fe-base to a further localized attack. In industrial applications, the surface properties of the steel have a significant impact on their service life and performance. Among the several surface treatments to provide protection through a thick hard layer, diffusion techniques are using such as powder pack, gaseous atmosphere, plasma, ion beam and salt baths, that depends on the diffusion time and atmosphere concentration, these being a high effective treatment and less expensive. Additionally, carburizing, nitriding or boriding, are also well-known as thermochemical surface treatments [11, 12, 13, 14, 15].
Acid solutions are frequently used in many applications concerning industrial processes and are considered as the most corrosive media for steels. Acids like HCl, H2SO4, HNO3, H3PO4, H2CrO3, and some alkalis such NH3 are frequently used for surface cleaning, removal of rust deposits, pickling processes, chemical attack, metal surface treatments, and wastewater systems. Other relevant uses are metal-processing equipment, chemical processing, pipelines, food processing, chemical and petrochemical plants. Therefore, printed research works report several cases of using organic molecules compounds (imidazole, 2mercapto-benzimidazole, pyridine, thidiazole, pyrrolidine, triazole, among others) that have provided a significant corrosion inhibition property for steels during their exposure to acid media [16, 17, 18, 19, 20, 21, 22, 23, 24]. These molecules must contain in their structure functional electronegative groups, π electrons, heteroatoms or heteroatoms of nitrogen, sulfur and oxygen with aromatic and heterocyclic rings. These reports generally indicate that the molecules are dissolved in an ethanol-water solution and then added in small concentrations (ppm) to the acid media, in all the cases, a barrier layer of organic molecules is formed onto the metal surface by an adsorption mechanism, thus giving corrosion protection on steels under-service at aggressive conditions [16, 18, 20, 24].
According to Florian B. Mansfeld (1988) in his research (Do not be afraid of electrochemical techniques —But use them with care) [25] comments that corrosion is fortunately a problem that can be tracked by means of electronic devices (i.e. potentiostats) that applies an electrical signal (V or I) to measure and control the electrical charge transfer; in pursuance of evaluating the reaction kinetic and mechanism of corrosion process that takes place at the metal interface. Meanwhile, the constant improvement of measuring instruments and the availability of commercial software, makes possible an easy performance of the electrochemical tests for the evaluation of corrosion progress and its control in an experimental way. These achievements caught the attention of chemical, petrochemical, food processing and steel manufacture industries, as well as research laboratories and higher education faculties that have encouraged and certified the success of the use of electrochemical techniques to monitoring corrosion on steels. The application of electrochemical techniques, such as linear polarization, polarization resistance and potentiodynamic polarization, have often been used for several decades in evaluating successfully some basic phenomena as oxide passivity, effects of alloying elements, reaction kinetics and the use of inhibitors to control the corrosion behavior, among others. However, it is important to consider the limitations of the polarization techniques that use Direct Current (DC), to perturb the equilibrium of the interface between the metal and electrolyte solution, is the ohmic-droop that is often ignored, this occurs when the current flows through the resistance of the test solution and the resistance of the connecting cables to electrochemical cell electrodes (i.e. uncompensated resistance, IR) [25]. The effects of IR can cause severe distortions of polarization curves, leading in the erroneous estimation of corrosion rates and misinformation of the kinetic model that represents the potentiodynamic curves. Given this limitation, through the last decade, another electrochemical technique appears to be more suitable for corrosion studies, this is the Electrochemical Impedance Spectroscopy (EIS) that uses a small amplitude of alternate current (AC) in a certain frequency domain applied to the corrosion system under study. Usually, EIS data is collected through a potentiostat/galvanostat apparatus, and then it is fitted to an equivalent electrical circuit (EEC) model for its interpretation and analysis, fundamentally seeking a meaningful physical interpretation. In correspondence with several studies [26, 27, 28, 29, 30, 31, 32, 33] EIS is considered a successful new electrochemical technique with a great evolution in recent years that has become an essential analytical tool in the research of materials science. For its detailed information, versatility and sensitivity that makes possible to be used widely in; corrosion studies and corrosion control, monitoring of properties of electronic and ionic conducting polymers or ceramics, colloids and coatings, measurements in semiconductors and solid electrolytes, studies of electrochemical kinetics at electrode-media interfaces, determination of conducting or diffusion mechanism, reactions and process [34].
The practical estimation of EIS technique could be difficult to understand by non-specialist because of the lack of comprehensive and explanation about the theory’s basic aspects in conjunction with the experimental measurements. Nevertheless, it is possible to attain a logical interpretation and analysis of acquired impedance data for a certain practical system, such as those studied in this chapter that will be shown later. In this sense, to avoid uncertainties and misinterpretation of impedance data, analytical co-relationship of physical, chemical and manufacture parameters must be established with an equivalent electrical circuit (EEC) model, thus given a common sense to the impedance response. Therefore, this review considers a wide variety of practical electrochemical impedance cases for the study of corrosion mechanism on steels based on the basic aspects of EIS theory and its experimental interpretation. This chapter serves as a support for postgraduate students to have a criterion in deciding through their own experiences when using the electrochemical impedance technique. The practical cases discussed here are part of the research experienced by Dr. Héctor Herrera Hernández known in the scientific community as DR.3H. Recently, DR.3H and his students & research group are dedicated to their experience in electrochemical impedance knowledge in medical applications as bone replacement or PVDF-based membranes as an appropriate scaffold for skin cell growth [35].
Cases of EIS study applied to steels;
Steels measured in their received condition.
Kinetic oxidation reaction at different aqueous solutions.
Steel corroded at non-stationary condition.
Corrosion monitor in concrete reinforced materials.
Inhibition using organic molecules.
Inhibition in natural liquids extracted from plants.
Hard-coatings as protection.
Corrosion monitor in steels used as food containers or beverages.
Since the middle of the 18th century, the Impedance Spectroscopy (IS) technique has been established as a popular theoretical approach to study the electrical properties of conducting materials and their interfaces. However, in the last quarter-century, IS becomes a practical tool that is successfully applied in electrochemistry as an analytical method widely used in many disciplines such as materials science, corrosion technology, semiconductors, conducting polymers, ceramics, coatings, energy storage, and solid-state. Electrochemical Impedance Spectroscopy (EIS) is considered as a new technique with astounding advantages [36, 37, 38].
The concept of impedance in electronic devices is generally treated as a purely complex phenomenological amount and is considered as one of the most important physical characteristics that concerns the resistance that the medium opposes to the propagation of sound (acoustic impedance, Z) through it and therefore it is equivalent to the electrical impedance. In this sense, acoustic impedance is the ratio of the sound pressure of the wave (P) to its volume speed (U) in a material medium [39, 40]. This concept becomes a similar analogous meaning to the electric approach, because an electrical impulse (V or I) is applied to the conducting electrodes and a characteristic electrical response is resulted, known as impedance, Z. Therefore, impedance is then defined as the measure of the ability of a certain circuit to resist the flow of electrical current. The electrochemistry impedance is the relationship between a potential energy difference and the flow of electrons generated by a wave signal applied in an aqueous media. EIS technique is characterized by using an alternating current (AC) signal as driving force, which is applied to a conductive electrode, thus obtaining a characteristic response from the system interface. One of the attractive aspects that makes EIS as a suitable tool for investigating the electrochemical properties of materials during their exposure to aqueous solutions, is the simulation of the system behavior by means of an idealized circuit model. This consists of an arrangement of passive electrical components (i.e. resistors R, capacitors C and inductances L), which are the physical representation of the electrochemical processes occurring at the system interface under study.
Another quality of EIS is its high measurement sensitivity, which makes the technique an attractive advantage for detailed information that can be obtained from the system in study. For example, EIS was used to evaluate the properties of thin oxide films formed on metals, monitoring superficial degradation of polymer layers or paint coatings due to swelling process (coatings damaged by water uptake). Surface changes due to ion adsorption at the interface can also be detected, knowing the kinetics reaction on metals under corrosion process; all this, due to the advantages of this technique to perform measurements using a very small amplitude signal at variable frequency range. As result of the advantages mention above, EIS has attracted the interest of many scientist and engineers from different areas of application, for example: corrosion technology, electrochemistry, metallurgy, hydrodynamic, chemistry, biology, physics, mechanical, and medicine. According to organic chemistry a molecule is a group of non-electrically charged particles that have two or more atoms chemically bonded. They are components of the matter lying on earth (minerals, atmosphere, gaseous substances, organic and inorganic compounds, liquids, among others) [41]. Molecules can be measured with a small AC amplitude of voltage as a function of the frequency without altering their properties. Some systems leading to the formation of interfaces with the materials for example; a solid–solution interface allows the ion charge transfer, conduction and electron flow that is governed by the free energy of the chemical reactions occurring at the interface region (named double layer), as is shown in the model of Figure 2. The electrical properties of the double layer can be measured by an electrical equivalent circuit, considering that the double layer behave as pure capacitor Cdl (ions charge) and the flow of ions through the metal surface is view as a resistance Rct of current, in according to Ohm’s law. In general, EIS allows separating the contribution response of different components in terms of the resistance of electron charge transfer, double layer capacitance, solution resistance, inductance, and other parameters, where several electrochemical processes are proceeding at a different reaction rate.
Schematic simulation of the electrochemical interface metal/electrolyte (electrical double layer) and its representative equivalent electrical circuit EEC model. Rs is the solution resistance, Rct is the charge transfer resistance, Cdl is the capacity of the double layer.
Electrochemical impedance spectroscopy (EIS) is the analytical method widely used to study the electrochemical systems by applying a small AC voltage signal as a function of frequency of the amplitude signal. In potentiostatic mode as that of direct current (DC) techniques, like Linear Polarization Resistance (LPR) or Polarization Potentiodynamic, the basic measurement parameter is the polarization resistance Rp that is equal to the impedance (Z) in alternate current (AC) mode. This can be represented according to the Ohm’s Law equation as denote bellow [8]:
where R is the resistor (Ω), V is the voltage (volts) and I is the current (amps) for direct current and E is the potential (volts) and Z is the impedance (Ω) for alternating current. To understand how the theory supports the EIS technique, it is necessary to consider two periodic waves; one is the current signal (I) and the other is related to potential signal (E). These waves behave as that shown in Figure 3, in which both signals oscillate at the same frequency and intensity, because one wave causes the other. However, there is an important effect that is the constant time shift between the two waves at certain angle, this is called the phase-angle shift
Sinusoidal waveform response in linear system showing phase-shift angle that is used to describe the electrochemical reactions at the interfaces [42].
where
in order to preserve the linear behavior in electrochemical systems, a small amplitude of AC voltage of about 5 to 10 mV is usually applied.
taking into account the electrical parameters of E and I as a function of angular frequency in the time domain, as well as the shifted-phase angle is possible to rearranged the Eq. 2 and 4 into Ohm’s Law as DC current, this relationship enables to calculate the impedance of the system under study as follows;
then, impedance (
Vector representation of impedance as complex number; X capacitive-reactance, R resistance, Z’ real component and Z” imaginary part of impedance.
considering the relationship between the potential and current amplitude, it results the total of the impedance as a complex number, as it follows;
however, the use of the current as a perturbation signal is also designed for certain electrochemical applications. Once the experimental data are collected, a series of potential-time and current-time are obtained, which correspond to the impedance at each frequency studied. The representation of the EIS data is by means of Impedance Spectra known as Nyquist Plots (−Zimag vs. Zreal) that represent the real impedance plotted against its imaginary part and also is often used the Bode plots (log|Z| vs. log freq.,
Experimentally speaking, when an EIS analysis is chosen to study the corrosion behavior of a piece of metal (WE-working electrode) that is immersed in an aqueous solution for a certain period of exposure time, which its equilibrium is perturbed by a low amplitude sinusoidal signal as function of frequency in the presence of a polarizable counter electrode (CE) and a reference electrode (RE), it is necessary to consider some electrical parameters (i.e. dielectric constant, permittivity, conductivity, resistivity and capacity charge) that will allow to interpret and deduce the corrosion behavior and its reactions mechanism by modeling the EIS data to an electrical RC circuit. These RC circuits are assembled with capacitors (C) and resistors (R) in parallel or series. Cdl is used to represent the electrical charge transfer at the metal/electrolyte interface known as the capacitance of a double layer (in farads), and that is present in all corroding aqueous systems. Rct is the resistance of the electron charge transfer, which is the value of the impedance in its real component and Rs is the solution resistance. The combination of these three passive elements provides a simple equivalent electrical circuit (EEC) for a uniform corroding metal. The experimental contribution of each parameter mentioned above is like that shown in Figure 5.
Representation of a corrosion cell and its equivalent electrical circuit (EEC), WE is the working electrode, CE is the counter electrode and RE is the reference electrode.
As mention above, EIS data is usually represented by Bode plots in which the \t|Z| module and phase angle
EEC models used to describe the electrochemical processes most studied by EIS. 1. Electrochemical interface (electron transfer), 2 and 3 oxide products and coatings, 4. corrosion mechanism, 5. adsorption and 6. ion diffusion processes.
Impedance and phase shift angle response for the passive RC electrical components.
A single RC circuit is first considered to have only one ohmic resistance of 3.3 kΩ connected to a power source, in this case, the current intensity flows constantly through the resistor without any phase difference with respect to the potential that originates the waveform signal,
On the other hand, when two passive components are combined in a RC circuit, for example, one resistor of about 276 Ω and a capacitor of 1 μF which are connected together in series, a small electrical AC signal of 10 mV is supplied to flow electrons through the closed circuit as dependence of frequency domain from 1 MHz to 1 mHz, the impedance is given by
Impedance data simulation of a simplest EEC model; a) RC elements in series (high coating impedance) and b) circuit #1 RC in parallel follow by R in series (simple corrosion undergo by electron charge transfer). Ro = 276 Ω, R1 = 3.3 kΩ, C1 = 1 μF.
Two-time constants could be expected in Figure 7a (circuit #2 is the combination of parallel RC in series)
Impedance data simulation of EEC models; a) circuit #2 parallel RC elements in series (oxides products), b) circuit #3 parallel RC elements in parallel follow by R in series (paint coating) and c) circuit #4 parallel RC elements in series (corrosion mechanism). Ro = 276 Ω, R1 = 3.3 kΩ, C1 = 1 μF, R2 = 1 kΩ, C1 = 10 μF.
Where
Other types of impedance spectra commonly observed in the printed research works, are similar to that reproduced with the simulation using circuit #5 or #6. Circuit #5 is the similar arrangement of circuit #3, in which the ideal capacitor C is replaced by a magnetic coil (inductor) L
Impedance data simulation of EEC models; a) circuit #5 parallel RC elements in parallel with an inductance L (adsorption mechanism) and b) circuit #6 parallel RC elements in series with Warburg impedance W (diffusion control). Ro = 276 Ω, R1 = 3.3 kΩ, C1 = 1 μF, Wo = 0.001 S-sec0.5.
In real cases the shape of Nyquist plot does not always show a perfect semicircle as it is observed for pure capacitor, it is necessary to replace capacitor (C) by a Constant Phase Element (CPE) in order to compensate the depression of the semicircle of frequency dispersion resulting of an experimental system due to the surface inhomogeneity, surface roughness, electrode porosity, surface disorder, geometric irregularities, and others. The CPE is a mathematical expression that is useful to represent several electric elements
In Figure 9 is shown the configuration of EEC for a Nyquist Plot obtained experimentally from a corrosion system, the use of CPE was useful to adjust the experimental data to a mathematical fit in order to obtain the corrosion behavior of the metal (carbon steel APIX-52-5 L) in acidic media) HCl1M [20, 47].
EEC electrical circuit #1 with a CPE to fit de impedance data corresponding to corrosion of pipeline steel immersed in HCl 1 M. Rs = 1.58 Ω-cm2, Cdl = 53.04 μF/cm2, Rct = 24.71 Ω-cm2.
The validation of the parameters obtained through an analogous EEC model can be evaluated through the Kramers-Kroning Transformations (KKT), this is done in order to evaluate and understand the mechanisms that occur in the system interface. KKT are mathematical relationships between the real and the imaginary parts of the impedance that must be obeyed by valid impedance data. Therefore, meaning that when imaginary impedance Z´´ is known for all frequencies, it is possible to calculate the real impedance Z´ at all frequencies [48, 49]. The general conditions on which KKT are based are show bellow:
Causality. The response of the system is due only to the perturbation applied and does not contain significant components from spurious sources.
Linearity. The perturbation and response of the system are linearly related i.e. the impedance is independent of the amplitude of the perturbation signal.
Stability. The system must be stable in the sense that it returns to its original state after the perturbation is removed.
The impedance must be finite-valued at
It has been shown that when a corroding system obeys the just mentioned four criteria the impedance data will converse correctly. However, the inverse is not always true. It is still possible to have a correct KKT when impedance data are nonlinear. In the case of our impedance measurements we are mainly concerned about the stability of the system and for this case the KKT is an excellent tool for data validation.
One of the principal applications of EIS is in the study of electrolyte/electrode interfaces which is widely used in the evaluation of corrosion mechanism in metals at different environments conditions, but it has also been very useful in the performance of coatings [50, 51, 52, 53, 54, 55] and in the failure detection of materials by stress corrosion cracking, similarly according to recent publications EIS also appears to be applied in ceramics materials [56, 57, 58]. In this sense, most of literature indicates that when applying a periodic signal of potential with amplitude from 5 to 10 mV in a given frequency domain, it is possible to detect the transitory current to obtain a change in the phase angle between I-V and the |Z| data, which progress over time in order to predict metal corrosion phenomena or a possible electrochemical reactions at the metal interface. It should be noted that using a known electrical circuit it is possible to characterize the impedance spectra for each system under study as it shown before. The device that allows applying a programmed potential and detected the current is a potentiostat. Therefore, in this study a galvanostat-potentiostat PARSTAT-4000 was used to evaluate the effect of the voltage applied to the two-electrode interface. In which a periodic constant signal at 1 kHz of frequency was applied over a voltage range of 1 to 1000 mV as a function of frequency domain (1 MHz to 1 mHz). For this study it was considered the following systems; i) An ideal system like circuit #1, which is designed by RC components, a pure capacitor of 1 μF is connected in parallel to a resistor of 3 kΩ and then connected together in series with a resistor of 200 Ω and ii) a 3 cm2 of stainless steel plate were used as working electrode (WE) after being exposed to an aqueous solution of HCl 1 M, then the WE was perturbed by a sinusoidal potential at different amplitude from 1 to 1000 mV, the corresponding impedance data for each of the cases that are displayed in Figure 10.
Typical impedance spectra showing the effects of the amplitude signal in; a) EEC model #1 (Ro = 276 Ω, R1 = 3.3 kΩ, C1 = 1 μF) and b) a stainless steel immersed in HCl 1 M.
The results show that when an alternate electrical pulse V(t) of 1 kHz fluctuates from 1 to 1000 mV through an ideal circuit like EEC model #1 as that shown in Figure 10a, a uniform current I(t) flows as a function of frequency domain, this signal produces a well-defined time constant in the entire frequency range. During the pulse at a time t the capacitor stores electrical energy causing an increase in potential difference
AC amplitude signal dependence on capacitance value for an ideal EEC circuit model #1 (C1 = 1 μF) and the stainless steel SS316 plate during its immersion in HCl 1 M.
The same behavior is observed for stainless steel SS316 plate immersed in HCl 1 M (Figure 10b), the metal interface exposed to the acid solution allows the electron transfer rate at the equilibrium potential (Ecorr) after applying lower amplitudes of the stimulus signal (between 1 to 20 mV), the impedance diagrams for this conditions do not show changes caused by the current flows into the system. In this sense the metal interface working similar as the ideal capacitor allowing ions loading charging such as Cl− and OH− with capacitances ranging between 40 to 80 μF/cm2, which is indicated by a well-defined one time constant due to the presence of a protective oxide layer (passive condition) and can be easily represented by the EEC model #1. Notable effects can be caused by applying high current, as is clearly seen in the distortion of the shape of EIS diagrams during increasing the amplitude of the stimulus signal from 50 to 1000 mV, the impedance value |Z| gradually down several orders of magnitude and severe changes in phase angle less than 20° are observed, this mean that two time constants are obvious seen and are related to the corroded interface, i.e. dissolution of the chrome protective film and manifestation of the pitting corrosion process that occurs after 200 mV, for this case an increase in the interface charge of electrons is expected with capacitances over 434.40 mF/cm2, like that as shown in Figure 11. It can conclude that it is possible to carry out experimental tests with amplitude signals ranging from 1 to 20 mV at the steady-state of corrosion potential without surface damage by the current applied, which is in according to the literature that reports an amplitude signal of 5 to 10 mv.
Figure 12 shows the typical impedance behavior of a steel with specification of AISI 8620 (0.20 wt.%C, 0.90 wt.%Mn, 0.35 wt.%Si, 0.60 wt.%Cr, 0.70 wt.%Ni, 0.25 wt.%Mo) in its received condition after exposed to different aqueous solutions such as distilled water, NaCl 0.5 M, HCl 1 M, H2SO4 1 M. The supplied voltage signal has an amplitude of 10 mV that fluctuating around the corrosion potential (−654 mV) in the frequency range of 1 MHz to 1 mHz, the response obtained is represented in Bode diagrams in which the impedance module and the phase angle serve as functions of the Log frequency, these diagrams indicate the sensitivity of the EIS technique to evaluate the presence of growth of a natural oxide on the steel surface, this is observed for the case of corrosion test in distilled water. Two well-defined time constants are observed in the evaluated frequency domain, one time constant at higher frequencies is related to the presence of an oxide layer, however, the intensity of the phase angle signal of 85° gives information about the oxide thickness and its adherence, however micro-cracks, closed porosity or growth defects are always present in many kinds of oxide layers that serve as conducting pathways of ions coming from the aqueous electrolyte, allowing electron charge transfer. This causes the phase-shifted continuously to zero degrees at frequencies between 80.7 kHz to 61.5 Hz, suggesting that the system behaves like a resistive component with a low flow of current near 10.3 μA/cm2, i.e. the current signal oscillates with the same phase as the potential does. In this frequency range an adsorptive process is carried out in which ions passing through the oxide layer defects, this mechanism is shown by the inductive response of the Figure 13. However, at lower frequencies over 8.59 Hz, an increase in the phase angle to 40° (56.6 mHz) is observed as if it were a capacitor in which the steel interface is charged by OH− molecules, it is worth mentioning that this response is not related to the corrosion process, but this is a typical response to a passive system with a magnitude of impedance about 103Ω -cm2.
Bode plots of impedance response of corroding 8620 plate at different aqueous solutions; distilled water, NaCl at 0.5 N, HCl at 1 M and H2SO4 at 1 M.
On the other hand, when the pH of the aqueous solution decreases to an acidified stage by the presence of ions such as Na+, Cl−, OH−, SO4−, H+, the shape of the impedance diagrams has been change, for example, for NaCl solution, a slightly acidified substance breaks-out almost the integrity of the natural oxide layer that covers the metal matrix and the response related to ion charge transfer to the metal interface is observed at lower frequencies. In addition to, an increase in current is also observed of about 34.479 μA/cm2 and a |Z| of 102Ω -cm2. Whereas, the same steel exposed to a more corrosive electrolyte such as HCl or H2SO4 at 1 M, the EIS response shows a single time constant that corresponding to the reaction’s oxidation and reduction on the steel interface. That means, transient electrical charge events occur on the electrochemical double layer with ions, and is characterized by an increase of the current from 43.58 and 198.25 μA-cm2, respectively and the decrease of one order of magnitude of the impedance module 101Ω -cm2, that is, less resistivity. The results in Table 3 indicates the simulation of impedance parameters with an appropriate electrical circuit that have been describe before, these data suggest that a higher current passing and large electrical charging at the interface of the steel increases the susceptible to attack by corrosion, that is, the internal energy of the aqueous solution has the ability to degrade freely the steel by pitting corrosion.
EIS parameters of simulated data to equivalent electrical circuit (EEC) for the steel 8620 during its exposure to different electrolytes.
Comparison of experimental and fitted EIS data for 8620 steel after exposure to distilled water.
Same behavior was observed for impedance-monitored corrosion tests for a 316 stainless steel plate (18.24 wt.%Cr, 8.07 wt.%Ni, 1.76 wt.%Mn, 0.5 wt.%Si, 0.27 wt.%Mo as principal alloying elements) after exposure to different aqueous solutions such as distilled water, 0.5 N NaCl, 0.5 N KCL, 1 M HCl or 0.5 M H2SO4, Table 4 shows the dissolution reaction. The impedance spectra that is shown in Figure 14 indicates one of the advantages of the EIS technique to evaluate the performance of metal interface in full immersed to aggressiveness conditions of different electrolytes. In this sense the natural film of chromium oxide that protects stainless steel against corrosion is remarkable in distilled water by the presence of one time constant at higher frequencies with an impedance value near to 1 MΩ-cm2. Meanwhile, the presence of Cl− ions (NaCl or KCl salt) alters the coating interface, which is electrically charged by ions causing the passivity state of stainless steel broken-down due to the dissolution of the oxide film, it is assumed that the steel is susceptible to corrosion by pitting. This is also seen through the presence of a time constant in the frequency domain studied. Similarly, the experimental tests in stronger acid media (HCl or H2SO4) indicate that stainless steel is seriously corroded in these conditions as a decrease in the impedance value below 1 mΩ-cm2.
Electrolyte | Concentration | Cdl (μF/cm2) | Reaction |
---|---|---|---|
Distilled water | Pure-1lt | 5.45 | — |
Sodium chloride, NaCl | 29.2 gr/lt (0.5 N) | 93.62 | |
Potassium chloride, KCl | 37.27 gr/lt (0.5 N) | 165.3 | |
Hydrochloric acid, HCl | 15.56 ml/lt (1 M) | 302.4 | |
Sulfuric acid, H2SO4 | 27.11 ml/lt (1 M) | 313 |
Capacitance of electrical double layer for the stainless steel SS316 during its exposure to different electrolytes.
Impedance response of corroding stainless steel (SS316) during exposure to (1) distilled water, (2) NaCl 0.5 N, (3) KCl 0.5 N, (4) HCl 1 M, and (5) H2SO4 1 M.
Other application of the EIS technique is like that shown in Figure 15, which is the evaluation of the effect on hydrodynamic conditions on the corrosion process in steels. This particular study has an interest to show the behavior of a pipeline steel (API-5 L-X70) that is used for transportation of hydrocarbon fluid. This steel was immersed in HCl 1 M solution at a different rotation speed of the working electrode (WE) from 0 to 1500 rpm, i.e. from static conditions 0 rpm, laminar flow 1 to 200 rpm and to turbulent flow 300 to 1500 rpm. Figure 15 shows the EIS response in the representation of Bode and Nyquist for the steel interface during its exposure to a corrosive media at different flow rates.
Experimental impedance diagrams of corroding pipeline steel (API-5 L-X70) during exposure to HCl 1 M at different electrode rotation speed (0 to 1500 rpm). a) Bode plots representation and b) Nyquist complex plane.
At the steady-state conditions, without rotation, the impedance response is related to electrons flow from the aqueous media to the metal interface allowing the formation of an interfacial layer over the metal surface, called an electrical double layer or a thin oxide film, which is indicated by the distortion of the semicircle presenting two time constants not very well-defined, besides in the diagram of bode two changes of slopes are shown for the impedance module. When applying rotation from 20 to 200 rpm an increase in the magnitude of the Zreal and Zimag is observed due to the reaction kinetics at which the interfacial layer is forming at instantaneous rate and is controlled by electron charge and mass transfer mechanism. However, at turbulent conditions (>500 rpm) it does not allow the ions adsorption at the metal interface to maintain the presence of the double electrochemical layer or oxide film allowing only transients of electron transfer as a function of time, which promote the interfacial degradation of the steel. Therefore, the impedance diagrams show that under equilibrium conditions there is a corrosion rate controlled by the presence of a natural oxide on the steel surface, but this increased by the hydrodynamic conditions at turbulent flow, which is what is seen in real cases of application. But at moderate rotation speed the mass transport toward to the metal surface is carried out, giving opportunity to adsorption of molecules that come from the aqueous solution, which is consistent with the review literature [59].
EIS technique can also be used for monitoring the evolution of the carbonation progress on concrete and the corrosion of the steel that serves as reinforcement. Carbonation results in a decrease in the pH of the cementation matrix when CO2(g) from the environment diffuses into the concrete structure, that can cause the loss of the passivity condition on the reinforcing steel surface and leads to an early failure of concrete by corrosion attack. Change in electrical resistance (Rpo) and capacitance (Cpo) of the concrete bulk is measured by a semicircle at high frequency region, which is the typical response of EIS diagram as that shown in Figure 16. More details are available in the research of H. Herrera in 2019 [6]. The corrosion test of this study was carried out on a fresh cross section of concrete sample after 7, 14, 21, 42, 61, 84, 106 and 120 days of artificially CO2(g) exposure periods (carbonation process). The characteristic impedance diagrams (EIS) of the concrete specimens after carbonation process at different ages of CO2(g) exposure during immersion in tap water are shown in Figure 16.
EIS spectra for the particular system of concrete with reinforcing steel exposed to different days of a CO2(g) environment, carbonation process [6]. a) Nyquist complex plane showing the carbonation progress and b) Nyquist response for steel corroding.
The EIS spectra is displayed in the Nyquist plots (Zreal vs. Zimaginary), these results show a single capacitive well-defined semicircle at higher frequencies followed by a straight line for 7 to 84 days of carbonation, which indicates the specific resistance of the concrete that could be controlled by charge transfer process; while the straight line indicates a diffusion mechanism of ions through the pores. It is observed that the semicircle amplitude for the reference sample [REF.-0d, non-carbonated] is shorter than the carbonated samples at 7 or 120 days, this suggest that its resistance to the ions diffusion through the porous structure is much lower (a favorable condition for the ions coming from the aqueous solution driven easily into the porous structure of the concrete, resulting in the faster flow of electrons with chemical reactions and molecules adsorption processes around the vicinity of the steel interface), in addition to this, a typical signal describes a passive stage of the concrete. However, notable changes in the semicircle amplitude of the EIS spectra are observed, these changes are associated to the increase in electrical resistance (R) value of the concrete from 23.62 to 101.54 kΩ·cm2 as the carbonation progress until to 84 days of CO2(g) exposure, this resulted to the blockade of the concrete pores by a calcium carbonate products, this reduces de alkalinity condition of the concrete matrix. However, the EIS diagrams for 106 days of exposure the resistance value decreases of about 58.26 kΩ·cm2, the carbonation is almost complete, but after 120 days the resistivity still remains lower than 84 days of CO2(g) exposure (65.59 kΩ·cm2) and the EIS spectra show remarkable changes in the low frequency domain. The changes registered by the EIS data for carbonated samples for 7 to 84 days are well-defined by one semicircle located at high frequencies (concrete porous resistance) with an infinite linear response at low frequencies (diffusion mechanism) only seen in the frequency domain of about >106 to 10−3 Hz by imposing a small amplitude of AC signal perturbation to the concrete/steel reinforcement system, this linear response was then modified by a second depressed semicircle with an inductive loop at lower frequencies in the domain of 10−6 Hz, using the EEC model #6 represents this behavior. The characteristic behavior of a second semicircle formed at lower frequencies for 106 or 120 days indicates that a process of corrosion may occur on the steel bar surface. The EIS parameters effectively demonstrate that after 106 days of exposure the carbonation is almost complete and corrosion damage is clearly progress on the steel bar. Carbonation progress was monitored by a significant increase in the diameter of the semicircle, thus demonstrating the increase in resistivity of ions transmission due to blockade of pores by precipitation of CaCO3 compounds. Finally, the EIS technique results a practical tool for evaluating the carbonation progress on reinforced concrete structures without causing structural damage, and its sensitivity to predict the activation of the reinforcing steel to be corroded.
Particularly, the Mexican’s oil-industry still uses tubular steel pipes for the specific purpose of transporting hydrocarbons or natural gas. Most of the lines are buried, so the national network extends over quite large distances, crossing varied terrains conditions some with rivers, others with salt-laden marshes, or polluted industrial or urban zones alike; the ambient temperatures and load pressure for the buried-pipelines network vary widely, to put it simply vulnerable to corrosion attack. Steel pipes are corroded as a result of iron oxidation during its exposure of longer service periods. Therefore, corrosion problems are directly related to ever-present economical and production losses, as well as environment affectations, though human losses also happen. Providing effective inhibiting substances that are added to processing fluids may reduce internal corrosion problems; there are a wide variety of organic substances known to act as corrosion inhibitors. Figure 16 have demonstrated that small inhibitor quantities of organic molecules (2-Mercaptobenzimidazole, MBI or 5-Nitro-2-Mercaptobenzimidazole NMBI can be added to the media to diminish its inherent aggressiveness toward the steel surfaces [18, 60, 61]. It becomes evident that testing with the largest 2MBI concentration, namely 200 ppm, there began to appear two-time constants, which suggests that two different processes are involved during the perturbation. One is related to a molecular adsorption mechanism of the organic compound over the polished metal surface, thus giving rise to multilayers, while the second constant is related to infiltration of the corrosive species through assorted passages formed during self-assembly and rearrangement of the organic molecules, very probably due to the diversity of interactive forces operating on the electrode system. This second time constant that operates at intermediate frequencies can be interpreted as a resistance to charge transfer. The 2MBI inhibitor gave inhibiting efficiencies over 96% after adding only 20 ppm covering the metal surface exposed to the acid medium 1 M HCl. Therefore, the heterocyclic organic molecule 2MBI was an efficient inhibitor in H2SO4 at 25 ppm. The plot of log Z vs. log f, shown in Figure 17, reveals that as the inhibitor concentration increases, so does the impedance, which is also related to the charge transfer resistance, Rct. This value was obtained through fitting a RC electrical circuit model #3 to the experimental data. The |Z| increment is explained by the excess of inhibitor’s molecules in the solution, which as being bipolar it tends to adhere to the metal surface, also interacting among them thus forming a multilayered assembly, capable of blocking the electron charge transfer, refer to Figure 17, to appreciate more clearly the said |Z| increase.
EIS spectra in bode plots obtained from the pipeline steel API-5 L-X52 samples immersed in H2SO4 1 M as a function of the 2MBI or 5NMBI at different concentration [60, 61]. a) Response for 2- Mercaptobenzimidazole and b) response for 5-Nitro-2-Mercaptobenzimidazole.
Furthermore, Natural liquid-extracts like Morinda citrifolia has been used as corrosion inhibitor for steels (AISI-1045) exposed to acidic environments of HCl. Both the organic and inorganic compounds commonly used in the industry to inhibit the corrosion process of metals and its alloys are mostly composed by highly toxic chemicals, in addition to being more expensive. In this research sugar-components derived from the Morinda citrifolia (MC) leaves have been extracted in aqueous solutions to perform a natural inhibitor capable to control de corrosion damage, which can replace the traditional inhibitors, being environmentally friendly [62, 63]. The experimental results indicate that this compound has shown excellent performance as corrosion inhibitor, reaching inhibition efficiency (EI), values up to 90% at inhibitor concentrations ranging 0.8 to 2 g/L and immersion times of about 1 to 4 h. It has been found that the inhibition process takes place by the adsorption of the molecules on the surface of the metal (AISI 1045), by a physisorption mechanism. See Figure 18.
EIS spectra in bode plots obtained from the pipeline steel API-5 L-X52 samples immersed in H2SO4 1 M as a function of the different concentration of natural molecules.
Other attractive uses of the EIS technique are its application to evaluate the integrity and coating performance during its exposure in corrosive environments as a function of time. Actually, EIS is used as a quality control to evaluate the process of surface finishing treatments in many industries. In this sense, the results of Figure 19 show the characteristic impedance spectra that indicate the quality properties and corrosion resistance of a Fe2B/FeB hard coating formed by boron atomic diffusion on the steel surface of a 1045 and 304 stainless steel during the boriding thermochemical treatment. Boriding is recognized as a thermochemical surface treatment in which boron diffuses into the ferrous substrate and reacts with Fe atoms of the bulk material to form a single (Fe2B) or double-phase (Fe2B/FeB) layer with a well-define thickness and composition [14]. The thickness of each layer has considerable effects on the mechanical behavior and corrosion behavior of the borided steels. However, the quality of the hard boride coatings depends essentially on the boriding temperature, treatment time, chemical composition of the steel substrate and the amount of boron atoms available around the sample surface to be coated.
EIS spectra for borided samples immersed in HCl 1 M as a function on exposure time. Boriding treatment was performed on AISI 1045 steel or AISI SS304 stainless steel treated at 950°C for 6 h [14]. a) Phase angle response for borided 1045 steel and b) Phase angle dependence for borided SS304 steel.
In this study, in particular a powder-pack boriding was used on AISI-SAE 1045 steel and SS316 stainless steel as surface thermochemical treatment to improve hardness and wear resistance to the steel samples, due to its low cost of hard coating processing. Boriding can also enhance the corrosion resistance of ferrous materials as shown in Figure 19. The results indicate that a single boride layer of Fe2B is formed on the 1045 steel surface, its morphology consisting a deep saw-tooth derived from the existence of diffusion paths (porosity and micro-cracks) in the surface of the steel matrix, in which the boron atoms are interstitial inserted to the surface forming a stable phase. For the borided stainless steel SS304 at the same conditions forms two-well defined layers on the surface, the columnar phase that was growth on the 1045 steel is less intense for SS304, this is due to the high concentration of chromium and nickel on the substrate surface, so the diffusion of boron stops by reacting immediately to form interstitial compounds of CrB, Cr2B or Ni3B in combination with FeB and Fe2B. EIS for the borided 1045 steel were recorded over 72 days of exposure to HCl 1 M solution, which the hard coating degrades slowly due to the defects on the coating structure that allow Cl− ions infiltrate, this is denote by changing the EIS spectra shape from one time constant to two time constant with a clearly phase-angle shifted and loss of impedance value, that means pitting corrosion initiation. No-corrosion damage was observed for the borided SS304 during its exposure in HCl 1 M solution for at least 170 days. Three times constants were observed after 44 days that’s reveal the presence of the FeB layer, after Fe2B layer and the diffusion layer.
Steel-can containers are manufactured from thin metal plates and are commonly used for the distribution or storage of food or beverages. Most conventional steel beverage cans have bent to form a tube and then welding both sides leaving a firm seam, then joining the bottom end to the tube, finally, the steel can is filling-out with the content. However, it is necessary to mention that the steels cans have an internal polymer coating or have been treated by electroplating to coated internally with a thin layer of tin in order to prevent any oxidizing or electrochemical corrosion during the steel exposure to the liquid product that it contains, which could be carbonated soft drinks, alcoholic drinks, fruit juices, teas, herbal teas, energy drinks and others [64, 65]. Despite of this internal coating having the good quality, it may fracture during storage or dissolve in small amounts in the liquid product, which depends on certain factors such as temperature, stowage load and handling of the products during their storage, as well as the chemical composition of the liquid and steel. Due to this, efforts have been managed to replace tin-based coatings by chemical compounds derived from epoxy resins or polymers. Nevertheless, the set-up of the factors mention above may situate the metal container (e.g. steel cans) at a potential risk to develop internal corrosion.
On the other hand, the sale of beverages storage in steel cans are committed to their handling in warehouse, in this way, there is a predisposition of the people who buy drink-cans, they think if cans are struck or bent the coating has been damaged and could be associated that the liquid product is contaminated with Fe+ ions. The impedance diagrams of Figure 20 show that the EIS technique can be applied to assess the corrosion resistance of the internal coating in a specific beverage can.
Phase angle EIS response obtained for metal beverage containers at different surface condition after immersed in NaCl 0.5 M as a function on AC amplitude signal. a) Uniform polymer coating, b) scratch defect on coating, c) polished surface no-coating.
In this case experimental corrosion tests on laboratory conditions were performed in a metal container used for the distribution of orange juice in Mexico. This can is made of steel with internally coated by a higher density polymer. Three particular cases are studied as denoted in the scheme of Figure 20; EIS spectra shown the behavior for a) with the coating, b) when the coating is mechanically damaged by a scratch and c) absence of coating, measured in HCl 1 M as a function of AC amplitude signal from 5 to 1000 mV. The bode diagrams indicate the presence of two well-defined time constants in the entire frequency domain for 5 and 10 mV of signal, the first one is related to the polymer coating with a resistance of electron -ion transfer of about 108Ω -cm2 with a micro-porous net (conducting paths) inside the coating as indicated by the second time constant. However as increasing the amplitude of signal voltage the |Z| value drops below 104 Ω-cm2, this response is associated with local stain-spots on the coating, which is indicted by a third time constant a low frequency. In the condition for the coating damaged by a localized defect such as a scratch or fracture, the impedance value decreases severely to 105 to 102 Ω-cm2 as increased the AC signal, one time constant indicates the electron charge transfer processes through the defect that cause ions to be diffused below the coating until its failure. Finally, for the condition in the absence of the coating on the steel plate, the impedance diagrams show the corrosion process of the steel at different AC signal amplitudes, which shows severe corrosion after 200 mV showing 101 Ω-cm2 of |Z| value.
This review study is related to the basic aspects of EIS to understand the corrosion mechanism of industrial steels that serve at different corrosive conditions, which has a great interest on giving an educational orientation and practical teaching guide of how to use the outstanding Electrochemical Impedance Spectroscopy (EIS) technique in metal corrosion technology. Therefore, this review considers a wide variety of practical electrochemical impedance cases based on the fundamental and qualities aspects of EIS theory and its experimental interpretation. This book chapter also serves as a support for postgraduate students to have a criterion in deciding through their own experiences when using the electrochemical impedance technique. The practical cases discussed here are part of the research experienced of Dr. Héctor Herrera Hernández (DR.3H) and his students & research group. It is worth to mention that EIS has been extended to various disciplines of science and technology, thus demonstrating great efficiency in evaluating the performance and integrity of metallic materials as can be seen in detail in the practical examples presented in this review work. So, EIS is not only applied to stationary conditions, but also more complex variables can be monitored such as: flow parameters, variable that undoubtedly represents the real conditions and could be an interesting challenge for analyzing and interpreting these phenomena by means of EIS data. The fitting EIS data using a mathematical model such as an equivalent electrical circuit is a critical process in the analysis and validation of EIS data for the acquisition of the system’s electrical parameters that can be related to the corrosion rate of the material under study and also gives information of its capacity of electrons charge. Finally, EIS seeks to obtain information on the system and its evolution with time by applying a sinusoidal voltage as a function of frequency range, in order to determine the properties and feasibility of materials that serve under severe service conditions, such as industrial steels as is this case of the reviewed book chapter.
The authors dedicate this chapter to the memory of Professor Florian B. Mansfeld, USC.
The authors would like to acknowledge and express their gratitude to CONACyT for the SNI distinction as research membership and the monthly stipend received. Héctor Herrera Hernández (DR.3H) also would like to thanks to CIDETEQ and Secretaria de Investigación y Estudios Avanzados SIyEA/UAEM for their financial support through research project (4602/2018E). This project was conducted in the (Laboratory of Electrochemical and Corrosion of Industrial Materials at UAEM). Finally, DR.3H dedicates this work in memory to Professor Florian B. Mansfeld, for his teaching and guidance in the way of science (EIS technique), FBM will be remembered forever for his outstanding knowledge and contibutions.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"6,5"},books:[{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10750",title:"Solanum tuberosum - a Promising Crop for Starvation Problem",subtitle:null,isOpenForSubmission:!0,hash:"516eb729eadf0d1a9d1d2e6bf31e8e9c",slug:null,bookSignature:"Prof. Mustafa Yildiz and Dr. Yasin Ozgen",coverURL:"https://cdn.intechopen.com/books/images_new/10750.jpg",editedByType:null,editors:[{id:"141637",title:"Prof.",name:"Mustafa",surname:"Yildiz",slug:"mustafa-yildiz",fullName:"Mustafa Yildiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10772",title:"Parasitic Plants",subtitle:null,isOpenForSubmission:!0,hash:"31abd439b5674c91d18ad77dbc52500f",slug:null,bookSignature:"Dr. Ana Maria Gonzalez and Dr. Hector Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10772.jpg",editedByType:null,editors:[{id:"281854",title:"Dr.",name:"Ana Maria",surname:"Gonzalez",slug:"ana-maria-gonzalez",fullName:"Ana Maria Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10737",title:"Equus",subtitle:null,isOpenForSubmission:!0,hash:"258ffafc92a7c9550bb85f004d7402e7",slug:null,bookSignature:"Associate Prof. Adriana Pires Neves",coverURL:"https://cdn.intechopen.com/books/images_new/10737.jpg",editedByType:null,editors:[{id:"188768",title:"Associate Prof.",name:"Adriana",surname:"Pires Neves",slug:"adriana-pires-neves",fullName:"Adriana Pires Neves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10777",title:"Plant Reproductive Ecology - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"3fbf391f2093649bcf3bd674f7e32189",slug:null,bookSignature:"Dr. Balkrishna Ghimire",coverURL:"https://cdn.intechopen.com/books/images_new/10777.jpg",editedByType:null,editors:[{id:"206647",title:"Dr.",name:"Balkrishna",surname:"Ghimire",slug:"balkrishna-ghimire",fullName:"Balkrishna Ghimire"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10749",title:"Legumes",subtitle:null,isOpenForSubmission:!0,hash:"49d3123cde96adbe706adadebebc5ebb",slug:null,bookSignature:"Dr. Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/10749.jpg",editedByType:null,editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:null,isOpenForSubmission:!0,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:null,bookSignature:"Dr. Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:null,editors:[{id:"112070",title:"Dr.",name:"Muhammad",surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:24},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5252},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"23",title:"Social Sciences",slug:"social-sciences",parent:{title:"Social Sciences and Humanities",slug:"social-sciences-and-humanities"},numberOfBooks:87,numberOfAuthorsAndEditors:1355,numberOfWosCitations:542,numberOfCrossrefCitations:429,numberOfDimensionsCitations:841,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-sciences",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9251",title:"Pleistocene Archaeology",subtitle:"Migration, Technology, and Adaptation",isOpenForSubmission:!1,hash:"65e1040ad23f0385a56f2d0472b4aee5",slug:"pleistocene-archaeology-migration-technology-and-adaptation",bookSignature:"Rintaro Ono and Alfred Pawlik",coverURL:"https://cdn.intechopen.com/books/images_new/9251.jpg",editedByType:"Edited by",editors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8090",title:"Who Wants to Retire and Who Can Afford to Retire?",subtitle:null,isOpenForSubmission:!1,hash:"90fe30d224594414bb156e42afa47f5e",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",bookSignature:"Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/8090.jpg",editedByType:"Edited by",editors:[{id:"77112",title:"Dr.",name:"Ingrid",middleName:null,surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10032",title:"Fire Safety and Management Awareness",subtitle:null,isOpenForSubmission:!1,hash:"ba924ac3ec282316ae8ba97882cc4592",slug:"fire-safety-and-management-awareness",bookSignature:"Fahmina Zafar and Anujit Ghosal",coverURL:"https://cdn.intechopen.com/books/images_new/10032.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7806",title:"Public Sector Crisis Management",subtitle:null,isOpenForSubmission:!1,hash:"84a998820880e0f006a5e9eac40d83e7",slug:"public-sector-crisis-management",bookSignature:"Alexander Rozanov, Alexander Barannikov, Olga Belyaeva and Mikhail Smirnov",coverURL:"https://cdn.intechopen.com/books/images_new/7806.jpg",editedByType:"Edited by",editors:[{id:"233092",title:"Dr.",name:"Alexander",middleName:null,surname:"Rozanov",slug:"alexander-rozanov",fullName:"Alexander Rozanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9256",title:"Risk Management and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"b5547d1d68d2db6f22eedb8f306b0276",slug:"risk-management-and-assessment",bookSignature:"Jorge Rocha, Sandra Oliveira and César Capinha",coverURL:"https://cdn.intechopen.com/books/images_new/9256.jpg",editedByType:"Edited by",editors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7810",title:"Quality of Life",subtitle:"Biopsychosocial Perspectives",isOpenForSubmission:!1,hash:"0392d2712c58885b729bd943f9aac37f",slug:"quality-of-life-biopsychosocial-perspectives",bookSignature:"Floriana Irtelli, Federico Durbano and Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/7810.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",middleName:null,surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6927",title:"Intellectual Property Rights",subtitle:"Patent",isOpenForSubmission:!1,hash:"9fd5884b3bce2ec6f77a8356ea384a37",slug:"intellectual-property-rights-patent",bookSignature:"Sakthivel Lakshmana Prabu, Suriyaprakash Tnk, Eduardo Jacob-Lopes and Leila Queiroz Zepka",coverURL:"https://cdn.intechopen.com/books/images_new/6927.jpg",editedByType:"Edited by",editors:[{id:"91590",title:"Dr.",name:"Sakthivel",middleName:null,surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:87,mostCitedChapters:[{id:"42656",doi:"10.5772/55538",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:8959,totalCrossrefCites:15,totalDimensionsCites:56,book:{slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"45760",doi:"10.5772/56967",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:8024,totalCrossrefCites:5,totalDimensionsCites:17,book:{slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"59705",doi:"10.5772/intechopen.74943",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:1660,totalCrossrefCites:14,totalDimensionsCites:17,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]}],mostDownloadedChaptersLast30Days:[{id:"58890",title:"Philosophy and Paradigm of Scientific Research",slug:"philosophy-and-paradigm-of-scientific-research",totalDownloads:8640,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"34156",title:"History and Sociology: What is Historical Sociology?",slug:"history-and-sociology-what-is-historical-sociology-",totalDownloads:14888,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"sociological-landscape-theories-realities-and-trends",title:"Sociological Landscape",fullTitle:"Sociological Landscape - Theories, Realities and Trends"},signatures:"Jiri Subrt",authors:[{id:"119641",title:"Dr",name:null,middleName:null,surname:"Subrt",slug:"subrt",fullName:"Subrt"}]},{id:"58060",title:"Pedagogy of the Twenty-First Century: Innovative Teaching Methods",slug:"pedagogy-of-the-twenty-first-century-innovative-teaching-methods",totalDownloads:6971,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",title:"New Pedagogical Challenges in the 21st Century",fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education"},signatures:"Aigerim Mynbayeva, Zukhra Sadvakassova and Bakhytkul\nAkshalova",authors:[{id:"201997",title:"Dr.",name:"Aigerim",middleName:null,surname:"Mynbayeva",slug:"aigerim-mynbayeva",fullName:"Aigerim Mynbayeva"},{id:"209208",title:"Dr.",name:"Zukhra",middleName:null,surname:"Sadvakassova",slug:"zukhra-sadvakassova",fullName:"Zukhra Sadvakassova"},{id:"209210",title:"Dr.",name:"Bakhytkul",middleName:null,surname:"Akshalova",slug:"bakhytkul-akshalova",fullName:"Bakhytkul Akshalova"}]},{id:"52475",title:"Teenage Pregnancies: A Worldwide Social and Medical Problem",slug:"teenage-pregnancies-a-worldwide-social-and-medical-problem",totalDownloads:5902,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"an-analysis-of-contemporary-social-welfare-issues",title:"An Analysis of Contemporary Social Welfare Issues",fullTitle:"An Analysis of Contemporary Social Welfare Issues"},signatures:"Sylvia Kirchengast",authors:[{id:"188289",title:"Prof.",name:"Sylvia",middleName:null,surname:"Kirchengast",slug:"sylvia-kirchengast",fullName:"Sylvia Kirchengast"}]},{id:"58894",title:"Research Ethics",slug:"research-ethics",totalDownloads:1874,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"42656",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:8954,totalCrossrefCites:15,totalDimensionsCites:56,book:{slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"45760",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:8013,totalCrossrefCites:5,totalDimensionsCites:17,book:{slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"52503",title:"Gender and Leadership",slug:"gender-and-leadership",totalDownloads:3103,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"gender-differences-in-different-contexts",title:"Gender Differences in Different Contexts",fullTitle:"Gender Differences in Different Contexts"},signatures:"Kathryn E. Eklund, Erin S. Barry and Neil E. Grunberg",authors:[{id:"191531",title:"Dr.",name:"Neil",middleName:null,surname:"Grunberg",slug:"neil-grunberg",fullName:"Neil Grunberg"},{id:"191532",title:"Dr.",name:"Erin",middleName:null,surname:"Barry",slug:"erin-barry",fullName:"Erin Barry"},{id:"191533",title:"Ph.D. Student",name:"Kathryn",middleName:null,surname:"Eklund",slug:"kathryn-eklund",fullName:"Kathryn Eklund"}]},{id:"60813",title:"Crisis Management: A Historical and Conceptual Approach for a Better Understanding of Today’s Crises",slug:"crisis-management-a-historical-and-conceptual-approach-for-a-better-understanding-of-today-s-crises",totalDownloads:3191,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"crisis-management-theory-and-practice",title:"Crisis Management",fullTitle:"Crisis Management - Theory and Practice"},signatures:"Khaled Zamoum and Tevhide Serra Gorpe",authors:[{id:"230918",title:"Prof.",name:"T. Serra",middleName:null,surname:"Gorpe",slug:"t.-serra-gorpe",fullName:"T. Serra Gorpe"},{id:"230920",title:"Dr.",name:"Khaled",middleName:null,surname:"Zamoum",slug:"khaled-zamoum",fullName:"Khaled Zamoum"}]},{id:"63707",title:"Drinking Water Treatment and Challenges in Developing Countries",slug:"drinking-water-treatment-and-challenges-in-developing-countries",totalDownloads:2761,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"the-relevance-of-hygiene-to-health-in-developing-countries",title:"The Relevance of Hygiene to Health in Developing Countries",fullTitle:"The Relevance of Hygiene to Health in Developing Countries"},signatures:"Josephine Treacy",authors:[{id:"238173",title:"Dr.",name:"Josephine",middleName:null,surname:"Treacy",slug:"josephine-treacy",fullName:"Josephine Treacy"}]}],onlineFirstChaptersFilter:{topicSlug:"social-sciences",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"75224",title:"Decoding the Digital Gap in Teacher Education: Three Perspectives across the Globe",slug:"decoding-the-digital-gap-in-teacher-education-three-perspectives-across-the-globe",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.96206",book:{title:"Teacher Education in the 21st Century - Emerging Skills for a Changing World"},signatures:"Steinar Thorvaldsen and Siri Sollied Madsen"},{id:"75268",title:"How Philosophizing the Dialogos Way Can Promote Education for Sustainable Development",slug:"how-philosophizing-the-dialogos-way-can-promote-education-for-sustainable-development",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.96198",book:{title:"Teacher Education in the 21st Century - Emerging Skills for a Changing World"},signatures:"Eirik Hæreid Marcussen, Michael Weiss and Guro Hansen Helskog"},{id:"75591",title:"Quality Inclusion of Young Children with Disabilities: Taking a Stance to Support Early Childhood Leaders",slug:"quality-inclusion-of-young-children-with-disabilities-taking-a-stance-to-support-early-childhood-lea",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.96511",book:{title:"Teacher Education in the 21st Century - Emerging Skills for a Changing World"},signatures:"Sara Movahedazarhouligh"}],onlineFirstChaptersTotal:55},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/119515/hideo-mitsuhashi",hash:"",query:{},params:{id:"119515",slug:"hideo-mitsuhashi"},fullPath:"/profiles/119515/hideo-mitsuhashi",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()