Average Hounsfield units for human tissues.
\r\n\tSolar radiation is the radiant energy that originated from the sun in the form of electromagnetic radiation at various wavelengths. Solar radiation is the source of renewable energy and can be captured and converted into various forms of energy (e.g. electricity and heat) using different technologies.
\r\n\tA very vast amount of solar energy reaches the atmosphere and surface of the earth and solar energy has been used for heating purposes for a very long-time and after solar cells’ invention in 1954, solar cells have also been used widely for electricity generation. Solar cells convert the sunlight into electricity by the creation of voltage and electric current through the so-called photovoltaic effect.
\r\n\tPhotovoltaic (PV) solar energy has attracted significant attention in the recent decade as a reliable source for power generation due to various merits such as the free source of energy, abundant materials resources, environmentally friendly and noise-free, longtime service life, requiring low maintenance, technological advancements, market potential, and very importantly, low cost. The growth of using photovoltaic (PV) solar energy as a promising renewable energy technology, is being increased more and more worldwide. Therefore, much further research is needed for possible future developments in the field of solar photovoltaic energy.
\r\n\tThe aim of this book is to provide detailed information about solar radiation as the source of photovoltaic (PV) solar energy for a broad range of readership including undergraduate and postgraduate students, young or experienced researchers and engineers.
\r\n\tThis should be accomplished by addressing the various technical and practical aspects of solar radiation fundamentals, modeling and the measurement for photovoltaic (PV) solar energy applications.
\r\n\tThe majority of this book should describe the basic, modern, and contemporary knowledge and technology of extraterrestrial and terrestrial solar irradiance for photovoltaic (PV) solar energy.
\r\n\tThe book covers the most recent developments, innovation and applications concerning the following topics:
\r\n\t• Fundamental of solar radiation and photovoltaic solar energy
\r\n\t• Solar radiation and photovoltaic solar energy potential
\r\n\t• Solar irradiance measurement: techniques, instrumentation and uncertainty analysis
\r\n\t• Solar radiation modeling for photovoltaic solar energy applications
\r\n\t• Solar monitoring and data quality assessment
\r\n\t• Solar resource assessment and photovoltaic system performance
\r\n\t• Solar energy and photovoltaic power forecasting
\r\n\tThese are accompanied with other useful research topics and material.
",isbn:"978-1-83968-859-1",printIsbn:"978-1-83968-858-4",pdfIsbn:"978-1-83968-860-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"4c3d1319d7286e81bfb15c1f4b20460a",bookSignature:"Dr. Mohammadreza Aghaei",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9862.jpg",keywords:"Solar Radiation Modeling, Solar Data Assessment, Solar Monitoring, Solar Radiation Forecasting, Solar Irradiance Measurements, Solar Instruments, Solar Spectral Distributions, Uncertainty Analysis, Solar Cell Technologies, Photovoltaics (PV), Solar Resource Assessment, Photovoltaics Power Forecasting",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 17th 2020",dateEndSecondStepPublish:"October 15th 2020",dateEndThirdStepPublish:"December 14th 2020",dateEndFourthStepPublish:"March 4th 2021",dateEndFifthStepPublish:"May 3rd 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A senior researcher in the field of photovoltaic solar energy, a postdoctoral scientist at Eindhoven University of Technology (TU/e), Chair of the WG2: reliability and durability of PV in EU COST PEARL PV.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"317230",title:"Dr.",name:"Mohammadreza",middleName:null,surname:"Aghaei",slug:"mohammadreza-aghaei",fullName:"Mohammadreza Aghaei",profilePictureURL:"https://mts.intechopen.com/storage/users/317230/images/system/317230.jpg",biography:"Mohammadreza Aghaei is a senior researcher in the field of photovoltaic solar energy, Eindhoven University of Technology (TU/e), The Netherlands. He is chair of the Working Group 2: reliability and durability of PV in European Cooperation in Science and Technology, COST Action PEARL PV.\nHe received the M.S. degree in electrical engineering from the Universiti Tenaga Nasional (UNITEN), Selangor, Malaysia, in 2013, and the Ph.D. degree in electrical engineering from the Politecnico di Milano, Milan, Italy, in 2016.\nHe was a Postdoctoral Scientist with Fraunhofer ISE and Helmholtz-Zentrum Berlin (HZB)-PVcomB, Germany, in 2017 and 2018, respectively. He is a Guest Scientist with the Department of Microsystems Engineering (IMTEK), Solar Energy Engineering, University of Freiburg since 2017. He is currently a Postdoctoral Scientist with the Design of Sustainable Energy Systems Group, Eindhoven University of Technology (TU/e), The Netherlands. He has authored numerous publications in international refereed journals, book chapters, and conference proceedings. The main his research interests include Solar Energy, Photovoltaic systems, PV monitoring, LSC PV, solar cells, machine learning, and UAVs.\nDr. Aghaei is a member of the International Energy Agency, PVPS program-Task 13 and International Solar Energy Society, and also an MC member in EU COST Action PEARL PV.",institutionString:"Eindhoven University of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Eindhoven University of Technology",institutionURL:null,country:{name:"Netherlands"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"47662",title:"CAD/CAM Technology in Implant Dentistry",doi:"10.5772/59322",slug:"cad-cam-technology-in-implant-dentistry",body:'When a patient presents with a need and a desire for implants to replace missing teeth, correct execution will only occur with thorough planning [1-4]. Recently introduced technology may benefit both the dentist and the patient when restoring with dental implants, in that the implants will be placed in an ideal, predictable, and planned location [4-7]. Implant dentistry is constantly challenging the practitioner to be aware of recent advances. Though it may feel overwhelming for a practitioner to stay informed with the continuous introduction of new technologies, implant dentistry is undergoing an exciting time, and in order to take full advantage of it, the practitioner has a duty to practice at the highest level. This chapter aims to inform the practitioner about the latest technologies, their history and importance, and the current options on the market.
Computerized tomography is a tool that is based on the original concept of conventional tomography [8,9]. Tomography is a type of image in which a 2-D slice is captured and the surrounded slices are blurred. This works by the sensor and the x-ray tube moving in opposite directions around the source. During this movement, the plane of interest remains fixed, and the surrounding planes become blurred due to constantly changing positions on the sensor. A panoramic image is a single tomographic image [9]. Panoramic radiographs cover large anatomical areas, have low radiation doses, and are easily and quickly done, though their distortion and 2-D quality limits their diagnostic value.
Computed tomography (CT) was introduced in 1973 by Godfrey Hounsfield. It works by an x-ray tube and a series of detectors which rotate in synchronous directions, as the x-ray tube emits fan-shaped beams through the region of interest and onto the detectors. The data captured is processed in a computer which displays the resulting image in voxels, or volume elements [10]. Benefits of CT include high resolution and absence of superimposed images, but they emit large radiation doses and are expensive.
More recently, a new technology called cone-beam computed tomography (CBCT) has become popular [1,10-13]. This works by the x-ray tube emitting beams onto a 2-D sensor. The x-ray tube and sensor rotate around the region of interest and expose an image at each degree of rotation. These slices can subsequently be arranged into a 3-D image which can provide detailed and accurate information which has been reported to be within 2% of geometric accuracy. Benefits of CBCT include cost effectiveness, ease of use, low radiation dose, and accurate gathering of information [14,15].
When utilizing CBCT technology, the practitioner should be aware of several features [14,15]. The resolution of a CBCT image acquired is measured by voxel size. The majority of CBCT’s used for dental implant planning has a voxel size of 0.4 mm, and the accuracy of measurements made on the CBCT are directly related to this size. When reading a CBCT, one way to analyze bone density is through the Hounsfield index. This index was named after the inventor of computed tomography, as previously mentioned. The scale ranges from-1,000 to+1,000, in which air reads at-1,000, water reads at 0, and extremely dense bone reads at+1,000 [16]. Different anatomical structures have varying Hounsfield units. It is important to know how to apply the Hounsfield scale because the differences in bone densities will alter the chosen surgical protocol. For instance, if the CBCT scan shows very dense bone, more implant preparation drills will be required. Each implant system has a unique protocol for soft and dense bone. The average Hounsfield units for human tissues are shown in Table 1 [16].
\n\t\t\t\tTissue\n\t\t\t | \n\t\t\t\n\t\t\t\tHounsfield Unit\n\t\t\t | \n\t\t
Trabecular bone | \n\t\t\t150-900 | \n\t\t
Cortical bone | \n\t\t\t900-1800 | \n\t\t
Dentin | \n\t\t\t1600-2400 | \n\t\t
Enamel | \n\t\t\t2500-3000 | \n\t\t
Muscle | \n\t\t\t35-70 | \n\t\t
Fibrous tissue | \n\t\t\t60-90 | \n\t\t
Cartilage | \n\t\t\t80-130 | \n\t\t
Average Hounsfield units for human tissues.
Most implant planning software is structured from the images produced by medical computed tomography. The conversion of a cone beam computed tomography image into a medical computed tomography image has not been studied, though it is hypothesized that there is no difference in linear measurement between the two.
When planning for implant surgery, few complications should occur when utilizing cone beam computed tomography. The most common complication, called beam hardening, occurs when the patient already has implants or a large amount of metal restorations [17,18]. This is a phenomenon that occurs when the metal causes the x-ray to increase in energy and become “hard” as it passes through an object. Beam hardening makes it difficult to visualize surrounding structures, thus altering the accuracy of measurements of crucial anatomical sites, such as the inferior alveolar nerve and the buccal plate thickness [17,18].
When ordering a scan, clear written instructions should be communicated from the practitioner to the radiologist. The practitioner should specify the reason for the scan (i.e., implant placement, sites), the size of the scan (small or large), and any additional anatomical regions that should be included (such as a TMJ or sinus evaluation). A small volume scan should be ordered for single tooth implants, and a large volume scan should be ordered for full-arch implants, inclusion of sinuses, or evaluation of TMJ or OSA.
Not only does cone-beam technology provide valuable information for evaluation before placing dental implants, but it also translates into completely digital planning of surgical cases. Utilizing a CBCT scan as a template, a surgical guide may be fabricated based on the precise location of a planned implant [1,4,19,20]. All of the major implant companies offer software which can be used for planning the specific location of implants in the CBCT image, and eventually a guide can be ordered and fabricated. The software allows the virtual placement of implants into the CBCT scan at the precise location you choose, while taking into account considerations such as anatomic landmarks, adjacent dentition, type of restoration to be fabricated, and occlusal scheme.
It is beneficial, and many times essential, to utilize a radiographic guide in order to aid in choosing the correct position of the implants. If a patient is missing several teeth, a radiographic guide should be worn by the patient during the CBCT scan. The guide allows the practitioner to locate where the future teeth will be restored in space. Radiographic guides can be fabricated in many ways, and one must consider the protocol of the implant planning software one chooses to use. For example, the Nobel Clinician prescribes a dual-scan protocol in which the patient wears the guide during the patient’s scan, and then the guide is scanned separately [21,22]. Fiduciary markers, or small gutta percha points placed into the radiographic guide, allow the software to overlap the two scans and merge the two files together. In this way, the guide may be virtually removed and replaced on the patient’s scan in the computer. Another way to fabricate a radiographic guide is by placing radiopaque denture teeth into the guide. These teeth will ultimately be visible in the scan so that the implants may be planned accordingly.
Regardless of which system is chosen, the practitioner must be able to understand when it is important to utilize a radiographic guide. When planning for single implant replacements, with adjacent teeth on both sides, it is often not necessary to use a radiographic guide because enough adjacent landmarks exist in order to surmise the future location of the single crown. In an edentulous patient, the decision to use a radiographic guide depends largely upon the type of restoration that will be fabricated. For a mandibular locator overdenture with two implants, it is often unnecessary to use a radiographic guide because the clinician has some freedom in the positioning of these implants. This is unlike an edentulous patient that is planned to receive metal ceramic restorations in which the abutment-screw access hole must open through the occlusal surface of the posterior teeth and the cingula of the anterior teeth. In this case, it is paramount to plan for the precise implant positioning, and the radiographic guide must have the identical anticipated tooth positions of the final prosthesis. If the patient is unhappy with the tooth position or shape on the radiographic guide, this must be fixed before utilizing it as the guide.
The purpose of utilizing virtual implant software is to plan the placement of the implants in prosthodontically driven positions [22,23]. Of course an implant may be placed anywhere the bony anatomy allows, but in order to build a successful prosthesis for that implant, the correct planning must be done. In the past, a panoramic tomography scan was performed while the patient wore a radiographic template with integrated metal spheres at the implant site. In this manner, the magnification of the radiograph was able to be calculated, and the approximate placement of the implant was planned. This conventional model was flawed in that it did not convey any 3-D information [24].
The most contemporary technique utilizes cone-beam CT technology which provides the essential 3-D information. The technique begins with fabrication of a radiographic guide with ideal tooth positions. This guide may be a duplicate of the patient’s exiting denture, only if that denture offers tooth positions that are acceptable by the patient and practitioner. If the denture is not ideal, a new one should be fabricated until the esthetics and functional demands are met. It is not until this point that a CBCT scan should be taken. The next step involves interpretation of the scan and possibly a re-working of the original treatment plan. This may include an additional surgery for bone grafting, or a different prosthesis choice. For example, if metal ceramic restorations were originally planned for, but the scan clearly shows that an implant cannot be placed in the proposed position, either a new design or a new prosthesis must be chosen. Lastly, the practitioner can virtually place the implants into the bone at the exact position that optimizes prosthodontic benefit as well as osseointegration potential. These positions are then translated into the surgical guide which will be used on the day of surgery for the placement of the implants.
The benefits of virtual planning and fabricating surgical guides from the planning are numerous. The patient’s chair time is decreased, the surgery is more predictable and less stressful, the implants are placed in a restoratively driven manner, and the case difficulty is learned ahead of time [6,25]. These factors allow the dentist to plan accordingly in regards to time and fees. Increased lab costs due to customized abutments may be realized during planning, and extra surgical procedures may be foreseen. The patient will know what to expect and will appreciate the dentist for the knowledge rendered.
As mentioned before, not all cases are advocated for radiographic guides. Similarly, not all patients are candidates for surgical guides. There are several limiting factors involving surgical guides. Firstly, the patient must have adequate opening. Depending on the guide, length of implant, and drill system used, the normal minimal opening is 35 mm at the first molar. This must be evaluated before ordering the guide, as the guides are custom made and non-returnable. Secondly, the patient must be aware that this is an added cost to the treatment. Surgical guides range anywhere from $200 to $1,000 depending on the complexity of the case and the company chosen to fabricate the guide.
Surgical guides allow prosthodontically driven implant placement, which ultimately will give the patient the best prosthesis to satisfy esthetic and functional needs. Surgical guides also allow more accuracy during implant placement. Not only are the implants placed in the exact pre-determined positions, but the surgery may take less time and ultimately will be more comfortable for the patient.
Some of the steps involved in virtual implant planning are different depending on which company you choose to utilize, but they are all based on the same principles. As mentioned before, the first step is to fabricate trial dentures for the completely edentulous patient or a trial tooth arrangement for the partially edentulous patient. Once this is approved by the patient and practitioner, the denture may be converted into a radiographic guide.
There are three basic methods of fabricating a radiographic guide. The generic method involves any type of scan template that has radiopaque material to indicate the desired implant positions. There are many radiopaque materials that may be used. These include radiopaque denture teeth (SR vivo TAC, Ivoclar, Vivadent, Amherst, NY), radiopaque acrylic (Biocryl X, Great Lakes, Tonawanda, NY), and triphenylbismuth added to denture acrylic.
Another type of guide, termed a dual density radiographic guide, is fabricated as a duplicate denture utilizing denture teeth of a high radiopacity and denture base of a lesser radiopacity. This type of guide prescribes a single scan protocol.
Lastly, the dual-scan protocol requires a radiographic guide with fiduciary markers placed into it. These are small divets 1.5 mm in diameter that are filled with gutta percha. Eight markers must be placed in each guide at different horizontal, vertical, and transverse levels. The term “dual-scan” comes from the way in which the patient is first scanned while wearing the radiographic guide, and then the guide is secondarily scanned alone on a plexi-glass table.
Once the type of guide is chosen, the CBCT scan may be performed. During this procedure, that patient’s occlusion must be opened at least 5 mm. This may be done by injecting PVS material on the patient’s occlusal surface and having the patient bite down at an open vertical dimension. A radiopaque material should never be used for this, as it will obscure the region of interest on the scan. This opened bite allows us to distinguish the maxillary teeth from the mandibular teeth in the radiograph.
Next, the case may be planned using the software of your choice. Most major implant companies sell their own software, but there are also universal software companies available which allow you to place any implant of your choosing. These will be reviewed later in the chapter.
The type of surgical guide must be chosen at this point. Three types exist based on the type of supporting tissue: bone, mucosal, and tooth [1,19,26,27].
Bone-based guides are indicated for the fully or partially edentulous arch, when immediate implants are being placed, when alveoloplasty is required, and when anatomic limitations exist which require visualization of the bone. Bone-based guides may provide a more accurate seating of the guide because of the rigidness of the bony base. Sufficient bone support is essential for a stable guide positioning. During surgery, an incision is made along the alveolar ridge and mucoperiosteal flaps are elevated. The guide sits directly on the bone and complete visibility is acquired. Limitations of bone-based guides include a lengthier surgical appointment, longer healing times for the patient, and difficulties gaining adequate palatal reflection in certain patients. Some argue that they may be a poor choice in a patient with a thin buccal plate which can be prone to resorption after tissue reflection.
Flapless implant surgery is an alternative method for implant placement. Advantages of a flapless surgery include less trauma to the hard and soft tissues during surgery, shortened procedure, rapid healing, fewer postoperative complications, decreased infection risk, and increased patient comfort [28-31]. A significant advantage of the flapless implant surgery is the decreased amount of bone loss as well as the preservation of the gingival margin of the adjacent teeth and interdental papillae [31]. More bone loss occurs during flapped procedures since the gingiva is unable to provide nutrients to the bone during the surgery. The preservation of tissues will help prevent the appearance of black triangles after healing.
Though flapless surgery offers many advantages, many surgeries still require a flap to be elevated. Reasons for this include the need for more visualization, bone grafting, and alveoloplasty. If the patient’s alveolar bone is thin, it is wise to elevate a flap and visualize the bone before placing an implant.
A mucosal-based guide is a good choice for a fully edentulous arch with a minimum of 2 mm of bone buccal and lingual to the proposed implant site. This amount of bone is necessary because of the increased risk of cortical bone perforation related to implant placement without direct visualization of the bone. The conventional flapless surgery relies on the experience of the surgeon to correctly predict the shape of the underlying bone when placing an implant. Recently it has been suggested that using a surgical guide fabricated virtually utilizing a CBCT may be beneficial in these cases.
Mucosal-based guides are good choices in the maxilla due to difficulty in reflection of the soft tissue of the palate which is necessary for a bone-based guide [32]. A mucosal-based guide can also be used in conjunction with osteotome sinus lifts [33]. Limitations include error when seating the guide due to the mobility of mucosa which ultimately can affect the implant positions. Furthermore, a mucosal-based guide will mimic the fit of the radiographic guide, which is most often fabricated as a duplicate of the denture. So it is important that the denture be very stable before utilizing it as a radiographic guide.
Three retention pins are required to be placed in these guides to stabilize them on the edentulous arch. The retention pins must be spread out, must not protrude into the vestibule, and must be an adequate distant from the implant sites so as not to hinder their placement.
The literature shows conflicting results when comparing mucosa-based versus bone-based guides. Some say that mucosa-based guides may have a decreased accuracy as compared to bone-and tooth-borne guides [27,34] and some say that mucosa-based guides have increased accuracy as compared to bone-and tooth-borne guides [20]. In the end, the literature shows that mucosal-based guides offer adequate accuracy of implant placement. Several studies have displayed a mean of about 1.0mm deviation at the apical aspect of the implant from the planned placement on the CBCT [20,35]. Some authors recommend a certain safety zone (2.0mm) due to the inevitable deviation of the planned versus actual osteotomy site [35].
A tooth-borne guide is indicated for the partially edentulous arch with adequate remaining sound dentition. A plaster cast or an optical scan of the cast is necessary for the laboratory fabrication of this type of guide. The remaining teeth will determine how stable a tooth-borne guide will be, so this must be evaluated carefully. It is recommended to use this type of guide when placing a single implant or several implants when minimally invasive surgery is required. Often times, a flapless surgery may be performed with a tooth-borne guide. In a partially edentulous patient, the treatment planning may be more difficult due to anatomical limitations, so utilizing computer-aided techniques can optimize the efficiency and accuracy of implant placement [36].
When preparing for surgery, several steps must be taken when utilizing a surgical guide. First, the guide should be disinfected according to the instructions provided from the company who fabricated the guide. Many guides may be placed in a chemical disinfectant for 10 to 12 minutes, and most guides will not tolerate heat disinfection. Also, if utilizing a mucosal-based guide, it is a good idea to place holes into the guide before the surgery begins, so that anesthesia may be administered throughout the surgical procedure. If this step is missed, the practitioner must remove the mucosal based guide, after removing the retention pins, administer anesthesia, and replace the guide in the exact same position. Or the practitioner must drill through the guide to gain access to the anesthesia locations. Lastly, when seating a mucosal-based guide on the day of surgery, the same interocclusal record which was used during the CBCT scan should be placed in the patients mouth along with the guide. At that point the retention pins can be placed into the bone to lock the guide into place while using the patients occlusion to stabilize the guide in the correct location.
Surgical guides can be made through many techniques and several different materials. Recently, stereolithography has become a popular method of fabricating surgical guides [5,19]. Stereolithography is an additive manufacturing process. This process utilizes a bath of light-sensitive liquid resin which is cured one layer at a time by a laser which traces the 3-D model which the computer demands of it. Guides made from stereolithography are light sensitive as well as heat sensitive. These guides should always be kept in their original packaging in a cool dry environment.
Stereolithographic guides are very rigid in comparison to a conventional resin cured guide. When restoring a large edentulous area in which the guide has the potential to flex under pressure of the implant drill, it may be a wise decision to choose a stereolithographic guide so that the implant positions are not compromised. Stereolithographic guides also allow more precision when placing implants as compared with conventional guides. One study compared the difference between the planned implant position and the actual osteotomy at the apex. The conventional guides had an average of 2.1mm difference whereas the stereolithographic guides had an average of 1.0mm difference [37].
Surgical guides may be fabricated from the radiographic guide. The radiographic guide can be sent to a manufacturer which will convert it, through a mechanized process, into a surgical guide with included guide sleeves. If this technique is chosen, the radiographic guide must incorporate the correct orientation and placement of the implant into the guide. This can be accomplished either by using a radiographically opaque denture tooth, gutta percha markers through the long access of the tooth, or any other radio-opaque material which can orient the planned implant into the radiographic guide.
Alternatively, a mapping technique may be used to fabricate a computer generated surgical guide. This is a technique which eliminates the need for a radiographic guide. The patient is scanned while wearing a radiolucent interocclusal record to disclude the patient’s posterior teeth by about 5 mm. Then a cast of the patient is scanned and a diagnostic wax-up is scanned. The computer is then able to orient these images to each other and the practitioner can digitally plan the implant placement in reference to the patients alveolar bone and planned tooth positions. A surgical guide can then be fabricated from the digital design.
All of these choices are viable options for fabricating a surgical guide. Each situation is unique and depending on the practitioners resources and relationship with their radiologist, the practitioner may choose any option he or she prefers.
The aim of this section is not to advertise any specific company, and we just want to share our experiences with these surgical guides. Surgical guides are fabricated by many manufactures, most notable the major implant companies. Each company has a unique planning software program as well as various choices for scanning protocol, guide materials, and design of the guide. Depending on the case, different manufacturers must be considered in certain situations. For example, if dual-scan protocol was desired, only NobelBiocare and Anatomage offer this option.
Things to Consider When Choosing a System
How well can you maneuver the software program? Or will your radiologist be manipulating most of the digital implant planning for you?
If you plan on doing the virtual placement yourself, make sure you are comfortable with the program. Each company offers a different program and these are not all as user-friendly as the next.
What kind of radiographic scanning protocol to you plan on using? Do you prefer the dual-scan protocol in which a denture can be quickly converted into a radiographic guide? Or do you prefer to have your lab fabricate a separate radiographic guide for the scan?
Do you plan on using bone, mucosa, or tooth supported guides? Or do you want to have the option of using all three, depending on the case?
These are all considerations that must be taken into account before investing in any imaging software because once you do, you will be limited by that companies available options.
Another consideration is that different implant-planning softwares allow different levels of resolution of the CBCT data. So even if the CBCT machine is capable of taking high resolution images, the planning software you choose may not be able to open the full resolution which was recorded. When placing implants, any fraction of a millimeter in the wrong direction may have a significant compromise on the outcome.
Keystone offers one of the most basic surgical guide systems, hence the coined term “EasyGuide” for their planning software. EasyGuide can be utilized for planning implant placement in single tooth edentulous spaces, partially edentulous spaces, and completely edentulous arches. The Keystone surgical guide can only be used in single tooth edentulous spaces and partially edentulous spaces.
During the CBCT, the patient wears a laboratory fabricated radiographic guide with barium sulfate incorporated in the areas where the teeth will be replaced. This guide also has a built in radiographic “X Marker”, which is subsequently used by Keystone to fabricate the surgical guide. The clinician then plans the implant placement in the EasyGuide computer program and virtually sends this information to Keystone to fabricate the surgical guide, if desired.
The surgical guide is fabricated from the digital planning. The clinician must send the radiographic guide with the incorporated “X Marker” to Keystone, which uses this to orient the guide to the patient’s jaw. Keystone then will fabricate the surgical guide either as “directional” or “depth and directional”, depending on the clinician’s wishes. This means that the guide can be used to direct the implant at the correct angle and it can also be used to direct it to the correct depth in the bone.
Biohorizons is another very simple and basic implant planning program that offers a user-friendly technique but limited options to the clinician. The surgical guide, called a Compu-Guide, can be fabricated for single implant placement, partially edentulous multiple implant placement, and fully edentulous multiple implant placement.
The patient wears a laboratory fabricated radiographic guide during the CBCT which is fabricated to the planning software, VIP, specifications. Then the clinician may digitally plan the implant placement using the VIP computer software. This software allows the placement of any type of implant system.
This information along with the radiographic guide is sent to Biohorizons which fabricates the Pilot Compu-Guide, a surgical guide that allows only the pilot drills to be sequenced through the guide. The clinician inserts the Compu-Guide and stabilizes it. The pilot osteomoties are drilled to length, then the guide is removed, and the twist drills are then used free-hand without the guide, according to the implant manufacturer’s protocol. This method increases the possibility of error because the angulation may be altered when using the twist drills.
NobelBiocare offers a very sturdy stereolithographic surgical guide with multiple indications for use, but can only be used with NobelBiocare implants. This system can be used for single tooth edentulous sites, partially edentulous sites, and completely edentulous arches.
The CBCT prescription requests a dual-scan protocol. The dual-scan protocol requires two scans: one scan of the patient while wearing the radiographic guide and one scan of the radiographic guide by itself. The radiographic guide has built-in fiduciary markers, which allow the software to overlay the two separate scanned images. Fiduciary markers are gutta percha dots added into the radiographic guide. If the patient is already wearing a well-fitting denture, these markers can be added to the denture very easily. If the patient does not have a well-fitting denture, a new tooth-set up should be tried in and then duplicated or processed into a radiographic guide. The fiduciary markers can be added to the radiographic guide by drilling eight to ten round divots throughout and filling them with gutta percha. They should be 1mm x 1 mm in size, and spread throughout the guide in different horizontal and vertical levels.
The planning software, NobelClinician, will fuse the two files, using the fiduciary markers, so that the patient’s anatomy can be visualized with and without the radiographic guide in place. In other words, the anatomical data and prosthetic data can be visualized separately. NobelClinician allows various views and reslices of the scan. It also shows a yellow safety zone around implants, which is especially important when performing flapless surgery. This safety zone helps prevents implants from being placed too close to anatomical structures or to other implants. The program also shows technical restrictions in red. For example, the software prevents the clinician from placing implants close to each other due to the width requirement of the metal sleeve in the guide. This is a complication of the fabrication of the guide to be the strongest possible in the areas where the implant drill will be entering. If the acrylic between two sleeves is thin, the guide may break in that area. If a clinician desires to place implants fairly close together, another system may be better suited.
NobelBiocare offers tooth-borne and mucosal-borne guides, but not bone-based guides. So for the completely edentulous patient, a mucosal-borne guide must be chosen. The clinician will run into a problem if the edentulous patient has very thick gingival tissue. The mucosal-based surgical guide is fabricated so that the head of the implants are placed 3 mm from the intaglio surface of the surgical guide, assuming the average patient has 3 mm of gingival tissue thickness. So if the patients gingiva is more than 3 mm thick, and the implants were digitally planned to be at the crest of bone, then the intaglio surface of the surgical guide will impinge upon the patients tissue. The easiest way around this is to relieve the intaglio surface of the guide around the drill hole, before placing it in the patient’s mouth.
The virtual planning will be completed on NobelClinician, which is one of the only programs that runs on Windows and Mac OS X. The NobelClinician software also allows planning of the abutments with digital visualization. This is particularly useful when placing angled implants which will need angled multi-unit abutments. The planned information from NobelClinician is sent electronically to NobelBiocare Production Center where the NobelGuide is produced centrally.
The following photos show how to make a Nobelguide and to restore a patient with an immediate implant-retained overdenture (Figures 1-20).
Complete denture with fiduciary markers is used as radiographic guide.
Patient wears complete denture with fiduciary markers during CBCT scan.
Occlusal view of maxillary surgical guide and maxilla on software.
Occlusal view of maxillary surgical guide on sofware after removing maxillary bone.
Frontal view of maxillary surgical guide and maxilla.
Occlusal view of actual surgical guide fabricated at NobelBiocare production center.
Surgical guide is inserted with bite-registration.
Anchor pins are placed to secure surgical guide.
Drills are used to prepare implant sockets.
Implants are placed through metal sleeves.
All implants are placed.
Surgical guide is removed after all implants are placed.
Locater abutments are screwed on implants.
Metal housings are seated on locaters.
Enough room is needed for locaters and metal housings.
Enough room is created for locaters and metal housings.
Metal housing are attached to complete denture.
Complete denture is converted to immediate implant-retained overdenture.
Intra-oral view of patient.
Panoramic radiograph of patient.
Anatomage is a system which offers some of the most options when planning implant placement with a surgical guide. The biggest downside of this system is that the guides are fabricated out of a conventional acrylic resin, which easily flexes under high loads of stress during implant placement. One must be very careful when choosing to use this system in a patient with a large edentulous area because it can easily be torqued out of position. Due to the material used, one benefit of this system is that the guides are cheaper than any other system. The price is a fixed price no matter how many implants are being placed.
This system, similar to the NobelClinician, prescribes for a dual-scan protocol. The company boasts that their planning software does not require a scanning appliance (or radiographic guide). Instead, a stone model and/or wax-up is scanned in order to visualize the planned positions of the teeth on the image. The planning software, InVivo5, allows the planning of any type of implant as well as bone-based, mucosal-based, and tooth-based guides. InVivo5 offers high quality volume rendering with some of the best visualization options. The volume easily switches between transparent hard tissues, as well as detailed bone, airway, or skin profiles.
The surgical guide is fabricated centrally by Anatomage in order to preserve the fixed price. Along with the surgical guide, the clinician may choose to order specialized depth control drills to gain the most guidance.
Materialise offers the most versatile implant planning program. They will provide bone-based, mucosal-based, and tooth-based guides. And all three types are fabricated by stereolithography so that they are the most rigid. A tooth-supported SurgiGuide is suitable for minimally invasive surgery. Since the guide was fabricated from virtual planning, it is not necessary to raise a flap for implant placement. A plaster cast of the pre-surgical teeth must be sent to Materialise with the SimPlant virtual plan. A mucosa-supported SurgiGuide is indicated when minimally invasive surgery is necessary for a fully edentulous case. A bone-supported SurgiGuide is appropriate for a partially or fully edentulous case when increased visibility or more surgical procedures are necessary.
The patient is scanned using the clinicians method of choice, either single-scan or dual-scan protocol. If choosing the dual-scan protocol, the clinician may purchase the dual scan markers from Materialise or add the fiduciary markers on their own. The digital planning is then performed using the software Simplant Planner. SimPlant Planner provides a library with more than 8000 different implants and abutments to provide easy surgical guide fabrication. Any implant system may be prescribed when using Materialise. The planned information is virtually sent to Materialise, and the surgical guide, Surgiguide, is fabricated.
If the clinician would like to convert the CBCT images into the 3D representation, the software SimPlant Pro is available for this. When using SimPlant Planner this conversion is performed by Materialise. SimPlant also offers a free software program, called SimPlant View, which allows anyone to view the files. So when planning a case between different team members, such as a surgeon, restorative dentist and lab technician, all team members may view the case on their personal computer.
There are three different options when choosing the surgical guide, SurgiGuide: Pilot, Universal, and SAFE. The Pilot SurgiGuide offers the guidance during the initial pilot drilling, and then the guide is removed and the drilling sequence is completed free-hand. This is best used in straightforward and simple cases. It is similar to Biohorizons Pilot Compu-Guide. The Universal SurgiGuide offers a fixed implant position and angulation, without depth control. The drill depth is provided in the prescription sent with the SurgiGuide so the clinician knows how deep to drill. The drills are guided through the SurgiGuide, and when the drilling sequence is completed, the guide is removed and the implants are placed in the osteotomies. Lastly, the SAFE SurgiGuide offers a fixed implant position, angulation, and depth. This guide provides the most controlled system.
Materialise also offers bone reduction guides. If the clinician is planning for a prosthesis which requires more restorative space than is available, a bone reduction guide can first be used to perform a precise amount of alveoloplasty. Afterwards, a bone-based implant surgical guide is placed, according to the amount of bone reduction, and the implants are predictable placed at that new bone level. When positioning the implants in the SimPlant Planner, place them at the desired subcrestal positions. The white dots around the implants in SimPlant show the bone height desired after placement. These can be moved up and down as desired. The SimPlant designers then have enough information to produce the drill guide as well as the bone reduction guide.
A virtually planned surgical guide for the placement of implants offers not only a predictable method for the surgical placement of the implants, but also a more convenient and time saving method for the fabricating provisional restorations. A clinician may use a surgical guide to its full advantage by preparing the provisionals before the day of surgery. Either the clinician or a lab technician can prefabricate the implant provisionals using the surgical template. First, a master cast is fabricated using the surgical guide. Implant analogs are attached to the guide, large undercuts are blocked out, a soft tissue matrix is fabricated, and stone is poured into the guide. This master cast can then be mounted against the opposing cast using the premade bite index which was utilized during the CBCT scan. Provisional restorations can be fabricated on this master cast, which will then be ready for chairside pick-up of the implants after surgery. This method provides an easy way to do immediate loading of implants on the day of surgery.
This is a popular method being advertised worldwide and is an advantageous strategy for attracting patients to your office. Patients are given an immediate result with predictable esthetics, phonetics, and function if the laboratory steps and chairside pick-up are followed correctly.
Another advantage of using virtual planning for dental implants is the ability to fabricate implant frameworks through scanning of the master cast. After implants have osseointegrated, a final implant-level impression is made, and a master cast is made and verified. Then a 3-D scanner will scan the implant positions and the framework can be designed virtually for the final prosthesis. From the virtual design, the framework is then milled from a block of metal [3]. Each scanning company has different milling materials to choose from. The framework can support a hybrid, bar-overdenture, or implant-supported fixed dental prostheses (such as screw-retained PFM crowns or FDPs). This framework can either be designed virtually or it can be designed in acrylic on the master cast and scanned (i.e., copy-milled). The latter of the two options is a better choice for complicated clinical situations with no room for error, such as implant-supported fixed dental prostheses. This prosthetic design requires very specific dimensions for the final porcelain layer, and thus should always be copy-milled. Hybrid cases which were planned well with enough restorative space can usually be designed virtually with retention elements added for the acrylic which will be surrounding the milled metal framework.
Milling provides a much more accurate framework than conventional casting because there is no shrinkage involved. When a multiple-implant framework is waxed and cast, it takes extra time because it must be sectioned and soldered after shrinkage. The milled frameworks, on the other hand, are milled to fit the implant positions exactly and involve no shrinkage or distortion of the metal. The major disadvantage of choosing a milled framework is that the companies offer only a limited number of material choices. Most companies do not offer a metal which porcelain can be added to predictably.
The following photos show how to make a milled titanium framework using NobelProcera software and scanner and to restore a patient with an implant-supported fixed dental prosthesis (Figures 21-34).
Final impression for each arch is made.
Denture teeth are arranged in the laboratory.
Both trial dentures are verified clinically.
Mandibular definitive cast is sprayed with zinc-oxide powder before placing scanning abutments.
Scanning abutments are screwed on the implant replicas, and definitive cast mounted for scanning.
Occlusal view of mandibular cast with implant positions after scanning process.
Trial denture is sprayed with zinc-oxide powder after placing it on definitive cast.
Note red line generated by laser probe during trial denture scanning process.
Occlusal view of trial denture overlapping mandibular cast including implants after scanning process.
Frontal view of final design of mandibular framework.
Occlusal view of final design of mandibular framework.
Clinical fit of mandibular framework verified.
Intraoral view after both restorations are inserted.
Panoramic radiograph after maxillary complete denture and mandibular FDP are inserted.
This chapter aimed to explain virtual treatment planning by using softwares, scanners and CAD/CAM technology. Each person involved in this process should possess the knowledge to use these softwares and hardwares, which require advanced training and experience. Otherwise, failures would be inevitable and costly. Although each step was explained and illustrated in great detail, the readers need to make to sure that they have proper knowledge, armemantarium, and experience before attempting to these types of treatment.
Qatar’s rapid development over the past decade led to a remarkable growth on its economy and population. Hence, increasing the demands on food, water, electronics and services. All of which relies on electricity to power the industries such as desalinization plants, farms, commercial infrastructures, semiconductor factories and more. According to the Qatar Water and Electricity Corporation or QWEC, a foremost power generation plant in the country stated that the electricity demand in the country is increasing at an estimated yearly average growth rate of 6–7% in the coming years [1]. In order to address the increasing electricity demand, the state is considering a new energy strategy that would foster sustainability, but also contribute to the reduction of the greenhouse gas emission levels. Fortunately, the gulf region where the country resides, experiences 6 kWh/m2/day amounting to 4449 h/year where 70% comes from sunshine, thus, focusing on optimization of energy extraction from sunlight is a viable solution [2]. In fact, renewable energy sources such as those from photovoltaic cell (PV) plants are estimated to contribute 11% to the global demand by 2050 according to the International Energy Agency (IEA) [3].
\nAnother possible source of renewable energy in Qatar can be harnessed from wind turbines. An assessment on wind energy potential in Qatar conducted by Qatar Petroleum [4] revealed that Qatar may employ use of small and medium wind turbines since 80% of the time wind speed over the country exceeds the critical speed of 3 m/s with annual mean speed over land and offshore of 4.3 and 5.7 m/s, respectively. It was estimated that 150 W/m2 may be harnessed from a 5 m/s wind speed but the power generated from wind turbines may be 8% less compared to the gas fired electricity. The cost projected for an offshore wind turbine is 10% less than the gas-based counterpart. Although wind turbines sound promising as a potential source of renewable energy, it does present several disadvantages compared to PV plants such as: annual maintenance on the turbine’s gear box in contrast to minimal maintenance for the PV, loud noise during operation for nearby inhabitants, and smaller life span of 20–25 years compared to 30 year life span of PV [5]. Qatar does not have immediate plans for installing wind turbines yet, instead it has been focusing on solar energy by allocating US $1 billion investment for the project which includes desalinization plants and a 200 MW power plant by Kahramaa [4]. With the upcoming 2022 FIFA cup, the country aims to be the first carbon neutral world cup utilizing solar energy to power air conditioning and fan zones. Since the state is leaning towards utilizing mostly solar energy to help power its industry, this study was conducted to primarily focus on PV alternative that was designed specifically for Qatar’s environment to test and understand its performance through measurment, prediction and analysis that should provide possible references for its solar industry.
\nLarge-scale PV farms are usually situated where maximum solar energy conversion can be generated which are either semi-arid lands or a desert. However, soaring temperatures reaching 50°C or more, high humidity and heavy sandstorms are some examples of environmental factors that may significantly reduce the efficiency in power generation of the PV systems. These issues are region-specific and may differ from one place to another even within the Gulf region, Hence, it is significant to investigate the modern PV technology under these harsh conditions that are specifically present in Qatar so that performance could be strongly correlated to it [6]. One apparent benefit from this is that the uncertainty of PV performance will be greatly reduced leading to a more predictable and profitable solar megaprojects that are planned to be constructed in the area [7, 8, 9]. The results could also cater to the interests of the manufacturers, researchers and technology enthusiasts in order to develop or innovate solutions.
\nEfficient energy management is among the benefits from understanding PV performance since some modern communities now use hybrid systems where they integrate renewable sources of energy such as solar PV to determine how it behaves in such systems. In [10], the authors discussed modeling and optimization of urban integrated energy systems to provide an energy plan or policy for a better energy efficiency aiming to mitigate energy crisis experienced in urban communities. In addition, Menetti et al. [11] proposed an efficient energy management that effectively use energy storage systems for renewable energy sources and the electric grid to reduce energy exchanged and power peaks on the grid. The data from the monitoring system becomes a necessary tool for conducting important analysis on the system for a region such as [12] to determine its costs and profit throughout its operation to assess its financial sustenance and feasibility for its possible application to other regions. In addition, it would also aid in contributing to the continuing development of efficient operations in industries to yield better results through exergy and energy analysis such as in [13, 14] and techno-economic analysis in [15, 16]. With increasing amount of studies being conducted centered on renewable energy especially on solar energy and PV, this study will prove useful to the scientific community and may serve as a significant reference to the ones conducted similarly in Qatar.
\nSeveral similar investigations in Qatar with same line of inquiries [17, 18, 19, 20, 21, 22, 23, 24, 25, 26] were conducted but none has been able to provide a cost-effective yet reliable system that satisfies the requirement for accessing, monitoring and predicting PV yield. Another major concern is the data acquisition system (DAS); most available commercial DAS tend to be costly when implemented for large solar PV plants. In addition, commercial DAS are inflexible for reconfigurations and modifications for various scenarios, thus, limiting its use. Furthermore, numerous efforts have been conducted in designing and implementing PV monitoring systems that utilize several sensors and data acquisition [27]. The system in [28] included an off-shelf component of Agilent 24902A, wherein the data were transmitted to the wired general purpose instrumentation bus to a computer that is running a LabVIEW™ program to determine the impact of solar irradiance and ambient temperature. Haba [29] developed a designated monitoring system for several PV panels that utilizes three gateways intended for weather station, current and voltage readings and storm detection which were then sent and hosted to online cloud specifically freeboard.io. A readily available commercial DAS was used for investigating the impact of module temperature and solar irradiance on PV efficiency and transmits to a server through the use of GPIB bus and cloud service [30]. Study [31] used a system consisting of LM35 temperature sensor and LDRs (light dependent resistors) for measuring ambient temperature and solar irradiance of PV module, respectively. The data is then transmitted to the computer wirelessly via Wi-Fi by connecting the microcontroller with EGSR7150 modem through its serial interface.
\nForecasting of PV performance were recently introduced to improve the quality of the systems such as providing dispatch management, control operations, power ramp and flicker prediction on hourly basis; and load consumption and production monitoring on daily basis [32]. Parametric models were also utilized for forecasting which are mostly affected by the execution of the component models and factors that are not readily available, thus, affects the accuracy of the system [33]. Recently, ML was introduced to overcome the above drawbacks; which is driven by the interactions between the input and output variables according to the data. Several studies were already conducted like in [34] were they determined the solar potential from rooftops in Switzerland by utilizing ML. Li et al. [35] used ML to predict solar irradiance to precisely determine the PV output utilizing Markov model and regression. Most of these forecasts were conducted on a specific environment, hence it would not be able to provide the same accruacy when used in another locations that exhibits different environmetal parameters like in Doha were it experiences unique intense heat and heavy dust storms that lasts year long. Therefore, we planned to deliberately harness ML for predicting the performance of PV systems from the various environmetal parameters that are present in Doha along the year for viability and bankability of PV energy source.
\nThis study describes the development of an in-house customized DAS system that is viable for monitoring PV systems under Qatar’s climate and which comprises of two parts: hardware and software. Also, the study is enhanced by describing the calibration tools that are necessary in such studies. The remainder of the study is as follows: Section 2 describes the hardware and signal acquisition. Section 3 depicts the ML used for the data gathered throughout the duration of the study. Section 4 discusses the results from the developed system and the ML results. Finally, the conclusion and future work is provided in Section 5.
\nThe hardware and signal acquisition system were installed in the Solar Lab facility under the College of Engineering, Qatar University. The ground floor of the solar lab facility houses computer workstation and wireless access point while its rooftop emulates the PV panel remote site where PV panels and data acquisition hardware system are mounted along with all environmental sensors and transducers. Qatar, having an arid environment with extreme ambient temperature easily surpassing 38°C during summer and often approaches 50°C with a humidity of 90% [36].
\nThe authors developed an in-house and customized DAS that acquires six environmental parameters and two electrical parameters enhanced by analog filters with gain and offset adjustments for calibration purposes. The in-house DAS was designed to allow flexibility in order to construct a customized signal conditioning circuit suitable for each sensor that are deemed appropropriate for the range of parameter values in an arid environment. The selected sensors along with the signal conditioning circuit and topology were chosen in order to implement a robust DAS that is appropriate to Doha’s harsh weather condition.
\n\nFigure 1 depicts the overall data acquisition framework. Data acquisition starts from the PV panel remote site where the PV panels are installed to ensure maximum exposure to sun’s irradiance, free from shadows due to obstructions. Selection of azimuth and tilt angle of PV panels are also important mounting details that needs to be considered. Two polycrystalline PV panels connected in series were installed in the remote site where the electrical and environmental parameters are needed to be monitored periodically in a specified sequence of steps as shown in the generalized flowchart in Figure 2. Periodic acquisition are normally spaced 15 minutes apart to ensure seamless wireless transmission between the PV panel remote site to the research lab site due to the considering the response time of the hardware. Information collected in the research lab site are stored locally and to the file hosting service of Dropbox™ along with the visualization facility of ThingSpeak™ through and iCloud™ server.
\nOverall data acquisition system.
Generalized flowchart of the PV monitoring system.
A detailed illustration of the connection diagram exhibiting important components of the PV panel remote site is shown in Figure 3. Six environmental and two electrical parameters, namely; (1) ambient temperature, (2) irradiance level, (3) wind speed, (4) surface temperature, (5) relative humidity, (6) dust levels, along with PV voltage and current are carefully studied and chosen by the authors in [37, 38] in order to provide highest probable impact contributing to the correlation to PV panel performance and efficiency, thus, allowing higher reliability when applying ML algorithms in [37, 38, 39]. The system specifications of each sensor are enumerated in Table 1 that includes actual part number of the off-the-shelf sensors along with the manufacturer and range of operation. The details of DAS design and operation were presented by the authors in [37, 38, 39, 40].
\nSystem set-up of the PV panel remote site.
Parameter to be measured | \nDiscrete sensor | \nManufacturer | \nMeasurement range | \n
---|---|---|---|
Ambient temperature | \nLM35 | \nNational Instruments | \n0–70°C | \n
Irradiance | \nPyranometer SP-110 | \nApogee | \n0 \n | \n
Wind speed | \nType 485 Wind sensor | \nQS-FS | \n0 \n | \n
Surface temperature | \nPlatinum RTD PT100 | \nFarnell | \n0–100°C | \n
Humidity | \nHIH-4000-003 | \nHoneywell | \n0–100% | \n
Dust level | \nGP2Y1010AU0F Optical Sensor | \nSharp | \n0 \n | \n
Voltage | \nVoltage transducer LV 25-P | \nLEM | \n0 V to 40 V | \n
Current | \nHall effect current transducer LA 100-P | \nLEM | \n0A to 5A | \n
PV system specifications of each sensor.
\nFigure 4 exhibits the simplified connection of various elements to process the required signal for redundant storage and visualization in the research lab set-up. The computer workstation uses LabVIEW™ program to process data that allows visualization of recently acquired data as depicted in Figure 5.
\nSystem set-up of the research lab site.
Sample visualization of collected data using LabVIEW™ in the computer workstation.
ML is the process of training a system to automatically predict output from given inputs. The system is trained using available set of inputs and their respective outputs. The concept of ML is useful in biomedical applications [41, 42], power prediction [43] and in general for any data processing and analysis studies. ML will be used to learn from the large amount of monitoring data collected from the setup discussed in the previous section and this phase is the training phase. During the training phase a part of the input data used for training is kept for validation purposes of the trained network. The validation accuracy is a metric used to determine how good or bad a trained ML network is. This ML trained network is then used for testing some data, which was unknown to the ML network, and is used to check if the ML trained network can actually predict the output correctly. The best performing ML network can later be used to predict the PV performance in the future based on the environmental and electrical inputs. The various stages that are involved in the ML are shown in Figure 6 and will also be discussed in details in the sub sections below.
\nStages involved in ML training and testing phase.
It is always important to make sure that the data given to the ML network for training is correctly formatted, making sure all outliers in the data or data which are incorrect and not trustable are removed. The data should be made in a format which is acceptable to the ML network in whichever platform it is being operated on. The ML Toolbox in Matlab 2019a version was used in the study. There are many other popular ML platforms available such as TensorFlow, Keras, Shogun, and RapidMiner.
\nOnce the data (input and output) for the training and testing purpose is ready, it is important to select the inputs that can help in predicting the output better. Sometimes giving more input or options to help in prediction can lead to overfitting problem. Overfitting is an issue where a ML network is trained to work the best for only the trained dataset and predicts mostly wrong outputs in the testing phase. This process of selecting the input data that can increase the testing accuracy is called feature selection. Selection of features is the process of selecting a subset of relevant, high-quality and non-redundant features to create learning models with better accuracy [44, 45]. Well known feature selection techniques – Correlation feature selection (CFS) and Relief feature selection (ReliefF) was used in this study. CFS technique selects feature sub-sets based on correlation-based heuristic evaluation function and ReliefF is an instance-based algorithm that assigns a relevance weight to each feature that reflects its ability to differentiate class values [43].
\nOnce the data that will be given as input to the ML training phase is selected, then there are several ML techniques that can be used to see which techniques help in reaching better performance. The techniques used in this study can be broadly classified into two categories: Classical ML Technique and Artificial Neural Network. These techniques are compared in the performance in prediction during the testing phase and the best performing technique is archived for future use.
\nSeveral simple and popular regression and prediction models are stated in this work to estimate the PV output power. These are namely Simple Linear Regression [46], Gaussian Process Regression (GPR) [47] from the regression learner, and M5P regression tree [37, 48]. Simple linear regression model has a linear relationship between the output response and the input parameters. GPR involves a Gaussian process using lazy learning and a measure of the point similarity (kernel function) to predict the value from the training data for an unseen point. The M5P regression tree uses algorithm which contains if and else statements [48, 49] . In other words, predicted power will be the result of “if… then…else…” statements.
\nArtificial Neural Network (ANN) (Figure 7) can be thought of a replication of how the human nervous system works, but as it is artificial thus it gets its name [50]. ANN has three major layers: (1) Input Layer, Output Layer and the Hidden Layer. The input layer are the artificial neurons where the actual learning happens and is also the layer where the input is fed. Each neuron in this layer has specific weights, which are details used to solve a specific problem. These weighted summed inputs are used in the hidden layers or in the transfer functions. Transfer functions are then inputs to activation function which tries to predict the output or provides the error back to the network as a feedback. This feedback acts as learning for the input layers again to try providing inputs to the activation function to help in better prediction.
\nANN architecture and its main components.
There are several Training Algorithms (TA) available in the Matlab implementation of ANN and each of them have their advantages and disadvantages and each application can have a specific TA giving better results than the others due to the nature of the data. It is always important to explore various combinations of number of hidden layers and training functions to find the best combination that predicts the PV power most accurately, as shown in Figure 8. The algorithm first varies the training algorithms, then the number of hidden layers and then does many tries using the combination. During each trial the algorithm stores the network with best performance for testing purpose. The final best network is used for predicting the PV power using the input variables.
\nMethod to find the best ANN to predict PV power.
\nFigure 9 summarizes the network settings for the ANN based PV power prediction. The optimum number of hidden layers providing the best model were different for all features (60), CFS technique (260) and ReliefF technique (180) and were found using the algorithm stated in Figure 8.
\nDetails of the ANN.
In order to compare between the various categories, techniques of ML and also the various feature selection techniques the below statistical parameters were used as performance metrics [51].
\n\n\n
The prototype system (setup shown in Figures 1 and 3) was used for collecting the PV and environmental parameters and PV power output data from the period November 2014 until October 2016. Summary of the PV and environmental parameters and the data used for deriving the predictive model of the PV power is shown in Table 2.
\nDetails of the environment parameters used for the predictive model.
Selected features vector.
\nTable 3 summarizes the parameters selected based on the feature selection techniques CFS and relief F.
\n\nTable 4 summarizes the performance of the different classical ML techniques with the different feature selection techniques. It shows both the Training and Testing Phase performance metrics. It can be clearly seen the best performance is the CFS feature selection technique using the GPR algorithm with RMSE of 12.7144 watts compared to the maximum power of 114.2017 watts generated from the setup, as shown in Table 2.
\nPerformance comparison between the various regression techniques.
\nTable 5 summarizes the performance of the ANN best trained network found using the algorithm in Figure 8 and with the different feature selection techniques. It can be clearly seen that the ANN trained network outperforms the techniques in the classical ML techniques. In ANN, without feature selection techniques provides the best testing performance with RMSE of 5.48 watts compared to the maximum power of 114.20 watts generated from the setup, as shown in Table 2.
\nPerformance comparison between the various ANN techniques.
A customized PV system was developed at Qatar University to monitor, analyze and evaluate the performance of PV using various weather factors. The study also showed details of how the data collected could be used for training different ML algorithms which were compared using different statistical analytical tools. Several feature selection techniques were also used to avoid the problem of overfitting. Comparison between the different ML techniques and different feature selection techniques helped in concluding an ANN model to be used for predicting PV performance using different environment and electrical parameters. The paper also showed the opportunity of tuning the ANN by varying the number of hidden layers and changing the training algorithm. This study describes the development of an in-house customized DAS system that is viable for monitoring PV systems under Qatar’s climate and which comprises of two parts: hardware and software. Also, the study is enhanced by describing the calibration tools that are necessary in such studies. The remainder of the study is as follows: Section 2 describes the hardware and signal acquisition. Section 3 depicts the ML used for the data gathered throughout the duration of the study. Section 4 discusses the results from the developed system and the ML results. Finally, the conclusion and future work is provided in Section 5.
\nThe authors would like to thank Qatar University for the financial, technical, and administrative support, without which this work would have not been achieved.
\nThe authors declare no conflict of interest.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"10450",title:"Evolutionary Psychology Meets Social Neuroscience",subtitle:null,isOpenForSubmission:!0,hash:"bd4df54e3fb185306ec3899db7044efb",slug:null,bookSignature:"Dr. Rosalba Morese, Dr. Vincenzo Auriemma and Dr. Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/10450.jpg",editedByType:null,editors:[{id:"214435",title:"Dr.",name:"Rosalba",surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2751bcfda55f9180615c1a6187424c74",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10909",title:"Psychometrics",subtitle:null,isOpenForSubmission:!0,hash:"51388e9ab6c536936b8da4f9c226252e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10909.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10910",title:"Learning Disabilities",subtitle:null,isOpenForSubmission:!0,hash:"8350f78c26c99f01f8130f772475504e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10910.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"187",title:"Mental and Behavioural Disorders and Diseases of the Nervous System",slug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:136,numberOfAuthorsAndEditors:3838,numberOfWosCitations:1920,numberOfCrossrefCitations:1110,numberOfDimensionsCitations:2961,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9778",title:"Migraine",subtitle:null,isOpenForSubmission:!1,hash:"ba52761e098431d3113b538e9f6427f6",slug:"migraine",bookSignature:"Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/9778.jpg",editedByType:"Edited by",editors:[{id:"83372",title:"Prof.",name:"Wojciech",middleName:null,surname:"Kozubski",slug:"wojciech-kozubski",fullName:"Wojciech Kozubski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8087",title:"Neuroprotection",subtitle:"New Approaches and Prospects",isOpenForSubmission:!1,hash:"10acd587ca2c942616bfc09c4b79df39",slug:"neuroprotection-new-approaches-and-prospects",bookSignature:"Matilde Otero-Losada, Francisco Capani and Santiago Perez Lloret",coverURL:"https://cdn.intechopen.com/books/images_new/8087.jpg",editedByType:"Edited by",editors:[{id:"193560",title:"Dr.",name:"Matilde",middleName:null,surname:"Otero-Losada",slug:"matilde-otero-losada",fullName:"Matilde Otero-Losada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7983",title:"Psychosomatic Medicine",subtitle:null,isOpenForSubmission:!1,hash:"4eabb8ae6669b096f822a3ebd57ef59d",slug:"psychosomatic-medicine",bookSignature:"Ignacio Jáuregui Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/7983.jpg",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7882",title:"Behavioral Pharmacology",subtitle:"From Basic to Clinical Research",isOpenForSubmission:!1,hash:"39b4b6a6a15f5131f34bfcb11b050523",slug:"behavioral-pharmacology-from-basic-to-clinical-research",bookSignature:"Juan Francisco Rodríguez-Landa and Jonathan Cueto-Escobedo",coverURL:"https://cdn.intechopen.com/books/images_new/7882.jpg",editedByType:"Edited by",editors:[{id:"45702",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Rodríguez-Landa",slug:"juan-francisco-rodriguez-landa",fullName:"Juan Francisco Rodríguez-Landa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9489",title:"Neurological and Mental Disorders",subtitle:null,isOpenForSubmission:!1,hash:"3c29557d356441eccf59b262c0980d81",slug:"neurological-and-mental-disorders",bookSignature:"Kaneez Fatima Shad and Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/9489.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",middleName:null,surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8781",title:"Weight Management",subtitle:null,isOpenForSubmission:!1,hash:"865bbf7988bae3fdb09bf58d6e6a6cd5",slug:"weight-management",bookSignature:"Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/8781.jpg",editedByType:"Edited by",editors:[{id:"231568",title:"Dr.",name:"Hubertus",middleName:null,surname:"Himmerich",slug:"hubertus-himmerich",fullName:"Hubertus Himmerich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8172",title:"Amyotrophic Lateral Sclerosis",subtitle:"Recent Advances and Therapeutic Challenges",isOpenForSubmission:!1,hash:"454a2d1c81a4a4452f791a8b31b427dd",slug:"amyotrophic-lateral-sclerosis-recent-advances-and-therapeutic-challenges",bookSignature:"Muralidhar L. Hegde",coverURL:"https://cdn.intechopen.com/books/images_new/8172.jpg",editedByType:"Edited by",editors:[{id:"264616",title:"Dr.",name:"Muralidhar L.",middleName:null,surname:"Hegde",slug:"muralidhar-l.-hegde",fullName:"Muralidhar L. Hegde"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8317",title:"Cognitive Behavioral Therapy",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"2c0d8be344e32f62e4ea4223425d8e4c",slug:"cognitive-behavioral-therapy-theories-and-applications",bookSignature:"Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/8317.jpg",editedByType:"Edited by",editors:[{id:"103586",title:null,name:"Sandro",middleName:null,surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8203",title:"Peripheral Nerve Disorders and Treatment",subtitle:null,isOpenForSubmission:!1,hash:"faa3d9b75498d42c252aa550b9346922",slug:"peripheral-nerve-disorders-and-treatment",bookSignature:"Hande Turker, Leonel Garcia Benavides, Guillermo Ramos Gallardo and Miriam Méndez Del Villar",coverURL:"https://cdn.intechopen.com/books/images_new/8203.jpg",editedByType:"Edited by",editors:[{id:"63331",title:"Prof.",name:"Hande",middleName:null,surname:"Turker",slug:"hande-turker",fullName:"Hande Turker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7070",title:"Novel Aspects on Motor Neuron Disease",subtitle:null,isOpenForSubmission:!1,hash:"3ea8aa08fd9d45d806411a8c60b7adab",slug:"novel-aspects-on-motor-neuron-disease",bookSignature:"Humberto Foyaca Sibat and Lourdes de Fátima Ibañez-Valdés",coverURL:"https://cdn.intechopen.com/books/images_new/7070.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",middleName:null,surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8917",title:"Glia in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"d5e6046e0b91d39d6e9e51cb92f09374",slug:"glia-in-health-and-disease",bookSignature:"Tania Spohr",coverURL:"https://cdn.intechopen.com/books/images_new/8917.jpg",editedByType:"Edited by",editors:[{id:"280385",title:"Dr.",name:"Tania",middleName:"Cristina Leite De Sampaio E",surname:"Spohr",slug:"tania-spohr",fullName:"Tania Spohr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:136,mostCitedChapters:[{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:7970,totalCrossrefCites:56,totalDimensionsCites:138,book:{slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]},{id:"30007",doi:"10.5772/31597",title:"Automated Epileptic Seizure Detection Methods: A Review Study",slug:"automated-epileptic-seizure-detection-methods-a-review-study",totalDownloads:8716,totalCrossrefCites:15,totalDimensionsCites:92,book:{slug:"epilepsy-histological-electroencephalographic-and-psychological-aspects",title:"Epilepsy",fullTitle:"Epilepsy - Histological, Electroencephalographic and Psychological Aspects"},signatures:"Alexandros T. Tzallas, Markos G. Tsipouras, Dimitrios G. Tsalikakis, Evaggelos C. Karvounis, Loukas Astrakas, Spiros Konitsiotis and Margaret Tzaphlidou",authors:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas"},{id:"94709",title:"Dr.",name:"Markos",middleName:null,surname:"Tsipouras",slug:"markos-tsipouras",fullName:"Markos Tsipouras"},{id:"94710",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Tsalikakis",slug:"dimitrios-tsalikakis",fullName:"Dimitrios Tsalikakis"},{id:"94712",title:"Dr.",name:"Loukas",middleName:null,surname:"Astrakas",slug:"loukas-astrakas",fullName:"Loukas Astrakas"},{id:"94714",title:"Dr.",name:"Spiros",middleName:null,surname:"Konitsiotis",slug:"spiros-konitsiotis",fullName:"Spiros Konitsiotis"},{id:"94873",title:"Prof.",name:"Margarita",middleName:null,surname:"Tzaphlidou",slug:"margarita-tzaphlidou",fullName:"Margarita Tzaphlidou"},{id:"128137",title:"Dr.",name:"Evaggelos",middleName:null,surname:"Karvounis",slug:"evaggelos-karvounis",fullName:"Evaggelos Karvounis"}]},{id:"26608",doi:"10.5772/28363",title:"Sex Differences in PTSD",slug:"sex-differences-in-ptsd",totalDownloads:4645,totalCrossrefCites:10,totalDimensionsCites:31,book:{slug:"post-traumatic-stress-disorders-in-a-global-context",title:"Post Traumatic Stress Disorders in a Global Context",fullTitle:"Post Traumatic Stress Disorders in a Global Context"},signatures:"Dorte Christiansen and Ask Elklit",authors:[{id:"73642",title:"Prof.",name:"Ask",middleName:null,surname:"Elklit",slug:"ask-elklit",fullName:"Ask Elklit"},{id:"113525",title:"MSc.",name:"Dorte",middleName:null,surname:"M. Christiansen",slug:"dorte-m.-christiansen",fullName:"Dorte M. Christiansen"}]}],mostDownloadedChaptersLast30Days:[{id:"43758",title:"Anxiety Disorders in Pregnancy and the Postpartum Period",slug:"anxiety-disorders-in-pregnancy-and-the-postpartum-period",totalDownloads:22845,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"new-insights-into-anxiety-disorders",title:"New Insights into Anxiety Disorders",fullTitle:"New Insights into Anxiety Disorders"},signatures:"Roberta Anniverno, Alessandra Bramante, Claudio Mencacci and Federico Durbano",authors:[{id:"157077",title:"Dr.",name:"Federico",middleName:null,surname:"Durbano",slug:"federico-durbano",fullName:"Federico Durbano"},{id:"166382",title:"Dr.",name:"Roberta",middleName:null,surname:"Anniverno",slug:"roberta-anniverno",fullName:"Roberta Anniverno"}]},{id:"58891",title:"Cognitive-Behavioral Psychotherapy for Couples: An Insight into the Treatment of Couple Hardships and Struggles",slug:"cognitive-behavioral-psychotherapy-for-couples-an-insight-into-the-treatment-of-couple-hardships-and",totalDownloads:6418,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"cognitive-behavioral-therapy-and-clinical-applications",title:"Cognitive Behavioral Therapy and Clinical Applications",fullTitle:"Cognitive Behavioral Therapy and Clinical Applications"},signatures:"Caroline Dugal, Gaëlle Bakhos, Claude Bélanger and Natacha\nGodbout",authors:[{id:"57536",title:"Prof.",name:"Claude",middleName:null,surname:"Belanger",slug:"claude-belanger",fullName:"Claude Belanger"}]},{id:"52275",title:"Impact of Social Media on Social Anxiety: A Systematic Review",slug:"impact-of-social-media-on-social-anxiety-a-systematic-review",totalDownloads:4588,totalCrossrefCites:5,totalDimensionsCites:8,book:{slug:"new-developments-in-anxiety-disorders",title:"New Developments in Anxiety Disorders",fullTitle:"New Developments in Anxiety Disorders"},signatures:"Anca Dobrean and Costina-Ruxandra Păsărelu",authors:[{id:"188659",title:"Dr.",name:"Anca",middleName:null,surname:"Dobrean",slug:"anca-dobrean",fullName:"Anca Dobrean"},{id:"188660",title:"Mrs.",name:"Costina",middleName:null,surname:"Păsărelu",slug:"costina-pasarelu",fullName:"Costina Păsărelu"}]},{id:"28239",title:"ADHD in Children and Adolescents: A Good Practice Guidance",slug:"adhd-in-children-and-adolescents-a-good-practice-guideline",totalDownloads:2717,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"current-directions-in-adhd-and-its-treatment",title:"Current Directions in ADHD and Its Treatment",fullTitle:"Current Directions in ADHD and Its Treatment"},signatures:"Somnath Banerjee",authors:[{id:"73771",title:"Dr.",name:"Somnath",middleName:null,surname:"Banerjee",slug:"somnath-banerjee",fullName:"Somnath Banerjee"}]},{id:"71936",title:"Feeding and Eating Disorders",slug:"feeding-and-eating-disorders",totalDownloads:651,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neurological-and-mental-disorders",title:"Neurological and Mental Disorders",fullTitle:"Neurological and Mental Disorders"},signatures:"Bianca Suciu and Cătălina-Angela Crișan",authors:null},{id:"62216",title:"Subtypes of Psychotic-Like Experiences and Their Significance for Mental Health",slug:"subtypes-of-psychotic-like-experiences-and-their-significance-for-mental-health",totalDownloads:1186,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psychosis-biopsychosocial-and-relational-perspectives",title:"Psychosis",fullTitle:"Psychosis - Biopsychosocial and Relational Perspectives"},signatures:"Lui Unterrassner",authors:[{id:"245870",title:"Ph.D. Student",name:"Lui",middleName:null,surname:"Unterrassner",slug:"lui-unterrassner",fullName:"Lui Unterrassner"}]},{id:"55127",title:"Peripheral Nerve Injury and Current Treatment Strategies",slug:"peripheral-nerve-injury-and-current-treatment-strategies",totalDownloads:2101,totalCrossrefCites:2,totalDimensionsCites:1,book:{slug:"peripheral-nerve-regeneration-from-surgery-to-new-therapeutic-approaches-including-biomaterials-and-cell-based-therapies-development",title:"Peripheral Nerve Regeneration",fullTitle:"Peripheral Nerve Regeneration - From Surgery to New Therapeutic Approaches Including Biomaterials and Cell-Based Therapies Development"},signatures:"Aysu Hayriye Tezcan",authors:[{id:"205536",title:"Prof.",name:"Aysu",middleName:null,surname:"Hayriye Tezcan",slug:"aysu-hayriye-tezcan",fullName:"Aysu Hayriye Tezcan"}]},{id:"60608",title:"Mucuna and Parkinson’s Disease: Treatment with Natural Levodopa",slug:"mucuna-and-parkinson-s-disease-treatment-with-natural-levodopa",totalDownloads:3197,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"parkinson-s-disease-understanding-pathophysiology-and-developing-therapeutic-strategies",title:"Parkinson's Disease",fullTitle:"Parkinson's Disease - Understanding Pathophysiology and Developing Therapeutic Strategies"},signatures:"Rafael González Maldonado",authors:[{id:"214658",title:"Dr.",name:"Rafael",middleName:null,surname:"Gonzalez-Maldonado",slug:"rafael-gonzalez-maldonado",fullName:"Rafael Gonzalez-Maldonado"}]},{id:"19371",title:"Herbal Remedies to Treat Anxiety Disorders",slug:"herbal-remedies-to-treat-anxiety-disorders",totalDownloads:17915,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"different-views-of-anxiety-disorders",title:"Different Views of Anxiety Disorders",fullTitle:"Different Views of Anxiety Disorders"},signatures:"Bhagya Venkanna Rao, Bettadapura N. Srikumar and Byrathnahalli S. Shankaranarayana Rao",authors:[{id:"52282",title:"Prof.",name:"Byrathnahalli S.",middleName:null,surname:"Shankaranarayana Rao",slug:"byrathnahalli-s.-shankaranarayana-rao",fullName:"Byrathnahalli S. Shankaranarayana Rao"}]},{id:"73869",title:"Neuroactive Steroids in Hypoxic–Ischemic Brain Injury: Overview and Future Directions",slug:"neuroactive-steroids-in-hypoxic-ischemic-brain-injury-overview-and-future-directions",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neuroprotection-new-approaches-and-prospects",title:"Neuroprotection",fullTitle:"Neuroprotection - New Approaches and Prospects"},signatures:"Nicolas Toro-Urrego, Marco Avila-Rodriguez, María Inés Herrera, Andrea Aguilar, Lucas Udovin and Juan P. Luaces",authors:[{id:"306021",title:"Dr.",name:"Lucas",middleName:null,surname:"Udovin",slug:"lucas-udovin",fullName:"Lucas Udovin"},{id:"306022",title:"Dr.",name:"María Inés",middleName:null,surname:"Herrera",slug:"maria-ines-herrera",fullName:"María Inés Herrera"},{id:"308465",title:"Dr.",name:"Nicolás",middleName:null,surname:"Toro Urrego",slug:"nicolas-toro-urrego",fullName:"Nicolás Toro Urrego"},{id:"308469",title:"Dr.",name:"Juan P.",middleName:null,surname:"Luaces",slug:"juan-p.-luaces",fullName:"Juan P. Luaces"},{id:"311483",title:"Dr.",name:"Marco Fidel",middleName:null,surname:"Avila-Rodriguez",slug:"marco-fidel-avila-rodriguez",fullName:"Marco Fidel Avila-Rodriguez"},{id:"332900",title:"Dr.",name:"Andrea",middleName:null,surname:"Aguilar",slug:"andrea-aguilar",fullName:"Andrea Aguilar"}]}],onlineFirstChaptersFilter:{topicSlug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/113738/ouaddi-hamid",hash:"",query:{},params:{id:"113738",slug:"ouaddi-hamid"},fullPath:"/profiles/113738/ouaddi-hamid",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()