Dermatological indications of PRP.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"6310",leadTitle:null,fullTitle:"Genotoxicity - A Predictable Risk to Our Actual World",title:"Genotoxicity",subtitle:"A Predictable Risk to Our Actual World",reviewType:"peer-reviewed",abstract:"This book is designed to provide an overview of the different genotoxicants and their effects on living organisms, including humans. The contributions made by the specialists in this field of research are gratefully acknowledged. We hope that the information presented in this book will meet the expectations and needs of all those interested in the different aspects of the genotoxicity field. The publication of this book is of great importance to those scientists, pharmacologists, physicians and veterinarians, as well as engineers, teachers, graduate students and administrators of environmental programmes, who make use of these investigations to understand both the basic and applied genotoxic aspects of known and new xenobiotics, and to guide them in their future investigations.",isbn:"978-1-78923-419-0",printIsbn:"978-1-78923-418-3",pdfIsbn:"978-1-83881-236-2",doi:"10.5772/intechopen.69556",price:119,priceEur:129,priceUsd:155,slug:"genotoxicity-a-predictable-risk-to-our-actual-world",numberOfPages:122,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"14a0966cec5283fdbc781a6bb47ed4e3",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",publishedDate:"July 11th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6310.jpg",numberOfDownloads:20765,numberOfWosCitations:67,numberOfCrossrefCitations:82,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:167,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:316,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 10th 2017",dateEndSecondStepPublish:"May 31st 2017",dateEndThirdStepPublish:"December 1st 2017",dateEndFourthStepPublish:"December 31st 2017",dateEndFifthStepPublish:"March 3rd 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy",profilePictureURL:"https://mts.intechopen.com/storage/users/14764/images/system/14764.jpg",biography:"Marcelo L. Larramendy, Ph.D., serves as Professor of Molecular Cell Biology at the School of Natural Sciences and Museum (National University of La Plata, Argentina). Appointed Senior Researcher of the National Scientific and Technological Research Council of Argentina. Former Member of the Executive Committee of the Latin American Association of Environmental Mutagenesis, Teratogenesis and Carcinogenesis. Author of more than 450 contributions, including scientific publications, research communications and conferences worldwide. Recipient of several national and international awards. Prof. Larramendy is a regular Lecturer at the international A. Hollaender Courses organized by the IAEMS and former guest scientist at NIH (USA) and the University of Helsinki, (Finland). He is an expert in Genetic Toxicology and is, or has been, referee for more than 20 international scientific journals. Member of the International Panel of Experts at the International Agency for Research on Cancer (IARC, WHO, Lyon, France) in 2015 for the evaluation of DDT, 2,4-D and Lindane. Presently, Prof. Dr. Larramendy is Head of the Laboratory of Molecular Cytogenetics and Genotoxicology at the UNLP.",institutionString:"National University of La Plata",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"20",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski",profilePictureURL:"https://mts.intechopen.com/storage/users/14863/images/system/14863.jpg",biography:"Sonia Soloneski has a Ph.D. in Natural Sciences and is Assistant Professor of Molecular Cell Biology at the School of Natural Sciences and Museum of La Plata, National University of La Plata, Argentina. She is a member of the National Scientific and Technological Research Council (CONICET) of Argentina in the Genetic Toxicology field, the Latin American Association of Environmental Mutagenesis, Teratogenesis and Carcinogenesis (ALAMCTA), the Argentinean Society of Toxicology (ATA), the Argentinean Society of Biology (SAB) and the Society of Environmental Toxicology and Chemistry (SETAC). She has authored more than 380 contributions in the field, including scientific publications in peer-reviewed journals and research communications. She has served as a review member for more than 30 scientific international journals. She has been a plenary speaker in scientific conferences and a member of scientific committees. She is a specialist in issues related to Genetic Toxicology, Mutagenesis, and Ecotoxicology.",institutionString:"National University of La Plata",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1210",title:"Toxicogenomics",slug:"toxicogenomics"}],chapters:[{id:"57717",title:"In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages",doi:"10.5772/intechopen.71923",slug:"in-vitro-cytotoxicity-and-cell-viability-assays-principles-advantages-and-disadvantages",totalDownloads:14820,totalCrossrefCites:78,totalDimensionsCites:157,hasAltmetrics:1,abstract:"Cytotoxicity is one of the most important indicators for biological evaluation in vitro studies. In vitro, chemicals such as drugs and pesticides have different cytotoxicity mechanisms such as destruction of cell membranes, prevention of protein synthesis, irreversible binding to receptors etc. In order to determine the cell death caused by these damages, there is a need for cheap, reliable and reproducible short-term cytotoxicity and cell viability assays. Cytotoxicity and cell viability assays are based on various cell functions. A broad spectrum of cytotoxicity assays is currently used in the fields of toxicology and pharmacology. There are different classifications for these assays: (i) dye exclusion assays; (ii) colorimetric assays; (iii) fluorometric assays; and (iv) luminometric assays. Choosing the appropriate method among these assays is important for obtaining accurate and reliable results. When selecting the cytotoxicity and cell viability assays to be used in the study, different parameters have to be considered such as the availability in the laboratory where the study is to be performed, test compounds, detection mechanism, specificity, and sensitivity. In this chapter, information will be given about in vitro cytotoxicity and viability assays, these assays will be classified and their advantages and disadvantages will be emphasized. The aim of this chapter is to guide the researcher interested in this subject to select the appropriate assay for their study.",signatures:"Özlem Sultan Aslantürk",downloadPdfUrl:"/chapter/pdf-download/57717",previewPdfUrl:"/chapter/pdf-preview/57717",authors:[{id:"211212",title:"Dr.",name:"Özlem Sultan",surname:"Aslantürk",slug:"ozlem-sultan-aslanturk",fullName:"Özlem Sultan Aslantürk"}],corrections:null},{id:"57350",title:"DNA Damage in End-Stage Renal Disease Patients. Assessment by In Vitro Comet Assay and by Cell-Free DNA Quantification",doi:"10.5772/intechopen.71319",slug:"dna-damage-in-end-stage-renal-disease-patients-assessment-by-in-vitro-comet-assay-and-by-cell-free-d",totalDownloads:1166,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Inflammation is a common feature in end stage renal disease (ESRD) that might contribute to increase DNA damage. ESRD patients present increased circulating cell-free DNA (cfDNA) and different types of DNA injury. The underlying inflammatory process in ESRD may be associated with increased genomic damage and cfDNA contributing to further enhance inflammation. We analyzed the degree of genomic damage in ESRD patients under hemodialysis therapy, using the comet assay and cfDNA quantification. ESRD patients presented significantly higher C-reactive protein (CRP) and cell damaged DNA. The cfDNA correlated with age and inflammatory stage. Nine out of 39 patients died during the one year follow-up period and presented significantly higher cfDNA, than those who persisted alive. At lower CRP values, the increased DNA damage is still within the cell, and at higher CRP the damaged DNA is released in to plasma. The higher degree of genomic damage in ESRD might be a consequence of inflammation and aging, and may contribute to increase cancer and cardiovascular mortality risk. Our data suggest that the comet assay is more sensitive for low-grade inflammatory conditions, while cfDNA appears as a good biomarker for more severe inflammatory conditions, and as a biomarker for the outcome of ESRD patients.",signatures:"Susana Coimbra, Alice Santos-Silva, Elísio Costa and Elsa Bronze-da-\nRocha",downloadPdfUrl:"/chapter/pdf-download/57350",previewPdfUrl:"/chapter/pdf-preview/57350",authors:[{id:"56251",title:"Prof.",name:"Alice",surname:"Santos Silva",slug:"alice-santos-silva",fullName:"Alice Santos Silva"},{id:"66774",title:"Prof.",name:"Susana",surname:"Coimbra",slug:"susana-coimbra",fullName:"Susana Coimbra"},{id:"181971",title:"Prof.",name:"Elísio",surname:"Costa",slug:"elisio-costa",fullName:"Elísio Costa"},{id:"212504",title:"Prof.",name:"Elsa",surname:"Bronze-Da-Rocha",slug:"elsa-bronze-da-rocha",fullName:"Elsa Bronze-Da-Rocha"}],corrections:null},{id:"58236",title:"Genotoxicity Induced by Cypermethrin in the Zebrafish Retina",doi:"10.5772/intechopen.72434",slug:"genotoxicity-induced-by-cypermethrin-in-the-zebrafish-retina",totalDownloads:1260,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Cypermethrin (Cyp), is one of the most common contaminants in freshwater aquatic systems. We evaluated its possible genotoxic effect and oxidative stress in retinal cells of adult zebrafish exposed to 0.3 μg/L and 0.6 μg/L Cyp. Both the histological and immunofluorescence (IF) techniques showed the presence of apoptotic cells in the zebrafish retina after 9 days of treatment with 0.6 μg/L Cyp. Thus, histone γ-H2AX, a double-stranded DNA damage marker, was immunodetected in both the outer and inner nuclear layer after exposure to 0.6 μg/L Cyp for 12 days, while the anti-caspase-3 apoptotic antibody was detected in the outer nuclear layer. Compared with the morphological evidence, the damage index (DI) showed significant differences with 0.3 μg/L from day 9, while with 0.6 μg/L all the stages evaluated showed very significant differences. According to these results, it was verified that the activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly after exposure to 0.6 μg/L Cyp. The same treatment caused a significant positive regulation of the mRNA levels of both genes. These results indicate that Cyp causes DNA damage and oxidative stress. This pyrethroid also has the potential to induce apoptosis in the cells of the retina.",signatures:"Enrique Valentín Paravani and Víctor Hugo Casco",downloadPdfUrl:"/chapter/pdf-download/58236",previewPdfUrl:"/chapter/pdf-preview/58236",authors:[{id:"103103",title:"Dr.",name:"Víctor",surname:"Casco",slug:"victor-casco",fullName:"Víctor Casco"},{id:"212967",title:"Dr.",name:"Enrique V.",surname:"Paravani",slug:"enrique-v.-paravani",fullName:"Enrique V. Paravani"}],corrections:null},{id:"60104",title:"Assessment of Potential Carcinogenicity by Quantitative Structure-Activity Relationship (QSAR)",doi:"10.5772/intechopen.75420",slug:"assessment-of-potential-carcinogenicity-by-quantitative-structure-activity-relationship-qsar-",totalDownloads:1055,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Already in 1978, Elisabeth C. Miller and James A. Miller came with a presumption that electrophilic molecules are predicted to be carcinogens. It is because DNA molecule is reached in nucleophilic centres that may covalently bind to such substances. Rules deduced by Millers are even nowadays irrefutable, and they are used as the basis of testing of the substance for its carcinogenicity potential. Toxicological discipline that emerged from Millers’ research is based on dependence of chemical structure of the substance and their biological activity. Even further, there are strict regularities between molecular structures and activities. The tool used in assessment of biological activity of a substance is known as SAR, an abbreviation from structure–activity relationship. Besides electrophilic centres, in assessment of carcinogenic potential of a substance, the SAR also encounters chemical surrounding (neighbouring functional groups), size of the substance, its lipophilicity, number and position of aryl rings, substitutions of hydrogens, epoxides in aliphatic moieties or rings, resonance stabilisation, etc. To these days, SAR has been upgraded to quantitative SAR (QSAR) which applies multivariate statistical methods quantitatively comparing detected characteristics of “alerts” with biological activity of known carcinogens. Nowadays, chemical industry developing novel active substances is unthinkable without application of QSAR.",signatures:"Davor Zeljezic",downloadPdfUrl:"/chapter/pdf-download/60104",previewPdfUrl:"/chapter/pdf-preview/60104",authors:[{id:"14691",title:"Dr.",name:"Davor",surname:"Želježić",slug:"davor-zeljezic",fullName:"Davor Želježić"}],corrections:null},{id:"59362",title:"Genotoxicity by Electromagnetic Fields",doi:"10.5772/intechopen.74128",slug:"genotoxicity-by-electromagnetic-fields",totalDownloads:1236,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Modern life implies a constant exposure of living organisms to many sources of radiation, especially electromagnetic fields (EMFs) generated by our technological devices. The question of whether or not EMFs in the non-ionizing extremely low frequency (ELF) range can induce genotoxic effects is currently a subject of interest. People of industrialized societies are commonly exposed to EMFs and waves in a very broad range of frequencies, including power lines, telecommunications, and domestic and industrial equipment. In this review, we present controversial evidence from our research group and others of genotoxicity induced by ELF-EMFs, since scientific community consider EMF devices produce marginal amounts of energy, which does not justify any DNA alterations, together with conflicting laboratory results and few epidemiological studies. However, in 2002 the International Agency for Research on Cancer (IARC) categorized ELF-EMFs as being potential carcinogenic and genotoxic agents to humans. The aim of the present chapter is to discuss the role of ELM-EMFs on human genotoxicity.",signatures:"José Antonio Heredia-Rojas, Ricardo A. Gómez-Flores, Eulogio De la\nCruz-Torres, Omar Heredia-Rodríguez, Eduardo Campos-Góngora,\nPedro César Cantú-Martínez, Laura E. Rodríguez-Flores and\nAbraham O. Rodríguez-de la Fuente",downloadPdfUrl:"/chapter/pdf-download/59362",previewPdfUrl:"/chapter/pdf-preview/59362",authors:[{id:"175049",title:"Dr.",name:"Ricardo Alberto",surname:"Gomez Flores",slug:"ricardo-alberto-gomez-flores",fullName:"Ricardo Alberto Gomez Flores"},{id:"216613",title:"MSc.",name:"Laura",surname:"Rodríguez-Flores",slug:"laura-rodriguez-flores",fullName:"Laura Rodríguez-Flores"},{id:"232729",title:"Dr.",name:"Jose Antonio",surname:"Heredia Rojas",slug:"jose-antonio-heredia-rojas",fullName:"Jose Antonio Heredia Rojas"},{id:"232748",title:"Dr.",name:"Eulogio",surname:"De La Cruz-Torres",slug:"eulogio-de-la-cruz-torres",fullName:"Eulogio De La Cruz-Torres"},{id:"232752",title:"MSc.",name:"Omar",surname:"Heredia-Rodríguez",slug:"omar-heredia-rodriguez",fullName:"Omar Heredia-Rodríguez"},{id:"232754",title:"Dr.",name:"Eduardo",surname:"Campos-Góngora",slug:"eduardo-campos-gongora",fullName:"Eduardo Campos-Góngora"},{id:"232755",title:"Dr.",name:"Pedro César",surname:"Cantú-Martínez",slug:"pedro-cesar-cantu-martinez",fullName:"Pedro César Cantú-Martínez"},{id:"232756",title:"Dr.",name:"Abraham O.",surname:"Rodriguez De La Fuente",slug:"abraham-o.-rodriguez-de-la-fuente",fullName:"Abraham O. Rodriguez De La Fuente"}],corrections:null},{id:"61970",title:"Genotoxic Risk in Human Populations Exposed to Pesticides",doi:"10.5772/intechopen.77968",slug:"genotoxic-risk-in-human-populations-exposed-to-pesticides",totalDownloads:1228,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"The importance of early detection of genetic damage is that it allows taking the necessary measures to reduce or suppress the exposure to the deleterious agent when it is still reversible, thus decreasing the risk of developing diseases. For this reason, genotoxicity tests should be considered as indispensable tools in the implementation of a complete medical surveillance in people potentially exposed to various environmental pollutants and especially those who live in the same place with people who have already developed some type of neoplasia at early ages in order to prevent the occurrence of tumors of environmental origin and work-related. On the other hand, the application of these tests is useful to detect possible long-term effects of substances that are introduced to the market without knowing exactly their capacity to affect human and environmental health.",signatures:"Delia Aiassa",downloadPdfUrl:"/chapter/pdf-download/61970",previewPdfUrl:"/chapter/pdf-preview/61970",authors:[{id:"227002",title:"Dr.",name:"Delia",surname:"Aiassa",slug:"delia-aiassa",fullName:"Delia Aiassa"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"923",title:"Herbicides",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"54a8eb808c05a5fe01c676e7047d4576",slug:"herbicides-theory-and-applications",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/923.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5184",title:"Environmental Health Risk",subtitle:"Hazardous Factors to Living Species",isOpenForSubmission:!1,hash:"aa20266ad595ce73a9396f4ab0f8112e",slug:"environmental-health-risk-hazardous-factors-to-living-species",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5184.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5362",title:"Toxicology",subtitle:"New Aspects to This Scientific Conundrum",isOpenForSubmission:!1,hash:"2061f273c8b3134dffbcb5256969ecab",slug:"toxicology-new-aspects-to-this-scientific-conundrum",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/5362.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4637",title:"Toxicity and Hazard of Agrochemicals",subtitle:null,isOpenForSubmission:!1,hash:"6aff74df1ea32df7f1e20e29c8363ff5",slug:"toxicity-and-hazard-of-agrochemicals",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/4637.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5179",title:"Organic Fertilizers",subtitle:"From Basic Concepts to Applied Outcomes",isOpenForSubmission:!1,hash:"93748f3bd6a9c0240d71ffd350d624b1",slug:"organic-fertilizers-from-basic-concepts-to-applied-outcomes",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5179.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5358",title:"Soil Contamination",subtitle:"Current Consequences and Further Solutions",isOpenForSubmission:!1,hash:"e4d136df9f1658ae17f3ba7b3c992460",slug:"soil-contamination-current-consequences-and-further-solutions",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5358.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5170",title:"Green Nanotechnology",subtitle:"Overview and Further Prospects",isOpenForSubmission:!1,hash:"e2d4dc551be023ba3525e6126076af90",slug:"green-nanotechnology-overview-and-further-prospects",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5170.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5101",title:"Invertebrates",subtitle:"Experimental Models in Toxicity Screening",isOpenForSubmission:!1,hash:"ebef5298af7d87ad3c9c7f5fe808fa2c",slug:"invertebrates-experimental-models-in-toxicity-screening",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5101.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4606",title:"Emerging Pollutants in the Environment",subtitle:"Current and Further Implications",isOpenForSubmission:!1,hash:"1502287827685f0b71235bd45fe35ae4",slug:"emerging-pollutants-in-the-environment-current-and-further-implications",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/4606.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4616",title:"Nanomaterials",subtitle:"Toxicity and Risk Assessment",isOpenForSubmission:!1,hash:"a96b5d34ca84aecacbab309ba1e7e563",slug:"nanomaterials-toxicity-and-risk-assessment",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/4616.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"correction-to-chemical-composition-and-biological-activities-of-mentha-species",title:"Correction to: Chemical Composition and Biological Activities of Mentha Species",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/57158.pdf",downloadPdfUrl:"/chapter/pdf-download/57158",previewPdfUrl:"/chapter/pdf-preview/57158",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/57158",risUrl:"/chapter/ris/57158",chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]}},chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]},book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11369",leadTitle:null,title:"RNA Viruses Infection",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tAn RNA virus is a virus that contains ribonucleic acid called RNA, it plays a crucial role in carrying genetic information from one generation to the next. RNA viruses usually have a single-stranded RNA (ssRNA) but also pose a double-stranded RNA (dsRNA). Most the RNA viruses replicate and are assembled in the cytoplasm, but DNA viruses replicate and are assembled in the nucleus of the host cell.
\r\n\r\n\tHuman infections caused by RNA virus include Hepatitis A, C and E, Nipah virus, Ebola, HIV, polio, measles, Rabies, SARS-CoV2, Dengue Fever, West Nile fever, Zika virus, Influenza, Hantavirus, etc.
\r\n\tThis book chapter’s main theme will be focused on transmission dynamics, pathogenesis, mechanisms of host interaction and response, epigenetics and markers, molecular diagnosis, RNA interacting proteins, RNA binding proteins, advanced development of tools for diagnosis, possible development of concepts for vaccines and anti drugs for RNA viruses, immunological mechanisms, treatment, prevention and control.
\r\n\t
Alopecia (hair loss) is a common problem in dermatology setting and it has a significant negative impact on the quality of life. Therefore, most patients seek for treatment in order to improve their appearance although there is no satisfactory cure for most types of alopecia. Alopecia is divided into cicatricial and noncicatricial types. Androgenetic alopecia (AGA), alopecia areata (AA), and telogen effluvium are common forms of noncicatricial alopecias. Telogen effluvium is the diffuse hair shedding caused by physiological, hormonal metabolic stress, or by drugs. AGA is caused by the effect of dihydrotestosterone (DHT) on hair follicles leading to their miniaturization. It is seen in different appearances in males and females. In males, AGA presents as hairline recession and vertex balding. Unlike in men, female pattern hair loss (FPHL) is characterized by diffuse hair thinning over the crown with retention of the frontal hairline. AA is caused by autoimmune destruction of hair follicles involving cell‐based and humoral immunity [1].
\nVarious cosmetic procedures are being applied for different types of alopecia including mesotherapy, microneedling, platelet‐rich plasma (PRP), low‐level light therapy, and stem‐cell therapy with variable outcomes [2, 3].
\nIn this chapter, the above‐mentioned cosmetic treatments for alopecia are briefly described.
Mesotherapy is a noninvasive technique in which active substances are delivered just below the epidermis via superficial microinjections. Various substances including vitamins, medications, plant extracts, and other bioactive compounds including vasodilators, finasteride, and minoxidil can be injected intradermally or subcutaneously to reach the target tissues in mesotherapy [4].
\nThere is evidence regarding the clinical efficacy of mesotherapy in the treatment of thermal burns, local pain, local fat contouring, and skin aging [5–8].
\nAlthough evidence‐based studies regarding the efficacy of mesotherapy in different types of alopecia are lacking, in recent years, mesotherapy is increasingly being used in the treatment of telogen effluvium, androgenetic alopecia, and alopecia areata [9–11].
Before starting hair mesotherapy, informed consent should be taken from the patient. After cleaning the scalp with antiseptic solution, the substances can be given by intraepidermal, papular, nappage, or point‐by‐point technique. In hair mesotherapy usually 4–6 mm, 27–32 G special mesotherapy needles are applied a depth of 4–6 mm about 1–2 cm apart. Although superficial intradermal technique is most commonly used, nappage technique can also be used manually or by mesotherapy gun. Hair mesotherapy can also be applied by using mesoroller device [9–11]. Each session lasts for 10–30 min [9]. There is no standardized protocol for the frequency of sessions and it depends on the decision of the applier and the indication it is done for. Hair mesotherapy is commonly applied at intervals of 1–4 weeks [10, 11]. Frequently accepted schedule is once a week for the initial weeks then with longer intervals and maintenance treatment in every 2–3 months [12]. Some clinics prefer to apply mesotherapy once in two weeks for at least 10 sessions and then once a month for 5 months [10].
Although the exact mechanism how the mesotherapy works is not known, several theories have been speculated. According to Pistor, skin may be a point for stimulation which is triggered by mesotherapy that sends inhibitory signals reaching to the lateral medullary center of the spinal cord. These inhibitory signals have been suggested to be either produced by the needling itself or the pharmacologic substances given during mesotherapy. The negative signals are suggested to restore the pathologic mechanisms causing alopecia [13]. The target tissue of hair mesotherapy is mostly the dermis including the circulatory, neuronal, and immune component. Also, epidermis and subcutaneous tissue are affected by the procedure of diffusion of substances. According to mesodermic theory, mesotherapy acts on the tissues derived from mesoderm including capillary and venous spaces, neuronal components, and immune cells of the skin [13, 14]. Another explanation is the third circulation theory that, after blood (first) and the lymphatic (second) circulation, interstitial compartment between skin cells are considered as the third space of circulation. Mesotherapy is suggested to target the interstitial compartment that the substances administered via mesotherapy diffuse through interstitial compartment to the deep target tissues without being rapidly washed out by vessels [13].
\nThe aim of hair mesotherapy is to restore the abnormal physiology causing alopecia by stimulating various biological responses via injecting the active substances into scalp. Additionally, mechanical stimulation by needling itself creates a biologic response that is expected to stimulate mesodermal changes [10, 15]. Hair mesotherapy offers the prevention of hair loss, activation of new hair growth, and the improvement in the quality of existing hair. By hair mesotherapy, local microcirculation is increased, which improves the environment of hair follicle for better growth. Additionally, nutritional supply is provided to the hair follicle and the excess of dihydrotestosterone (DHT) is suggested to be neutralized [16].
There is no standardized formulation used in hair mesotherapy and the various ingredients can be given depending on the indication. Generally, cocktails containing mixture of different ingredients used in hair mesotherapy and they can be applied in alternation depending on the clinical response. It is important to remember that there may be interactions between the injected substances that interfere with the efficacy. However, there is no definite protocol for the compounds and the concentrations [9–11, 15]. Commonly used substances in hair mesotherapy include minoxidil, finasteride, dutasteride, biotin, tretinoin, pantothenic acid, pyridoxine, procaine, dexpanthenol, azelaic acid, T3/T4, and other vitamins and minerals [9–12]. These compounds have different biologic effects. Especially, buflomedil, minoxidil, finasteride, dutasteride, biotin, vitamins, and organic silicium are proposed to stimulate new hair growth [10]. Many of these substances have vasodilator effect. The main effects of the commonly used substances in hair mesotherapy are as follows:
\nBuflomedil is an α‐2 receptor antagonist and a weak calcium channel blocker. It has vasodilatory effect [10, 17]. Minoxidil also has vasodilatory effect. It is the only drug that is proven to increase hair growth by prolonging the anagen phase [10, 11]. Some authors do not use minoxidil more than 1/2 cc in the cocktail since it may be painful for the patient [10]. Procaine is a well known anesthetic that provides patient comfort. It has vasodilator activity and enhances the absorption of other drugs [10, 11]. Ginkgo biloba increases perifollicular blood flow. It also has antiedema and antioxidant effect. It contains diterpene which inhibits platelet activating factor and decreases platelet aggregation [10, 11]. Conjoctyl (organic silicium, salicylate of monometilsilanotriol) has an antioxidant and vasodilatory effect [10]. Dexpanthenol (Vitamin B5) is involved in the hair development. It is converted into pantothenic acid which is a precursor for the synthesis of coenzyme A, important in the carbohydrate metabolism [10, 11]. Biotin acts as a coenzyme and growth factor. It has a role in the carboxylation and fatty acid metabolism [10, 11]. Vitamin C acts as an antioxidant and helps in collagen production [18]. Vitamin A (retinoic acid) has a regulatory role in the growth of epidermal cells and keratinization process. It induces dermal fibroblastic activity and collagen production [18]. Pyridoxine (Vitamin B6) stimulates hair growth and augments the effects of zinc [11]. Cobalt, copper, lithium, magnesium, manganese, phosphorus, selenium, sulphur, and zinc can be used as trace elements [10]. Zinc acts as a 5‐α reductase inhibitor [11]. Recently intradermal injection of copper has been suggested to be beneficial in AGA most likely by balancing the steroid‐converting enzyme activity, enhancing the anagen phase of hair cycle, simultaneous transition to the telogen phase, and stimulation of the proliferation of dermal papilla cells [19]. Finasteride is an inhibitor of 5‐α reductase enzyme and selectively interfere with the androgen activity on skin [18]. Dutasteride is a second generation 5‐α reductase inhibitor. While finasteride inhibits type II enzyme, dutasteride inhibits both type I and type II [18]. Heparin and heparin‐like mesoglycan acts as vasodilator [11]. X adene contains vitamin B complex and increases blood flow [11]. Azelaic acid inhibits 5‐α reductase activity [11]. Calcitonin and cyproterone acetate can also be used in hair mesotherapy [10].
\nA test trichogram should be performed one year after to evaluate the clinical efficacy of hair mesotherapy. Additionally, mesotherapy injection technique has been suggested to decrease the pain and provide the distribution of drug more evenly during intralesional corticosteroid therapy for AA [20]. Shulaia et al. have reported successful results in AA patients treated with mesotherapy using nicotinic acid, vitamin C, pentoxifylline, and trace elements (Zn, Se, and placentex) over a period of 28 weeks [21].
The contraindications of hair mesotherapy are as follows: allergy to the substances used in mesotherapy, diabetes, liver, renal and cardiac failure, pregnancy, lactation, use of medication for anticoagulation, infection, or lesion on the area [11, 22]. Side effects of hair mesotherapy are edema, bruising, itching, pain, and headache [10, 23]. Also, side effects related to the systemic absorption of substances may be observed [11]. Contrarily, alopecia has been reported as a side effect following hair mesotherapy. In one case report, one patient developed cicatricial alopecia after heparinoid vasodilator mesoglycan and reversible alopecia has occurred in the second patient due to homoeopathic agents [24]. Additionally, cutaneous infections caused by nontuberculous mycobacteria have been observed after mesotherapy. Although these infections are mostly reported after mesotherapy for lipolysis, physicians should keep in mind that they can be seen after hair mesotherapy [11, 25–27]. Moreover, multifocal scalp abscesses with subcutaneous fat necrosis and scarring alopecia have been reported as a complication of hair mesotherapy. This complication has been attributed to the improper application technique [28]. Recently, frontal edema due to %5 minoxidil solution after hair mesotherapy has been reported [29].
Unfortunately, there is scanty scientific data on the role of mesotherapy in the treatment of alopecia. Abdallah et al. have found hair mesotherapy more effective than placebo in 28 male AGA patients by using a dutasteride containing solution (dutasteride 5 mg, D‐panthenol 500 mg, biotin 20 mg, and pyridoxine 200 mg) after 11 weeks of treatment. They also observed a negative correlation between the duration of AGA and response to treatment which is suggested to be associated with the replacement of terminal hair follicles with epithelial remnants of telogen follicles [30]. In another study, 90 male AGA patients were divided into three groups as group A (30 patients) receiving pure dutasteride, group B (30 patients) receiving dutasteride containing solution (dutasteride 5 mg, dexpanthenol 500 mg, biotin 20 mg, and pyridoxine 200 mg), and group C (30 patients) receiving saline. According to the results, there was no statistically significant difference between groups, however, dutasteride containing solution was found to be superior according to trichogram results [31]. Ozdoğan et al. have treated 15 male and 8 female AGA patients with mesotherapy using 2% minoxidil, biotin, dexpanthenol, herbal complex, and procaine once a week. Hair mesotherapy was found to be significantly effective in the improvement of hair quantity and hair thickness after 10 weeks [32]. A mesotherapy solution containing dutasteride 0.5 mg, biotin 20 mg, pyridoxin 200 mg, and D‐panthenol 500 mg was used in 86 female AGA patients and the results were compared with control group receiving saline solution. A decrease in hair loss and improvement in both photographic assessment and hair density after 12 sessions were observed [23]. Topical application of minoxidil 2% (30 patients) was compared with the intraepidermal injection of the drug (30 patients) on 60 females with FPHL and it was concluded that the mesotherapeutic application of minoxidil revealed significantly better results compared to topical application of the drug in both self assessment and trichogram tests [33]. Freund et al. have treated 40 male AGA patients with mesotherapy using botulinum toxin. They have applied two injections at 24‐week intervals after a 12 weeks period without treatment. After 48 weeks of first injection, statistically significant increase in mean hair counts was observed. They suggested that botulinum toxin relaxes the scalp muscles and reduces the pressure on the perforating vessels resulting in the increase of blood flow and oxygen concentration. Furthermore, they reported that there is an increased oxygenation of the scalp so the hair follicles may be associated with enhanced conversion of testosterone to estradiol which favors high oxygen concentrations [34].
\nRecently, in a systematic review, two unpublished trials (NCT01655108, EUCTR2013‐002740‐85‐ES) have been reported on the efficacy of mesotherapy for the treatment of FPHL. First trial (54 patients) has compared the application of minoxidil 0.5% (27 patients) with saline 0.9% (27 patients) using mesotherapy technique. Although the study is ongoing, the results regarding the increase in hair volume and decrease in the extent of hair loss were better in minoxidil group. The second was a randomized, double‐blind, and placebo‐controlled clinical trial evaluating the efficacy of plasma rich in growth factors (PRGF‐Endoret) on 24 male and female AGA patients by comparing with saline solution. The results of the study are awaiting publication [35].
Microneedling is a medical procedure done by a drum‐shaped roller device with hundreds of micron‐sized microneedles (0.5–1.5 mm in length) projecting on it. Before the treatment, local anesthetics should be applied to the area.
Roller device is applied in vertical, horizontal, and diagonal directions. By rolling the device across the skin, these microneedles pierce the stratum corneum and create numerous transient microchannels over the applied surface without damaging the epidermis [36, 37]. Microneedling provides direct entry to viable epidermis where it acts on, and does not contact with the dermal nerves and capillaries [37].
\nGenerally, microneedling is applied at 4–6 week intervals in order to wait for new collagen synthesis. For acne scars, 3–4 treatment sessions may be required [36]. However, there is no standard protocol for the application of microneedling in alopecia treatment.
Microtrauma caused by puncturing of the skin induces the collagen synthesis and neo‐angiogenesis through the wound healing response [36, 37]. Microneedling leads the stimulation of stem cells and activation of growth factors [38–40]. It increases the blood flow to the hair follicles [40]. Also, it was reported that the expression of hair growth related genes are induced after microneedling [41]. Additionally, transient micropores formed through the procedure allow the delivery of molecules into the epidermis. Therefore, after microneedling many cosmeceutical agents have been suggested to be delivered deep to the skin [37, 42, 43]. Accordingly, in mesotherapy, substances can be given with mesoroller device, as mentioned above [11].
Erythema is rapidly recovered in 24–48 hours of treatment. No serious side effects have been associated with microneedling [37, 43]. Patients can complaint from mild pain [42]. As the microchannels close immediately after the application, infection is not expected after the procedure [36]. In order to avoid potential side effects, appropriate sterilization of the device and the use of only fully licensed and tested agents together with microneedling are important [37].
The effect of microneedling has been investigated on 100 men with AGA. Authors randomized the patients into two groups. First group (50 men) treated with weekly microneedling and 5% minoxidil twice daily (except the day of microneedling) and second group only treated with 5% minoxidil twice daily. After 12 weeks of treatment, the results regarding mean change in hair count were statistically better in the microneedling plus minoxidil group [38]. Additionally, the authors evaluated the supplementary effect of microneedling on four men with AGA who were on oral finasteride and topical 5% minoxidil therapy. New hair growth was seen after 8–10 sessions. Patients treated weekly for the first four weeks, then 11 sessions were applied at 2‐week intervals. After 6 months of treatment grade +2 to +3 response was seen in all patients on photographic assessment. Regarding the patient\'s subjective assessment scale three patients showed more than 75% satisfaction and one patient showed more than 50% satisfaction. After 18 months of follow up, the results of microneedling were reported to be sustained [44].
\nLee et al. applied microneedling in conjunction with topical growth factors on eleven FPHL patients. In their scalp‐split, single‐blinded, and placebo‐controlled trial, they treated patients weekly for five sessions. One half of the scalp was treated with a solution containing growth factors (basic fibroblast growth factor, insulin‐like growth factor‐1, vascular endothelial growth factor, stem cell factor, keratinocyte growth factor‐2, superoxide dismutase‐1, and Noggin) plus microneedling, whereas the other half was treated with saline plus microneedling. The increase in hair shaft density and hair count was significant in growth factor plus microneedling group. Also patients’ satisfaction was reported to be higher in the same group compared to saline group [42].
\nOther than AGA, the effect of microneedling was also assessed in resistant AA. Deepak et al. reported three cases of AA (one patchy AA, two alopecia universalis) that were previously unsuccessfully treated with contact sensitizers, topical tacrolimus, minoxidil, and corticosteroids and oral mini pulse betamethasone. Authors applied microneedling with a solution containing triamcinolone acetonide, mesotherapy cocktail (growth factors, copper tripeptide‐1, multivitamins, amino acids, and minerals), and minoxidil 2–5%. Marked clinical response was seen in all the three of cases after 4–6 sessions. The authors suggested that scalp roller therapy might be an effective and safe complementary intervention for the treatment of resistant AA [43].
\nIn another study, two cases of patchy AA were successfully treated with microneedling plus topical triamcinolone. After three sessions which were applied at 3‐week intervals, both patients showed marked response and no recurrence was seen after 3 months follow up [40].
\nThe role of photodynamic therapy (PDT) with methyl 5‐aminolevulinic acid (MAL) has been studied for the treatment of AA with variable results. The lack of response has been attributed to the inadequate transepidermal penetration of the drug. With regard to facilitator effect of microneedling in drug delivery, the efficacy of roller therapy in the penetration of MAL in PDT of AA has been evaluated in two studies. Patients are treated with PDT with MAL with only half scalp application of microneedling. In both study, as none of the patients showed hair growth, authors concluded that PDT with MAL may not be an effective strategy for AA, regardless of adjunctive microneedling to enhance the drug passage deep into the skin [45, 46].
\nRecently, an animal study has demonstrated that micro injury caused by microneedling induced hair regrowth in two pomeranian dogs with alopecia X (hair cycle arrest) [47]. In another animal study assessing the hair growth effect of mycophenolic acid (MP), microneedling was found to accelerate the stimulatory growth of topical MP on anagen follicles [48].
Platelets are one of the shapely structured elements of the peripheral blood and do not have cell nuclei. The number of platelets ranges from 150,000 to 350,000/mm3 in peripheral blood and they are functioning primarily in hemostasis [49]. They take active role in wound healing, angiogenesis, and inflammation owing to the numerous proteins, cytokines, and bioactive factors they contain [49, 50]. In addition, they induce the migration and adherence of bone marrow‐origin cells into angiogenesis territory and the differentiation of endothelial cell progenitors to the mature endothelial cells [51].
\nThe platelets have three main storage sites; α granules, dense granules, and lysosomes [52]. The major growth factors (GF) and cytokines already stored in α granules are; transforming growth factor‐β (TGF‐β), platelet‐derived growth factor (PDGF), insulin‐like growth factor (IGF‐I, IGF‐II), fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and endothelial cell growth factor (ECGF) [49, 53, 54]. The activation of platelets induces degranulation of GFs which are already restored. The secreted GFs bind to the transmembrane receptors on mesenchymal stem cells, osteoblasts, fibroblasts, endothelial cells, and epidermal cells and then induce the internal signal transduction pathway. They initiate the healing process such as cell proliferation, differentiation, chemotaxis, angiogenesis, matrix formation, osteoid production, and collagen synthesis [49, 53].
\nThe dense granules of the platelets have bioactive factors such as serotonin, histamine, dopamine, calcium, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and catecholamine. These substances have significant effects in wound healing. They have effects such as boosting the capillary permeability, vasoconstriction, hauling and activating the macrophages, tissue modulation, and regeneration [49, 54].
PRP is an autologous, biologically active concentration, composed of many growth factors (GF), cytokines, and plasma proteins [55]. It came into use since 1970s owing to its effects to promote the wound healing to a cellular level [54]. Platelet concentration in PRP is at least 1,000,000/μg/L in 5 mL and the growth factor concentration is 3–5 times higher than peripheral blood [49]. Platelet gel concentration which is higher or lower than 1,500,000 was associated with decreased angiogenic features of endothelial cells [56].
\nThere are four different PRP subgroups available; pure PRP, leukocyte and PRP (L‐PRP), platelet‐rich fibrin matrix (PRFM), and leukocyte‐ and platelet‐rich fibrin matrix. Clinically, pure PRP and L‐PRP are widely used. The one widely used in cosmetic dermatology is the pure PRP [57].
\nPRP is prepared with 20–60 mL of plasma [61] by means of automatic devices under aseptic conditions at 20–22°C. It must be prepared using anticoagulants containing citrate dextrose solution formula A (ACD‐A) or sodium citrate in order to inhibit PRP aggregation [53]. The blood elements are separated according to their molecular weights by means of centrifugal method in manual double spin method. Respectively, red blood cells (RBC) are the heaviest, white blood cells (WBC) are moderate, and the platelets are the lightest ones. The platelets are first separated from RBC and WBC by means of light‐spin centrifuge that they become available in concentrated form in the top part of buffy coat layer. Subsequently, heavy‐spin centrifuge separates the supernatant plasma and more concentrated platelets are obtained. Bottom part of the tube holds the platelets and the upper part retains the platelet‐poor plasma (PPP). Thrombin is used as an activator to obtain coagulation and thus “activated PRP” is extracted by means of GF degranulation [49, 53]. Approximately, 70% of GFs is released in 10 min and almost 100% is released in an hour and a small amount of GF continues to be produced for up to 8–10 days during the life of platelets [62]. For this reason, PRP should be administered soon after it is prepared.
\nThe platelet‐rich fibrin matrix (PRFM) is developed to retard GF secretion from the platelets, which is a dense fibrin matrix generated by adding CaCl2 during the secondary centrifuge that induces the conversion of autogenous thrombin from prothrombin. Platelet activation decreases as the thrombin amount reduces, so the platelets secrete their GFs slowly in a period of 7 days. Therefore, it is used in fat grafting and soft tissue augmentation. At the same time, fibrin matrix serves as a building block in wound healing [49, 57].
\nL‐PRP is a subtype of PRP consisting of the platelet, leucocyte, and red blood cells. It is produced by the collection of PPP and all buffy coats following the centrifuge of anticoagulant blood. Whereas Leukocyte‐PRFM is a subform made up of platelet and leucocyte‐rich fibrin polymerized clot. It is produced without using anticoagulant and activator [57].
\nAnother platelet activation type is the method which stimulates PDGF and VEGF secretion and enables collagen‐PRP gel formation, performed by using type I collagen [63].
\nA great number of commercial kits came into use in addition to manual PRP preparation. However, different technologies introduce products with different biology and unclear effect profile. There are various PRP preparation methods in the literature, which contain different protocols, different centrifugal techniques, and different cellular components [61].
Various indications of PRP in dermatology are outlined in Table 1 [53, 57, 64].
Alopecia; androgenetic alopecia, and alopecia areata |
Skin rejuvenation |
Dermal volume augmentation |
Scar revision; acne, and traumatic scars |
Striae distensae |
Chronic wounds |
Fat grafting |
Laser resurfacing |
Lichen sclerosus |
Dermatological indications of PRP.
The patients should be informed and a signed consent form should always be obtained prior to the application. The patient is required stop taking anticoagulants such as aspirin and other nonsteroidal antiinflammatory medications at least 2 weeks before the application. Local anaesthesia should be given, if required, under aseptic circumstances. Different application methods are available, which may be preferred by the clinicians and for the comfort of the patient. First method is the retrograde injection of PRP deep‐to‐surface at a rate of 0.05–0.1 mL/cm2 per each centimeter. The second one is the administration of PRP either by puncturing holes over the scalp by means of 1 mm microneedle roller or by means of mesotherapy gun. The third method is the application of PRP before or after the implantation in order to assist the hair transplantation, keeping the follicular grafts in PRP for 15 minutes prior to implantation or the application in order to speed up the wound healing in donor\'s excision line [53].
\nThere is no consensus on the parameters such as the frequency, depth (interfollicular, intradermal, or subcutaneous), and the dose of the application.
Contraindications of PRP are listed on Table 2 [63–65].
Pregnancy and breastfeeding period |
Acute and chronic infections |
Autoimmune disorders |
Sensitivity to blood and blood products |
Hepatopathy (liver disease) |
Malignancies |
Thrombocytopenia and hypofibrinogenemia |
Contraindications of PRP.
The incidence of adverse effects is quite low since PRP application is an autologous one. Local side effects due to injection such as rash, ecchymosis, pain, and infection are mild and temporal. It does not have any risk of transmitting infections such as hepatitis B (HBV), hepatitis C (HCV), and human immunodeficiency virus (HIV). Risk of allergy is low as the patient\'s own blood is used [53, 65].
AGA is characterized by progressive hair follicle miniaturization and its treatment is quite challenging [66, 67]. The two medications approved by Food and Drug Administration (FDA) are minoxidil and finasteride. Dermatologists and plastic surgeons tend to prefer new treatment methods due to limited effects and adverse effect profile of these agents. In recent years, a good number of studies have been carried out on the effectivity of PRP in an AGA treatment.
\nPRP enhances the proliferation of dermal papilla (DP) cells and protect the cells against apoptosis by increasing Bcl‐2 protein level. Moreover, it stimulates the Akt signalization which has antiapoptotic effects on cell survival and also stimulates extracellular signal‐regulated kinase (ERK) that regulates the cell growth. In this way, it promotes cell growth and extends the survival of hair follicles. B‐catenin is expressed in the external root sheath in the bulge area of human anagen hair follicle and ensures the differentiation of stem cells into the hair follicle cells and other adult cells. B‐catenin activity in DP cells of the patients treated with PRP is upregulated, inducing the differentiation of stem cells into hair follicle cells and stimulating the hair growth. In addition, FGF‐7 expression in DP cells increases, ensuring that the anagen phase of hair growth cycle is extended. Enhanced VEGF and PDGF boosts the perifollicular vascular plexus with proangiogenic effect. Active PRP injected to the mice
The first study performed on PRP indicated that both the survival of follicular units are increased and follicular density is augmented in the patients of hair plantation since the follicular grafts were soaked in PRP for 15 minutes prior to implantation [69]. Various studies in the literature indicated that PRP stimulates a number of active features such as growth rate, hair count, hair density, hair shaft diameter, hair root strength, anagen hair, telogen hair, terminal hair density, epidermal keratinocytes, hair follicular bulge cells, and lead to increase in small blood vessels in hair follicle, prevents dermal papilla apoptosis, extent anagen phase, and enhances hair regrowth [70–74]. The carrier which contains dalteparin/protamine micro particles (DP MP) (low‐molecular‐weight heparin) was used to enhance the efficiency of PRP. DP MP ensures adsorption, stabilization, and slow secretion of GFs. PRP containing DP MP is observed to increase the hair thickness significantly compared to PRP alone [75]. In another study, PRP containing CD34+ cell has been tried on patients with AGA and a significant increase has been observed in hair thickness [76].
AA targets the anagen hair follicles in which spontaneous remission may be observed [77–79]. Although immunosuppressive agents can generally be used in the treatment of AA and regarded as an organ specific autoimmune disease, there is not any curative or preventive treatment of the disease [80]. Therefore, PRP has been introduced in recent years as an alternative treatment.
\nPRP has also an antiinflammatory effect in addition to its effect on the induction of proliferation. Endogen lipid molecules called “lipoxin” derived from cellular arachidonic acid serve in the resolution of the inflammation. Lipoxins retard the arrival of new neutrophils into the inflammation area and support the neutrophil apoptosis to organize the resolution. PRP promotes lipoxin A4 (LXA4) secretion and suppresses the cytokine secretions to limit the inflammation [81]. The fact that inflammatory cytokines play a part in the etiopathogenesis of AA led to an argument that PRP could be effective in AA treatment with antiinflammatory effect.
\nThere is limited number of studies in the literature on the use of PRP in the treatment of AA. A recent study indicated a significant increase in hair growth, an increase in Ki‐67 which is the cellular proliferation marker and a degradation in the rate of relapse, in AA patients treated with intralesional PRP, compared with the patients treated with both placebo and intralesional triamcinolone acetonide (TrA). Furthermore, it has been observed that both groups taking PRP and TrA had less rash and irritancy as well as reduced dystrophic hair in dermoscopy. A complete remission rate of 60% has been achieved in the group treated with PRP at the end of the treatment [79].
\nIn another study carried out with 20 AA patients, PRP was well tolerated, no adverse effect was observed and improvement in hair growth was seen. Minimal response to treatment and relapse was observed in only one patient [82].
\nPRP treatment applied on an ophiasis‐type alopecia areata patient, resistive to corticosteroid treatment, yielded a successful result and hair regrowth was observed. PRP is suggested to be an alternative treatment in AA patients resistive to corticosteroid treatment and in the patients with side effects of steroid injection [83].
Laser (light amplification by stimulated emission of radiation)/light sources have become popular in dermatology practice on various disorders. Recently, these devices have been tried for the treatment of male and female pattern hair loss and alopecia areata with variable success rates. The laser beam having the coherent, monochromatic, and polarized characteristics that differs it from the ordinary light. The low‐energy laser light penetrates the surface in a defined position and does not damage the skin [84]. There is a consensus among many authors that current laser/light sources are safe methods if they can be used properly and also these treatment modalities can be used alone or in combination with other treatments. The literature reveals that the texture and quality of hair improves even if there is no hair regrowth by the use of laser/light sources [85].
\nAGA is the most common form of hair loss that may affect up to 70% of men and 40% of women in their lifetime [86, 87]. The aim of the treatment is to stop miniaturization and induce hair thickening and regrowth [88]. Finasteride and minoxidil are the most common therapeutic drugs used for AGA [87]. But new treatment modalities are under investigation. Laser/light sources for AGA have become popular in the last few years.
\nPhotobiomodulation is a term that is used to describe the effects of lower level light energy (650–900 nm) on the cellular level. The exact mechanism of photobiomodulation that stops or reduces hair loss in patients is not well known [85, 89]. Low‐level visible light treatment (LLLT) modulates the gen expression of 5α‐reductase and vascular endothelial growth factor (VEGF) and consequently stimulates hair growth through androgen metabolism and angiogenesis [90]. It was previously reported that helium‐neon (He‐Ne) laser (632.8 nm) irradiation stimulates cellular activities like deoxyribonucleic acid (DNA) and protein synthesis, mitochondrial electron transport, and adenosine triphosphate (ATP) generation [91]. Low‐level laser irradiation prolonged the duration of anagen phase and caused the catagen and telogen follicles to reenter into the anagen phase in a study in mice treated with He‐Ne laser. It was revealed that He‐Ne laser with a dose of 1 J/cm2 shows stimulatory effects on hair growth with a significant increase in percentage of anagen, but a suppression of hair growth was observed at a dose of 5 J/cm2. Cells with low growth rate or under stress conditions, give better response to low‐level laser irradiation [90]. Low level of reactive oxygen species (ROS) occurred due to low doses of irradiation show stimulatory effects on cell metabolism, while high level of ROS due to high doses of irradiation show inhibitory effects [92–94].
\nSubsequently, paradoxical hypertrichosis was reported for many times after using laser and intense pulsed light (IPL) photoepilation therapy for hair removal [95–99]. It is not exactly known, how these light sources can induce hair growth. One possible mechanism is the activation of silent hair follicles or the synchronization of hair growth cycles by direct light stimulation [89]. Radmanesh et al. identified different mechanisms for developing hypertrichosis after the IPL. First, certain wavelengths of IPL show photostimulator effects on hair follicle germinative and stem cells, directly or indirectly and facilitate hair regeneration and growth. The stem cells in the bulge area of the hair follicle are usually inactive. The second mechanism is the stimulation of the secretion of the mediators and cytokines that stimulate hair growth by IPL. Keratinocyte growth factor and fibroblast growth factor are two well known trichostimulatory cytokines and they have stimulatory effects on hair follicles and epidermal cells. They maintain epidermal proliferation and hair growth. The individual differences and the properties of the devices may also affect the paradoxical hypertrichosis [98].
\nThere are various studies showing the positive effects of laser/light treatments in AGA. In a previous study, the effects of laser on cancer were investigated in mice. The dorsal hair of mice was shaved and the low‐powered ruby laser (694 nm) therapy was given toward this area. They did not find any evidence of cancer but observed accelerated hair growth in laser‐treated sides [100]. In a clinical study, seven patients with a diagnosis of AGA were exposed to LLLT twice weekly for 20 min for 3–6 months. An increase in the number of terminal hair, a decrease in the number of vellus hair, and an increase in shaft diameter were observed in this study but these changes were not statistically significant [89].
\nTo assess the effect of a 1550 nm fractional erbium‐glass laser in a female pattern hair loss, 28 patients received 10 treatments at 2‐week interval. At the end of the study, a marked increase in hair density and hair shaft thickness and significant improvement at the frontal hair recess were seen in patients. It was revealed that 1550 nm fractional erbium‐glass laser may be a safe and effective treatment option for female pattern hair loss (FPHL) [101]. In a clinical study, the effects of a 1550 nm fractional erbium‐glass laser on the hair cycle in an alopecia mouse model and on the treatment of male pattern hair loss were investigated. In the human pilot study, an increase in hair density and an improvement of growth rate were observed. In the animal study, the effect on hair stimulation was dependent upon the energy levels, densities, and irradiation intervals. Fractional laser irradiation can promote anagen hair growth and induce transition from the telogen phase to the anagen phase. It was shown that Wnt 5‐α and β‐catenin expressions play a role in hair growth were induced by laser irradiation [102].
\nIn a study of 32 patients with male and female androgenetic alopecia, the efficacy and safety of LLLT were evaluated. A Laser comb (655 nm) was used as monotherapy or as a concomitant therapy with minoxidil and finasteride. Eight patients showed significant improvement, 20 patients showed moderate improvement while no improvement was observed in four patients. Improvement was observed in both monotherapy and the dual therapy group [103]. Previously, a Laser comb has been tested in 110 patients with AGA in a double‐blind, sham device‐controlled, multicenter, and 26‐week trial. Significant increase in mean terminal hair density was observed in patients in the LLLT group when compared to patients in the sham device group [104]. Jimenez et al. reported a statistically significant increase in terminal hair density after 26 weeks of low‐level laser comb device treatment compared with sham treatment in patients with FPHL and male pattern hair loss (MPHL) [105].
As there is no cure for alopecia areata which is an autoimmune disease and may improve spontaneously in 34–50% of patients, clinicians search for new treatment modalities such as laser/light sources [86, 106, 107].
\nThere are limited studies about laser irradiation for alopecia areata. In a study, clinicians used 308 nm xenon chloride excimer laser (XeCl) for two patients with alopecia areata for 11–12 sessions within a 9–11 weeks period. They observed homogeneous and thick hair growth. The exact mechanism was not clear, but immunosuppressive effects of laser irradiation by inducing T‐cell apoptosis and interrupting autoaggressive immune cascade were held responsible [108]. In a study with nine patients with AA, 308‐nm excimer laser was used for lesions twice a week for 12–24 sessions. They observed hair regrowth in patients with AA partialis [109].
\nIn a previous study, researchers chose a single representative lesion that was unresponsive to the other treatments. One half of the lesion was exposed to the 308‐nm laser while the other part was not treated. After 27 sessions, only the treated area showed hair regrowth, suggesting it was not a spontaneous recovery [110].
\nThe 308‐nm excimer laser was used for patients with AA twice a week for 24 sessions. And it is reported as an effective treatment for patchy AA of the scalp and in some cases with AA of the beard area, but patchy lesions of the extremities and alopecia totalis were unresponsive [111]. It was also used for children with patchy AA successfully. Atopic diathesis was considered as a poor prognostic factor in this study [112].
\nWaiz et al. used pulsed infrared diode (904 nm) laser on 16 patients with 34 resistant alopecia areata patches. They observed hair regrowth with a rate of 94%. They suggest that laser may alter the cellular membrane or change the exposed antigen which was previously hidden to become hidden again [84].
\nYoo et al. treated a patient with recalcitrant AA with fractional laser therapy weekly for 24 weeks. Hair regrowth was observed after 1 month treatment. After 3 months 30–40% of lesions were covered with terminal hair. Complete recovery occurred after 6 months of fractional laser therapy. One of the possible mechanisms of fractional laser induced hair regrowth is inducing T‐cell apoptosis or decreasing inflammation. Another mechanism is about microscopic thermal columns in the dermis that were made by laser therapy. A healing process starts including lymphocyte infiltrations. It may scatter perifollicular lymphocyte infiltration and cause a decrease in perifollicular lymphocytic infiltration. Fractional laser may stop disease progression by increasing anagen phase. Furthermore, minor trauma and wound healing induced by fractional laser therapy may facilitate hair growth [113].
\nThree patients with ophiasis, a special pattern of AA, were enrolled in a study. Two of the patients were treated with nonablative 1550 nm erbium glass fractional laser (NAFL) and one of the patients treated with both NAFL and ablative 10,600 nm carbon dioxide fractional laser (AFL). The clinicians observed that patients who have AA for 1 year or less respond to treatment better than patients with long‐term disease. They considered NAFL treatment may have beneficial effects on early ophiasis lesions [114].
Hair follicle (HF) is a complex structure that contains important units in the development of hair shaft including dermal papilla, matrix, and bulge region [3].
\nThe HF undergoes cycles of growth and degeneration that a new hair shaft is formed in each cycle [115]. The signaling in this cycling is not completely understood. Fundamentally, there is a bidirectional communication between the mesenchymal and stem cells within the hair follicle that controls the formation, growth, and cycling of hair follicle [3, 116, 117].
\nDermal papilla (DP) is located at the bottom of hair follicle (hair bulb) and consists of specialized mesenchymal cells which produce signals regulating the hair cycling of follicular epithelium and also driving the formation of hair follicle [116, 117]. Bulge region of hair follicle houses epithelial stem cells that become progenitor cells forming the hair follicle. Upon the stimulatory signals from DP cells, progenitor cells move down to the deep dermis where they turn into matrix cells which differentiate to form different parts of hair follicle [3, 117, 118]. It can be understood from these information that although the immediate formation of hair shaft and follicle is achieved by the matrix cells in the DP, reservoir stem cells reside in the upward bulge region that maintain the follicle regeneration [115].
\nStem cells are characterized by the capacity of self‐renewal and ability to differentiate into various cell lineages. Hair follicle stem cells (HFSCs) which are found in hair bulge are quiescence cells that divide infrequently [3]. HFSCs are multipotent that they can give rise to all cells of a hair follicle, sebaceous gland, and interfollicular epidermis [3, 115, 118]. In addition, hair follicle bears other types of stem cells including interfollicular epidermal stem cells, sebaceous gland stem cells, follicle nestin + pluripotent stem cells, etc. [3, 115].
\nThe induction of hair cycling and hair follicle regeneration from the HFSCs is a complex process which starts with the signals from DP cells. This interaction involves several signaling pathways, growth factors, specific protein ligand‐receptor binding, upregulation of various hair‐related genes and activation of different transcription factors [3, 116, 118].
As the current treatment options for most types of alopecia including AGA and AA are not satisfactory, new therapies are still being under investigation for various types of alopecia. Development of bioengineering technologies has provided the use of HFSCs as a promising treatment in the management of alopecia. Since the conventional drugs for alopecia are unable to target all the pathophysiologic factors, stem‐cell therapy is considered as a potential solution to correct the main pathology in various types of alopecias [3, 115, 117, 118].
\nIt has been suggested that the distinct pathophysiologic pathways may be targeted by stem cell therapies in different diseases. An important point is that in order to specifically manage the alopecia, it is important to clarify the exact etiologic mechanism underlying various types of alopecias [3, 118]. For example, in AGA, the main etiology is that the HF is miniaturized by the effect of 5‐DHT and the signaling that drives the HF regeneration is impaired. Although the stem cells in bulge region are undamaged, the production of new hair formation is interrupted in AGA [3, 116]. Another example for the impaired induction of hair formation by the destruction of DP region is the chemotherapy induced alopecia. Induction of hair generation by DP cells has been suggested to be achieved by stem‐cell therapy in this type of alopecia [116]. In AA, DP (bulbar region of HF) is attacked by the immune cells [3, 115]. Stem‐cell therapy has been suggested to be effective in the suppression of autoimmune destruction and recovery of immune balance in AA patients [119]. In cicatricial alopecia, inflammation leads to the destruction of the bulge region where the normal immune privilege has been lost by pathologic triggers and stem cells are destroyed [115]. Producing a new hair follicle unit via transplantation of stem cells has been suggested as a major innovation for the treatment of most forms of alopecias including scarring alopecia [3, 115, 117, 118].
As the epithelial‐mesenchymal interaction is crucial in the development of HF, it is essential to coculture DP cells with stem cells in order to generate a complete HF in laboratory condition. However, it has to be in mind that it is not easy to obtain and grow stem cells in laboratory experiments and their turnover is low [115, 117].
\nMarazzi et al. have isolated human follicle DP and bulge cells and cultured them in human skin sample (organotypical culture). After injection of the cultured bulge and DP cells into deep dermis, epidermis forming ability of the cells was assessed. The authors suggested their methodology as a relevant source of bioengineered hair follicles for hair transplantation therapies in alopecia [120].
\nIn a previous report, mouse embryonic skin‐derived stem cells were used to form a hair germ and the resultant bioengineered follicle germ was intracutaneously transplanted to create a structurally correct hair follicle. On the back skin of a nude mouse, the transplanted follicle germ was able to form hair shaft, construct appropriate connection with surrounding tissue, and undergo cycling [121]. As the transplantation of a mature bioengineered hair follicle rather than follicle germ is considered to be more favorable in hair regeneration, Asakawa et al. in their animal study, have shown that ectopic transplantation of bioengineered hair follicles (created by follicle germ cells from embryonic pelage skin and regenerated
An important problem in the hair follicle regeneration studies is that cultured DP cells lose their inductive capacity after a few passages. Attempts including co‐culturing with keratinocytes and adding growth factors to the medium have been done to effectively expand DP cells
By ongoing studies, it was realized that not only the close environment of HF but also the macro environment of HF is important in the growth induction of HF. As the adipocyte stem cells (ASCs) secrete growth factors and stimulate hair growth pathways and the activation of hair follicle stem cell by adipocyte lineage cells has been shown, ASCs and ASC‐conditioned medium (ASC‐CM) have been investigated in hair regeneration studies. DPCs which are cultured in ASC‐CM showed increased proliferation. These studies suggested a role for ASCs in alopecia treatment [117, 129].
\nBone marrow mesenchymal stem cells (BM‐MSCs) have also been used to induce hair induction
In a randomized placebo‐controlled trial, topical application of a commercially available solution containing HFSCs in male patients with AGA was found to be effective in the induction of hair growth and reduction of hair loss [130]. Supernatant of BM‐MSC culture overexpressing Wnt1a has been shown to increase hair producing ability of DP cells. Additionally, intradermal injection of concentrated solution of the above mentioned supernatant enhanced the transition from telogen to anagen in mouse. Also, negative effect of a 5‐DHT on hair related genes was restored with the addition of Wnt‐CM. Study indicated a role for Wnt1a from MSCs in hair regeneration therapies for alopecia [116].
\nThe effect of intradermal injection of commercially available ASC‐CM product (containing hepatocyte growth factor, fibroblast growth factor‐1, granulocyte colony‐stimulating factor, granulocyte macrophage‐colony‐stimulating factor, interleukin‐6, vascular endothelial growth factor, and transforming growth factor β‐3) to 22 AGA patients (11 males, 11 females) has been studied. Patients were treated in six sessions at 3–5‐ week interval. Six male patients were also on finasteride treatment. Half‐side comparison study has been undertaken in 10 patients. Hair counts were increased in all patients according to trichogram assays. In comparison study, hair count was increased in both side of the scalp, however, the increase was higher in the treatment side compared to the placebo side. The response in the placebo side is suggested to be related to the effect of injection itself or the diffusion of the solution to the other side [131].
\nIn another study with the same product, 27 patients with FPHL were treated with the solution (ASC‐CM) weekly with concurrent use of microneedling roller. Retrospective assessment of the results revealed significant increment in the hair density and thickness after 12 sessions [129].
\nAn evidence to the alternative mechanisms of stem‐cell therapy is the “stem cell educator therapy” which has been used for its immune modulation effect in nine AA patients. Cord blood stem cells (CB‐SCs) have been used to be introduced to patient\'s blood in a closed loop system. Patient\'s lymphocytes are separated and cocultured with CB‐SCs
In a recent review, an unpublished study (NCT01286649) has been reported investigating the efficacy of injecting human autologous HF dermal sheath cup cells which have been taken by punch biopsy from the scalp of patients with AGA. The results of the study await publication [118].
The presence of skin disease, inflammation or infection, having an allergic, autoimmune disease or cancer, pregnancy, and the usage of anticoagulant therapy are reported as contraindications of stem‐cell therapy [131]. Most of the studies on stem‐cell therapy in alopecia treatment reported no severe adverse effects [119, 129, 132]. Patients can feel pain when injection technique is used which can be overcome by nerve blockages, local anesthesia, cooling, or prescription of nonsteroidal antiinflammatory drugs [131].
Although the scientific data to support the validity of mesotherapy as a treatment option in alopecia is still lacking, there is an increasing interest in its use. Hair mesotherapy is not yet approved in the treatment of alopecia and the existing studies give variable results. Therefore, long‐term studies on a large cohort of patients are necessary to document its efficacy and safety in alopecia treatment and to standardize the treatment protocols. Hair mesotherapy can be used as an alternative intervention in the treatment of AA, AGA, and telogen effluvium in patients without systemic diseases.
\nDespite the increasing interest in microneedling in the treatment of different types of alopecia, further randomized controlled trials are required to assess the efficacy of microneedling on alopecia.
\nLiterature suggests PRP as an effective tool in AGA patients. PRP can be considered as an alternative treatment in AA patients not responsive to corticosteroid treatment or in the patients developing side effects due to steroid injections.
\nLLLT seems to be a safe and effective treatment option for patients with AGA, but more long‐term placebo‐controlled studies are needed to define the beneficial effects of laser/light sources for the management of this disease. The effects of laser/light sources are shown in many studies as mentioned above in AA. However, larger placebo‐controlled studies should be performed to evaluate the beneficial and adverse effects of these devices.
\nThere is no conclusive data regarding the efficacy, applicability, and method of stem‐cell therapy in the treatment of alopecia, however, it still remains as a potential intervention. Further studies are required with improved techniques to overcome challenges in regenerating intact HFs before clinical use. Also the cost and availability of such bioengineering therapies must be taken into consideration. Similar to the current follicular unit transplantation (FUT) therapy, in future, it is expected to transplant a complete HF created by stem cell technology and be able to treat various types of alopecia.
Following the birth of the Universe through the Big Bang, a cyclic creation, or another unique event, space was filled with nebulae composed primarily of gas and dust. Stars formed from this primordial material, and the residual mass or interstellar medium (ISM) formed the constituents that led to planet formation. There are numerous papers, references, and books describing the characteristics of Solar System planets as well as exoplanets [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].
This crude model for planetary formation is based on the assumption that a star forms from the gravitational attraction and associated collapse of the primordial material. The contraction of the star with its decreasing radius increased the angular momentum of the accretion disk of ISM that formed around the star [3, 7, 10, 15]. The temperature of the material within the accretion disk varied with distance from the star. This temperature dependence caused rocky bodies to form throughout the disk, but icy bodies developed at greater distances. In the Solar System, the icy bodies developed beyond the Asteroid Belt.
Within the Solar System, the terrestrial planets formed from rocky bodies (i.e., preplanetary clusters also known as planetesimals). The terrestrial planets include Mercury, Venus, Earth, and Mars. The larger planets (i.e., Jupiter, Saturn, Uranus, and Neptune) formed from the rocky bodies, icy bodies, gas, and dust that led to their increased size. The higher temperatures and lower masses of the terrestrial planets limited their capture of gases. This was not the case for the giant planets. For Jupiter and Saturn, the larger masses and cooler temperatures led to the capture of significant atmospheres.
The initial planet structures also developed their own accretion disks that led to the formation of planetary moons. These disks were larger for the giant planets, which led to these bodies generally having more moons than the less massive terrestrial planets. Some moons were formed by planetary gravitational capture of rocky structures and asteroid fragments. Other moons (e.g., Earth’s moon) formed when a large body collided with the planet.
Following the creation of the initial planets and their moons, the Solar System still contained considerable debris that collided with these bodies. The Moon’s craters are an example of the effect of the resulting impact of this debris. Some of this debris, particularly icy structures, formed beyond Neptune’s orbit and as is known as the Kuiper Belt. An Asteroid Belt comprised of rocky structures formed between the orbits of Mars and Jupiter.
This simplified model of planetary creation has been supplemented with a bifurcation model. Within the bifurcation model, planet formation occurred in spatially and temporarily distinct domains through a postulated mechanism that was driven by the presence of water [24]. Although the details of this mechanism are unknown, the domains evolved in distinct physical modes with different volatile materials. Model calculations suggest that these physical differences led to the formation of the terrestrial and gas giant planets.
As the capability to observe exoplanetary systems and their atmospheres improves, it will be interesting to determine if the characteristics of the Solar System and life on Earth are unique. Will further exoplanet observations reveal a variety of star and planetary systems having the capability of sustaining life?
The reader should note that the literature provides a range of values for planetary data including their associated composition. Given this consideration, specific references are cited when particular data are noted. Significant figures are usually provided to accommodate the variation in literature values.
This chapter provides a general overview of Solar System planets and exoplanets. It’s intended to introduce these systems to readers not well versed in planetary science. Additional planetary details are provided in this chapter’s references.
Although Solar System planets have been studied for centuries, the observation of exoplanets is only a few decades old. The first exoplanet orbiting a star outside the Solar System (i.e., 51 Pegasi), discovered by Mayor and Queloz [2], did not occur until 1995. Since that time, progress in exoplanet discovery and characterization has increased rapidly. As of January 2021, 4341 exoplanets have been discovered.
General characteristics of Solar System planets are addressed in Section 2.1 and other Solar System bodies (i.e., planetary moons, the Asteroid Belt, comets, Kuiper Belt Objects, and meteoroids) are discussed in Section 2.2. Section 2.3 is devoted to a discussion of exoplanets. Exoplanet detection methods are provided in Section 3. Section 4 summarizes the variety of space probes utilized to examine planetary and exoplanetary systems.
The presentation of this chapter is designed to facilitate the flow of subsequent material. Selected content provides an overview of subsequent chapters. Since there are numerous references to the characteristics of Solar System planets and exoplanets, the presentation of this chapter is necessarily incomplete. However, the text does provide an overview of the subject and the basis for more detailed study utilizing the accompanying reference list.
There are eight Solar System planets as well as dwarf planets, planetary moons, the Asteroid Belt, comets, Kuiper Belt Objects, and meteorites. These spatial bodies are addressed in subsequent discussion.
An overview of the Solar System planets and a general classification scheme is summarized in Table 1, and illustrated in Figure 1. The Solar System planets can be grouped in terms of structural characteristics with the terrestrial planets being compact objects that are primarily rocky objects. Gas giant planets are a combination of gas, rock, and ice.
Planetary Characteristic | Terrestrial Planet | Giant Planet |
---|---|---|
Structural Form | Primarily rock | Combination of gas, rock, and ice |
Mean distance from Sol (AU) | 0.39–1.5 | 5.2–30 |
Mean surface temperature (K) | 220–730 | 70–170 |
Mass ( | 0.055–1.0 | 15–320 |
Equatorial radius ( | 0.38–1.0 | 3.9–11 |
Mean density (g/cm3) | 3.9–5.5 | 0.69–1.6 |
Period of sidereal rotation at equator | 24 h – 243 d | 9.9 h – 17 h |
Number of moonsb | 0–2 | 14–82 |
Ring systems | No | Yes |
Solar System planets and the dwarf planet Pluto [
The terrestrial planets are closest to the Sun and are smaller, warmer, and less massive than the gas giants. Although more massive, the gas giants have a lower density. The gas giants have more moons and exhibit ring structures. These general characteristics are summarized in Table 1.
Table 2 provides additional data for the Solar System planets including their orbital characteristics (i.e., distance from the Sun, orbital period, and orbital eccentricity). Their surface gravitational acceleration in m/s2 is also provided. These data are important for spacecraft and probes attempting to investigate these worlds. Detailed orbital calculations are required to plan missions that would reach these planets, and successfully orbit and land on these worlds [4].
Planet (Number of moons) | Mass | Mean distance from Sol (AU) | Orbital eccentricity | Orbital period (y) | Equatorial surface gravitational acceleration (m/s2) |
---|---|---|---|---|---|
Mercury (0) | 0.055 | 0.39 | 0.21 | 0.24 | 3.7 |
Venus (0) | 0.82 | 0.72 | 0.007 | 0.62 | 8.9 |
Earth (1) | 1.00 | 1.0 | 0.017 | 1.0 | 9.8 |
Mars (2) | 0.11 | 1.5 | 0.093 | 1.9 | 3.7 |
Jupiter (79) | 320 | 5.2 | 0.049 | 12 | 23 |
Saturn (82) | 95 | 9.5 | 0.053 | 29 | 9.1 |
Uranus (27) | 15 | 19 | 0.046 | 84 | 8.3 |
Neptune (14) | 17 | 30 | 0.012 | 160 | 11 |
Mercury is the planet closest to the Sun, the smallest of the Solar System planets, and similar in size to Earth’s moon. It has no moons, and has a cratered surface that is similar to the topography of Earth’s moon. Given its proximity to the Sun and high temperature, Mercury’s atmosphere is thin with a constituent number density ≤ 1011 particles/m3 [15]. Mercury’s limited atmosphere consists of oxygen, sodium, potassium, and calcium that evolved from surface material. Thermal effects that increase the temperature of the crust and the impact of solar particles and meteorites on the surface create this atmospheric composition. Limited atmospheric hydrogen and helium are derived from particles emitted by the Sun, and trapped by Mercury’s weak magnetic field. The existence of this field suggests that Mercury has an iron core, and that a portion of it is a rotating liquid [22].
Additional Mercury data has been developed by a number of Solar System probes [11] including Mariner 10 and Messenger. The Japanese probe BepiColombo will provide additional data.
The second planet from the Sun is Venus, and it is somewhat smaller than Earth. In spite of the fact that Venus is the closest planet to the Earth, it is one of the least explored planets in the Solar System. Venus is similar in size and mass to the Earth, but these two planets are very different in their environment including temperatures, surface features, and atmospheric composition. Its thick atmosphere traps heat making Venus the hottest planet in the Solar System. Venus has an atmosphere composed of about 97% carbon dioxide with about 3% nitrogen. Trace amounts of water, carbon monoxide, argon, and sulfur dioxide comprise most of the remaining composition. The surface atmospheric pressure is about 90 times that of Earth [15]. Venus also appears to be have been affected by significant surface volcanic activity. Mariner 2 measured a surface temperature greater than 750 K [7, 15]. Sulfuric acid clouds are predicted by limited probe data [7]. Venus also differs from Earth with a slow retrograde rotation rate of about 240 days and lack of a magnetic field that that is an essential element in shielding a planet from the effects of the Solar wind. In addition, Venus has no moon, and its magnetic field is significantly weaker than Earth’s [22].
The possible detection of phosphine in the Venusian atmosphere created interest in further exploration of this planet [21]. Phosphine is an uncommon molecular species that is associated with anerobic bacteria. Its detection raised the possibility of extraterrestrial life. However, further measurements are required to confirm these preliminary observations.
Venus appears to be bright because its heavy cloud cover reflects most of the incident sunlight. Astronomers have been able to cut through the clouds of Venus with radar, because radio waves pass through the clouds and bounce off the surface. Using radar, the NASA probe Magellan assembled a detailed surface map while in orbit around Venus [7]. These radar images suggest that Venus has continents with varied topography including canyons, meteorite craters, and volcanic mountains [11].
Excluding the possible phosphine detection on Venus, Earth is the only Solar System planet that has sustained life. In addition, Earth is the only planet with liquid water residing on its surface, and is the largest of the terrestrial planets. Its surface is composed of about 29% land and 71% water that include oceans, lakes, and rivers [7, 15]. Ice covers much of Earth’s Polar Regions.
Earth is protected from charged particle ionizing radiation emitted by Solar flares and other disturbances [4, 5, 6, 14, 15] by its geomagnetic field and atmosphere. Charged particles from Solar Particle Events and Galactic Cosmic Radiation are reduced in intensity by the attenuating properties of the atmosphere and the action of the geomagnetic field. The atmosphere also shields Earth from a portion of the Sun’s ultraviolet radiation that mitigates its harmful effects. Earth’s atmosphere is composed of 78% nitrogen, 21% oxygen, and about 1% argon. Trace gases accounting for about 0.1% of the atmospheric composition includes carbon dioxide, methane, nitrous oxides, and ozone [7, 15].
Earth rotates in a prograde manner with a period of 24 hours. It has a nearly circular orbit with a mean distance from the Sun of 1 AU. Given the current Solar luminosity, this distance creates a positive environment for sustaining liquid water that is an essential element for life to be created and sustained.
The Earth has varied topography that is not static and still experiences periodic volcanic eruptions. Earthquakes and violent weather continue to reshape the Earth’s surface.
Mars is about 50% further from the Sun than Earth and about half the Earth’s size. The planet Mars is only about 10% as massive as the Earth, and has two small moons [7, 10, 11, 15, 28]. Its distinctive reddish color is attributed to the presence of iron oxide in the crust and surface dust.
Mars’ atmosphere is composed primarily of carbon dioxide (95%) and nitrogen (3%) with the remainder consisting of argon with trace amounts of carbon monoxide, methane, oxygen, water, and other gases. Mars is also subjected to dust storms that can be massive as well as severe. Its atmosphere is thin with a surface pressure that is less than 1% of sea level pressure on Earth.
Various surface temperatures are quoted in the literature but lie roughly in the range of 130–290 K [15]. The Polar Regions are considerably colder with ice and solid carbon dioxide forming the polar caps [7, 15].
Mars has a 24.5 hour prograde rotation period that is somewhat larger than Earth’s. The surface includes cratered areas, extinct volcanoes, chasms, and areas suggesting the previous existence of the action of water flow. In its past Mars was probably warmer than it is today with significantly more water and a thicker atmosphere.
There are anomalies in the Martian magnetic field [22]. Most of the Northern hemisphere is unmagnitized, but portions of the Southern regions are magnetized. These anomalies suggest that at one time Mars had a magnetic field that was similar to Earth’s [22].
A number of probes including NASA’s Viking 1 and 2 orbiters, as well as the Hubble Space Telescope provided data regarding the characteristics of Mars. Rovers including NASA’s Spirit, Opportunity, and Curiosity added additional surface data [11]. Other probes are likely to begin providing data in 2021. These include NASA’s Perseverance, China’s Tianwen-1, and the United Arab Emirates’ Hope.
The possibility of space missions and colonization of Mars are areas of active research [18]. Considerable research is required to develop spacecraft and Mars habitats to permit these activities to occur in a safe manner. A successful colonization effort must provide food, water, power, and shelter. The space radiation environment including Solar Particle Events and Galactic Cosmic Radiation should also be addressed to ensure the health and safety of the colonists [4, 6, 14, 18].
Jupiter is the largest of the outer four planets. Jupiter and Saturn are often designated gas giants while Uranus and Neptune are ice giants.
Table 3 provides a comparison of the atmospheres of the Sun and the gas giant planets derived from Refs. [10, 15]. Jupiter and Saturn have average compositions similar to the Sun. Uranus and Neptune are also similar in composition to the Sun, but have a higher fraction of the heavier elements.
Observational data suggest that Jupiter and Saturn possibly have rocky cores of magnesium, silicon, and iron with additional icy mass. Numerical simulations, based on limited data [15], suggest that the cores of Jupiter and Saturn have masses of about 10
Jupiter is more than twice as massive as the combined mass of the other Solar System planets. However, its mass is about 0.001 of the Sun’s mass. Jupiter is the most rapidly rotating Solar System planet with a rotational period of about 10 hours [11] and has an orbital period of about 12 years.
Jupiter is the largest Solar System planet, and has a number of distinctive features. Its Giant Red Spot is a storm region that is about twice as large as the Earth [15]. The spot has a rotation period of about 10 hours [15].
Jupiter also has very thin rings. The first of these, discovered by Voyager 1, are considerably less prominent than Saturn’s [7]. The rings appear to be primarily composed of dust [15].
Galileo discovered its largest moons (Ganymede, Callisto, Europa, and Io) that are discussed in Section 2.2.1. Jupiter has 79 moons [28].
Jupiter’s magnetic field is significantly stronger [15, 31] than Earth’s field and has a large physical extent. It is likely generated by electrical currents in the planet’s core. Jupiter’s field extends about 5x106 km in front of the planet and stretches about 650x106 km behind the planet extending beyond the orbit of Saturn [7]. In addition, there are regions of enhanced magnetic flux near the poles that create a complex field structure [22].
The Voyager 1 probe provided an initial view of Jupiter and observed volcanic activity [11]. Pioneer 10 and 11, Voyager 2, NASA’s Cassini Space Probe, and the Juno Space Probe have added additional data [11, 15].
Saturn lies beyond Jupiter and is the sixth planet from the Sun. It has a rotational period of about 11 hours that partially explains why Saturn is an oblate spheroid with an equatorial bulge [7]. Saturn’s mass is about 95 times Earth’s.
Saturn has cloud bands that are similar to those on Jupiter, but they are less colorful. Voyager 1 and 2, the Hubble Space Telescope, and the Cassini Space Mission provided views of the color variations as well as Saturn’s ring structures.
Table 3 lists the elemental compositions of the atmosphere of Saturn. The atmospheric molecular gases include hydrogen, helium, methane, and ammonia.
Saturn has a complex ring system and the largest number of moons (82) of any planet in the Solar System [28]. The Hubble Space Telescope imaged Saturn and provided a unique view of its rings. NASA’s Cassini Space Probe provided a detailed view of the rings that indicated their structure was comprised of numerous narrow ringlets [11]. Voyager 1 and 2 obtained additional data. The rings are generally broad and flat, and are composed of ice chunks and rocky material [7].
Saturn’s magnetic field is almost symmetric about its axis [22]. It is weaker and less complex than Jupiter’s field.
Uranus is the Solar System planet with the third largest diameter [15]. It has an atmosphere dominated by hydrogen, helium, and methane. Ammonia and trace amounts of water and hydrogen sulfide are also present [7, 10, 15]. Although Voyager 2 and the Hubble Space Telescope observed some cloud bands, these are less distinct and colorful than those on Jupiter and Saturn. Uranus’ interior generates considerably less thermal energy than Jupiter and Saturn [7].
Uranus has a distinctive orbit that differs from other Solar System planets. Its orbit is unique since the obliquity of Uranus’ rotation axis is about 98 degrees. Contrary to the other Solar System planets, Uranus rotates on its side in the orbital plane [7]. The net effect of Uranus’ orbital characteristics is that during its 84 year period one pole at a time receives more solar radiation than the equatorial region [7, 15]. However, measurements suggest that Uranus’ equatorial region is warmer than its poles [7].
Uranus has a system of multiple rings as well as 27 moons [28]. Voyager 2 and the Hubble Space Telescope observed these ring structures. Uranus’ rings are faint and much less dramatic than those on Saturn. The rings also wobble due to an unsymmetrical gravitational field since Uranus has a slightly flattened geometric structure [7].
Uranus also possesses a non-symmetric magnetic field. This field is significantly lopsided [7]. There is currently no viable explanation for this field structure.
Neptune was predicted to exist following a celestial mechanics analysis of anomalies in the expected orbit of Uranus. In 1846, it was discovered near the predicted position. Neptune resides at about 30 AU from the Sun, and its orbital period is about 160 years [7, 15].
As noted in Table 3, Neptune has an atmosphere dominated by hydrogen and helium with a smaller amount of methane, and is similar to the atmosphere on Uranus. Voyager 2 revealed a blue color and the fastest winds in the Solar System with speeds reaching 2100 km/h [7]. The blue color is derived from small amounts of methane in its hydrogen and helium atmosphere [7].
As noted in Table 2, Neptune has a mass about 17 times the Earth’s, and it is about four times wider than Earth [15]. In a manner similar to Jupiter and Saturn, Neptune generates more energy than it receives from the Sun [15].
In a similar manner to the other giant planets, Neptune has a system of multiple rings as well as 14 moons [28]. However, Neptune’s rings are not as extensive as Saturn’s. Voyager 2 observed that Neptune’s rings appear to be composed of a high concentration of dust particles [7].
In addition to planets, there are additional bodies that reside in the Solar System and have the potential to affect planetary motion as well as their environment. These bodies include planetary moons, the Asteroid Belt, comets, Kuiper Belt Objects, and meteorites. Each of these Solar System bodies is addressed in subsequent discussion.
As noted in Table 2, the number of moons varies with the Solar System planet and their characteristics [1, 3, 4, 10, 15]. The larger planets tend to have more moons than the smaller ones. However, dwarf planet Pluto has five moons, which is an exception to the aforementioned trend [28, 29]. Its moon Charon is larger than any other Solar System moon relative to its planet size. Table 4 summarizes the four largest Jupiter moons (Callisto, Io, Europa, and Ganymede), Saturn’s largest moon (Titan), Neptune’s largest moon (Triton), and Earth’s moon that are more massive and physically larger than Charon. Characteristics of these planetary satellites including their mass, radius, density, orbital period, and semimajor axis are summarized in Table 4.
Gas | Atmospheric Elemental Composition (Fractional number density of particles)a | ||||
---|---|---|---|---|---|
Sun | Jupiter | Saturn | Uranus | Neptune | |
Hydrogen | H:0.84 | 0.86 | 0.96 | 0.85 | 0.85 |
Helium | He:0.20 | 0.16 | 0.034 | 0.18 | 0.18 |
Water | O:0.0017 | 0.0026 | >0.0017 | >0.0017 | >0.0017 |
Methane | C:0.00079 | 0.0021 | 0.0045 | 0.024 | 0.035 |
Ammonia | N:0.00022 | 0.00026 | 0.0005 | <0.00022 | <0.00022 |
Hydrogen Sulfide | S:0.000037 | ~0.00022 | 0.0004 | 0.00037 | 0.001 |
Moon (Planet) | Mass (1022 kg) | Radius (103 km) | Density (g/cm3) | Orbital Period (d) | Semimajor Axis (103 km) |
---|---|---|---|---|---|
Moon (Earth) | 7.3 | 1.7 | 3.4 | 27 | 380 |
Io (Jupiter) | 8.9 | 1.8 | 3.5 | 1.8 | 420 |
Europa (Jupiter) | 4.8 | 1.6 | 3.0 | 3.6 | 670 |
Ganymede (Jupiter) | 15 | 2.6 | 1.9 | 7.2 | 1100 |
Callisto (Jupiter) | 11 | 2.4 | 1.8 | 17 | 1900 |
Titan (Saturn) | 13 | 2.6 | 1.9 | 16 | 1200 |
Triton (Neptune) | 2.1 | 1.4 | 2.1 | 5.9 | 350 |
Jupiter’s moon Ganymede has a diameter of about 5200 km and is the largest moon in the Solar System. It is more massive than Pluto. Ganymede has an icy surface with numerous craters [7, 15].
Ref. [7] suggests that Ganymede has a structure comprised of three basic layers. The first is an iron core with the possible presence of sulfur. A layer of rock surrounds the core. The final layer is an icy crust that overlays the rocky layer.
Ganymede has an electromagnetic field that is likely generated by currents in its core. The field also has a contribution from inductive effects caused by Jupiter’s magnetic field. These effects could be attributed to a layer of salt water residing under the surface ice [7].
The atmosphere of Ganymede is limited and contains oxygen [7]. The oxygen arises from the interaction of sunlight on surface water molecules that break their bonds to produce hydrogen and oxygen.
Callisto is another moon of Jupiter that is smaller than Ganymede, but larger than Earth’s moon. The atmosphere is very thin and comprised primarily of carbon dioxide. Reference 7 suggests that Callisto is a combination of ice and rock.
Callisto’s icy and rocky surface is estimated to be about 100 km thick and is heavily cratered. An ocean of salty water is presumed to reside under the surface ice. The existence of the ocean is inferred from magnetic field measurements that provide a broad range of possible depths ranging from 10 to 300 km [7]. This depth variation depends on the type and concentration of materials in the water. The interior of Callisto is presumed to be rock with a density that increases with depth.
Another of Jupiter’s moons Europa is smaller than Earth’s moon and has a diameter of about 3100 km. It has a grooved icy terrain with few craters [15]. The Galileo probe provided data that improved the understanding of Europa.
Europa is believed to have an ocean of liquid water under its icy crust that could be about 100 km in depth. A rocky mantle forms the seabed of this ocean [7]. The existence of this ocean has caused considerable speculation regarding the presence of possible life forms. At the present time, this is merely speculation without supporting evidence.
The surface of Europa is smooth that suggests a relative young origin given the dearth of craters. Its surface is also uniquely colored with interesting patterns. Neither of these unique features has been satisfactorily explained [7].
The atmosphere of Europa is limited and contains oxygen. In a manner previously addressed in the Ganymede discussion, oxygen is liberated from the interaction of sunlight on surface water molecules.
Io is about the same size as the Moon, is the innermost of Jupiter’s satellites, and has one of the largest densities of any Solar System moon [15]. It has some of the most active volcanoes in the Solar System. These volcanic eruptions are likely attributed to gravitational tidal stresses caused by Jupiter’s mass. Io’s orbit and its relationship to Europa, Callisto, and Ganymede also contribute to the tidal stresses [7].
Voyager 1 observed a number of Io’s volcanic eruptions. Io’s volcanoes vigorously eject sulfur compounds into the atmosphere. A portion of this material produces a ring around Jupiter. The degree of volcanic activity creates a relatively smooth surface with few observable craters [7].
Io has a number of unique surface features that are enhanced by the volcanism. It has liquid sulfur lakes, mountains, and sulfur lava flows. Io’s unique and varied coloration is attributed to the various sulfur compounds. In contract to Callisto and Europa, Io has minimal water.
The Galileo probe provided data regarding Io’s core. The core is likely composed of iron with a diameter exceeding 900 km.
Saturn’s moon Titan with a diameter of about 5200 km is the second largest moon in the Solar System [15]. Titan is larger than Earth’s moon. It has a heavy atmosphere with thick clouds. The atmosphere is composed primarily of nitrogen with some methane and trace gases with a pressure of about 1.5 atm [7, 15]. The surface temperature is about 93 K [7].
The Cassini spacecraft and its Huygens lander were able to penetrate Titan’s thick clouds. Additional data were provided by the Hubble Space Telescope. The surface appears to be relatively flat, and impact craters could be filled with hydrocarbon precipitation [7].
NASA’s Cassini probe observed indications of erosion on Titan caused by a flowing liquid. It is likely that the liquid is methane and there are liquid methane lakes near Titan’s poles [11]. The European probe Huygens was released from Cassini, traversed its dense atmosphere, and landed on the surface of Titan. Huygens data suggests that Titan has an orange color, and its atmosphere contains clouds that resemble smog [11].
Neptune’s largest moon Triton has a diameter of about 2700 km and it orbits the planet in a retrograde manner [15]. It is possible that Triton’s orbital characteristics are a consequence of its gravitational capture by Neptune [7]. Voyager 2 extended knowledge of Triton and its characteristics.
Triton has a thin nitrogen atmosphere, records a surface temperature of about 33 K, and exhibits active surface features [7]. It has a bright surface that may have been impacted by geyser-like eruptions that eject liquid nitrogen into the atmosphere [11]. Solar radiation is attributed to be the driving force for these geysers [7].
The surface appears to be relatively young since it has minimal surface craters. Triton is about 25% water ice with the remaining material being rocky in composition [7].
NASA’s Voyager 2 probe and the Hubble Space Telescope provided significant data regarding Neptune and its moons [7]. Additional probes and space missions are required to better characterize Neptune and its moons.
The Moon is Earth’s only satellite. It has a diameter about 25% of Earth’s, a mass about 0.01 times the mass of Earth, and its surface gravity is about one sixth g (~1.6 m/s2). The Moon’s orbit is tidally locked, and the same side faces the Earth [7].
The second densest planetary satellite in the Solar System is Earth’s moon [7]. It has a thin crust, thick mantle, and an iron core that is estimated to be less than 400 km in diameter. The Moon’s surface is inactive with no apparent volcanic or tectonic activity [7]. In addition, there is a minimal magnetic field approximately 100 times weaker than Earth’s [7].
The Moon’s surface contains numerous craters, dark areas that appear to be flat (
The Moon’s has essentially no atmosphere. Some material (e.g., radon gas) is released from the surface through radioactive decay. Other material is generated through micrometeorite impact and sunlight interactions with surface materials. However, much of the atmospheric constituents are swept from the Moon by the action of the Solar wind [7].
Several thousand bodies (asteroids) reside between 2 and 3.5 AU between the orbits of Mars and Jupiter [15]. This region is known as the Asteroid Belt. The largest of these is Ceres that contains about one third of the Asteroid Belt mass, and has a radius of about 500 km that is smaller than the Solar satellites summarized in Table 4 [15]. Solar probes have investigated the properties of Asteroid Belt bodies. For example, NASA’s space probe Dawn orbited Vesta that is one of the largest asteroids, and also investigated Ceres [11]. Some asteroid bodies have orbits that intersect Earth’s orbit and present a potential collision hazard [7].
Some Solar System planets contain small moons that have a rocky composition that is similar to the Asteroid Belt bodies. It is possible that some of these moons were once asteroids that were gravitationally captured by the planets during an early phase of Solar System evolution when orbits were less stable than the current configuration.
Table 5 lists the largest asteroids and their physical characteristics. A portion of the data was derived from the Dawn spacecraft. The mass values are rough estimates provided by NASA [25]. Ceres is classified as a dwarf planet [7]. Vesta, Pallas, and Juno and are the second, third, and fourth heaviest asteroids, respectively.
Asteroid | Mass (kg) | Rotation Period (h) | Orbital Period (y) | Eccentricity |
---|---|---|---|---|
Ceres | 9.4x1020 | 9.1 | 4.6 | 0.076 |
Pallas | 2.1x1020 | 7.8 | 4.6 | 0.23 |
Juno | 2.0x1019 | 7.2 | 4.4 | 0.26 |
Vesta | 2.6x1020 | 5.3 | 3.6 | 0.089 |
Selected Asteroid Belt data derived from Ref. [25].
Ceres is believed to have a rocky core [7]. An icy mantle and crust surround the core. The mantle could be as thick as 120 km and contain a volume of water greater than the Earth’s oceans. Ceres has a surface temperature of about 233 K [7].
In addition to moons and Asteroid Belt Objects, comets are another group of objects that orbit the Sun. Most comets are composed of a combination of rocky material, dust, and ice. A tail comprised of escaping dust and gases often characterizes comets. These materials are generated as the comet material evaporates. This evaporation is facilitated by the radiation pressure of the Sun, and the associated Solar wind of charged particles [15].
Most comets are small bodies with diameters less than 1 km to as large as 300 km [30], and many of these bodies move in highly eccentric orbits. Comets often display bright heads and long tails due to the evaporation of ice when their orbits bring them in proximity to the Sun. These bodies are probably the remnants of planetesimals originally located in an outer region of the Solar System known as the Oort cloud that lies roughly between 3,000–100,000 AU. Comets also originate in the Kuiper Belt that lies between 30 and 1,000 AU. Their orbits can be altered by the Solar System planets particularly Jupiter [15].
Comets are often classified by their orbital period. Short- (long-) period comets have orbital periods of 200 years or less (greater than 200 years) [15].
A consideration of orbital parameters suggests that the likely source of short-period comets is the Kuiper Belt. This belt contains numerous icy bodies. A selected set of Kuiper Belt Objects is summarized in Table 6. The largest member of the known Kuiper Belt Objects is the dwarf planet Eris. The dwarf planets Pluto and Charon, one of its moons, are also among the largest Kuiper Belt Objects [15].
Kuiper Belt Object | Diameter (km) | Orbital Period (y) | Semimajor Axis (AU) | Eccentricity |
---|---|---|---|---|
2002 AW197 | 900 | 330 | 47 | 0.13 |
Varuna | 900 | 280 | 43 | 0.052 |
Ixion | 1100 | 250 | 40 | 0.24 |
Quaoar | 1200 | 290 | 44 | 0.035 |
2003 EL61 | 1200 | 290 | 43 | 0.18 |
2005 FY9 | 1300 | 310 | 46 | 0.16 |
Charon | 1300 | 250 | 39 | 0.25 |
Orcus | 1500 | 250 | 39 | 0.22 |
Sedna | 1600 | 12,000 | 530 | 0.86 |
Pluto | 2300 | 250 | 39 | 0.25 |
Eris | 2400 | 560 | 68 | 0.44 |
The long-period comets likely originate within the Oort Cloud that is a roughly spherically symmetric region of space. These comet nuclei represent ISM dating from the time of the formation of the Solar System [15].
Table 6 summarizes a listing of the largest Kuiper Belt Objects. In addition to Pluto, some of these objects also have an associated moon. Eris is also similar to Pluto in terms of its composition. The reader should note that Sedna has a significantly larger orbit than many observed Kuiper Belt Objects. Given this consideration, the detection of additional Kuiper Belt Objects is possible [15]. One curious possibility, known as Planet Nine, is addressed in subsequent commentary.
Perturbations to Neptune’s orbit suggested the existence of a new planet that led to the discovery of the dwarf planet Pluto. However, Pluto’s mass is too small to have perturbed Neptune’s orbit. The orbital perturbation issue involving other Kuiper Belt Objects has led to the speculation of additional Solar System planets [15, 29].
Pluto is likely composed of rock, and it has an icy surface mixture of frozen nitrogen with smaller amounts of carbon monoxide and methane. As such, Pluto’s surface is similar to Triton [15]. It is believed to have a rocky core. Pluto has a very thin atmosphere that includes nitrogen, methane, and carbon monoxide [15]. This composition is consistent with the sublimation of surface material [15].
Pluto has a diameter of about 2300 km and has a rotation period of about 6.4 days. It has five moons [28]. Pluto’s largest moon (Charon) and its characteristics are summarized in Table 6 [15].
Eris is an additional dwarf planet that is slightly larger than Pluto. It has a radius about 20% of Earth’s. The internal structure of Eris is unknown [27]. Ref. [15] suggests that its surface is similar to Pluto that incorporates a composition of frozen methane, rock, and ices of various elements including nitrogen. Eris’ surface temperature is about 33 K [27]. This dwarf planet also has a small moon Dysnomia that has a circular orbit with a rotational period of about 16 days.
Periodically, predictions of additional planets beyond Pluto have been made. One of the more recent developments is an assertion by Batygin and Brown [12]. Ref. [12] suggests the existence of an additional planet with a mass of approximately 10 Earth masses, and an orbit at about 20 times farther from the Sun than Neptune. Their estimates for Planet Nine were inferred from observed orbital characteristics of a number of Kuiper Belt Objects.
Ref. [12] performed numerical simulations to fit the observed orbits. A perturbing body (Planet Nine) was incorporated in the simulation to reproduce the observed orbital characteristics of a number of Kuiper Belt Objects. The simulations [12] suggest that the object perturbing the orbits is a “primordial giant planet core that was ejected during the nebular epoch of the Solar System’s evolution”. At the present time, the existence of Planet Nine is unconfirmed.
The collision of asteroids produces a collection of smaller objects known as meteoroids. These collisions produce trajectories governed by the gravitational interaction of Solar System bodies. When a meteoroid enters the atmosphere of a planet, it is heated by friction and becomes a meteor. If the meteor strikes the planet’s surface, its surviving fragments are called meteorites [15].
Meteorite material is also produced by the fracturing of comets that are exposed to the increased heat of the Sun particularly in the vicinity of the inner Solar System planets. These occurrences often lead to showers of micrometeorites that impact a planet’s atmosphere [15].
Meteorites play a key role in planetary development. By depositing chemical elements or prebiotic material, meteorites can influence the evolution of a plant during its formative years. The extent of this influence depends on their size, frequency of impact, and composition. Meteorites striking a mature planet can cause ecological harm including impacts on the climate.
Exoplanets are planets that orbit stars outside the Solar System. Given the diversity of star types and sizes, exoplanets have a wider range of physical characteristics than the planets that inhabit the Solar System. The various types of exoplanets include the most massive or gas giant planets, intermediate mass or Neptune planets, and low mass planets that include terrestrial and ocean planets or water worlds [9, 26]. Although most exoplanets orbit their host stars, rogue exoplanets are also possible [8].
Gas giant exoplanets are similar to Jupiter and Saturn. Their composition is dominated by hydrogen and helium with smaller contributions from heavier elements and complex molecules. Their structures may include cores of rock or ice [9, 15, 26]. However, a recent publication suggests that hot Jupiters could exhibit a more diverse chemical composition [34]. For example, an analysis of HD 209458b atmospheric data suggests the presence of water, carbon monoxide, hydrogen cyanide, methane, ammonia, and acetylene [34].
Hot Jupiters are a classification of gas giants that typically reside near their star usually within 0.05 to 0.5 AU [23]. They could have formed near their host star or migrated toward the star after forming at a more distant location. Given the proximity to their host star, temperatures can exceed 2,000 K [23]. Considering their size and proximity to their host star, they are readily detected and are one of the most common types of exoplanet detected to date. A commentary of detection methods is presented in subsequent discussion.
Exoplanets known as the Neptune class are also giant planets, but heavy elements comprise most of their mass [9, 26]. The Neptune class of exoplanets has a thick hydrogen and helium layer, but these elements are not the dominant constituents as they were in the gas giants. Within the Solar System, both Uranus and Neptune are representative of this class of planets.
Uranus and Neptune are Solar System analogues of Neptune class exoplanets. These systems have a characteristic blue color. They are also known as ice giants because many models suggest that the bulk of the planet’s mass resides within a sea that probably is comprised of ammonia, methane, and water [9]. However, there is likely a significant diversity in the composition of Neptune class exoplanets.
Terrestrials are exoplanets that are similar in structure to the inner planets of the Solar System including Mercury, Venus, Earth, and Mars. These exoplanets have compositions that are dominated by elements including carbon, oxygen, magnesium, silicon, and iron [9, 26]. Terrestrials are interesting because these bodies present the possibility of finding a planet similar to Earth that could support life.
A sub-classification of terrestrials is Super-Earths. Super-Earths are rocky planets that have a mass greater than the Earth, but usually defined to be less than 10 Earth masses. Given their mass, some Super-Earths may be similar to Solar System planets Neptune and Uranus [23].
Exo-Earths are terrestrial exoplanets that have similarities to Earth in terms of their mass, radius, and temperature. Their orbits would reside within the habitable zone where liquid would water could exist [23].
Chthonian Planets are a proposed class of exoplanets that began as gas giants. During subsequent evolution, their orbits were altered to bring these planets in proximity to their host star. This proximity caused their atmosphere to be removed with only the rocky core remnant remaining. Given their similarity, some Super-Earths could be Chthonian Planets [23].
Exoplanets, referred to as ocean planets or water worlds, are dominantly comprised of water. Computer models suggest these exoplanets could be created by ISM enriched in icy material. As a candidate water world migrated toward the host star, the ice melted, and covered the planet in an ocean [23, 26].
A number of detection methods have been utilized to observe exoplanets. These include, but are not limited to, transient methods, direct detection, and radial velocity measurements. Each of these three basic methods is addressed in subsequent discussion. If concurrent radial velocity and transient methods measurements are available, this combination can be used to determine the planet’s mass, radius, and density [23, 33].
Ref. [32] notes that in order to estimate an exoplanet’s mass, the mass of the host star must be determined. The host star’s mass estimate is based on its spectral type. An exoplanet’s mass can then be estimated by measuring its effects on the motion of the host star. Included in these effects is stellar wobble that periodically red shifts and blue shifts its emitted spectrum of light. Measuring these shifts as a function of time permits a determination of the orbital period. When combined with the host star’s mass, the planet’s orbital trajectory and velocity can be estimated. Once the star’s velocity is known as a function of its wobble, then the exoplanet’s mass is determined. The star’s velocity is not zero because both the planet and host star orbit around their center-of-mass.
The transient method is the detection approach used by a number of devices including the Kepler Space Telescope. Using this method, an observer or instrument detects the decrease in radiation intensity when an exoplanet transits its host star. Periodic measurements create an intensity vs. time plot or a light curve. The light curve has a characteristic shape. It has a constant intensity until the exoplanet initiates its transit. As the exoplanet begins to cover a portion of the star, it blocks some the star’s surface. When this occurs, the intensity is reduced and decreases to a reduced constant value. As the exoplanet blockage terminates, the intensity returns to its initial value before any light was blocked. For an exoplanet, this cycle repeats as the exoplanet periodically orbits and transits its host star. A dip or decrease in intensity indicates that the exoplanet is passing between the observer and its host star. If this intensity curve pattern recurs on a periodic basis, then an exoplanet has likely been observed [23].
The drop (D) in intensity (I) between the equilibrium or maximum value and the minimum value as the exoplanet is transiting its host star is given by the first order relationship:
where r is the exoplanet radius and R is the host star radius. Eq. (1) assumes the star and exoplanet are both spherical. Using this assumption, the volume (V) of the exoplanet can be obtained from Eq. (1):
Since the exoplanet is much smaller that its host star, the decrease in intensity is relatively small and dependent on the relative size of the planet and star. As an example, consider an exoplanet with a radius that 10% of its host star’s. Using Eq. (1), the light will only dim by 1% if both bodies are spherical.
Figure 2 illustrates the intensity profile for a transiting exoplanet across its host star. The figure assumes a large exoplanet and the intensity decrease is not normally so dramatic.
Intensity profile for a large exoplanet traversing its host star.
Direct detection entails the viewing or imaging of the exoplanet [7, 23]. This differs from the transit method because an explicit observation of the exoplanet occurs. Although direct detection is desirable, there are two basic complications when implementing this method.
First, the star’s intensity is orders of magnitude larger than the reflected and internally generated light from an exoplanet. This difference in intensity must be mitigated for the exoplanet to be observed. Second, the detection instrumentation must have the necessary angular resolution to distinguish the exoplanet from its host star. If this is not accomplished, the image will have insufficient resolution to reveal the exoplanet.
These issues create difficulties in the detection of exoplanets occurring in a habitable zone where liquid water exists. Terrestrial exoplanets that are close to a parent star such as a red giant would preclude imaging the surface topography. This proximity minimizes the direct observation of details including continents and oceans. Attention could be focused on observing atmospheric constituents to ascertain their elemental composition including spectroscopic evidence of any possible signatures of biological activity.
The radial velocity approach entails measurement of the Doppler shift of light from a host star. As an exoplanet orbits its host star, it exerts a gravitational force on the star and causes a shift in its radial velocity as it moves toward and away from the observer. This radial velocity shift results in a wavelength frequency that periodically oscillates between a red shift and a blue shift. When this periodic oscillating frequency is observed, the host star likely has one or more exoplanets in its orbital system [7, 15]. The oscillating effect of red shifts and blue shifts is illustrated in Figure 3.
Radial velocity profile for a transiting exoplanet. Positive (negative) radial velocities result in a light profile that is blue (red) shifted.
The numerous exoplanets discovered to date are a testament to improving detection methods. Although a complete description of these systems is not possible in this chapter, it is possible to illustrate one of these systems that has several interesting characteristics. Accordingly, this section addresses the Trappist-1 system that contains seven potential Earth-like exoplanets. Trappist-1 is an ultra-cool red dwarf star with a radius that is somewhat larger than Jupiter’s, but has a mass of about 84 times Jupiter’s [13, 16]. It has a surface temperature of about 2600 K [16], which partially explains the nature of the habitable semi-major axes and rotation periods noted in Table 7.
Exoplaneta | Surface gravity (g) | Semi-major axis (AU) | Orbital Periodb (d) | |||
---|---|---|---|---|---|---|
Trappist-1b | 1.02 | 1.12 | 0.73 | 0.81 | 0.012 | 1.51 |
Trappist-1c | 1.16 | 1.10 | 0.88 | 0.97 | 0.016 | 2.42 |
Trappist-1d | 0.30 | 0.78 | 0.62 | 0.48 | 0.022 | 4.05 |
Trappist-1e | 0.77 | 0.91 | 1.02 | 0.93 | 0.029 | 6.10 |
Trappist-1f | 0.93 | 1.05 | 0.82 | 0.85 | 0.039 | 9.21 |
Trappist-1 g | 1.15 | 1.15 | 0.76 | 0.87 | 0.047 | 12.4 |
Trappist-1 h | 0.33 | 0.77 | 0.72 | 0.56 | 0.062 | ~20 |
In 2017, NASA announced the observation that seven rocky exoplanets similar in size to Earth were discovered orbiting the host star Trappist-1 [16]. These planets resided in the habitable zone and had the potential for the existence of liquid water on their surfaces. Trappist-1 is about 40 light years from Earth, and this proximity creates the possibility that its planetary systems could be imaged with future generations of telescopes [16]. Further investigation could reveal the existence of atmospheric constituents that would indicate the possible presence of life forms.
Table 7 summarizes selected details of the Trappist-1 exoplanetary system [16, 17]. These exoplanets have nearly circular orbits, and orbit in proximity to their host star. The Trappist-1 exoplanets are in the range of 0.3–1.2 Earth masses with radii of 0.8–1.2 Earth radii. These rocky worlds have densities between 0.6 and 1.0 Earth densities. Their surface gravity values are also similar to Earth’s (0.5–1.0 g).
Using simulations, Ref. [17] reached several conclusions regarding the nature of the Trappist-1 exoplanetary system. Three of these most applicable to this chapter are noted.
First, Trappist-1c and -1e are likely to possess interiors that are mostly rocky in nature. Second, Trappist-1b, −1d, −1f, −1 g, and -1 h likely have a thick atmosphere, oceans, or ice cover. Third, Trappist-1d, −1f, −1 g, and -1 h are unlikely to have an enriched carbon dioxide atmosphere above a bare core assuming these planets have an Earth-like composition.
A variety of probes have investigated Solar System planets as well as exoplanets. These devices are growing in capability, and future probes could have the capability to reveal significant details regarding the exoplanetary structure and atmospheric composition of the increasing number of observed exoplanetary systems.
There have been numerous scientific probes launched primarily by the United States, the European Union, and Russia/Soviet Union since the late 1950s [19]. This list of participating countries has expanded to include many more nations as launch capabilities extend to additional nations. The probes have included a variety of purposes and target planets.
Missions include flybys of a planet, moon, or other space objects; orbiting these bodies; atmospheric entry; impact with the space object; and soft-landing on the surface. Target space bodies include all Solar System planets, the Moon, dwarf planets, asteroids, moons of planets, asteroids, and comets. Probes have also been launched into Solar orbits.
The probes have expanded our knowledge of planetary systems including their masses, atmospheric composition, surface characteristics, and temperature and pressure profiles. Additional studies focused on major moons as well as other orbiting space objects including comets and asteroids.
Ref. [19] provides a detailed historical listing of space probes during 1958–2016. Since 2016, the number of probes and their sophistication has improved. Although, Mars and the Moon are popular destinations, recent data, suggesting the appearance of phosphine in the atmosphere of Venus, has increased focus of that planet [21]. The number and scale of future probes will reveal additional information regarding these planets. For this reason, this chapter has been written in a general manner and does not address specific probe objectives or data. However, some of the chapters of this book illustrate selected probes and their capabilities.
The Exoplanet Exploration Program’s roadmap of NASA’s exoplanet missions provides a summary of existing and planned probes [20]. NASA has a number of ongoing exoplanet and planned probes. Current instrumentation includes the Hubble, Spitzer, and Kepler/K2 Space Telescopes. These instruments have significantly improved knowledge of exoplanetary systems though the discovery and characterization of transiting systems. Another device, the Transiting Exoplanet Survey Satellite (TESS) launched in 2018, adds an additional tool to expand the knowledge of exoplanetary systems. The James Webb Space Telescope (JWST), having a projected late 2021 launch date, includes mid-infrared transit spectroscopy, and has the capability to directly image massive exoplanets. In addition, the Nancy Grace Roman Space Telescope tentatively planned for launch about 2025 includes infrared capability that could facilitate direct exoplanet imaging.
Additional missions are possible if oversight groups recommend their viability, and funding becomes available. These include the Large Ultraviolet Optical Infrared Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HabEx) that have the potential to directly image and characterize Earth-like exoplanets. These devices also have the capability to detect the spectra of molecular forms including water and oxygen. The Origins Space Telescope (OST) is a conceptual infrared mission that is intended to measure the atmosphere of exoplanets. These additional space missions have the capable of observing the necessary characteristics for life to exist on exoplanets.
Observations of Solar System planets have been ongoing for centuries. The expanding use of probes has significantly improved knowledge of the major planets, dwarf planets, moons, the Asteroid Belt, and Kuiper Belt Objects. Although the Solar System characteristics are relatively well known, probes have not extensively studies all the planets and dwarf planets at the same level of detail. Accordingly, Venus, Neptune, Uranus, and Pluto warrant additional investigation. The dynamics of Solar System planets are also evolving as evidenced by the periodic suggestion of additional planets including the recent calculations regarding the existence of Planet Nine.
Although exoplanets are a relatively new area of study, the field is rapidly advancing with thousands of exoplanets currently catalogued. Much is to be learned about these worlds and their characteristics, and a number of new and planned probes will add to that knowledge. Although manned planetary missions are on the horizon, exoplanet investigations will require remote approaches for the foreseeable future.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11456",title:"Autonomous Mobile Mapping Robots",subtitle:null,isOpenForSubmission:!0,hash:"405e1f7c0ef62700f4d590722cf428be",slug:null,bookSignature:"Dr. Janusz Bȩdkowski",coverURL:"https://cdn.intechopen.com/books/images_new/11456.jpg",editedByType:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11459",title:"Soft Robotics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"06e947238d5d4ea1162509a5d66de887",slug:null,bookSignature:"Dr. Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11459.jpg",editedByType:null,editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:41},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:16},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:66},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:489},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1288",title:"Mobile Robot",slug:"kinematics-mobile-robot",parent:{id:"255",title:"Kinematics",slug:"kinematics"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:45,numberOfWosCitations:85,numberOfCrossrefCitations:82,numberOfDimensionsCitations:133,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1288",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1880",title:"Mobile Robots",subtitle:"Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training",isOpenForSubmission:!1,hash:"5c978b99bcfc519f4f27256ae5b2e212",slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",bookSignature:"Janusz Będkowski",coverURL:"https://cdn.intechopen.com/books/images_new/1880.jpg",editedByType:"Edited by",editors:[{id:"63695",title:"Dr.",name:"Janusz",middleName:null,surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3637",title:"Cutting Edge Robotics 2010",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"cutting-edge-robotics-2010",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/3637.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"12200",doi:"10.5772/10312",title:"Emotion Recognition through Physiological Signals for Human-Machine Communication",slug:"emotion-recognition-through-physiological-signals-for-human-machine-communication",totalDownloads:5044,totalCrossrefCites:38,totalDimensionsCites:65,abstract:null,book:{id:"3637",slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Choubeila Maaoui and Alain Pruski",authors:null},{id:"24651",doi:"10.5772/26906",title:"Model-Driven Development of Intelligent Mobile Robot Using Systems Modeling Language (SysML)",slug:"model-driven-development-of-intelligent-mobile-robot-using-systems-modeling-language-sysml-",totalDownloads:3866,totalCrossrefCites:5,totalDimensionsCites:8,abstract:null,book:{id:"1880",slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",title:"Mobile Robots",fullTitle:"Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training"},signatures:"Mohd Azizi Abdul Rahman, Katsuhiro Mayama, Takahiro Takasu, Akira Yasuda and Makoto Mizukawa",authors:[{id:"68233",title:"Dr.",name:"Mohd Azizi",middleName:"Bin",surname:"Abdul Rahman",slug:"mohd-azizi-abdul-rahman",fullName:"Mohd Azizi Abdul Rahman"},{id:"69102",title:"Mr.",name:"Takasu",middleName:null,surname:"Takahiro",slug:"takasu-takahiro",fullName:"Takasu Takahiro"},{id:"69104",title:"Mr.",name:"Yasuda",middleName:null,surname:"Akira",slug:"yasuda-akira",fullName:"Yasuda Akira"},{id:"69105",title:"Dr.",name:"Makoto",middleName:null,surname:"Mizukawa",slug:"makoto-mizukawa",fullName:"Makoto Mizukawa"},{id:"119833",title:"Mr.",name:"Katsuhiro",middleName:null,surname:"Mayama",slug:"katsuhiro-mayama",fullName:"Katsuhiro Mayama"}]},{id:"12211",doi:"10.5772/10323",title:"Onboard Mission Management for a VTOL UAV Using Sequence and Supervisory Control",slug:"onboard-mission-management-for-a-vtol-uav-using-sequence-and-supervisory-control",totalDownloads:3256,totalCrossrefCites:5,totalDimensionsCites:7,abstract:null,book:{id:"3637",slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Florian Adolf and Franz Andert",authors:null},{id:"24656",doi:"10.5772/25725",title:"EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device",slug:"eeg-based-brain-machine-interfacing-navigation-of-mobile-robotic-device",totalDownloads:5475,totalCrossrefCites:5,totalDimensionsCites:6,abstract:null,book:{id:"1880",slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",title:"Mobile Robots",fullTitle:"Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training"},signatures:"Mufti Mahmud, Alessandra Bertoldo and Stefano Vassanelli",authors:[{id:"64321",title:"Dr.",name:"Mufti",middleName:null,surname:"Mahmud",slug:"mufti-mahmud",fullName:"Mufti Mahmud"},{id:"64333",title:"Prof.",name:"Alessandra",middleName:null,surname:"Bertoldo",slug:"alessandra-bertoldo",fullName:"Alessandra Bertoldo"},{id:"119150",title:"Prof.",name:"Stefano",middleName:null,surname:"Vassanelli",slug:"stefano-vassanelli",fullName:"Stefano Vassanelli"}]},{id:"12214",doi:"10.5772/10326",title:"Simplified Human Hand Models for Manipulation Tasks",slug:"simplified-human-hand-models-for-manipulation-tasks",totalDownloads:3515,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"3637",slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Salvador Cobos, Manuel Ferre, Rafael Aracil, Javier Ortego and M. Angel Sanchez-Uran",authors:null}],mostDownloadedChaptersLast30Days:[{id:"12191",title:"Intelligent Robot Systems Based on PDA for Home Automation Systems in Ubiquitous",slug:"intelligent-robot-systems-based-on-pda-for-home-automation-systems-in-ubiquitous",totalDownloads:5171,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3637",slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"In-Kyu Sa, Ho Seok Ahn, Yun Seok Ahn, Seon-Kyu Sa and Jin Young Choi",authors:null},{id:"12212",title:"Sensor Network for Structuring People and Environmental Information",slug:"sensor-network-for-structuring-people-and-environmental-information",totalDownloads:2441,totalCrossrefCites:1,totalDimensionsCites:4,abstract:null,book:{id:"3637",slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"S. Nishio, N. Hagita, T. Miyashita, T. Kanda, N. Mitsunaga, M. Shiomi and T. Yamazaki",authors:null},{id:"12216",title:"Robot Assisted Smile Recovery",slug:"robot-assisted-smile-recovery",totalDownloads:2541,totalCrossrefCites:2,totalDimensionsCites:2,abstract:null,book:{id:"3637",slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Dushyantha Jayatilake, Anna Gruebler and Kenji Suzuki",authors:null},{id:"12209",title:"Reactive Robot Control with Hybrid Operational Techniques in a Seaport Container Terminal Considering the Reliability",slug:"reactive-robot-control-with-hybrid-operational-techniques-in-a-seaport-container-terminal-considerin",totalDownloads:3055,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3637",slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Satoshi Hoshino and Jun Ota",authors:null},{id:"12193",title:"Image Sabilization for In Vivo Microscopic Imaging",slug:"image-sabilization-for-in-vivo-microscopic-imaging",totalDownloads:2646,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3637",slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Sungon Lee",authors:null}],onlineFirstChaptersFilter:{topicId:"1288",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:27,paginationItems:[{id:"83092",title:"Novel Composites for Bone Tissue Engineering",doi:"10.5772/intechopen.106255",signatures:"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel and Vijayakumar Chinnaswamy Thangavel",slug:"novel-composites-for-bone-tissue-engineering",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",subseries:{id:"8",title:"Bioinspired Technology and Biomechanics"}}},{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:245,paginationItems:[{id:"196707",title:"Prof.",name:"Mustafa Numan",middleName:null,surname:"Bucak",slug:"mustafa-numan-bucak",fullName:"Mustafa Numan Bucak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196707/images/system/196707.png",biography:"Mustafa Numan Bucak received a bachelor’s degree from the Veterinary Faculty, Ankara University, Turkey, where he also obtained a Ph.D. in Sperm Cryobiology. He is an academic staff member of the Department of Reproduction and Artificial Insemination, Selçuk University, Turkey. He manages several studies on sperms and embryos and is an editorial board member for several international journals. His studies include sperm cryobiology, in vitro fertilization, and embryo production in animals.",institutionString:"Selçuk University, Faculty of Veterinary Medicine",institution:null},{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",biography:"Yusuf Bozkurt has a BSc, MSc, and Ph.D. from Ankara University, Turkey. He is currently a Professor of Biotechnology of Reproduction in the field of Aquaculture, İskenderun Technical University, Turkey. His research interests include reproductive biology and biotechnology with an emphasis on cryo-conservation. He is on the editorial board of several international peer-reviewed journals and has published many papers. Additionally, he has participated in many international and national congresses, seminars, and workshops with oral and poster presentations. He is an active member of many local and international organizations.",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",country:{name:"Turkey"}}},{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",biography:"Dr. Sergey Tkachev is a senior research scientist at the Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia, and at the Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. He received his Ph.D. in Molecular Biology with his thesis “Genetic variability of the tick-borne encephalitis virus in natural foci of Novosibirsk city and its suburbs.” His primary field is molecular virology with research emphasis on vector-borne viruses, especially tick-borne encephalitis virus, Kemerovo virus and Omsk hemorrhagic fever virus, rabies virus, molecular genetics, biology, and epidemiology of virus pathogens.",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",country:{name:"Russia"}}},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra, FRSB, obtained a Ph.D. in Animal Nutrition from Indian Veterinary Research Institute, India, in 2002. He is currently an associate professor at West Bengal University of Animal and Fishery Sciences. He has more than twenty years of research and teaching experience. He held previous positions at the American Institute for Goat Research, The Ohio State University, Columbus, USA, and Free University of Berlin, Germany. His research focuses on animal nutrition, particularly ruminants and poultry nutrition, gastrointestinal electrophysiology, meta-analysis and modeling in nutrition, and livestock–environment interaction. He has authored around 175 articles in journals, book chapters, and proceedings. Dr. Patra serves on the editorial boards of several reputed journals.",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",country:{name:"India"}}},{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",biography:"László Babinszky is Professor Emeritus, Department of Animal Nutrition Physiology, University of Debrecen, Hungary. He has also worked in the Department of Animal Nutrition, University of Wageningen, Netherlands; the Institute for Livestock Feeding and Nutrition (IVVO), Lelystad, Netherlands; the Agricultural University of Vienna (BOKU); the Institute for Animal Breeding and Nutrition, Austria; and the Oscar Kellner Research Institute for Animal Nutrition, Rostock, Germany. In 1992, Dr. Babinszky obtained a Ph.D. in Animal Nutrition from the University of Wageningen. His main research areas are swine and poultry nutrition. He has authored more than 300 publications (papers, book chapters) and edited four books and fourteen international conference proceedings.",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201830/images/5017_n.jpg",biography:"I am a professor at UANL since 1988. My research lines are the development of reproductive techniques in small ruminants. We also conducted research on sexual and social behavior in males.\nI am Mexican and study my professional career as an engineer in agriculture and animal science at UANL. Then take a masters degree in science in Germany (Animal breeding). Take a doctorate in animal science at the UANL.",institutionString:null,institution:{name:"Universidad Autónoma de Nuevo León",country:{name:"Mexico"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",slug:"miguel-quaresma",fullName:"Miguel Quaresma",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309250/images/9059_n.jpg",biography:"Miguel Nuno Pinheiro Quaresma was born on May 26, 1974 in Dili, Timor Island. He is married with two children: a boy and a girl, and he is a resident in Vila Real, Portugal. He graduated in Veterinary Medicine in August 1998 and obtained his Ph.D. degree in Veterinary Sciences -Clinical Area in February 2015, both from the University of Trás-os-Montes e Alto Douro. He is currently enrolled in the Alternative Residency of the European College of Animal Reproduction. He works as a Senior Clinician at the Veterinary Teaching Hospital of UTAD (HVUTAD) with a role in clinical activity in the area of livestock and equine species as well as to support teaching and research in related areas. He teaches as an Invited Professor in Reproduction Medicine I and II of the Master\\'s in Veterinary Medicine degree at UTAD. Currently, he holds the position of Chairman of the Portuguese Buiatrics Association. He is a member of the Consultive Group on Production Animals of the OMV. He has 19 publications in indexed international journals (ISIS), as well as over 60 publications and oral presentations in both Portuguese and international journals and congresses.",institutionString:"University of Trás-os-Montes and Alto Douro",institution:{name:"University of Trás-os-Montes and Alto Douro",country:{name:"Portugal"}}},{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/283019/images/system/283019.png",biography:"Dr. Kerro Dego is a veterinary microbiologist with training in veterinary medicine, microbiology, and anatomic pathology. Dr. Kerro Dego is an assistant professor of dairy health in the department of animal science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. He received his D.V.M. (1997), M.S. (2002), and Ph.D. (2008) degrees in Veterinary Medicine, Animal Pathology and Veterinary Microbiology from College of Veterinary Medicine, Addis Ababa University, Ethiopia; College of Veterinary Medicine, Utrecht University, the Netherlands and Western College of Veterinary Medicine, University of Saskatchewan, Canada respectively. He did his Postdoctoral training in microbial pathogenesis (2009 - 2015) in the Department of Animal Science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. Dr. Kerro Dego’s research focuses on the prevention and control of infectious diseases of farm animals, particularly mastitis, improving dairy food safety, and mitigation of antimicrobial resistance. Dr. Kerro Dego has extensive experience in studying the pathogenesis of bacterial infections, identification of virulence factors, and vaccine development and efficacy testing against major bacterial mastitis pathogens. Dr. Kerro Dego conducted numerous controlled experimental and field vaccine efficacy studies, vaccination, and evaluation of immunological responses in several species of animals, including rodents (mice) and large animals (bovine and ovine).",institutionString:"University of Tennessee at Knoxville",institution:{name:"University of Tennessee at Knoxville",country:{name:"United States of America"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",country:{name:"Spain"}}},{id:"309529",title:"Dr.",name:"Albert",middleName:null,surname:"Rizvanov",slug:"albert-rizvanov",fullName:"Albert Rizvanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309529/images/9189_n.jpg",biography:'Albert A. Rizvanov is a Professor and Director of the Center for Precision and Regenerative Medicine at the Institute of Fundamental Medicine and Biology, Kazan Federal University (KFU), Russia. He is the Head of the Center of Excellence “Regenerative Medicine” and Vice-Director of Strategic Academic Unit \\"Translational 7P Medicine\\". Albert completed his Ph.D. at the University of Nevada, Reno, USA and Dr.Sci. at KFU. He is a corresponding member of the Tatarstan Academy of Sciences, Russian Federation. Albert is an author of more than 300 peer-reviewed journal articles and 22 patents. He has supervised 11 Ph.D. and 2 Dr.Sci. dissertations. Albert is the Head of the Dissertation Committee on Biochemistry, Microbiology, and Genetics at KFU.\nORCID https://orcid.org/0000-0002-9427-5739\nWebsite https://kpfu.ru/Albert.Rizvanov?p_lang=2',institutionString:"Kazan Federal University",institution:{name:"Kazan Federal University",country:{name:"Russia"}}},{id:"210551",title:"Dr.",name:"Arbab",middleName:null,surname:"Sikandar",slug:"arbab-sikandar",fullName:"Arbab Sikandar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210551/images/system/210551.jpg",biography:"Dr. Arbab Sikandar, PhD, M. Phil, DVM was born on April 05, 1981. He is currently working at the College of Veterinary & Animal Sciences as an Assistant Professor. He previously worked as a lecturer at the same University. \nHe is a Member/Secretory of Ethics committee (No. CVAS-9377 dated 18-04-18), Member of the QEC committee CVAS, Jhang (Regr/Gen/69/873, dated 26-10-2017), Member, Board of studies of Department of Basic Sciences (No. CVAS. 2851 Dated. 12-04-13, and No. CVAS, 9024 dated 20/11/17), Member of Academic Committee, CVAS, Jhang (No. CVAS/2004, Dated, 25-08-12), Member of the technical committee (No. CVAS/ 4085, dated 20,03, 2010 till 2016).\n\nDr. Arbab Sikandar contributed in five days hands-on-training on Histopathology at the Department of Pathology, UVAS from 12-16 June 2017. He received a Certificate of appreciation for contributions for Popularization of Science and Technology in the Society on 17-11-15. He was the resource person in the lecture series- ‘scientific writing’ at the Department of Anatomy and Histology, UVAS, Lahore on 29th October 2015. He won a full fellowship as a principal candidate for the year 2015 in the field of Agriculture, EICA, Egypt with ref. to the Notification No. 12(11) ACS/Egypt/2014 from 10 July 2015 to 25th September 2015.; he received a grant of Rs. 55000/- as research incentives from Director, Advanced Studies and Research, UVAS, Lahore upon publications of research papers in IF Journals (DR/215, dated 19-5-2014.. He obtained his PhD by winning a HEC Pakistan indigenous Scholarship, ‘Ph.D. fellowship for 5000 scholars – Phase II’ (2av1-147), 17-6/HEC/HRD/IS-II/12, November 15, 2012. \n\nDr. Sikandar is a member of numerous societies: Registered Veterinary Medical Practitioner (life member) and Registered Veterinary Medical Faculty of Pakistan Veterinary Medical Council. The Registration code of PVMC is RVMP/4298 and RVMF/ 0102.; Life member of the University of Veterinary and Animal Sciences, Lahore, Alumni Association with S# 664, dated: 6-4-12. ; Member 'Vets Care Organization Pakistan” with Reference No. VCO-605-149, dated 05-04-06. :Member 'Vet Crescent” (Society of Animal Health and Production), UVAS, Lahore.",institutionString:"University of Veterinary & Animal Science",institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311663/images/13261_n.jpg",biography:null,institutionString:null,institution:{name:"National Dairy Research Institute",country:{name:"India"}}},{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",country:{name:"United Kingdom"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",biography:"Valentina Kubale is Associate Professor of Veterinary Medicine at the Veterinary Faculty, University of Ljubljana, Slovenia. Since graduating from the Veterinary faculty she obtained her PhD in 2007, performed collaboration with the Department of Pharmacology, University of Copenhagen, Denmark. She continued as a post-doctoral fellow at the University of Copenhagen with a Lundbeck foundation fellowship. She is the editor of three books and author/coauthor of 23 articles in peer-reviewed scientific journals, 16 book chapters, and 68 communications at scientific congresses. Since 2008 she has been the Editor Assistant for the Slovenian Veterinary Research journal. She is a member of Slovenian Biochemical Society, The Endocrine Society, European Association of Veterinary Anatomists and Society for Laboratory Animals, where she is board member.",institutionString:"University of Ljubljana",institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",biography:"Dr. Fonseca-Alves earned his DVM from Federal University of Goias – UFG in 2008. He completed an internship in small animal internal medicine at UPIS university in 2011, earned his MSc in 2013 and PhD in 2015 both in Veterinary Medicine at Sao Paulo State University – UNESP. Dr. Fonseca-Alves currently serves as an Assistant Professor at Paulista University – UNIP teaching small animal internal medicine.",institutionString:null,institution:{name:"Universidade Paulista",country:{name:"Brazil"}}},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",biography:"María de la Luz García Pardo is an agricultural engineer from Universitat Politècnica de València, Spain. She has a Ph.D. in Animal Genetics. Currently, she is a lecturer at the Agrofood Technology Department of Miguel Hernández University, Spain. Her research is focused on genetics and reproduction in rabbits. The major goal of her research is the genetics of litter size through novel methods such as selection by the environmental sensibility of litter size, with forays into the field of animal welfare by analysing the impact on the susceptibility to diseases and stress of the does. Details of her publications can be found at https://orcid.org/0000-0001-9504-8290.",institutionString:null,institution:{name:"Miguel Hernandez University",country:{name:"Spain"}}},{id:"350704",title:"M.Sc.",name:"Camila",middleName:"Silva Costa",surname:"Ferreira",slug:"camila-ferreira",fullName:"Camila Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/350704/images/17280_n.jpg",biography:"Graduated in Veterinary Medicine at the Fluminense Federal University, specialist in Equine Reproduction at the Brazilian Veterinary Institute (IBVET) and Master in Clinical Veterinary Medicine and Animal Reproduction at the Fluminense Federal University. She has experience in analyzing zootechnical indices in dairy cattle and organizing events related to Veterinary Medicine through extension grants. I have experience in the field of diagnostic imaging and animal reproduction in veterinary medicine through monitoring and scientific initiation scholarships. I worked at the Equus Central Reproduction Equine located in Santo Antônio de Jesus – BA in the 2016/2017 breeding season. I am currently a doctoral student with a scholarship from CAPES of the Postgraduate Program in Veterinary Medicine (Pathology and Clinical Sciences) at the Federal Rural University of Rio de Janeiro (UFRRJ) with a research project with an emphasis on equine endometritis.",institutionString:null,institution:null},{id:"41319",title:"Prof.",name:"Lung-Kwang",middleName:null,surname:"Pan",slug:"lung-kwang-pan",fullName:"Lung-Kwang Pan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41319/images/84_n.jpg",biography:null,institutionString:null,institution:null},{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/125292/images/system/125292.jpeg",biography:"Katy Satué Ambrojo received her Veterinary Medicine degree, Master degree in Equine Technology and doctorate in Veterinary Medicine from the Faculty of Veterinary, CEU-Cardenal Herrera University in Valencia, Spain.Dr. Satué is accredited as a Private University Doctor Professor, Doctor Assistant, and Contracted Doctor by AVAP (Agència Valenciana d'Avaluació i Prospectiva) and currently, as a full professor by ANECA (since January 2022). To date, Katy has taught 22 years in the Department of Animal Medicine and Surgery at the CEU-Cardenal Herrera University in undergraduate courses in Veterinary Medicine (General Pathology, integrated into the Applied Basis of Veterinary Medicine module of the 2nd year, Clinical Equine I of 3rd year, and Equine Clinic II of 4th year). Dr. Satué research activity is in the field of Endocrinology, Hematology, Biochemistry, and Immunology in the Spanish Purebred mare. She has directed 5 Doctoral Theses and 5 Diplomas of Advanced Studies, and participated in 11 research projects as a collaborating researcher. She has written 2 books and 14 book chapters in international publishers related to the area, and 68 scientific publications in international journals. Dr. Satué has attended 63 congresses, participating with 132 communications in international congresses and 19 in national congresses related to the area. Dr. Satué is a scientific reviewer for various prestigious international journals such as Animals, American Journal of Obstetrics and Gynecology, Veterinary Clinical Pathology, Journal of Equine Veterinary Science, Reproduction in Domestic Animals, Research Veterinary Science, Brazilian Journal of Medical and Biological Research, Livestock Production Science and Theriogenology, among others. Since 2014 she has been responsible for the Clinical Analysis Laboratory of the CEU-Cardenal Herrera University Veterinary Clinical Hospital.",institutionString:null,institution:null},{id:"201721",title:"Dr.",name:"Beatrice",middleName:null,surname:"Funiciello",slug:"beatrice-funiciello",fullName:"Beatrice Funiciello",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201721/images/11089_n.jpg",biography:"Graduated from the University of Milan in 2011, my post-graduate education included CertAVP modules mainly on equines (dermatology and internal medicine) and a few on small animal (dermatology and anaesthesia) at the University of Liverpool. After a general CertAVP (2015) I gained the designated Certificate in Veterinary Dermatology (2017) after taking the synoptic examination and then applied for the RCVS ADvanced Practitioner status. After that, I completed the Postgraduate Diploma in Veterinary Professional Studies at the University of Liverpool (2018). My main area of work is cross-species veterinary dermatology.",institutionString:null,institution:null},{id:"291226",title:"Dr.",name:"Monica",middleName:null,surname:"Cassel",slug:"monica-cassel",fullName:"Monica Cassel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291226/images/8232_n.jpg",biography:'Degree in Biological Sciences at the Federal University of Mato Grosso with scholarship for Scientific Initiation by FAPEMAT (2008/1) and CNPq (2008/2-2009/2): Project \\"Histological evidence of reproductive activity in lizards of the Manso region, Chapada dos Guimarães, Mato Grosso, Brazil\\". Master\\\'s degree in Ecology and Biodiversity Conservation at Federal University of Mato Grosso with a scholarship by CAPES/REUNI program: Project \\"Reproductive biology of Melanorivulus punctatus\\". PhD\\\'s degree in Science (Cell and Tissue Biology Area) \n at University of Sao Paulo with scholarship granted by FAPESP; Project \\"Development of morphofunctional changes in ovary of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae)\\". She has experience in Reproduction of vertebrates and Morphology, with emphasis in Cellular Biology and Histology. She is currently a teacher in the medium / technical level courses at IFMT-Alta Floresta, as well as in the Bachelor\\\'s degree in Animal Science and in the Bachelor\\\'s degree in Business.',institutionString:null,institution:null},{id:"442807",title:"Dr.",name:"Busani",middleName:null,surname:"Moyo",slug:"busani-moyo",fullName:"Busani Moyo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Gwanda State University",country:{name:"Zimbabwe"}}},{id:"439435",title:"Dr.",name:"Feda S.",middleName:null,surname:"Aljaser",slug:"feda-s.-aljaser",fullName:"Feda S. Aljaser",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"423023",title:"Dr.",name:"Yosra",middleName:null,surname:"Soltan",slug:"yosra-soltan",fullName:"Yosra Soltan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"349788",title:"Dr.",name:"Florencia Nery",middleName:null,surname:"Sompie",slug:"florencia-nery-sompie",fullName:"Florencia Nery Sompie",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sam Ratulangi University",country:{name:"Indonesia"}}},{id:"428600",title:"MSc.",name:"Adriana",middleName:null,surname:"García-Alarcón",slug:"adriana-garcia-alarcon",fullName:"Adriana García-Alarcón",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428599",title:"MSc.",name:"Gabino",middleName:null,surname:"De La Rosa-Cruz",slug:"gabino-de-la-rosa-cruz",fullName:"Gabino De La Rosa-Cruz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428601",title:"MSc.",name:"Juan Carlos",middleName:null,surname:"Campuzano-Caballero",slug:"juan-carlos-campuzano-caballero",fullName:"Juan Carlos Campuzano-Caballero",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}}]}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular Economy, Contingency Planning and Response to Disasters, Ecosystem Services, Integrated Urban Water Management, Nature-based Solutions, Sustainable Urban Development, Urban Green Spaces",scope:"